1
|
Sobkowiak K, Kohzaki M, Böhm R, Mailler J, Huber F, Emamzadah S, Tropia L, Hiller S, Halazonetis TD. REV7 functions with REV3 as a checkpoint protein delaying mitotic entry until DNA replication is completed. Cell Rep 2025; 44:115431. [PMID: 40106439 DOI: 10.1016/j.celrep.2025.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
REV7, also named MAD2B or MAD2L2, is a subunit of the DNA translesion polymerase zeta and also part of the 53BP1-shieldin complex, which is present at sites of DNA double-strand breaks. REV7 has high sequence similarity to the MAD2 spindle assembly checkpoint protein, prompting us to examine whether REV7 has a checkpoint function. We observed that, in chicken and human cells exposed to agents that induce DNA replication stress, REV7 inhibits mitotic entry; this effect is most evident when the canonical DNA replication stress checkpoint, mediated by ATR, is inhibited. Similar to MAD2, REV7 undergoes conformational changes upon ligand binding, and its checkpoint function depends on its ability to homodimerize and bind its ligands. Notably, even in unchallenged cells, deletion of the REV7 gene leads to premature mitotic entry, raising the possibility that the REV7 checkpoint monitors ongoing DNA replication.
Collapse
Affiliation(s)
- Katarzyna Sobkowiak
- Department of Molecular and Cellular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Masaoki Kohzaki
- Department of Molecular and Cellular Biology, University of Geneva, 1205 Geneva, Switzerland.
| | - Raphael Böhm
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Jonathan Mailler
- Department of Molecular and Cellular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Florian Huber
- Department of Molecular and Cellular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Soheila Emamzadah
- Department of Molecular and Cellular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Laurence Tropia
- Department of Molecular and Cellular Biology, University of Geneva, 1205 Geneva, Switzerland
| | | | - Thanos D Halazonetis
- Department of Molecular and Cellular Biology, University of Geneva, 1205 Geneva, Switzerland.
| |
Collapse
|
2
|
Bournaka S, Badra-Fajardo N, Arbi M, Taraviras S, Lygerou Z. The cell cycle revisited: DNA replication past S phase preserves genome integrity. Semin Cancer Biol 2024; 99:45-55. [PMID: 38346544 DOI: 10.1016/j.semcancer.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Spyridoula Bournaka
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Nibal Badra-Fajardo
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras 26504, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece.
| |
Collapse
|
3
|
Statello L, Fernandez-Justel JM, González J, Montes M, Ranieri A, Goñi E, Mas AM, Huarte M. The chromatin-associated lncREST ensures effective replication stress response by promoting the assembly of fork signaling factors. Nat Commun 2024; 15:978. [PMID: 38302450 PMCID: PMC10834948 DOI: 10.1038/s41467-024-45183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Besides the well-characterized protein network involved in the replication stress response, several regulatory RNAs have been shown to play a role in this critical process. However, it has remained elusive whether they act locally at the stressed forks. Here, by investigating the RNAs localizing on chromatin upon replication stress induced by hydroxyurea, we identified a set of lncRNAs upregulated in S-phase and controlled by stress transcription factors. Among them, we demonstrate that the previously uncharacterized lncRNA lncREST (long non-coding RNA REplication STress) is transcriptionally controlled by p53 and localizes at stressed replication forks. LncREST-depleted cells experience sustained replication fork progression and accumulate un-signaled DNA damage. Under replication stress, lncREST interacts with the protein NCL and assists in engaging its interaction with RPA. The loss of lncREST is associated with a reduced NCL-RPA interaction and decreased RPA on chromatin, leading to defective replication stress signaling and accumulation of mitotic defects, resulting in apoptosis and a reduction in tumorigenic potential of cancer cells. These findings uncover the function of a lncRNA in favoring the recruitment of replication proteins to sites of DNA replication.
Collapse
Affiliation(s)
- Luisa Statello
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
| | - José Miguel Fernandez-Justel
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Jovanna González
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Marta Montes
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Alessia Ranieri
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Enrique Goñi
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Aina M Mas
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pio XII 55 Ave, 11 31008, Pamplona, Spain.
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
| |
Collapse
|
4
|
Zhang S, Zhao Y, Wang X, Qi C, Tian J, Zou Z. Synergistic lethality between auranofin-induced oxidative DNA damage and ATR inhibition in cancer cells. Life Sci 2023; 332:122131. [PMID: 37778414 DOI: 10.1016/j.lfs.2023.122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
AIMS Studies in the past have shown that inhibition of the ataxia telangiectasia and Rad3-related (ATR) kinase sensitizes cancer cells to genotoxic anticancer treatments, however, clinical use of ATR inhibitors in combination with DNA damaging chemotherapy is limited due to toxicity in healthy tissues. In this study, we investigated the synergistic anticancer effect between ATR inhibition and oxidative DNA damage induced by the thioredoxin reductase inhibitor auranofin. MAIN METHODS Cytotoxicity was evaluated by cell viability assays. Western blot, comet assay, immunostaining and flow cytometry were performed to dissect the underlying mechanisms. In vivo efficacy was examined against tumor xenografts. KEY FINDINGS Nontoxic doses of auranofin alone increased the levels of reactive oxygen species (ROS) in cancer but not noncancerous cells, resulting in oxidative DNA damage and activation of the ATR DNA damage response pathway selectively in cancer cells. Inhibition of ATR in auranofin-treated cancer cells resulted in unscheduled firing of dormant DNA replication origins, abrogation of the S phase cell cycle checkpoint and extensive DNA breakage, leading to replication catastrophe and potent synergistic lethality. Both the antioxidant NAC and the DNA polymerase inhibitor aphidicolin reduced replication stress and synergistic cytotoxicity, implicating replication stress-driven catastrophic cell death resulted from collision between oxidative DNA damage and dysregulated DNA replication. In vivo, auranofin and VE822 coadministration enabled marked regressions of tumor xenografts, while each drug alone had no effect. SIGNIFICANCE As increased generation of ROS is a universal feature of tumors, our findings may open new routes to broaden the therapeutic potential of ATR inhibitors.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yue Zhao
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xueqi Wang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ce Qi
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jialiang Tian
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Zhihua Zou
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Joo YK, Black EM, Trier I, Haakma W, Zou L, Kabeche L. ATR promotes clearance of damaged DNA and damaged cells by rupturing micronuclei. Mol Cell 2023; 83:3642-3658.e4. [PMID: 37788673 PMCID: PMC10599252 DOI: 10.1016/j.molcel.2023.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023]
Abstract
The human ataxia telangiectasia mutated and Rad3-related (ATR) kinase functions in the nucleus to protect genomic integrity. Micronuclei (MN) arise from genomic and chromosomal instability and cause aneuploidy and chromothripsis, but how MN are removed is poorly understood. Here, we show that ATR is active in MN and promotes their rupture in S phase by phosphorylating Lamin A/C at Ser395, which primes Ser392 for CDK1 phosphorylation and destabilizes the MN envelope. In cells harboring MN, ATR or CDK1 inhibition reduces MN rupture. Consequently, ATR inhibitor (ATRi) diminishes activation of the cytoplasmic DNA sensor cGAS and compromises cGAS-dependent autophagosome accumulation in MN and clearance of micronuclear DNA. Furthermore, ATRi reduces cGAS-mediated senescence and killing of MN-bearing cancer cells by natural killer cells. Thus, in addition to the canonical ATR signaling pathway, an ATR-CDK1-Lamin A/C axis promotes MN rupture to clear damaged DNA and cells, protecting the genome in cell populations through unexpected cell-autonomous and cell-non-autonomous mechanisms.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, New Haven, CT 06516, USA
| | - Elizabeth M Black
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, New Haven, CT 06516, USA
| | - Isabelle Trier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, New Haven, CT 06516, USA
| | - Wisse Haakma
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Boston, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Boston, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27708, USA.
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Yale Cancer Biology Institute, Yale University, New Haven, CT 06516, USA.
| |
Collapse
|
6
|
Knoblochova L, Duricek T, Vaskovicova M, Zorzompokou C, Rayova D, Ferencova I, Baran V, Schultz RM, Hoffmann ER, Drutovic D. CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos. EMBO Rep 2023; 24:e56530. [PMID: 37694680 PMCID: PMC10561370 DOI: 10.15252/embr.202256530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated and transcriptionally quiescent cells into early cleavage-stage blastomeres that are transcriptionally active and totipotent. This developmental transition is accompanied by cell cycle adaptation, such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in two-cell stage mouse embryos. Finally, Chk1 depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.
Collapse
Affiliation(s)
- Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Tomas Duricek
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Chrysoula Zorzompokou
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Diana Rayova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Ivana Ferencova
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Vladimir Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of SciencesKosiceSlovakia
| | - Richard M Schultz
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of CaliforniaDavisCAUSA
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
7
|
Yano K, Shiotani B. Emerging strategies for cancer therapy by ATR inhibitors. Cancer Sci 2023. [PMID: 37189251 DOI: 10.1111/cas.15845] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
8
|
Briggs EM, Marques CA, Oldrieve GR, Hu J, Otto TD, Matthews KR. Profiling the bloodstream form and procyclic form Trypanosoma brucei cell cycle using single-cell transcriptomics. eLife 2023; 12:e86325. [PMID: 37166108 PMCID: PMC10212563 DOI: 10.7554/elife.86325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
African trypanosomes proliferate as bloodstream forms (BSFs) and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single-cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated (CCR) transcriptomes of both procyclic and slender BSF Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze-thawing protocol that allows single-cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the CCR transcriptomes of both forms, which are available for further interrogation via an interactive webtool.
Collapse
Affiliation(s)
- Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Catarina A Marques
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Guy R Oldrieve
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Jihua Hu
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, University of GlasgowGlasgowUnited Kingdom
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
9
|
Gospodinov A, Dzhokova S, Petrova M, Ugrinova I. Chromatin regulators in DNA replication and genome stability maintenance during S-phase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:243-280. [PMID: 37061334 DOI: 10.1016/bs.apcsb.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The duplication of genetic information is central to life. The replication of genetic information is strictly controlled to ensure that each piece of genomic DNA is copied only once during a cell cycle. Factors that slow or stop replication forks cause replication stress. Replication stress is a major source of genome instability in cancer cells. Multiple control mechanisms facilitate the unimpeded fork progression, prevent fork collapse and coordinate fork repair. Chromatin alterations, caused by histone post-translational modifications and chromatin remodeling, have critical roles in normal replication and in avoiding replication stress and its consequences. This text reviews the chromatin regulators that ensure DNA replication and the proper response to replication stress. We also briefly touch on exploiting replication stress in therapeutic strategies. As chromatin regulators are frequently mutated in cancer, manipulating their activity could provide many possibilities for personalized treatment.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Stefka Dzhokova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
10
|
Fischer M, Schade AE, Branigan TB, Müller GA, DeCaprio JA. Coordinating gene expression during the cell cycle. Trends Biochem Sci 2022; 47:1009-1022. [PMID: 35835684 DOI: 10.1016/j.tibs.2022.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023]
Abstract
Cell cycle-dependent gene transcription is tightly controlled by the retinoblastoma (RB):E2F and DREAM complexes, which repress all cell cycle genes during quiescence. Cyclin-dependent kinase (CDK) phosphorylation of RB and DREAM allows for the expression of two gene sets. The first set of genes, with peak expression in G1/S, is activated by E2F transcription factors (TFs) and is required for DNA synthesis. The second set, with maximum expression during G2/M, is required for mitosis and is coordinated by the MuvB complex, together with B-MYB and Forkhead box M1 (FOXM1). In this review, we summarize the key findings that established the distinct control mechanisms regulating G1/S and G2/M gene expression in mammals and discuss recent advances in the understanding of the temporal control of these genes.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - Amy E Schade
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Classen S, Rahlf E, Jungwirth J, Albers N, Hebestreit LP, Zielinski A, Poole L, Groth M, Koch P, Liehr T, Kankel S, Cordes N, Petersen C, Rothkamm K, Pospiech H, Borgmann K. Partial Reduction in BRCA1 Gene Dose Modulates DNA Replication Stress Level and Thereby Contributes to Sensitivity or Resistance. Int J Mol Sci 2022; 23:13363. [PMID: 36362151 PMCID: PMC9656774 DOI: 10.3390/ijms232113363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Abstract
BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in functional domains of BRCA1. How mutations in non-functional domains contribute to resistance mechanisms remains elusive and was the focus of this study. Therefore, clones of the breast cancer cell line MCF7 with indels in BRCA1 exon 9 and 14 were generated using CRISPR/Cas9. Clones with successful introduced BRCA1 mutations were evaluated regarding their capacity to perform HR, how they handle DNA replication stress (RS), and the consequences on the sensitivity to MMC, PARP1 inhibition, and ionizing radiation. Unexpectedly, BRCA1 mutations resulted in both increased sensitivity and resistance to exogenous DNA damage, despite a reduction of HR capacity in all clones. Resistance was associated with improved DNA double-strand break repair and reduction in replication stress (RS). Lower RS was accompanied by increased activation and interaction of proteins essential for the S phase-specific DNA damage response consisting of HR proteins, FANCD2, and CHK1.
Collapse
Affiliation(s)
- Sandra Classen
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elena Rahlf
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Jungwirth
- Project Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Nina Albers
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Luca Philipp Hebestreit
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alexandra Zielinski
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lena Poole
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Groth
- CF Next-Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Philipp Koch
- CF Life Science Computing, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Stefanie Kankel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Bautzner Landstr. 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Helmut Pospiech
- Project Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Neizer-Ashun F, Dwivedi S, Dey A, Thavathiru E, Berry W, Lees-Miller S, Mukherjee P, Bhattacharya R. KRCC1, a modulator of the DNA damage response. Nucleic Acids Res 2022; 50:11028-11039. [PMID: 36243983 PMCID: PMC9638924 DOI: 10.1093/nar/gkac890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
The lysine-rich coiled-coil 1 (KRCC1) protein is overexpressed in multiple malignancies, including ovarian cancer, and overexpression correlates with poor overall survival. Despite a potential role in cancer progression, the biology of KRCC1 remains elusive. Here, we characterize the biology of KRCC1 and define its role in the DNA damage response and in cell cycle progression. We demonstrate that KRCC1 associates with the checkpoint kinase 1 (CHK1) upon DNA damage and regulates the CHK1-mediated checkpoint. KRCC1 facilitates RAD51 recombinase foci formation and augments homologous recombination repair. Furthermore, KRCC1 is required for proper S-phase progression and subsequent mitotic entry. Our findings uncover a novel component of the DNA damage response and a potential link between cell cycle, associated damage response and DNA repair.
Collapse
Affiliation(s)
- Fiifi Neizer-Ashun
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Elangovan Thavathiru
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - William L Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susan Patricia Lees-Miller
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
13
|
The TRESLIN-MTBP complex couples completion of DNA replication with S/G2 transition. Mol Cell 2022; 82:3350-3365.e7. [PMID: 36049481 PMCID: PMC9506001 DOI: 10.1016/j.molcel.2022.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
It has been proposed that ATR kinase senses the completion of DNA replication to initiate the S/G2 transition. In contrast to this model, we show here that the TRESLIN-MTBP complex prevents a premature entry into G2 from early S-phase independently of ATR/CHK1 kinases. TRESLIN-MTBP acts transiently at pre-replication complexes (preRCs) to initiate origin firing and is released after the subsequent recruitment of CDC45. This dynamic behavior of TRESLIN-MTBP implements a monitoring system that checks the activation of replication forks and senses the rate of origin firing to prevent the entry into G2. This system detects the decline in the number of origins of replication that naturally occurs in very late S, which is the signature that cells use to determine the completion of DNA replication and permit the S/G2 transition. Our work introduces TRESLIN-MTBP as a key player in cell-cycle control independent of canonical checkpoints.
Collapse
|
14
|
A function for ataxia telangiectasia and Rad3-related (ATR) kinase in cytokinetic abscission. iScience 2022; 25:104536. [PMID: 35754741 PMCID: PMC9213759 DOI: 10.1016/j.isci.2022.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Abscission, the final stage of cytokinesis, occurs when the cytoplasmic canal connecting two emerging daughter cells is severed either side of a large proteinaceous structure, the midbody. Here, we expand the functions of ATR to include a cell-cycle-specific role in abscission, which is required for genome stability. All previously characterized roles for ATR depend upon its recruitment to replication protein A (RPA)-coated single-stranded DNA (ssDNA). However, we establish that in each cell cycle ATR, as well as ATRIP, localize to the midbody specifically during late cytokinesis and independently of RPA or detectable ssDNA. Rather, midbody localization and ATR-dependent regulation of abscission requires the known abscission regulator-charged multivesicular body protein 4C (CHMP4C). Intriguingly, this regulation is also dependent upon the CDC7 kinase and the known ATR activator ETAA1. We propose that in addition to its known RPA-ssDNA-dependent functions, ATR has further functions in preventing premature abscission. ATR localises non-canonically to the midbody during late cytokinesis Absence of ATR function results in faster abscission and increased binucleates CDC7 kinase and the ESCRT protein, CHMP4C are required for ATR midbody localisation ATR functions upstream of known abscission regulators, CHMP4B and ANCHR
Collapse
|
15
|
Lebrec V, Poteau M, Morretton JP, Gavet O. Chk1 dynamics in G2 phase upon replication stress predict daughter cell outcome. Dev Cell 2022; 57:638-653.e5. [PMID: 35245445 DOI: 10.1016/j.devcel.2022.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 12/27/2022]
Abstract
In human cells, ATR/Chk1 signaling couples S phase exit with the expression of mitotic inducers and prevents premature mitosis upon replication stress (RS). Nonetheless, under-replicated DNA can persist at mitosis, prompting chromosomal instability. To decipher how the DNA replication checkpoint (DRC) allows cells to enter mitosis over time upon RS, we developed a FRET-based Chk1 activity sensor. During unperturbed growth, a basal Chk1 activity level is sustained throughout S phase and relies on replication origin firing. Incremental RS triggers stepwise Chk1 over-activation that delays S-phase, suggesting a rheostat-like role for DRC coupled with the replication machinery. Upon RS, Chk1 is inactivated as DNA replication terminates but surprisingly is reactivated in a subset of G2 cells, which relies on Cdk1/2 and Plk1 and prevents mitotic entry. Cells can override active Chk1 signaling and reach mitosis onset, revealing checkpoint adaptation. Cell division following Chk1 reactivation in G2 results in a p53/p21-dependent G1 arrest, eliminating the daughter cells from proliferation.
Collapse
Affiliation(s)
- Vivianne Lebrec
- UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
| | - Marion Poteau
- UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
| | - Jean-Philippe Morretton
- UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
| | - Olivier Gavet
- Sorbonne Universités, UPMC Paris VI, UFR927, 75005 Paris, France; UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France.
| |
Collapse
|
16
|
Abstract
Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mechanisms that prevent the accumulation and propagation of genetic errors during cell division. Checkpoints can delay cell cycle progression or, in response to irreparable DNA damage, induce cell cycle exit or cell death. Cancer-associated mutations that perturb cell cycle control allow continuous cell division chiefly by compromising the ability of cells to exit the cell cycle. Continuous rounds of division, however, create increased reliance on other cell cycle control mechanisms to prevent catastrophic levels of damage and maintain cell viability. New detailed insights into cell cycle control mechanisms and their role in cancer reveal how these dependencies can be best exploited in cancer treatment.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
17
|
Edwards MM, Zuccaro MV, Sagi I, Ding Q, Vershkov D, Benvenisty N, Egli D, Koren A. Delayed DNA replication in haploid human embryonic stem cells. Genome Res 2021; 31:2155-2169. [PMID: 34810218 PMCID: PMC8647822 DOI: 10.1101/gr.275953.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Haploid human embryonic stem cells (ESCs) provide a powerful genetic system but diploidize at high rates. We hypothesized that diploidization results from aberrant DNA replication. To test this, we profiled DNA replication timing in isogenic haploid and diploid ESCs. The greatest difference was the earlier replication of the X Chromosome in haploids, consistent with the lack of X-Chromosome inactivation. We also identified 21 autosomal regions that had delayed replication in haploids, extending beyond the normal S phase and into G2/M. Haploid-delays comprised a unique set of quiescent genomic regions that are also underreplicated in polyploid placental cells. The same delays were observed in female ESCs with two active X Chromosomes, suggesting that increased X-Chromosome dosage may cause delayed autosomal replication. We propose that incomplete replication at the onset of mitosis could prevent cell division and result in re-entry into the cell cycle and whole genome duplication.
Collapse
Affiliation(s)
- Matthew M Edwards
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Michael V Zuccaro
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, New York 10032, USA
- Columbia University Stem Cell Initiative, New York, New York 10032, USA
| | - Ido Sagi
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Qiliang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Dan Vershkov
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Dieter Egli
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, New York 10032, USA
- Columbia University Stem Cell Initiative, New York, New York 10032, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
18
|
Guo Y, Wang J, Benedict B, Yang C, van Gemert F, Ma X, Gao D, Wang H, Zhang S, Lieftink C, Beijersbergen RL, Te Riele H, Qiao X, Gao Q, Sun C, Qin W, Bernards R, Wang C. Targeting CDC7 potentiates ATR-CHK1 signaling inhibition through induction of DNA replication stress in liver cancer. Genome Med 2021; 13:166. [PMID: 34663432 PMCID: PMC8524847 DOI: 10.1186/s13073-021-00981-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Liver cancer is one of the most commonly diagnosed cancers and the fourth leading cause of cancer-related death worldwide. Broad-spectrum kinase inhibitors like sorafenib and lenvatinib provide only modest survival benefit to patients with hepatocellular carcinoma (HCC). This study aims to identify novel therapeutic strategies for HCC patients. METHODS Integrated bioinformatics analyses and a non-biased CRISPR loss of function genetic screen were performed to identify potential therapeutic targets for HCC cells. Whole-transcriptome sequencing (RNA-Seq) and time-lapse live imaging were performed to explore the mechanisms of the synergy between CDC7 inhibition and ATR or CHK1 inhibitors in HCC cells. Multiple in vitro and in vivo assays were used to validate the synergistic effects. RESULTS Through integrated bioinformatics analyses using the Cancer Dependency Map and the TCGA database, we identified ATR-CHK1 signaling as a therapeutic target for liver cancer. Pharmacological inhibition of ATR or CHK1 leads to robust proliferation inhibition in liver cancer cells having a high basal level of replication stress. For liver cancer cells that are resistant to ATR or CHK1 inhibition, treatment with CDC7 inhibitors induces strong DNA replication stress and consequently such drugs show striking synergy with ATR or CHK1 inhibitors. The synergy between ATR-CHK1 inhibition and CDC7 inhibition probably derives from abnormalities in mitosis inducing mitotic catastrophe. CONCLUSIONS Our data highlights the potential of targeting ATR-CHK1 signaling, either alone or in combination with CDC7 inhibition, for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yuchen Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bente Benedict
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Frank van Gemert
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Xuhui Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Xiaohang Qiao
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Chong Sun
- Immune Regulation in Cancer Group, German Cancer Research Center, D-69120, Heidelberg, Germany
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - René Bernards
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Simoneau A, Zou L. An extending ATR-CHK1 circuitry: the replication stress response and beyond. Curr Opin Genet Dev 2021; 71:92-98. [PMID: 34329853 DOI: 10.1016/j.gde.2021.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
The maintenance of genomic integrity relies on the coordination of a wide range of cellular processes and efficient repair of DNA damage. Since its discovery over two decades ago, the ATR kinase has been recognized as the master regulator of the circuitry orchestrating the cellular responses to DNA damage and replication stress. Recent studies reveal that ATR additionally functions in the unperturbed cell cycle through its control of replication fork speed and stability, replication origin firing, completion of genome duplication, and chromosome segregation. Here, we discuss several recently discovered mechanisms through which ATR safeguards genomic integrity during the cell cycle, from S phase to mitosis.
Collapse
Affiliation(s)
- Antoine Simoneau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
20
|
Técher H, Pasero P. The Replication Stress Response on a Narrow Path Between Genomic Instability and Inflammation. Front Cell Dev Biol 2021; 9:702584. [PMID: 34249949 PMCID: PMC8270677 DOI: 10.3389/fcell.2021.702584] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The genome of eukaryotic cells is particularly at risk during the S phase of the cell cycle, when megabases of chromosomal DNA are unwound to generate two identical copies of the genome. This daunting task is executed by thousands of micro-machines called replisomes, acting at fragile structures called replication forks. The correct execution of this replication program depends on the coordinated action of hundreds of different enzymes, from the licensing of replication origins to the termination of DNA replication. This review focuses on the mechanisms that ensure the completion of DNA replication under challenging conditions of endogenous or exogenous origin. It also covers new findings connecting the processing of stalled forks to the release of small DNA fragments into the cytoplasm, activating the cGAS-STING pathway. DNA damage and fork repair comes therefore at a price, which is the activation of an inflammatory response that has both positive and negative impacts on the fate of stressed cells. These new findings have broad implications for the etiology of interferonopathies and for cancer treatment.
Collapse
Affiliation(s)
- Hervé Técher
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| |
Collapse
|
21
|
Abstract
Unlike bacteria, mammalian cells need to complete DNA replication before segregating their chromosomes for the maintenance of genome integrity. Thus, cells have evolved efficient pathways to restore stalled and/or collapsed replication forks during S-phase, and when necessary, also to delay cell cycle progression to ensure replication completion. However, strong evidence shows that cells can proceed to mitosis with incompletely replicated DNA when under mild replication stress (RS) conditions. Consequently, the incompletely replicated genomic gaps form, predominantly at common fragile site regions, where the converging fork-like DNA structures accumulate. These branched structures pose a severe threat to the faithful disjunction of chromosomes as they physically interlink the partially duplicated sister chromatids. In this review, we provide an overview discussing how cells respond and deal with the under-replicated DNA structures that escape from the S/G2 surveillance system. We also focus on recent research of a mitotic break-induced replication pathway (also known as mitotic DNA repair synthesis), which has been proposed to operate during prophase in an attempt to finish DNA synthesis at the under-replicated genomic regions. Finally, we discuss recent data on how mild RS may cause chromosome instability and mutations that accelerate cancer genome evolution.
Collapse
Affiliation(s)
- Camelia Mocanu
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| |
Collapse
|
22
|
Ishimoto R, Tsuzuki Y, Matsumura T, Kurashige S, Enokitani K, Narimatsu K, Higa M, Sugimoto N, Yoshida K, Fujita M. SLX4-XPF mediates DNA damage responses to replication stress induced by DNA-protein interactions. J Cell Biol 2021; 220:211628. [PMID: 33347546 PMCID: PMC7754685 DOI: 10.1083/jcb.202003148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/05/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
The DNA damage response (DDR) has a critical role in the maintenance of genomic integrity during chromosome replication. However, responses to replication stress evoked by tight DNA–protein complexes have not been fully elucidated. Here, we used bacterial LacI protein binding to lacO arrays to make site-specific replication fork barriers on the human chromosome. These barriers induced the accumulation of single-stranded DNA (ssDNA) and various DDR proteins at the lacO site. SLX4–XPF functioned as an upstream factor for the accumulation of DDR proteins, and consequently, ATR and FANCD2 were interdependently recruited. Moreover, LacI binding in S phase caused underreplication and abnormal mitotic segregation of the lacO arrays. Finally, we show that the SLX4–ATR axis represses the anaphase abnormality induced by LacI binding. Our results outline a long-term process by which human cells manage nucleoprotein obstacles ahead of the replication fork to prevent chromosomal instability.
Collapse
Affiliation(s)
- Riko Ishimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yota Tsuzuki
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoki Matsumura
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiichiro Kurashige
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kouki Enokitani
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Koki Narimatsu
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsunori Higa
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Calzetta NL, González Besteiro MA, Gottifredi V. PARP Activity Fine-tunes the DNA Replication Choreography of Chk1-depleted Cells. J Mol Biol 2021; 433:166949. [PMID: 33744317 DOI: 10.1016/j.jmb.2021.166949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Checkpoint Kinase 1 (Chk1) prevents DNA damage by adjusting the replication choreography in the face of replication stress. Chk1 depletion provokes slow and asymmetrical fork movement, yet the signals governing such changes remain unclear. We sought to investigate whether poly(ADP-ribose) polymerases (PARPs), key players of the DNA damage response, intervene in the DNA replication of Chk1-depleted cells. We demonstrate that PARP inhibition selectively alleviates the reduced fork elongation rates, without relieving fork asymmetry in Chk1-depleted cells. While the contribution of PARPs to fork elongation is not unprecedented, we found that their role in Chk1-depleted cells extends beyond fork movement. PARP-dependent fork deceleration induced mild dormant origin firing upon Chk1 depletion, augmenting the global rates of DNA synthesis. Thus, we have identified PARPs as novel regulators of replication fork dynamics in Chk1-depleted cells.
Collapse
Affiliation(s)
- Nicolás Luis Calzetta
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Marina Alejandra González Besteiro
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| | - Vanesa Gottifredi
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| |
Collapse
|
24
|
Stok C, Kok Y, van den Tempel N, van Vugt MATM. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Res 2021; 49:4239-4257. [PMID: 33744950 PMCID: PMC8096281 DOI: 10.1093/nar/gkab151] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as 'BRCAness'. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.
Collapse
Affiliation(s)
- Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| |
Collapse
|
25
|
Branigan TB, Kozono D, Schade AE, Deraska P, Rivas HG, Sambel L, Reavis HD, Shapiro GI, D'Andrea AD, DeCaprio JA. MMB-FOXM1-driven premature mitosis is required for CHK1 inhibitor sensitivity. Cell Rep 2021; 34:108808. [PMID: 33657372 PMCID: PMC7970065 DOI: 10.1016/j.celrep.2021.108808] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/24/2020] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
To identify genes whose loss confers resistance to CHK1 inhibitors, we perform genome-wide CRISPR-Cas9 screens in non-small-cell lung cancer (NSCLC) cell lines treated with the CHK1 inhibitor prexasertib (CHK1i). Five of the top six hits of the screens, MYBL2 (B-MYB), LIN54, FOXM1, cyclin A2 (CCNA2), and CDC25B, are cell-cycle-regulated genes that contribute to entry into mitosis. Knockout of MMB-FOXM1 complex components LIN54 and FOXM1 reduce CHK1i-induced DNA replication stress markers and premature mitosis during Late S phase. Activation of a feedback loop between the MMB-FOXM1 complex and CDK1 is required for CHK1i-induced premature mitosis in Late S phase and subsequent replication catastrophe, indicating that dysregulation of the S to M transition is necessary for CHK1 inhibitor sensitivity. These findings provide mechanistic insights into small molecule inhibitors currently studied in clinical trials and provide rationale for combination therapies. Branigan et al., by using genome-wide CRISPR screens, identify the MMB-FOXM1 complex as being required for CHK1 inhibitor (CHK1i) sensitivity. Their study shows that CHK1i-induced premature activation of the G2/M transcriptional program by this complex triggers a breakdown in the separation of DNA synthesis and mitosis, leading to replication catastrophe.
Collapse
Affiliation(s)
- Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amy E Schade
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Peter Deraska
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hembly G Rivas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Larissa Sambel
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hunter D Reavis
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Geoffrey I Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Program in Virology, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Genois MM, Gagné JP, Yasuhara T, Jackson J, Saxena S, Langelier MF, Ahel I, Bedford MT, Pascal JM, Vindigni A, Poirier GG, Zou L. CARM1 regulates replication fork speed and stress response by stimulating PARP1. Mol Cell 2021; 81:784-800.e8. [PMID: 33412112 PMCID: PMC7897296 DOI: 10.1016/j.molcel.2020.12.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
DNA replication forks use multiple mechanisms to deal with replication stress, but how the choice of mechanisms is made is still poorly understood. Here, we show that CARM1 associates with replication forks and reduces fork speed independently of its methyltransferase activity. The speeding of replication forks in CARM1-deficient cells requires RECQ1, which resolves reversed forks, and RAD18, which promotes translesion synthesis. Loss of CARM1 reduces fork reversal and increases single-stranded DNA (ssDNA) gaps but allows cells to tolerate higher replication stress. Mechanistically, CARM1 interacts with PARP1 and promotes PARylation at replication forks. In vitro, CARM1 stimulates PARP1 activity by enhancing its DNA binding and acts jointly with HPF1 to activate PARP1. Thus, by stimulating PARP1, CARM1 slows replication forks and promotes the use of fork reversal in the stress response, revealing that CARM1 and PARP1 function as a regulatory module at forks to control fork speed and the choice of stress response mechanisms.
Collapse
Affiliation(s)
- Marie-Michelle Genois
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, QC G1V 0A6, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, Québec City, Québec G1V 4G2, Canada
| | - Takaaki Yasuhara
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec City, QC G1V 0A6, Canada; CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, Québec City, Québec G1V 4G2, Canada
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Calzetta NL, González Besteiro MA, Gottifredi V. Mus81-Eme1-dependent aberrant processing of DNA replication intermediates in mitosis impairs genome integrity. SCIENCE ADVANCES 2020; 6:6/50/eabc8257. [PMID: 33298441 PMCID: PMC7725468 DOI: 10.1126/sciadv.abc8257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Chromosome instability (CIN) underpins cancer evolution and is associated with drug resistance and poor prognosis. Understanding the mechanistic basis of CIN is thus a priority. The structure-specific endonuclease Mus81-Eme1 is known to prevent CIN. Intriguingly, however, here we show that the aberrant processing of late replication intermediates by Mus81-Eme1 is a source of CIN. Upon depletion of checkpoint kinase 1 (Chk1), Mus81-Eme1 cleaves under-replicated DNA engaged in mitotic DNA synthesis, leading to chromosome segregation defects. Supplementing cells with nucleosides allows the completion of mitotic DNA synthesis, restraining Mus81-Eme1-dependent DNA damage in mitosis and the ensuing CIN. We found no correlation between CIN arising from nucleotide shortage in mitosis and cell death, which were selectively linked to DNA damage load in mitosis and S phase, respectively. Our findings imply the possibility of optimizing Chk1-directed therapies by inducing cell death while curtailing CIN, a common side effect of chemotherapy.
Collapse
Affiliation(s)
- Nicolás Luis Calzetta
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Marina Alejandra González Besteiro
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| | - Vanesa Gottifredi
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| |
Collapse
|
28
|
ATRIP protects progenitor cells against DNA damage in vivo. Cell Death Dis 2020; 11:923. [PMID: 33110058 PMCID: PMC7591577 DOI: 10.1038/s41419-020-03090-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
Abstract
The maintenance of genomic stability during the cell cycle of progenitor cells is essential for the faithful transmission of genetic information. Mutations in genes that ensure genome stability lead to human developmental syndromes. Mutations in Ataxia Telangiectasia and Rad3-related (ATR) or in ATR-interacting protein (ATRIP) lead to Seckel syndrome, which is characterized by developmental malformations and short life expectancy. While the roles of ATR in replicative stress response and chromosomal segregation are well established, it is unknown how ATRIP contributes to maintaining genomic stability in progenitor cells in vivo. Here, we generated the first mouse model to investigate ATRIP function. Conditional inactivation of Atrip in progenitor cells of the CNS and eye led to microcephaly, microphthalmia and postnatal lethality. To understand the mechanisms underlying these malformations, we used lens progenitor cells as a model and found that ATRIP loss promotes replicative stress and TP53-dependent cell death. Trp53 inactivation in Atrip-deficient progenitor cells rescued apoptosis, but increased mitotic DNA damage and mitotic defects. Our findings demonstrate an essential role of ATRIP in preventing DNA damage accumulation during unchallenged replication.
Collapse
|
29
|
Under-Replicated DNA: The Byproduct of Large Genomes? Cancers (Basel) 2020; 12:cancers12102764. [PMID: 32992928 PMCID: PMC7601121 DOI: 10.3390/cancers12102764] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
In this review, we provide an overview of how proliferating eukaryotic cells overcome one of the main threats to genome stability: incomplete genomic DNA replication during S phase. We discuss why it is currently accepted that double fork stalling (DFS) events are unavoidable events in higher eukaryotes with large genomes and which responses have evolved to cope with its main consequence: the presence of under-replicated DNA (UR-DNA) outside S phase. Particular emphasis is placed on the processes that constrain the detrimental effects of UR-DNA. We discuss how mitotic DNA synthesis (MiDAS), mitotic end joining events and 53BP1 nuclear bodies (53BP1-NBs) deal with such specific S phase DNA replication remnants during the subsequent phases of the cell cycle.
Collapse
|
30
|
Rainey MD, Bennett D, O’Dea R, Zanchetta ME, Voisin M, Seoighe C, Santocanale C. ATR Restrains DNA Synthesis and Mitotic Catastrophe in Response to CDC7 Inhibition. Cell Rep 2020; 32:108096. [DOI: 10.1016/j.celrep.2020.108096] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
|
31
|
Harnessing DNA Replication Stress for Novel Cancer Therapy. Genes (Basel) 2020; 11:genes11090990. [PMID: 32854236 PMCID: PMC7564951 DOI: 10.3390/genes11090990] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
DNA replication is the fundamental process for accurate duplication and transfer of genetic information. Its fidelity is under constant stress from endogenous and exogenous factors which can cause perturbations that lead to DNA damage and defective replication. This can compromise genomic stability and integrity. Genomic instability is considered as one of the hallmarks of cancer. In normal cells, various checkpoints could either activate DNA repair or induce cell death/senescence. Cancer cells on the other hand potentiate DNA replicative stress, due to defective DNA damage repair mechanism and unchecked growth signaling. Though replicative stress can lead to mutagenesis and tumorigenesis, it can be harnessed paradoxically for cancer treatment. Herein, we review the mechanism and rationale to exploit replication stress for cancer therapy. We discuss both established and new approaches targeting DNA replication stress including chemotherapy, radiation, and small molecule inhibitors targeting pathways including ATR, Chk1, PARP, WEE1, MELK, NAE, TLK etc. Finally, we review combination treatments, biomarkers, and we suggest potential novel methods to target DNA replication stress to treat cancer.
Collapse
|
32
|
Żabka A, Winnicki K, Polit JT, Bernasińska-Słomczewska J, Maszewski J. 5-Aminouracil and other inhibitors of DNA replication induce biphasic interphase-mitotic cells in apical root meristems of Allium cepa. PLANT CELL REPORTS 2020; 39:1013-1028. [PMID: 32328702 PMCID: PMC7359111 DOI: 10.1007/s00299-020-02545-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Induction of biphasic interphase-mitotic cells and PCC is connected with an increased level of metabolism in root meristem cells of Allium cepa. Previous experiments using primary roots of Allium cepa exposed to low concentrations of hydroxyurea have shown that long-term DNA replication stress (DRS) disrupts essential links of the S-M checkpoint mechanism, leading meristem cells either to premature chromosome condensation (PCC) or to a specific form of chromatin condensation, establishing biphasic organization of cell nuclei with both interphase and mitotic domains (IM cells). The present study supplements and extends these observations by describing general conditions under which both abnormal types of M-phase cells may occur. The analysis of root apical meristem (RAM) cell proliferation after prolonged mild DRS indicates that a broad spectrum of inhibitors is capable of generating PCC and IM organization of cell nuclei. These included: 5-aminouracil (5-AU, a thymine antagonist), characterized by the highest efficiency in creating cells with the IM phenotype, aphidicolin (APH), an inhibitor of DNA polymerase α, 5-fluorodeoxyuridine (FUdR), an inhibitor of thymidylate synthetase, methotrexate (MTX), a folic acid analog that inhibits purine and pyrimidine synthesis, and cytosine arabinoside (Ara-C), which inhibits DNA replication by forming cleavage complexes with topoisomerase I. As evidenced using fluorescence-based click chemistry assays, continuous treatment of onion RAM cells with 5-AU is associated with an accelerated dynamics of the DNA replication machinery and significantly enhanced levels of transcription and translation. Furthermore, DRS conditions bring about an intensified production of hydrogen peroxide (H2O2), depletion of reduced glutathione (GSH), and some increase in DNA fragmentation, associated with only a slight increase in apoptosis-like programmed cell death events.
Collapse
Affiliation(s)
- Aneta Żabka
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Justyna Teresa Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Joanna Bernasińska-Słomczewska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Janusz Maszewski
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
33
|
Yang L, Chen P, Zhang L, Wang L, Sun T, Zhou L, Li Z, Wu A. Prognostic value of nucleotyping, DNA ploidy and stroma in high-risk stage II colon cancer. Br J Cancer 2020; 123:973-981. [PMID: 32624576 PMCID: PMC7492254 DOI: 10.1038/s41416-020-0974-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/27/2020] [Accepted: 06/17/2020] [Indexed: 01/13/2023] Open
Abstract
Background Heterogeneity with respect to recurrence and survival in high-risk stage II colon cancer patients still exists, and further classification is urgently required. This study aimed to ascertain the prognostic value of DNA ploidy, stroma-tumour fraction and nucleotyping in the prognosis of high-risk stage II colon cancer. Methods A total of 188 high-risk stage II colon cancer patients received radical surgery in Peking University Cancer Hospital, from 2009 to 2015. Status of mismatch repair proteins in tumours was analysed using immunohistochemistry. DNA ploidy, stroma-tumour fraction and nucleotyping were estimated by automated digital imaging systems. Results Nucleotyping and DNA ploidy were significant prognostic factors, while stroma-tumour fraction were not significantly prognostic in the univariate analysis. In the multivariable model, the dominant contributory factor of disease-free survival was chromatin heterogeneous vs. chromatin homogeneous [HR 3.309 (95% CI: 1.668–6.564), P = 0.001]. Conclusions Our study indicates that nucleotyping is an independent prognostic factor in high-risk stage II colon cancer. Therefore, it may help subdivide patients into different subgroups and give them different strategies for follow-up and treatment in the future.
Collapse
Affiliation(s)
- Lujing Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, 100142, Beijing, People's Republic of China
| | - Pengju Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Colorectal Surgery, Peking University Cancer Hospital & Institute, 100142, Beijing, People's Republic of China
| | - Li Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, 100142, Beijing, People's Republic of China
| | - Lin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Colorectal Surgery, Peking University Cancer Hospital & Institute, 100142, Beijing, People's Republic of China
| | - Tingting Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Colorectal Surgery, Peking University Cancer Hospital & Institute, 100142, Beijing, People's Republic of China
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, 100142, Beijing, People's Republic of China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, 100142, Beijing, People's Republic of China.
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Colorectal Surgery, Peking University Cancer Hospital & Institute, 100142, Beijing, People's Republic of China.
| |
Collapse
|
34
|
Wilhelm T, Said M, Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 2020; 11:E642. [PMID: 32532049 PMCID: PMC7348713 DOI: 10.3390/genes11060642] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability (CIN) is associated with many human diseases, including neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key driver for disease initiation and progression. A major source of structural chromosome instability (s-CIN) leading to structural chromosome aberrations is "replication stress", a condition in which stalled or slowly progressing replication forks interfere with timely and error-free completion of the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss recent evidence showing that these two forms of chromosomal instability can be mechanistically interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement, which prevent or contribute to specific types of structural chromosome aberrations and segregation errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our current knowledge may be exploited for developing cancer therapies.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
- UMR144 Cell Biology and Cancer, Institut Curie, 75005 Paris, France
| | - Maha Said
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| |
Collapse
|
35
|
Rainey MD, Quinlan A, Cazzaniga C, Mijic S, Martella O, Krietsch J, Göder A, Lopes M, Santocanale C. CDC7 kinase promotes MRE11 fork processing, modulating fork speed and chromosomal breakage. EMBO Rep 2020; 21:e48920. [PMID: 32496651 PMCID: PMC7403700 DOI: 10.15252/embr.201948920] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022] Open
Abstract
The CDC7 kinase is essential for the activation of DNA replication origins and has been implicated in the replication stress response. Using a highly specific chemical inhibitor and a chemical genetic approach, we now show that CDC7 activity is required to coordinate multiple MRE11‐dependent processes occurring at replication forks, independently from its role in origin firing. CDC7 localizes at replication forks and, similarly to MRE11, mediates active slowing of fork progression upon mild topoisomerase inhibition. Both proteins are also retained on stalled forks, where they promote fork processing and restart. Moreover, MRE11 phosphorylation and localization at replication factories are progressively lost upon CDC7 inhibition. Finally, CDC7 activity at reversed forks is required for their pathological MRE11‐dependent degradation in BRCA2‐deficient cells. Thus, upon replication interference CDC7 is a key regulator of fork progression, processing and integrity. These results highlight a dual role for CDC7 in replication, modulating both initiation and elongation steps of DNA synthesis, and identify a key intervention point for anticancer therapies exploiting replication interference.
Collapse
Affiliation(s)
- Michael D Rainey
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aisling Quinlan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Chiara Cazzaniga
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sofija Mijic
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Oliviano Martella
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Anja Göder
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
36
|
Ovejero S, Bueno A, Sacristán MP. Working on Genomic Stability: From the S-Phase to Mitosis. Genes (Basel) 2020; 11:E225. [PMID: 32093406 PMCID: PMC7074175 DOI: 10.3390/genes11020225] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells. All of these processes are tightly interconnected and under strict regulation in the context of the cell division cycle. The chromosomal instability underlying cancer pathogenesis has recently emerged as a major source for understanding the mitotic processes that helps to safeguard genome integrity. Here, we review the special interconnection between the S-phase and mitosis in the presence of under-replicated DNA regions. Furthermore, we discuss what is known about the DNA damage response activated in mitosis that preserves chromosomal integrity.
Collapse
Affiliation(s)
- Sara Ovejero
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Institute of Human Genetics, CNRS, University of Montpellier, 34000 Montpellier, France
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - María P. Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
37
|
Majera D, Skrott Z, Chroma K, Merchut-Maya JM, Mistrik M, Bartek J. Targeting the NPL4 Adaptor of p97/VCP Segregase by Disulfiram as an Emerging Cancer Vulnerability Evokes Replication Stress and DNA Damage while Silencing the ATR Pathway. Cells 2020; 9:cells9020469. [PMID: 32085572 PMCID: PMC7072750 DOI: 10.3390/cells9020469] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Research on repurposing the old alcohol-aversion drug disulfiram (DSF) for cancer treatment has identified inhibition of NPL4, an adaptor of the p97/VCP segregase essential for turnover of proteins involved in multiple pathways, as an unsuspected cancer cell vulnerability. While we reported that NPL4 is targeted by the anticancer metabolite of DSF, the bis-diethyldithiocarbamate-copper complex (CuET), the exact, apparently multifaceted mechanism(s) through which the CuET-induced aggregation of NPL4 kills cancer cells remains to be fully elucidated. Given the pronounced sensitivity to CuET in tumor cell lines lacking the genome integrity caretaker proteins BRCA1 and BRCA2, here we investigated the impact of NPL4 targeting by CuET on DNA replication dynamics and DNA damage response pathways in human cancer cell models. Our results show that CuET treatment interferes with DNA replication, slows down replication fork progression and causes accumulation of single-stranded DNA (ssDNA). Such a replication stress (RS) scenario is associated with DNA damage, preferentially in the S phase, and activates the homologous recombination (HR) DNA repair pathway. At the same time, we find that cellular responses to the CuET-triggered RS are seriously impaired due to concomitant malfunction of the ATRIP-ATR-CHK1 signaling pathway that reflects an unorthodox checkpoint silencing mode through ATR (Ataxia telangiectasia and Rad3 related) kinase sequestration within the CuET-evoked NPL4 protein aggregates.
Collapse
Affiliation(s)
- Dusana Majera
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | - Zdenek Skrott
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | - Katarina Chroma
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
| | | | - Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
- Correspondence: (M.M.); (J.B.)
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77 147 Olomouc, Czech Republic
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, 171 77 Stockholm, Sweden
- Correspondence: (M.M.); (J.B.)
| |
Collapse
|
38
|
Lemmens B, Lindqvist A. DNA replication and mitotic entry: A brake model for cell cycle progression. J Cell Biol 2019; 218:3892-3902. [PMID: 31712253 PMCID: PMC6891093 DOI: 10.1083/jcb.201909032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Lemmens and Lindqvist discuss how DNA replication and mitosis are coordinated and propose a cell cycle model controlled by brakes. The core function of the cell cycle is to duplicate the genome and divide the duplicated DNA into two daughter cells. These processes need to be carefully coordinated, as cell division before DNA replication is complete leads to genome instability and cell death. Recent observations show that DNA replication, far from being only a consequence of cell cycle progression, plays a key role in coordinating cell cycle activities. DNA replication, through checkpoint kinase signaling, restricts the activity of cyclin-dependent kinases (CDKs) that promote cell division. The S/G2 transition is therefore emerging as a crucial regulatory step to determine the timing of mitosis. Here we discuss recent observations that redefine the coupling between DNA replication and cell division and incorporate these insights into an updated cell cycle model for human cells. We propose a cell cycle model based on a single trigger and sequential releases of three molecular brakes that determine the kinetics of CDK activation.
Collapse
Affiliation(s)
- Bennie Lemmens
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Limas JC, Cook JG. Preparation for DNA replication: the key to a successful S phase. FEBS Lett 2019; 593:2853-2867. [PMID: 31556113 PMCID: PMC6817399 DOI: 10.1002/1873-3468.13619] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Successful genome duplication is required for cell proliferation and demands extraordinary precision and accuracy. The mechanisms by which cells enter, progress through, and exit S phase are intense areas of focus in the cell cycle and genome stability fields. Key molecular events in the G1 phase of the cell division cycle, especially origin licensing, are essential for pre-establishing conditions for efficient DNA replication during the subsequent S phase. If G1 events are poorly regulated or disordered, then DNA replication can be compromised leading to genome instability, a hallmark of tumorigenesis. Upon entry into S phase, coordinated origin firing and replication progression ensure complete, timely, and precise chromosome replication. Both G1 and S phase progressions are controlled by master cell cycle protein kinases and ubiquitin ligases that govern the activity and abundance of DNA replication factors. In this short review, we describe current understanding and recent developments related to G1 progression and S phase entrance and exit with a particular focus on origin licensing regulation in vertebrates.
Collapse
Affiliation(s)
- Juanita C Limas
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jeanette Gowen Cook
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
40
|
Michelena J, Gatti M, Teloni F, Imhof R, Altmeyer M. Basal CHK1 activity safeguards its stability to maintain intrinsic S-phase checkpoint functions. J Cell Biol 2019; 218:2865-2875. [PMID: 31366665 PMCID: PMC6719454 DOI: 10.1083/jcb.201902085] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The essential kinase CHK1 controls cell cycle checkpoint signaling and S-phase progression. Michelena et al. reveal that steady-state activity of CHK1 is required to sustain its own stability and that failure to do so results in CHK1 degradation and sensitizes cells to replication stress. The DNA replication machinery frequently encounters impediments that slow replication fork progression and threaten timely and error-free replication. The CHK1 protein kinase is essential to deal with replication stress (RS) and ensure genome integrity and cell survival, yet how basal levels and activity of CHK1 are maintained under physiological, unstressed conditions is not well understood. Here, we reveal that CHK1 stability is controlled by its steady-state activity during unchallenged cell proliferation. This autoactivatory mechanism, which depends on ATR and its coactivator ETAA1 and is tightly associated with CHK1 autophosphorylation at S296, counters CHK1 ubiquitylation and proteasomal degradation, thereby preventing attenuation of S-phase checkpoint functions and a compromised capacity to respond to RS. Based on these findings, we propose that steady-state CHK1 activity safeguards its stability to maintain intrinsic checkpoint functions and ensure genome integrity and cell survival.
Collapse
Affiliation(s)
- Jone Michelena
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Federico Teloni
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Nam AR, Jin MH, Park JE, Bang JH, Oh DY, Bang YJ. Therapeutic Targeting of the DNA Damage Response Using an ATR Inhibitor in Biliary Tract Cancer. Cancer Res Treat 2019; 51:1167-1179. [PMID: 30514066 PMCID: PMC6639230 DOI: 10.4143/crt.2018.526] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/02/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The DNA damage response (DDR) is a multi-complex network of signaling pathways involved in DNA damage repair, cell cycle checkpoints, and apoptosis. In the case of biliary tract cancer (BTC), the strategy of DDR targeting has not been evaluated, even though many patients have DNA repair pathway alterations. The purpose of this study was to test the DDR-targeting strategy in BTC using an ataxia-telangiectasia and Rad3-related (ATR) inhibitor. MATERIALS AND METHODS A total of nine human BTC cell lines were used for evaluating anti-tumor effect of AZD6738 (ATR inhibitor) alone or combination with cytotoxic chemotherapeutic agents through MTT assay, colony-forming assays, cell cycle analyses, and comet assays. We established SNU478-mouse model for in vivo experiments to confirm our findings. RESULTS Among nine human BTC cell lines, SNU478 and SNU869 were the most sensitive to AZD6738, and showed low expression of both ataxia-telangiectasia mutated (ATM) and p53. AZD6738 blocked p-Chk1 and p-glycoprotein and increased γH2AX, a marker of DNA damage, in sensitive cells. AZD6738 significantly increased apoptosis, G2/M arrest and p21, and decreased CDC2. Combinations of AZD6738 and cytotoxic chemotherapeutic agents exerted synergistic effects in colony-forming assays, cell cycle analyses, and comet assays. In our mouse models, AZD6738 monotherapy decreased tumor growth and the combination with cisplatin showed more potent effects on growth inhibition, decreased Ki-67, and increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling than monotherapy with each drug. CONCLUSION In BTC, DDR targeting strategy using ATR inhibitor demonstrated promising antitumor activity alone or in combination with cytotoxic chemotherapeutic agents. This supports further clinical development of DDR targeting strategy in BTC.
Collapse
Affiliation(s)
- Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mei Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
42
|
Mladenov E, Fan X, Dueva R, Soni A, Iliakis G. Radiation-dose-dependent functional synergisms between ATM, ATR and DNA-PKcs in checkpoint control and resection in G 2-phase. Sci Rep 2019; 9:8255. [PMID: 31164689 PMCID: PMC6547644 DOI: 10.1038/s41598-019-44771-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Using data generated with cells exposed to ionizing-radiation (IR) in G2-phase of the cell cycle, we describe dose-dependent interactions between ATM, ATR and DNA-PKcs revealing unknown mechanistic underpinnings for two key facets of the DNA damage response: DSB end-resection and G2-checkpoint activation. At low IR-doses that induce low DSB-numbers in the genome, ATM and ATR regulate epistatically the G2-checkpoint, with ATR at the output-node, interfacing with the cell-cycle predominantly through Chk1. Strikingly, at low IR-doses, ATM and ATR epistatically regulate also resection, and inhibition of either activity fully suppresses resection. At high IR-doses that induce high DSB-numbers in the genome, the tight ATM/ATR coupling relaxes and independent outputs to G2-checkpoint and resection occur. Consequently, both kinases must be inhibited to fully suppress checkpoint activation and resection. DNA-PKcs integrates to the ATM/ATR module by regulating resection at all IR-doses, with defects in DNA-PKcs causing hyper-resection and G2-checkpoint hyper-activation. Notably, hyper-resection is absent from other c-NHEJ mutants. Thus, DNA-PKcs specifically regulates resection and adjusts the activation of the ATM/ATR module. We propose that selected DSBs are shepherd by DNA-PKcs from c-NHEJ to resection-dependent pathways for processing under the regulatory supervision of the ATM/ATR module.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Xiaoxiang Fan
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany.
| |
Collapse
|
43
|
Eykelenboom JK, Gierliński M, Yue Z, Hegarat N, Pollard H, Fukagawa T, Hochegger H, Tanaka TU. Live imaging of marked chromosome regions reveals their dynamic resolution and compaction in mitosis. J Cell Biol 2019; 218:1531-1552. [PMID: 30858191 PMCID: PMC6504890 DOI: 10.1083/jcb.201807125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/19/2018] [Accepted: 02/05/2019] [Indexed: 01/27/2023] Open
Abstract
When human cells enter mitosis, chromosomes undergo substantial changes in their organization to resolve sister chromatids and compact chromosomes. To comprehend the timing and coordination of these events, we need to evaluate the progression of both sister chromatid resolution and chromosome compaction in one assay. Here we achieved this by analyzing changes in configuration of marked chromosome regions over time, with high spatial and temporal resolution. This assay showed that sister chromatids cycle between nonresolved and partially resolved states with an interval of a few minutes during G2 phase before completing full resolution in prophase. Cohesins and WAPL antagonistically regulate sister chromatid resolution in late G2 and prophase while local enrichment of cohesin on chromosomes prevents precocious sister chromatid resolution. Moreover, our assay allowed quantitative evaluation of condensin II and I activities, which differentially promote sister chromatid resolution and chromosome compaction, respectively. Our assay reveals novel aspects of dynamics in mitotic chromosome resolution and compaction that were previously obscure in global chromosome assays.
Collapse
Affiliation(s)
- John K Eykelenboom
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Marek Gierliński
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
- Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zuojun Yue
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nadia Hegarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Hilary Pollard
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
44
|
Ubhi T, Brown GW. Exploiting DNA Replication Stress for Cancer Treatment. Cancer Res 2019; 79:1730-1739. [PMID: 30967400 DOI: 10.1158/0008-5472.can-18-3631] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Complete and accurate DNA replication is fundamental to cellular proliferation and genome stability. Obstacles that delay, prevent, or terminate DNA replication cause the phenomena termed DNA replication stress. Cancer cells exhibit chronic replication stress due to the loss of proteins that protect or repair stressed replication forks and due to the continuous proliferative signaling, providing an exploitable therapeutic vulnerability in tumors. Here, we outline current and pending therapeutic approaches leveraging tumor-specific replication stress as a target, in addition to the challenges associated with such therapies. We discuss how replication stress modulates the cell-intrinsic innate immune response and highlight the integration of replication stress with immunotherapies. Together, exploiting replication stress for cancer treatment seems to be a promising strategy as it provides a selective means of eliminating tumors, and with continuous advances in our knowledge of the replication stress response and lessons learned from current therapies in use, we are moving toward honing the potential of targeting replication stress in the clinic.
Collapse
Affiliation(s)
- Tajinder Ubhi
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Falquet B, Rass U. Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication. Genes (Basel) 2019; 10:E232. [PMID: 30893921 PMCID: PMC6470701 DOI: 10.3390/genes10030232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Complete genome duplication in every cell cycle is fundamental for genome stability and cell survival. However, chromosome replication is frequently challenged by obstacles that impede DNA replication fork (RF) progression, which subsequently causes replication stress (RS). Cells have evolved pathways of RF protection and restart that mitigate the consequences of RS and promote the completion of DNA synthesis prior to mitotic chromosome segregation. If there is entry into mitosis with underreplicated chromosomes, this results in sister-chromatid entanglements, chromosome breakage and rearrangements and aneuploidy in daughter cells. Here, we focus on the resolution of persistent replication intermediates by the structure-specific endonucleases (SSEs) MUS81, SLX1-SLX4 and GEN1. Their actions and a recently discovered pathway of mitotic DNA repair synthesis have emerged as important facilitators of replication completion and sister chromatid detachment in mitosis. As RS is induced by oncogene activation and is a common feature of cancer cells, any advances in our understanding of the molecular mechanisms related to chromosome underreplication have important biomedical implications.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
- Faculty of Natural Sciences, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
46
|
Deng L, Wu RA, Sonneville R, Kochenova OV, Labib K, Pellman D, Walter JC. Mitotic CDK Promotes Replisome Disassembly, Fork Breakage, and Complex DNA Rearrangements. Mol Cell 2019; 73:915-929.e6. [PMID: 30849395 PMCID: PMC6410736 DOI: 10.1016/j.molcel.2018.12.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
Abstract
DNA replication errors generate complex chromosomal rearrangements and thereby contribute to tumorigenesis and other human diseases. One mechanism that triggers these errors is mitotic entry before the completion of DNA replication. To address how mitosis might affect DNA replication, we used Xenopus egg extracts. When mitotic CDK (Cyclin B1-CDK1) is used to drive interphase egg extracts into a mitotic state, the replicative CMG (CDC45/MCM2-7/GINS) helicase undergoes ubiquitylation on its MCM7 subunit, dependent on the E3 ubiquitin ligase TRAIP. Whether replisomes have stalled or undergone termination, CMG ubiquitylation is followed by its extraction from chromatin by the CDC48/p97 ATPase. TRAIP-dependent CMG unloading during mitosis is also seen in C. elegans early embryos. At stalled forks, CMG removal results in fork breakage and end joining events involving deletions and templated insertions. Our results identify a mitotic pathway of global replisome disassembly that can trigger replication fork collapse and DNA rearrangements.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Olga V Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Linking the organization of DNA replication with genome maintenance. Curr Genet 2019; 65:677-683. [PMID: 30600398 DOI: 10.1007/s00294-018-0923-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
The spatial and temporal organization of genome duplication, also referred to as the replication program, is defined by the distribution and the activities of the sites of replication initiation across the genome. Alterations to the replication profile are associated with cell fate changes during development and in pathologies, but the importance of undergoing S phase with distinct and specific programs remains largely unexplored. We have recently addressed this question, focusing on the interplay between the replication program and genome maintenance. In particular, we demonstrated that when cells encounter challenges to DNA synthesis, the organization of DNA replication drives the response to replication stress that is mediated by the ATR/Rad3 checkpoint pathway, thus shaping the pattern of genome instability along the chromosomes. In this review, we present the major findings of our study and discuss how they may bring new perspectives to our understanding of the biological importance of the replication program.
Collapse
|
48
|
Lafarga V, Sung HM, Haneke K, Roessig L, Pauleau AL, Bruer M, Rodriguez-Acebes S, Lopez-Contreras AJ, Gruss OJ, Erhardt S, Mendez J, Fernandez-Capetillo O, Stoecklin G. TIAR marks nuclear G2/M transition granules and restricts CDK1 activity under replication stress. EMBO Rep 2019; 20:e46224. [PMID: 30538118 PMCID: PMC6322364 DOI: 10.15252/embr.201846224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
The G2/M checkpoint coordinates DNA replication with mitosis and thereby prevents chromosome segregation in the presence of unreplicated or damaged DNA Here, we show that the RNA-binding protein TIAR is essential for the G2/M checkpoint and that TIAR accumulates in nuclear foci in late G2 and prophase in cells suffering from replication stress. These foci, which we named G2/M transition granules (GMGs), occur at low levels in normally cycling cells and are strongly induced by replication stress. In addition to replication stress response proteins, GMGs contain factors involved in RNA metabolism as well as CDK1. Depletion of TIAR accelerates mitotic entry and leads to chromosomal instability in response to replication stress, in a manner that can be alleviated by the concomitant depletion of Cdc25B or inhibition of CDK1. Since TIAR retains CDK1 in GMGs and attenuates CDK1 activity, we propose that the assembly of GMGs may represent a so far unrecognized mechanism that contributes to the activation of the G2/M checkpoint in mammalian cells.
Collapse
Affiliation(s)
- Vanesa Lafarga
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Hsu-Min Sung
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina Haneke
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Roessig
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anne-Laure Pauleau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging University of Copenhagen, Copenhagen, Denmark
| | - Marius Bruer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Andres J Lopez-Contreras
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CellNetworks Excellence Cluster, Heidelberg University, Heidelberg, Germany
| | - Oliver J Gruss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging University of Copenhagen, Copenhagen, Denmark
| | - Juan Mendez
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Georg Stoecklin
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
49
|
Llorens-Agost M, Luessing J, van Beneden A, Eykelenboom J, O’Reilly D, Bicknell LS, Reynolds JJ, van Koegelenberg M, Hurles ME, Brady AF, Jackson AP, Stewart GS, Lowndes NF. Analysis of novel missense ATR mutations reveals new splicing defects underlying Seckel syndrome. Hum Mutat 2018; 39:1847-1853. [PMID: 30199583 PMCID: PMC7615757 DOI: 10.1002/humu.23648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/17/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023]
Abstract
Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome.
Collapse
Affiliation(s)
- Marta Llorens-Agost
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - Janna Luessing
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - Amandine van Beneden
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| | - John Eykelenboom
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
- School of Life Sciences, University of Dundee, Dundee, Scotland
| | - Dawn O’Reilly
- Oxford Stem Cell Institute, University of Oxford, Oxford, UK
| | - Louise S Bicknell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Angela F Brady
- North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, UK
| | - Andrew P Jackson
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburg, Scotland
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Noel F Lowndes
- Centre for Chromosome Biology, National University of Ireland in Galway, Galway, Ireland
| |
Collapse
|
50
|
Voutsinos V, Munk SHN, Oestergaard VH. Common Chromosomal Fragile Sites-Conserved Failure Stories. Genes (Basel) 2018; 9:E580. [PMID: 30486458 PMCID: PMC6315858 DOI: 10.3390/genes9120580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
In order to pass on an intact copy of the genome during cell division, complete and faithful DNA replication is crucial. Yet, certain areas of the genome are intrinsically challenging to replicate, which manifests as high local mutation propensity. Such regions include trinucleotide repeat sequences, common chromosomal fragile sites (CFSs), and early replicating fragile sites (ERFSs). Despite their genomic instability CFSs are conserved, suggesting that they have a biological function. To shed light on the potential function of CFSs, this review summarizes the similarities and differences of the regions that challenge DNA replication with main focus on CFSs. Moreover, we review the mechanisms that operate when CFSs fail to complete replication before entry into mitosis. Finally, evolutionary perspectives and potential physiological roles of CFSs are discussed with emphasis on their potential role in neurogenesis.
Collapse
Affiliation(s)
- Vasileios Voutsinos
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Sebastian H N Munk
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|