1
|
Kazi NH, Klink N, Gallant K, Kipka GM, Gersch M. Chimeric deubiquitinase engineering reveals structural basis for specific inhibition of the mitophagy regulator USP30. Nat Struct Mol Biol 2025:10.1038/s41594-025-01534-4. [PMID: 40325251 DOI: 10.1038/s41594-025-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/12/2025] [Indexed: 05/07/2025]
Abstract
The mitochondrial deubiquitinase ubiquitin-specific protease (USP) 30 negatively regulates PINK1-parkin-driven mitophagy. Whether enhanced mitochondrial quality control through inhibition of USP30 can protect dopaminergic neurons is currently being explored in a clinical trial for Parkinson's disease. However, the molecular basis for specific inhibition of USP30 by small molecules has remained elusive. Here we report the crystal structure of human USP30 in complex with a specific inhibitor, enabled by chimeric protein engineering. Our study uncovers how the inhibitor extends into a cryptic pocket facilitated by a compound-induced conformation of the USP30 switching loop. Our work underscores the potential of exploring induced pockets and conformational dynamics to obtain deubiquitinase inhibitors and identifies residues facilitating specific inhibition of USP30. More broadly, we delineate a conceptual framework for specific USP deubiquitinase inhibition based on a common ligandability hotspot in the Leu73 ubiquitin binding site and on diverse compound extensions. Collectively, our work establishes a generalizable chimeric protein-engineering strategy to aid deubiquitinase crystallization and enables structure-based drug design with relevance to neurodegeneration.
Collapse
Affiliation(s)
- Nafizul Haque Kazi
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Nikolas Klink
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Kai Gallant
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Gian-Marvin Kipka
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Malte Gersch
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
2
|
Hong KS, Ryu KJ, Kim H, Kim M, Park SH, Kim T, Yang JW, Hwangbo C, Kim KD, Park YJ, Yoo J. MSK1 promotes colorectal cancer metastasis by increasing Snail protein stability through USP5-mediated Snail deubiquitination. Exp Mol Med 2025; 57:820-835. [PMID: 40164688 PMCID: PMC12046000 DOI: 10.1038/s12276-025-01433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Mitogen- and stress-activated protein kinase 1 (MSK1), a Ser/Thr kinase, phosphorylates nuclear proteins to increase their stability and DNA-binding affinity. Despite the role of MSK1 in promoting cancer progression in colorectal cancer (CRC), the precise molecular mechanisms remain unelucidated. Here we show that MSK1 expression induces the epithelial-mesenchymal transition (EMT) process and increases CRC cell metastasis. Furthermore, we discovered that MSK1 interacts with Snail, a key EMT regulator, and increases its stability by inhibiting ubiquitin-mediated proteasomal degradation. Importantly, MSK1 increased Snail protein stability by promoting deubiquitination rather than inhibiting its ubiquitination. Finally, we identified USP5 as an essential deubiquitinase that binds to Snail protein phosphorylated by MSK1. Based on the experimental data, in CRC, MSK1-Snail-USP5 axis can promote EMT and metastasis of CRC. Together, our findings provide potential biomarkers and novel therapeutic targets for further research in CRC.
Collapse
Affiliation(s)
- Keun-Seok Hong
- Department of Bio and Medical Bigdata (Brain Korea 21 Four), Gyeongsang National University, Jinju, Republic of Korea
- Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki-Jun Ryu
- Department of Biochemistry and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Hyemin Kim
- Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Minju Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Taeyoung Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
3
|
Toda Y, Fujita H, Mino K, Koyama T, Matsuoka S, Kaizuka T, Agawa M, Matsumoto S, Idei A, Nishikori M, Okuno Y, Osada H, Yoshida M, Takaori-Kondo A, Iwai K. Synergistic involvement of the NZF domains of the LUBAC accessory subunits HOIL-1L and SHARPIN in the regulation of LUBAC function. Cell Death Dis 2024; 15:813. [PMID: 39528476 PMCID: PMC11555115 DOI: 10.1038/s41419-024-07199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The linear ubiquitin chain assembly complex (LUBAC) plays crucial roles in NF-κB signaling and protection against cell death by generating linear ubiquitin chains. Its accessory subunits, HOIL-1L and SHARPIN, regulate LUBAC function by binding to ubiquitin chains via their Npl4 zinc finger (NZF) domains. However, the synergistic effects of the two NZF domains on LUBAC function remain unclear. Here, we demonstrate that the ubiquitin-binding activity of the two NZF domains cooperatively regulates LUBAC functions. Simultaneous loss of the ubiquitin-binding activity of the NZF domains profoundly impaired both NF-κB activation and cell death protection functions. HOIL-1L NZF robustly binds to linear ubiquitin chains, whereas SHARPIN NZF binds to Lys(K)63-linked ubiquitin chains in addition to linear chains. Binding of both NZF domains to linear ubiquitin chains regulated NF-κB signaling, whereas SHARPIN NZF predominantly regulated the cell death protection function independently of the ubiquitin chain type, K63-linked or linear ubiquitin. However, concomitant loss of linear ubiquitin binding by HOIL-1L NZF drastically impaired cell death protection. A screen of compounds capable of inhibiting binding between HOIL-1L NZF and linear ubiquitin chains identified a small compound that inhibited SHARPIN NZF as well as HOIL-1L NZF binding to linear ubiquitin chains, supporting the synergistic effect of the two NZF domains on cell death protection and suggesting a potential therapeutic strategy for targeting increased LUBAC activity in diseases such as cancer.
Collapse
Affiliation(s)
- Yusuke Toda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan
| | - Koshiki Mino
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Takuto Koyama
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Seiji Matsuoka
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Toshie Kaizuka
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Mari Agawa
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Shigeyuki Matsumoto
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Akiko Idei
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan
| | - Yasushi Okuno
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, 422-8526, Japan
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan.
| |
Collapse
|
4
|
Hill CJ, Datta S, McCurtin NP, Kimball HZ, Kingsley MC, Bayer AL, Martin AC, Peng Q, Weerapana E, Scheck RA. A Modular Turn-On Strategy to Profile E2-Specific Ubiquitination Events in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202319579. [PMID: 38291002 PMCID: PMC11606432 DOI: 10.1002/anie.202319579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
A cascade of three enzymes, E1-E2-E3, is responsible for transferring ubiquitin to target proteins, which controls many different aspects of cellular signaling. The role of the E2 has been largely overlooked, despite influencing substrate identity, chain multiplicity, and topology. Here we report a method-targeted charging of ubiquitin to E2 (tCUbE)-that can track a tagged ubiquitin through its entire enzymatic cascade in living mammalian cells. We use this approach to reveal new targets whose ubiquitination depends on UbcH5a E2 activity. We demonstrate that tCUbE can be broadly applied to multiple E2s and in different human cell lines. tCUbE is uniquely suited to examine E2-E3-substrate cascades of interest and/or piece together previously unidentified cascades, thereby illuminating entire branches of the UPS and providing critical insight that will be useful for identifying new therapeutic targets in the UPS.
Collapse
Affiliation(s)
- Caitlin J Hill
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Suprama Datta
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | | | - Hannah Z Kimball
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Molly C Kingsley
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Abraham L Bayer
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | | | - Qianni Peng
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Rebecca A Scheck
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Locke AJ, Abou Farraj R, Tran C, Zeinali E, Mashayekhi F, Ali JYH, Glover JNM, Ismail IH. The role of RNF138 in DNA end resection is regulated by ubiquitylation and CDK phosphorylation. J Biol Chem 2024; 300:105709. [PMID: 38309501 PMCID: PMC10910129 DOI: 10.1016/j.jbc.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Double-strand breaks (DSBs) are DNA lesions that pose a significant threat to genomic stability. The repair of DSBs by the homologous recombination (HR) pathway is preceded by DNA end resection, the 5' to 3' nucleolytic degradation of DNA away from the DSB. We and others previously identified a role for RNF138, a really interesting new gene finger E3 ubiquitin ligase, in stimulating DNA end resection and HR. Yet, little is known about how RNF138's function is regulated in the context of DSB repair. Here, we show that RNF138 is phosphorylated at residue T27 by cyclin-dependent kinase (CDK) activity during the S and G2 phases of the cell cycle. We also observe that RNF138 is ubiquitylated constitutively, with ubiquitylation occurring in part on residue K158 and rising during the S/G2 phases. Interestingly, RNF138 ubiquitylation decreases upon genotoxic stress. By mutating RNF138 at residues T27, K158, and the previously identified S124 ataxia telangiectasia mutated phosphorylation site (Han et al., 2016, ref. 22), we find that post-translational modifications at all three positions mediate DSB repair. Cells expressing the T27A, K158R, and S124A variants of RNF138 are impaired in DNA end resection, HR activity, and are more sensitive to ionizing radiation compared to those expressing wildtype RNF138. Our findings shed more light on how RNF138 activity is controlled by the cell during HR.
Collapse
Affiliation(s)
- Andrew J Locke
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Tran
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elham Zeinali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jana Yasser Hafez Ali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
6
|
Barroso-Gomila O, Merino-Cacho L, Muratore V, Perez C, Taibi V, Maspero E, Azkargorta M, Iloro I, Trulsson F, Vertegaal ACO, Mayor U, Elortza F, Polo S, Barrio R, Sutherland JD. BioE3 identifies specific substrates of ubiquitin E3 ligases. Nat Commun 2023; 14:7656. [PMID: 37996419 PMCID: PMC10667490 DOI: 10.1038/s41467-023-43326-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Hundreds of E3 ligases play a critical role in recognizing specific substrates for modification by ubiquitin (Ub). Separating genuine targets of E3s from E3-interactors remains a challenge. We present BioE3, a powerful approach for matching substrates to Ub E3 ligases of interest. Using BirA-E3 ligase fusions and bioUb, site-specific biotinylation of Ub-modified substrates of particular E3s facilitates proteomic identification. We show that BioE3 identifies both known and new targets of two RING-type E3 ligases: RNF4 (DNA damage response, PML bodies), and MIB1 (endocytosis, autophagy, centrosome dynamics). Versatile BioE3 identifies targets of an organelle-specific E3 (MARCH5) and a relatively uncharacterized E3 (RNF214). Furthermore, BioE3 works with NEDD4, a HECT-type E3, identifying new targets linked to vesicular trafficking. BioE3 detects altered specificity in response to chemicals, opening avenues for targeted protein degradation, and may be applicable for other Ub-likes (UbLs, e.g., SUMO) and E3 types. BioE3 applications shed light on cellular regulation by the complex UbL network.
Collapse
Affiliation(s)
- Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Laura Merino-Cacho
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Veronica Muratore
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Coralia Perez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
| | - Vincenzo Taibi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Elena Maspero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Ibon Iloro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Fredrik Trulsson
- Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333, ZA, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Center (LUMC), 2333, ZA, Leiden, The Netherlands
| | - Ugo Mayor
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), E-48940, Leioa, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Simona Polo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Dipartimento di oncologia ed emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| |
Collapse
|
7
|
Zhou M, Fang R, Colson L, Donovan KA, Hunkeler M, Song Y, Zhang C, Chen S, Lee DH, Bradshaw GA, Eisert R, Ye Y, Kalocsay M, Goldberg A, Fischer ES, Lu Y. HUWE1 Amplifies Ubiquitin Modifications to Broadly Stimulate Clearance of Proteins and Aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542866. [PMID: 37398461 PMCID: PMC10312588 DOI: 10.1101/2023.05.30.542866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Selective breakdown of proteins and aggregates is crucial for maintaining normal cellular activities and is involved in the pathogenesis of diverse diseases. How the cell recognizes and tags these targets in different structural states for degradation by the proteasome and autophagy pathways has not been well understood. Here, we discovered that a HECT-family ubiquitin ligase HUWE1 is broadly required for the efficient degradation of soluble factors and for the clearance of protein aggregates/condensates. Underlying this capacity of HUWE1 is a novel Ubiquitin-Directed ubiquitin Ligase (UDL) activity which recognizes both soluble substrates and aggregates that carry a high density of ubiquitin chains and rapidly expand the ubiquitin modifications on these targets. Ubiquitin signal amplification by HUWE1 recruits the ubiquitin-dependent segregase p97/VCP to process these targets for subsequent degradation or clearance. HUWE1 controls the cytotoxicity of protein aggregates, mediates Targeted Protein Degradation and regulates cell-cycle transitions with its UDL activity.
Collapse
|
8
|
Singh AK, Murmu S, Krężel A. One-Step Sortase-Mediated Chemoenzymatic Semisynthesis of Deubiquitinase-Resistant Ub-Peptide Conjugates. ACS OMEGA 2022; 7:46693-46701. [PMID: 36570257 PMCID: PMC9773336 DOI: 10.1021/acsomega.2c05652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Post-translational modifications (PTMs) of proteins increase the functional diversity of the proteome and play crucial regulatory roles in cellular processes. Ubiquitination is a highly regulated and reversible PTM accomplished by a complex multistep process with the sequential action of several specific ubiquitinating (E1-E3) and deubiquitinating enzymes. The different types of ubiquitination (mono-, poly-mono-, and poly-) and the presence of several target sites in a single substrate add to its complexity, which makes the in vitro reconstitution of this ubiquitin (Ub) machinery a quite cumbersome process. Defects in components of the ubiquitination process also contribute to disease pathogenesis, especially cancer and neurodegeneration. This makes them of interest as potential therapeutic targets. Therefore, the development of efficient and reliable methods that will generate a highly homogeneous ubiquitinated peptide and protein conjugate is a topical subject area of research. In this report, we describe the development of a simple and efficient in vitro sortase-mediated chemoenzymatic strategy for semisynthesis of defined and homogeneous ubiquitin conjugates with more than 90% yield. This was achieved by engineering a sortase recognition motif in the dynamic C-terminus of ubiquitin and its conjugation to an isopeptide-linked di-Gly appended peptide LMFK(ε-GG)TEG corresponding to the ubiquitination site residues 383LMFKTEG389 of p53. The defined and homogeneous ubiquitin conjugates were also weighed for their recognition propensity by deubiquitinating enzymes. This facile semisynthesis of ubiquitin conjugates establishes a simple one-step sortase-mediated chemoenzymatic route for the synthesis of homogeneous and defined isopeptide-linked polypeptides and will help in understanding the complexity of the ubiquitination machinery as well as designing isopeptide drugs and therapeutics.
Collapse
Affiliation(s)
- Avinash K. Singh
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
- National
Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sumit Murmu
- National
Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Abdelkader EH, Qianzhu H, George J, Frkic RL, Jackson CJ, Nitsche C, Otting G, Huber T. Genetic Encoding of Cyanopyridylalanine for In‐Cell Protein Macrocyclization by the Nitrile–Aminothiol Click Reaction. Angew Chem Int Ed Engl 2022; 61:e202114154. [PMID: 35102680 PMCID: PMC9304162 DOI: 10.1002/anie.202114154] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/04/2022]
Abstract
Cyanopyridylalanines are non‐canonical amino acids that react with aminothiol compounds under physiological conditions in a biocompatible manner without requiring added catalyst. Here we present newly developed aminoacyl‐tRNA synthetases for genetic encoding of meta‐ and para‐cyanopyridylalanine to enable the site‐specific attachment of a wide range of different functionalities. The outstanding utility of the cyanopyridine moiety is demonstrated by examples of i) post‐translational functionalization of proteins, ii) in‐cell macrocyclization of peptides and proteins, and iii) protein stapling. The biocompatible nature of the protein ligation chemistry enabled by the cyanopyridylalanine amino acid opens a new path to specific in vivo protein modifications in complex biological environments.
Collapse
Affiliation(s)
- Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Haocheng Qianzhu
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Josemon George
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Rebecca L. Frkic
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Colin J. Jackson
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Thomas Huber
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
10
|
Abdelkader EH, Qianzhu H, George J, Frkic RL, Jackson CJ, Nitsche C, Otting G, Huber T. Genetic Encoding of Cyanopyridylalanine for In‐Cell Protein Macrocyclization by the Nitrile–Aminothiol Click Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Haocheng Qianzhu
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Josemon George
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Rebecca L. Frkic
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Colin J. Jackson
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Thomas Huber
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
11
|
Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell 2021; 82:15-29. [PMID: 34813758 DOI: 10.1016/j.molcel.2021.10.027] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
12
|
Kliza K, Husnjak K. Resolving the Complexity of Ubiquitin Networks. Front Mol Biosci 2020; 7:21. [PMID: 32175328 PMCID: PMC7056813 DOI: 10.3389/fmolb.2020.00021] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Ubiquitination regulates nearly all cellular processes by coordinated activity of ubiquitin writers (E1, E2, and E3 enzymes), erasers (deubiquitinating enzymes) and readers (proteins that recognize ubiquitinated proteins by their ubiquitin-binding domains). By differentially modifying cellular proteome and by recognizing these ubiquitin modifications, ubiquitination machinery tightly regulates execution of specific cellular events in space and time. Dynamic and complex ubiquitin architecture, ranging from monoubiquitination, multiple monoubiquitination, eight different modes of homotypic and numerous types of heterogeneous polyubiquitin linkages, enables highly dynamic and complex regulation of cellular processes. We discuss available tools and approaches to study ubiquitin networks, including methods for the identification and quantification of ubiquitin-modified substrates, as well as approaches to quantify the length, abundance, linkage type and architecture of different ubiquitin chains. Furthermore, we also summarize the available approaches for the discovery of novel ubiquitin readers and ubiquitin-binding domains, as well as approaches to monitor and visualize activity of ubiquitin conjugation and deconjugation machineries. We also discuss benefits, drawbacks and limitations of available techniques, as well as what is still needed for detailed spatiotemporal dissection of cellular ubiquitination networks.
Collapse
Affiliation(s)
- Katarzyna Kliza
- Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| |
Collapse
|
13
|
Ducker C, Chow LKY, Saxton J, Handwerger J, McGregor A, Strahl T, Layfield R, Shaw PE. De-ubiquitination of ELK-1 by USP17 potentiates mitogenic gene expression and cell proliferation. Nucleic Acids Res 2019; 47:4495-4508. [PMID: 30854565 PMCID: PMC6511843 DOI: 10.1093/nar/gkz166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/06/2023] Open
Abstract
ELK-1 is a transcription factor involved in ERK-induced cellular proliferation. Here, we show that its transcriptional activity is modulated by ubiquitination at lysine 35 (K35). The level of ubiquitinated ELK-1 rises in mitogen-deprived cells and falls upon mitogen stimulation or oncogene expression. Ectopic expression of USP17, a cell cycle-dependent deubiquitinase, decreases ELK-1 ubiquitination and up-regulates ELK-1 target-genes with a concomitant increase in cyclin D1 expression. In contrast, USP17 depletion attenuates ELK-1-dependent gene expression and slows cell proliferation. The reduced rate of proliferation upon USP17 depletion appears to be a direct effect of ELK-1 ubiquitination because it is rescued by an ELK-1(K35R) mutant refractory to ubiquitination. Overall, our results show that ubiquitination of ELK-1 at K35, and its reversal by USP17, are important mechanisms in the regulation of nuclear ERK signalling and cellular proliferation. Our findings will be relevant for tumours that exhibit elevated USP17 expression and suggest a new target for intervention.
Collapse
Affiliation(s)
- Charles Ducker
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Leo Kam Yuen Chow
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Janice Saxton
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jürgen Handwerger
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Alexander McGregor
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Thomas Strahl
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Robert Layfield
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peter E Shaw
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
14
|
Agrotis A, von Chamier L, Oliver H, Kiso K, Singh T, Ketteler R. Human ATG4 autophagy proteases counteract attachment of ubiquitin-like LC3/GABARAP proteins to other cellular proteins. J Biol Chem 2019; 294:12610-12621. [PMID: 31315929 PMCID: PMC6709618 DOI: 10.1074/jbc.ac119.009977] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Microtubule-associated protein 1 light chain 3 α (LC3)/GABA type A receptor-associated protein (GABARAP) comprises a family of ubiquitin-like proteins involved in (macro)autophagy, an important intracellular degradation pathway that delivers cytoplasmic material to lysosomes via double-membrane vesicles called autophagosomes. The only currently known cellular molecules covalently modified by LC3/GABARAP are membrane phospholipids such as phosphatidylethanolamine in the autophagosome membrane. Autophagy-related 4 cysteine peptidase (ATG4) proteases process inactive pro-LC3/GABARAP before lipidation, and the same proteases can also deconjugate LC3/GABARAP from lipids. To determine whether LC3/GABARAP has other molecular targets, here we generated a pre-processed LC3B mutant (Q116P) that is resistant to ATG4-mediated deconjugation. Upon expression in human cells and when assessed by immunoblotting under reducing and denaturing conditions, deconjugation-resistant LC3B accumulated in multiple forms and at much higher molecular weights than free LC3B. We observed a similar accumulation when pre-processed versions of all mammalian LC3/GABARAP isoforms were expressed in ATG4-deficient cell lines, suggesting that LC3/GABARAP can attach also to other larger molecules. We identified ATG3, the E2-like enzyme involved in LC3/GABARAP lipidation, as one target of conjugation with multiple copies of LC3/GABARAP. We show that LC3B-ATG3 conjugates are distinct from the LC3B-ATG3 thioester intermediate formed before lipidation, and we biochemically demonstrate that ATG4B can cleave LC3B-ATG3 conjugates. Finally, we determined ATG3 residue Lys-243 as an LC3B modification site. Overall, we provide the first cellular evidence that mammalian LC3/GABARAP post-translationally modifies proteins akin to ubiquitination ("LC3ylation"), with ATG4 proteases acting like deubiquitinating enzymes to counteract this modification ("deLC3ylation").
Collapse
Affiliation(s)
- Alexander Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Lucas von Chamier
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Harriet Oliver
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Koshiro Kiso
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Tanya Singh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Nat Chem Biol 2019; 15:276-284. [PMID: 30770915 DOI: 10.1038/s41589-019-0227-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/03/2019] [Indexed: 02/02/2023]
Abstract
Post-translational modification of proteins with ubiquitin and ubiquitin-like proteins (Ubls) is central to the regulation of eukaryotic cellular processes. Our ability to study the effects of ubiquitylation, however, is limited by the difficulty to prepare homogenously modified proteins in vitro and by the impossibility to selectively trigger specific ubiquitylation events in living cells. Here we combine genetic-code expansion, bioorthogonal Staudinger reduction and sortase-mediated transpeptidation to develop a general tool to ubiquitylate proteins in an inducible fashion. The generated ubiquitin conjugates display a native isopeptide bond and bear two point mutations in the ubiquitin C terminus that confer resistance toward deubiquitinases. Nevertheless, physiological integrity of sortase-generated diubiquitins in decoding cellular functions via recognition by ubiquitin-binding domains is retained. Our approach allows the site-specific attachment of Ubls to nonrefoldable, multidomain proteins and enables inducible and ubiquitin-ligase-independent ubiquitylation of proteins in mammalian cells, providing a powerful tool to dissect the biological functions of ubiquitylation with temporal control.
Collapse
|
16
|
Dikshit A, Jin YJ, Degan S, Hwang J, Foster MW, Li CY, Zhang JY. UBE2N Promotes Melanoma Growth via MEK/FRA1/SOX10 Signaling. Cancer Res 2018; 78:6462-6472. [PMID: 30224375 DOI: 10.1158/0008-5472.can-18-1040] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/16/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
UBE2N is a K63-specific ubiquitin conjugase linked to various immune disorders and cancer. Here, we demonstrate that UBE2N and its partners UBE2V1 and UBE2V2 are highly expressed in malignant melanoma. Silencing of UBE2N and its partners significantly decreased melanoma cell proliferation and subcutaneous tumor growth. This was accompanied by increased expression of E-cadherin, p16, and MC1R and decreased expression of melanoma malignancy markers including SOX10, Nestin, and ABCB5. Mass spectrometry-based phosphoproteomic analysis revealed that UBE2N loss resulted in distinct alterations to the signaling landscape: MEK/ERK signaling was impaired, FRA1 and SOX10 gene regulators were downregulated, and p53 and p16 tumor suppressors were upregulated. Similar to inhibition of UBE2N and MEK, silencing FRA1 decreased SOX10 expression and cell proliferation. Conversely, exogenous expression of active FRA1 increased pMEK and SOX10 expression, and restored anchorage-independent cell growth of cells with UBE2N loss. Systemic delivery of NSC697923, a small-molecule inhibitor of UBE2N, significantly decreased melanoma xenograft growth. These data indicate that UBE2N is a novel regulator of the MEK/FRA1/SOX10 signaling cascade and is indispensable for malignant melanoma growth. Our findings establish the basis for targeting UBE2N as a potential treatment strategy for melanoma.Significance: These findings identify ubiquitin conjugase UBE2N and its variant partners as novel regulators of MAPK signaling and potential therapeutic targets in melanoma. Cancer Res; 78(22); 6462-72. ©2018 AACR.
Collapse
Affiliation(s)
- Anushka Dikshit
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Yingai J Jin
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Jihwan Hwang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Matthew W Foster
- Duke Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
17
|
Morrow ME, Morgan MT, Clerici M, Growkova K, Yan M, Komander D, Sixma TK, Simicek M, Wolberger C. Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins. EMBO Rep 2018; 19:embr.201745680. [PMID: 30150323 PMCID: PMC6172466 DOI: 10.15252/embr.201745680] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
A common strategy for exploring the biological roles of deubiquitinating enzymes (DUBs) in different pathways is to study the effects of replacing the wild‐type DUB with a catalytically inactive mutant in cells. We report here that a commonly studied DUB mutation, in which the catalytic cysteine is replaced with alanine, can dramatically increase the affinity of some DUBs for ubiquitin. Overexpression of these tight‐binding mutants thus has the potential to sequester cellular pools of monoubiquitin and ubiquitin chains. As a result, cells expressing these mutants may display unpredictable dominant negative physiological effects that are not related to loss of DUB activity. The structure of the SAGA DUB module bound to free ubiquitin reveals the structural basis for the 30‐fold higher affinity of Ubp8C146A for ubiquitin. We show that an alternative option, substituting the active site cysteine with arginine, can inactivate DUBs while also decreasing the affinity for ubiquitin.
Collapse
Affiliation(s)
- Marie E Morrow
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcello Clerici
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ming Yan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michal Simicek
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Kwasna D, Abdul Rehman SA, Natarajan J, Matthews S, Madden R, De Cesare V, Weidlich S, Virdee S, Ahel I, Gibbs-Seymour I, Kulathu Y. Discovery and Characterization of ZUFSP/ZUP1, a Distinct Deubiquitinase Class Important for Genome Stability. Mol Cell 2018; 70:150-164.e6. [PMID: 29576527 PMCID: PMC5896202 DOI: 10.1016/j.molcel.2018.02.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 01/17/2023]
Abstract
Deubiquitinating enzymes (DUBs) are important regulators of ubiquitin signaling. Here, we report the discovery of deubiquitinating activity in ZUFSP/C6orf113. High-resolution crystal structures of ZUFSP in complex with ubiquitin reveal several distinctive features of ubiquitin recognition and catalysis. Our analyses reveal that ZUFSP is a novel DUB with no homology to any known DUBs, leading us to classify ZUFSP as the seventh DUB family. Intriguingly, the minimal catalytic domain does not cleave polyubiquitin. We identify two ubiquitin binding domains in ZUFSP: a ZHA (ZUFSP helical arm) that binds to the distal ubiquitin and an atypical UBZ domain in ZUFSP that binds to polyubiquitin. Importantly, both domains are essential for ZUFSP to selectively cleave K63-linked polyubiquitin. We show that ZUFSP localizes to DNA lesions, where it plays an important role in genome stability pathways, functioning to prevent spontaneous DNA damage and also promote cellular survival in response to exogenous DNA damage.
Collapse
Affiliation(s)
- Dominika Kwasna
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Syed Arif Abdul Rehman
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jayaprakash Natarajan
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen Matthews
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Ross Madden
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Virginia De Cesare
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Simone Weidlich
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Ivan Ahel
- DNA Damage Response Laboratory, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Ian Gibbs-Seymour
- DNA Damage Response Laboratory, Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK.
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
19
|
Suisse A, Békés M, Huang TT, Treisman JE. The COP9 signalosome inhibits Cullin-RING E3 ubiquitin ligases independently of its deneddylase activity. Fly (Austin) 2018; 12:118-126. [PMID: 29355077 DOI: 10.1080/19336934.2018.1429858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The COP9 signalosome inhibits the activity of Cullin-RING E3 ubiquitin ligases by removing Nedd8 modifications from their Cullin subunits. Neddylation renders these complexes catalytically active, but deneddylation is also necessary for them to exchange adaptor subunits and avoid auto-ubiquitination. Although deneddylation is thought to be the primary function of the COP9 signalosome, additional activities have been ascribed to some of its subunits. We recently showed that COP9 subunits protect the transcriptional repressor and tumor suppressor Capicua from two distinct modes of degradation. Deneddylation by the COP9 signalosome inactivates a Cullin 1 complex that ubiquitinates Capicua following its phosphorylation by MAP kinase in response to Epidermal Growth Factor Receptor signaling. The CSN1b subunit also stabilizes unphosphorylated Capicua to control its basal level, independently of the deneddylase function of the complex. Here we further examine the importance of deneddylation for COP9 functions in vivo. We use an uncleavable form of Nedd8 to show that preventing deneddylation does not reproduce the effects of loss of COP9. In contrast, in the presence of COP9, conjugation to uncleavable Nedd8 renders Cullins unable to promote the degradation of their substrates. Our results suggest that irreversible neddylation prolongs COP9 binding to and inhibition of Cullin-based ubiquitin ligases.
Collapse
Affiliation(s)
- Annabelle Suisse
- a Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology , NYU School of Medicine , 540 First Avenue, New York , NY , USA
| | - Miklós Békés
- b Department of Biochemistry and Molecular Pharmacology , NYU School of Medicine , 540 First Avenue, New York , NY , USA
| | - Tony T Huang
- b Department of Biochemistry and Molecular Pharmacology , NYU School of Medicine , 540 First Avenue, New York , NY , USA
| | - Jessica E Treisman
- a Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology , NYU School of Medicine , 540 First Avenue, New York , NY , USA
| |
Collapse
|
20
|
Williamson RL, Laulagnier K, Miranda AM, Fernandez MA, Wolfe MS, Sadoul R, Di Paolo G. Disruption of amyloid precursor protein ubiquitination selectively increases amyloid β (Aβ) 40 levels via presenilin 2-mediated cleavage. J Biol Chem 2017; 292:19873-19889. [PMID: 29021256 PMCID: PMC5712626 DOI: 10.1074/jbc.m117.818138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 09/30/2017] [Indexed: 11/06/2022] Open
Abstract
Amyloid plaques, a neuropathological hallmark of Alzheimer's disease, are largely composed of amyloid β (Aβ) peptide, derived from cleavage of amyloid precursor protein (APP) by β- and γ-secretases. The endosome is increasingly recognized as an important crossroad for APP and these secretases, with major implications for APP processing and amyloidogenesis. Among various post-translational modifications affecting APP accumulation, ubiquitination of cytodomain lysines may represent a key signal controlling APP endosomal sorting. Here, we show that substitution of APP C-terminal lysines with arginine disrupts APP ubiquitination and that an increase in the number of substituted lysines tends to increase APP metabolism. An APP mutant lacking all C-terminal lysines underwent the most pronounced increase in processing, leading to accumulation of both secreted and intracellular Aβ40. Artificial APP ubiquitination with rapalog-mediated proximity inducers reduced Aβ40 generation. A lack of APP C-terminal lysines caused APP redistribution from endosomal intraluminal vesicles (ILVs) to the endosomal limiting membrane, with a subsequent decrease in APP C-terminal fragment (CTF) content in secreted exosomes, but had minimal effects on APP lysosomal degradation. Both the increases in secreted and intracellular Aβ40 were abolished by depletion of presenilin 2 (PSEN2), recently shown to be enriched on the endosomal limiting membrane compared with PSEN1. Our findings demonstrate that ubiquitin can act as a signal at five cytodomain-located lysines for endosomal sorting of APP. They further suggest that disruption of APP endosomal sorting reduces its sequestration in ILVs and results in PSEN2-mediated processing of a larger pool of APP-CTF on the endosomal membrane.
Collapse
Affiliation(s)
| | - Karine Laulagnier
- the Grenoble Institut des Neurosciences, Inserm, Grenoble 38042, France
| | - André M Miranda
- From the Department of Pathology and Cell Biology and
- the Life and Health Sciences Research Institute, School of Medicine, University of Minho and
- Life and Health Sciences Research Institute/3B's Research Group-Biomaterials, Biodegradables, and Biomimetics Associate Laboratory, 4710-057 Braga/Guimarães, Portugal, and
| | - Marty A Fernandez
- the Center for Neurologic Diseases, Harvard University, Boston, Massachusetts 02115
| | - Michael S Wolfe
- the Center for Neurologic Diseases, Harvard University, Boston, Massachusetts 02115
| | - Rémy Sadoul
- the Grenoble Institut des Neurosciences, Inserm, Grenoble 38042, France
| | - Gilbert Di Paolo
- From the Department of Pathology and Cell Biology and
- the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
21
|
Gladkova C, Schubert AF, Wagstaff JL, Pruneda JN, Freund SM, Komander D. An invisible ubiquitin conformation is required for efficient phosphorylation by PINK1. EMBO J 2017; 36:3555-3572. [PMID: 29133469 PMCID: PMC5730886 DOI: 10.15252/embj.201797876] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/09/2022] Open
Abstract
The Ser/Thr protein kinase PINK1 phosphorylates the well-folded, globular protein ubiquitin (Ub) at a relatively protected site, Ser65. We previously showed that Ser65 phosphorylation results in a conformational change in which Ub adopts a dynamic equilibrium between the known, common Ub conformation and a distinct, second conformation wherein the last β-strand is retracted to extend the Ser65 loop and shorten the C-terminal tail. We show using chemical exchange saturation transfer (CEST) nuclear magnetic resonance experiments that a similar, C-terminally retracted (Ub-CR) conformation also exists at low population in wild-type Ub. Point mutations in the moving β5 and neighbouring β-strands shift the Ub/Ub-CR equilibrium. This enabled functional studies of the two states, and we show that while the Ub-CR conformation is defective for conjugation, it demonstrates improved binding to PINK1 through its extended Ser65 loop, and is a superior PINK1 substrate. Together our data suggest that PINK1 utilises a lowly populated yet more suitable Ub-CR conformation of Ub for efficient phosphorylation. Our findings could be relevant for many kinases that phosphorylate residues in folded protein domains.
Collapse
Affiliation(s)
| | | | - Jane L Wagstaff
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Stefan Mv Freund
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
22
|
Lee S, Tumolo JM, Ehlinger AC, Jernigan KK, Qualls-Histed SJ, Hsu PC, McDonald WH, Chazin WJ, MacGurn JA. Ubiquitin turnover and endocytic trafficking in yeast are regulated by Ser57 phosphorylation of ubiquitin. eLife 2017; 6:29176. [PMID: 29130884 PMCID: PMC5706963 DOI: 10.7554/elife.29176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/10/2017] [Indexed: 11/30/2022] Open
Abstract
Despite its central role in protein degradation little is known about the molecular mechanisms that sense, maintain, and regulate steady state concentration of ubiquitin in the cell. Here, we describe a novel mechanism for regulation of ubiquitin homeostasis that is mediated by phosphorylation of ubiquitin at the Ser57 position. We find that loss of Ppz phosphatase activity leads to defects in ubiquitin homeostasis that are at least partially attributable to elevated levels of Ser57 phosphorylated ubiquitin. Phosphomimetic mutation at the Ser57 position of ubiquitin conferred increased rates of endocytic trafficking and ubiquitin turnover. These phenotypes are associated with bypass of recognition by endosome-localized deubiquitylases - including Doa4 which is critical for regulation of ubiquitin recycling. Thus, ubiquitin homeostasis is significantly impacted by the rate of ubiquitin flux through the endocytic pathway and by signaling pathways that converge on ubiquitin itself to determine whether it is recycled or degraded in the vacuole.
Collapse
Affiliation(s)
- Sora Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Jessica M Tumolo
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Aaron C Ehlinger
- Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Kristin K Jernigan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Susan J Qualls-Histed
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Pi-Chiang Hsu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University, Nashville, United States.,Mass Spectrometry Research Center, Vanderbilt University, Nashville, United States
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
23
|
Coleman KE, Békés M, Chapman JR, Crist SB, Jones MJK, Ueberheide BM, Huang TT. SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase function. eLife 2017; 6:e24325. [PMID: 28475037 PMCID: PMC5419743 DOI: 10.7554/elife.24325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/19/2017] [Indexed: 01/02/2023] Open
Abstract
NEDD8 is a ubiquitin-like modifier most well-studied for its role in activating the largest family of ubiquitin E3 ligases, the cullin-RING ligases (CRLs). While many non-cullin neddylation substrates have been proposed over the years, validation of true NEDD8 targets has been challenging, as overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery. Here, we developed a deconjugation-resistant form of NEDD8 to stabilize the neddylated form of cullins and other non-cullin substrates. Using this strategy, we identified Ubc12, a NEDD8-specific E2 conjugating enzyme, as a substrate for auto-neddylation. Furthermore, we characterized SENP8/DEN1 as the protease that counteracts Ubc12 auto-neddylation, and observed aberrant neddylation of Ubc12 and other NEDD8 conjugation pathway components in SENP8-deficient cells. Importantly, loss of SENP8 function contributes to accumulation of CRL substrates and defective cell cycle progression. Thus, our study highlights the importance of SENP8 in maintaining proper neddylation levels for CRL-dependent proteostasis.
Collapse
Affiliation(s)
- Kate E Coleman
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Miklós Békés
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Jessica R Chapman
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, United States
| | - Sarah B Crist
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Mathew JK Jones
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, Unites States
| | - Beatrix M Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, United States
| | - Tony T Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| |
Collapse
|
24
|
Liu J, Zhu H, Zhong N, Jiang Z, Xu L, Deng Y, Jiang Z, Wang H, Wang J. Gene silencing of USP1 by lentivirus effectively inhibits proliferation and invasion of human osteosarcoma cells. Int J Oncol 2016; 49:2549-2557. [PMID: 27840911 DOI: 10.3892/ijo.2016.3752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/20/2016] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most frequent malignant bone tumor, affecting the extremities of adolescents and young adults. Ubiquitin-specific protease 1 (USP1) plays a critical role in many cellular processes including proteasome degradation, chromatin remodeling and cell cycle regulation. In the present study, we discovered that USP1 was overexpressed in 26 out of 30 osteosarcoma tissues compared to cartilage tumor tissues and normal bone tissues. We then constructed a lentiviral vector mediating RNA interference (RNAi) targeting USP1 and demonstrated that it significantly suppressed the mRNA and protein expression of the USP1 gene in U2OS cells. Knockdown of USP1 inhibited the growth and colony-forming, as well as significantly reduced the invasiveness of U2OS cells. Western blot analysis indicated that suppression of USP1 downregulated the expression of many proteins including SIK2, MMP-2, GSK-3β, Bcl-2, Stat3, cyclin E1, Notch1, Wnt-1 and cyclin A1. Most of these proteins are associated with tumor genesis and development. RNAi of SIK2 significantly decreased SIK2 protein expression and inhibited the ability of forming colonies, as well as induced apoptosis and reduced the invasiveness of U2OS cells. Collectively, our results suggest that silencing USP1 inhibits cell proliferation and invasion in U2OS cells. Therefore, USP1 may provide a novel therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jinbo Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Hongjun Zhu
- Department of Thoracic Surgery, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Ning Zhong
- Department of Thoracic Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215000, P.R. China
| | - Zifeng Jiang
- Clinical Laboratories, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lele Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, P.R. China
| | - Youping Deng
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zhenhuan Jiang
- Department of Orthopaedics, People's Hospital of Yixing City, Yixing, Jiangsu 214200, P.R. China
| | - Hongwei Wang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, P.R. China
| |
Collapse
|
25
|
Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K, Kulathu Y. MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Mol Cell 2016; 63:146-55. [PMID: 27292798 PMCID: PMC4942677 DOI: 10.1016/j.molcel.2016.05.009] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022]
Abstract
Deubiquitinating enzymes (DUBs) remove ubiquitin (Ub) from Ub-conjugated substrates to regulate the functional outcome of ubiquitylation. Here we report the discovery of a new family of DUBs, which we have named MINDY (motif interacting with Ub-containing novel DUB family). Found in all eukaryotes, MINDY-family DUBs are highly selective at cleaving K48-linked polyUb, a signal that targets proteins for degradation. We identify the catalytic activity to be encoded within a previously unannotated domain, the crystal structure of which reveals a distinct protein fold with no homology to any of the known DUBs. The crystal structure of MINDY-1 (also known as FAM63A) in complex with propargylated Ub reveals conformational changes that realign the active site for catalysis. MINDY-1 prefers cleaving long polyUb chains and works by trimming chains from the distal end. Collectively, our results reveal a new family of DUBs that may have specialized roles in regulating proteostasis.
Collapse
Affiliation(s)
- Syed Arif Abdul Rehman
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yosua Adi Kristariyanto
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Soo-Youn Choi
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Pedro Junior Nkosi
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Simone Weidlich
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Karim Labib
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
26
|
Baiady N, Padala P, Mashahreh B, Cohen-Kfir E, Todd EA, Du Pont KE, Berndsen CE, Wiener R. The Vps27/Hrs/STAM (VHS) Domain of the Signal-transducing Adaptor Molecule (STAM) Directs Associated Molecule with the SH3 Domain of STAM (AMSH) Specificity to Longer Ubiquitin Chains and Dictates the Position of Cleavage. J Biol Chem 2015; 291:2033-2042. [PMID: 26601948 DOI: 10.1074/jbc.m115.689869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
The deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM. Here we investigate the specific mechanism of AMSH stimulation by STAM proteins and the role of the STAM Vps27/Hrs/STAM domain. We show that, in the presence of STAM, the length of the ubiquitin chains affects the apparent cleavage rate. Through measurement of the chain cleavage kinetics, we found that, although the kcat of Lys(63)-linked ubiquitin chain cleavage was comparable for di- and tri-ubiquitin, the Km value was lower for tri-ubiquitin. This increased affinity for longer chains was dependent on the Vps27/Hrs/STAM domain of STAM and required that the substrate ubiquitin chain contain homogenous Lys(63)-linkages. In addition, STAM directed AMSH cleavage toward the distal isopeptide bond in tri-ubiquitin chains. Finally, we generated a structural model of AMSH-STAM to show how the complex binds Lys(63)-linked ubiquitin chains and cleaves at the distal end. These data show how a deubiquitinating enzyme-interacting protein dictates the efficiency and specificity of substrate cleavage.
Collapse
Affiliation(s)
- Nardeen Baiady
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel and
| | - Prasanth Padala
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel and
| | - Bayan Mashahreh
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel and
| | - Einav Cohen-Kfir
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel and
| | - Emily A Todd
- the Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807
| | - Kelly E Du Pont
- the Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807
| | - Christopher E Berndsen
- the Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807
| | - Reuven Wiener
- From the Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel and.
| |
Collapse
|
27
|
Control of Pim2 kinase stability and expression in transformed human haematopoietic cells. Biosci Rep 2015; 35:BSR20150217. [PMID: 26500282 PMCID: PMC4672348 DOI: 10.1042/bsr20150217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/05/2015] [Indexed: 01/02/2023] Open
Abstract
The oncogenic Pim2 kinase is overexpressed in several haematological malignancies, such as multiple myeloma and acute myeloid leukaemia (AML), and constitutes a strong therapeutic target candidate. Like other Pim kinases, Pim2 is constitutively active and is believed to be essentially regulated through its accumulation. We show that in leukaemic cells, the three Pim2 isoforms have dramatically short half-lives although the longer isoform is significantly more stable than the shorter isoforms. All isoforms present a cytoplasmic localization and their degradation was neither modified by broad-spectrum kinase or phosphatase inhibitors such as staurosporine or okadaic acid nor by specific inhibition of several intracellular signalling pathways including Erk, Akt and mTORC1. Pim2 degradation was inhibited by proteasome inhibitors but Pim2 ubiquitination was not detected even by blocking both proteasome activity and protein de-ubiquitinases (DUBs). Moreover, Pyr41, an ubiquitin-activating enzyme (E1) inhibitor, did not stabilize Pim2, strongly suggesting that Pim2 was degraded by the proteasome without ubiquitination. In agreement, we observed that purified 20S proteasome particles could degrade Pim2 molecule in vitro. Pim2 mRNA accumulation in UT7 cells was controlled by erythropoietin (Epo) through STAT5 transcription factors. In contrast, the translation of Pim2 mRNA was not regulated by mTORC1. Overall, our results suggest that Pim2 is only controlled by its mRNA accumulation level. Catalytically active Pim2 accumulated in proteasome inhibitor-treated myeloma cells. We show that Pim2 inhibitors and proteasome inhibitors, such as bortezomib, have additive effects to inhibit the growth of myeloma cells, suggesting that Pim2 could be an interesting target for the treatment of multiple myeloma.
Collapse
|
28
|
Harrison JS, Jacobs TM, Houlihan K, Van Doorslaer K, Kuhlman B. UbSRD: The Ubiquitin Structural Relational Database. J Mol Biol 2015; 428:679-687. [PMID: 26392143 DOI: 10.1016/j.jmb.2015.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 10/23/2022]
Abstract
The structurally defined ubiquitin-like homology fold (UBL) can engage in several unique protein-protein interactions and many of these complexes have been characterized with high-resolution techniques. Using Rosetta's structural classification tools, we have created the Ubiquitin Structural Relational Database (UbSRD), an SQL database of features for all 509 UBL-containing structures in the PDB, allowing users to browse these structures by protein-protein interaction and providing a platform for quantitative analysis of structural features. We used UbSRD to define the recognition features of ubiquitin (UBQ) and SUMO observed in the PDB and the orientation of the UBQ tail while interacting with certain types of proteins. While some of the interaction surfaces on UBQ and SUMO overlap, each molecule has distinct features that aid in molecular discrimination. Additionally, we find that the UBQ tail is malleable and can adopt a variety of conformations upon binding. UbSRD is accessible as an online resource at rosettadesign.med.unc.edu/ubsrd.
Collapse
Affiliation(s)
- Joseph S Harrison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tim M Jacobs
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin Houlihan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Koenraad Van Doorslaer
- DNA Tumor Virus Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Rösner D, Schneider T, Schneider D, Scheffner M, Marx A. Click chemistry for targeted protein ubiquitylation and ubiquitin chain formation. Nat Protoc 2015; 10:1594-611. [PMID: 26401915 DOI: 10.1038/nprot.2015.106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herein we describe a simple protocol for the efficient generation of site-specific ubiquitin-protein conjugates using click chemistry. By using two different methods to expand the genetic code, the two bio-orthogonal functionalities that are necessary for Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), an alkyne and an azide, are co-translationally incorporated into the proteins of interest with unnatural amino acids. Protein ubiquitylation is subsequently carried out with the purified proteins in vitro by CuAAC. In addition, we provide a protocol for the incorporation of two unnatural amino acids into a single ubiquitin, resulting in a 'bifunctional' protein that contains both an alkyne and an azide functionality, thereby enabling assembly of free ubiquitin chains as well as ubiquitin chains conjugated to a target protein. Our procedure enables the synthesis of nonhydrolyzable ubiquitin-protein conjugates within 1 week (given that the relevant cDNAs are at hand), and it yields conjugates in milligram quantities from 1-liter expression cultures. The approach described herein is faster and less laborious than other methods, and it requires only standard molecular biology equipment. Moreover, the protocol can be readily adapted to achieve conjugation at any site of any target protein, which facilitates the generation of custom-tailored ubiquitin-protein conjugates.
Collapse
Affiliation(s)
- Daniel Rösner
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Tatjana Schneider
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel Schneider
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
30
|
SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme. Biochem J 2015; 468:215-26. [PMID: 25764917 DOI: 10.1042/bj20141170] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ubiquitin (Ub) and the Ub-like (Ubl) modifier interferon-stimulated gene 15 (ISG15) participate in the host defence of viral infections. Viruses, including the severe acute respiratory syndrome human coronavirus (SARS hCoV), have co-opted Ub-ISG15 conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub-ISG15-conjugated host proteins. In the present study, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle East respiratory syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that, similar to SARS PLpro, MERS PLpro is both a deubiquitinating (DUB) and a deISGylating enzyme. Further analysis of the intrinsic DUB activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, whereas SARS PLpro prefers to cleave Lys48-linked polyUb chains. Secondly, MERS PLpro cleaves polyUb chains in a 'mono-distributive' manner (one Ub at a time) and SARS PLpro prefers to cleave Lys48-linked polyUb chains by sensing a di-Ub moiety as a minimal recognition element using a 'di-distributive' cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP (Ub-specific protease)-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help to identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses.
Collapse
|
31
|
Swaney DL, Rodríguez-Mias RA, Villén J. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep 2015; 16:1131-44. [PMID: 26142280 DOI: 10.15252/embr.201540298] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022] Open
Abstract
Ubiquitylation is an essential post-translational modification that regulates numerous cellular processes, most notably protein degradation. Ubiquitin can itself be phosphorylated at nearly every serine, threonine, and tyrosine residue. However, the effect of this modification on ubiquitin function is largely unknown. Here, we characterized the effects of phosphorylation of yeast ubiquitin at serine 65 in vivo and in vitro. We find this post-translational modification to be regulated under oxidative stress, occurring concomitantly with the restructuring of the ubiquitin landscape into a highly polymeric state. Phosphomimetic mutation of S65 recapitulates the oxidative stress phenotype, causing a dramatic accumulation of ubiquitylated proteins and a proteome-wide reduction of protein turnover rates. Importantly, this mutation impacts ubiquitin chain disassembly, chain linkage distribution, ubiquitin interactions, and substrate targeting. These results demonstrate that phosphorylation is an additional mode of ubiquitin regulation with broad implications in cellular physiology.
Collapse
Affiliation(s)
- Danielle L Swaney
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Satpathy S, Wagner SA, Beli P, Gupta R, Kristiansen TA, Malinova D, Francavilla C, Tolar P, Bishop GA, Hostager BS, Choudhary C. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol Syst Biol 2015; 11:810. [PMID: 26038114 PMCID: PMC4501846 DOI: 10.15252/msb.20145880] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/02/2022] Open
Abstract
B-cell receptor (BCR) signaling is essential for the development and function of B cells; however, the spectrum of proteins involved in BCR signaling is not fully known. Here we used quantitative mass spectrometry-based proteomics to monitor the dynamics of BCR signaling complexes (signalosomes) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation of the receptor-proximal signaling components, many of which are co-regulated by both the modifications. We illustrate the power of multilayered proteomic analyses for discovering novel BCR signaling components by demonstrating that BCR-induced phosphorylation of RAB7A at S72 prevents its association with effector proteins and with endo-lysosomal compartments. In addition, we show that BCL10 is modified by LUBAC-mediated linear ubiquitylation, and demonstrate an important function of LUBAC in BCR-induced NF-κB signaling. Our results offer a global and integrated view of BCR signaling, and the provided datasets can serve as a valuable resource for further understanding BCR signaling networks.
Collapse
Affiliation(s)
- Shankha Satpathy
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian A Wagner
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petra Beli
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rajat Gupta
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine A Kristiansen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dessislava Malinova
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | - Chiara Francavilla
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Tolar
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | - Gail A Bishop
- Department of Microbiology, Graduate Program in Immunology and Department of Internal Medicine, University of Iowa, Iowa City, IA, USA VAMC, Iowa City, IA, USA
| | - Bruce S Hostager
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene 2015; 35:965-76. [PMID: 25961918 DOI: 10.1038/onc.2015.149] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 01/08/2023]
Abstract
Rad18 functions at the cross-roads of three different DNA damage response (DDR) pathways involved in protecting stressed replication forks: homologous recombination repair, DNA inter-strand cross-link repair and DNA damage tolerance. Although Rad18 serves to facilitate replication of damaged genomes by promoting translesion synthesis (TLS), this comes at a cost of potentially error-prone lesion bypass. In contrast, loss of Rad18-dependent TLS potentiates the collapse of stalled forks and leads to incomplete genome replication. Given the pivotal nature with which Rad18 governs the fine balance between replication fidelity and genome stability, Rad18 levels and activity have a major impact on genomic integrity. Here, we identify the de-ubiquitylating enzyme USP7 as a critical regulator of Rad18 protein levels. Loss of USP7 destabilizes Rad18 and compromises UV-induced PCNA mono-ubiquitylation and Pol η recruitment to stalled replication forks. USP7-depleted cells also fail to elongate nascent daughter strand DNA following UV irradiation and show reduced DNA damage tolerance. We demonstrate that USP7 associates with Rad18 directly via a consensus USP7-binding motif and can disassemble Rad18-dependent poly-ubiquitin chains both in vitro and in vivo. Taken together, these observations identify USP7 as a novel component of the cellular DDR involved in preserving the genome stability.
Collapse
|
34
|
Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. Proc Natl Acad Sci U S A 2015; 112:E2575-84. [PMID: 25941401 DOI: 10.1073/pnas.1420115112] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by single-molecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation.
Collapse
|
35
|
Schneider T, Schneider D, Rösner D, Malhotra S, Mortensen F, Mayer TU, Scheffner M, Marx A. Analyse des Ubiquitincodes durch proteasebeständige Ubiquitinketten mit definierter Verknüpfung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Schneider T, Schneider D, Rösner D, Malhotra S, Mortensen F, Mayer TU, Scheffner M, Marx A. Dissecting ubiquitin signaling with linkage-defined and protease resistant ubiquitin chains. Angew Chem Int Ed Engl 2014; 53:12925-9. [PMID: 25196034 DOI: 10.1002/anie.201407192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 01/08/2023]
Abstract
Ubiquitylation is a complex posttranslational protein modification and deregulation of this pathway has been associated with different human disorders. Ubiquitylation comes in different flavors: Besides mono-ubiquitylation, ubiquitin chains of various topologies are formed on substrate proteins. The fate of ubiquitylated proteins is determined by the linkage-type of the attached ubiquitin chains, however, the underlying mechanism is poorly characterized. Herein, we describe a new method based on codon expansion and click-chemistry-based polymerization to generate linkage-defined ubiquitin chains that are resistant to ubiquitin-specific proteases and adopt native-like functions. The potential of these artificial chains for analyzing ubiquitin signaling is demonstrated by linkage-specific effects on cell-cycle progression.
Collapse
Affiliation(s)
- Tatjana Schneider
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany)
| | | | | | | | | | | | | | | |
Collapse
|