1
|
Martinez-Fernandez V, Barascu A, Teixeira MT. Life and Death without Telomerase: The Saccharomyces cerevisiae Model. Cold Spring Harb Perspect Biol 2025; 17:a041699. [PMID: 39694811 PMCID: PMC12047662 DOI: 10.1101/cshperspect.a041699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Saccharomyces cerevisiae, a model organism in telomere biology, has been instrumental in pioneering a comprehensive understanding of the molecular processes that occur in the absence of telomerase across eukaryotes. This exploration spans investigations into telomere dynamics, intracellular signaling cascades, and organelle-mediated responses, elucidating their impact on proliferative capacity, genome stability, and cellular variability. Through the lens of budding yeast, numerous sources of cellular heterogeneity have been identified, dissected, and modeled, shedding light on the risks associated with telomeric state transitions, including the evasion of senescence. Moreover, the unraveling of the intricate interplay between the nucleus and other organelles upon telomerase inactivation has provided insights into eukaryotic evolution and cellular communication networks. These contributions, akin to milestones achieved using budding yeast, such as the discovery of the cell cycle, DNA damage checkpoint mechanisms, and DNA replication and repair processes, have been of paramount significance for the telomere field. Particularly, these insights extend to understanding replicative senescence as an anticancer mechanism in humans and enhancing our understanding of eukaryotes' evolution.
Collapse
Affiliation(s)
- Veronica Martinez-Fernandez
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| | - Aurélia Barascu
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| | - Maria Teresa Teixeira
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| |
Collapse
|
2
|
Szabó G, Bonaiuti P, Ciliberto A, Horváth A. Enhancing yeast cell tracking with a time-symmetric deep learning approach. NPJ Syst Biol Appl 2025; 11:25. [PMID: 40082471 PMCID: PMC11906826 DOI: 10.1038/s41540-024-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/04/2024] [Indexed: 03/16/2025] Open
Abstract
Accurate tracking of live cells using video microscopy recordings remains a challenging task for popular state-of-the-art image processing-based object tracking methods. In recent years, many applications have attempted to integrate deep-learning frameworks for this task, but most still heavily rely on consecutive frame-based tracking or other premises that hinder generalized learning. To address this issue, we aimed to develop a novel deep-learning-based tracking method that assumes cells can be tracked by their spatio-temporal neighborhood, without a restriction to consecutive frames. The proposed method has the additional benefit that the motion patterns of the cells can be learned by the predictor without any prior assumptions, and it has the potential to handle a large number of video frames with heavy artifacts. The efficacy of the proposed method is demonstrated through biologically motivated validation strategies and compared against multiple state-of-the-art cell tracking methods on budding yeast recordings and simulated samples.
Collapse
Affiliation(s)
- Gergely Szabó
- ITK, PPCU, Práter st. 50/A, Budapest, 1083, Hungary.
| | | | - Andrea Ciliberto
- ITK, PPCU, Práter st. 50/A, Budapest, 1083, Hungary
- IFOM, Via Adamello, 16, Milan, 20139, Italy
| | | |
Collapse
|
3
|
Gautam V, Duari S, Solanki S, Gupta M, Mittal A, Arora S, Aggarwal A, Sharma AK, Tyagi S, Pankajbhai RK, Sharma A, Chauhan S, Satija S, Kumar S, Mohanty SK, Tayal J, Dixit NK, Sengupta D, Mehta A, Ahuja G. scCamAge: A context-aware prediction engine for cellular age, aging-associated bioactivities, and morphometrics. Cell Rep 2025; 44:115270. [PMID: 39918957 DOI: 10.1016/j.celrep.2025.115270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
Current deep-learning-based image-analysis solutions exhibit limitations in holistically capturing spatiotemporal cellular changes, particularly during aging. We present scCamAge, an advanced context-aware multimodal prediction engine that co-leverages image-based cellular spatiotemporal features at single-cell resolution alongside cellular morphometrics and aging-associated bioactivities such as genomic instability, mitochondrial dysfunction, vacuolar dynamics, reactive oxygen species levels, and epigenetic and proteasomal dysfunctions. scCamAge employed heterogeneous datasets comprising ∼1 million single yeast cells and was validated using pro-longevity drugs, genetic mutants, and stress-induced models. scCamAge also predicted a pro-longevity response in yeast cells under iterative thermal stress, confirmed using integrative omics analyses. Interestingly, scCamAge, trained solely on yeast images, without additional learning, surpasses generic models in predicting chemical and replication-induced senescence in human fibroblasts, indicating evolutionary conservation of aging-related morphometrics. Finally, we enhanced the generalizability of scCamAge by retraining it on human fibroblast senescence datasets, which improved its ability to predict senescent cells.
Collapse
Affiliation(s)
- Vishakha Gautam
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India.
| | - Subhadeep Duari
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Saveena Solanki
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Mudit Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Aayushi Mittal
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Sakshi Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Anmol Aggarwal
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Anmol Kumar Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Sarthak Tyagi
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Rathod Kunal Pankajbhai
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Arushi Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Sonam Chauhan
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Shiva Satija
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Suvendu Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Sanjay Kumar Mohanty
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Juhi Tayal
- Rajiv Gandhi Cancer Institute & Research Centre, Sir Chotu Ram Marg, Rohini Institutional Area, Sector 5, Rohini, New Delhi 110085, India
| | - Nilesh Kumar Dixit
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India; Infosys Centre for AI, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India
| | - Anurag Mehta
- Rajiv Gandhi Cancer Institute & Research Centre, Sir Chotu Ram Marg, Rohini Institutional Area, Sector 5, Rohini, New Delhi 110085, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India; Infosys Centre for AI, Indraprastha Institute of Information Technology - Delhi (IIIT-Delhi), Okhla, Phase III, New Delhi 110020, India.
| |
Collapse
|
4
|
Gutierrez JI, Tyler JK. A mortality timer based on nucleolar size triggers nucleolar integrity loss and catastrophic genomic instability. NATURE AGING 2024; 4:1782-1793. [PMID: 39587368 PMCID: PMC11964297 DOI: 10.1038/s43587-024-00754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/18/2024] [Indexed: 11/27/2024]
Abstract
Genome instability is a hallmark of aging, with the highly repetitive ribosomal DNA (rDNA) within the nucleolus being particularly prone to genome instability. Nucleolar enlargement accompanies aging in organisms ranging from yeast to mammals, and treatment with many antiaging interventions results in small nucleoli. Here, we report that an engineered system to reduce nucleolar size robustly extends budding yeast replicative lifespan in a manner independent of protein synthesis rate or rDNA silencing. Instead, when nucleoli expand beyond a size threshold, their biophysical properties change, allowing entry of proteins normally excluded from the nucleolus, including the homologous recombinational repair protein Rad52. This triggers rDNA instability due to aberrant recombination, catastrophic genome instability and imminent death. These results establish that nucleolar expansion is sufficient to drive aging. Moreover, nucleolar expansion beyond a specific size threshold is a mortality timer, as the accompanying disruption of the nucleolar condensate boundary results in catastrophic genome instability that ends replicative lifespan.
Collapse
Affiliation(s)
- J Ignacio Gutierrez
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA.
| | - Jessica K Tyler
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Wittmann L, Eigenfeld M, Büchner K, Meiler J, Habisch H, Madl T, Kerpes R, Becker T, Berensmeier S, Schwaminger SP. Millifluidic magnetophoresis-based chip for age-specific fractionation: evaluating the impact of age on metabolomics and gene expression in yeast. LAB ON A CHIP 2024; 24:2987-2998. [PMID: 38739033 PMCID: PMC11427765 DOI: 10.1039/d4lc00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
A novel millifluidic process introduces age-based fractionation of S. pastorianus var. carlsbergensis yeast culture through magnetophoresis. Saccharomyces yeast is a model organism for aging research used in various industries. Traditional age-based cell separation methods were labor-intensive, but techniques like magnetic labeling have eased the process by being non-invasive and scalable. Our approach introduces an age-specific fractionation using a 3D-printed millfluidic chip in a two-step process, ensuring efficient cell deflection in the magnetic field and counteracting magnetic induced convection. Among various channel designs, the pinch-shaped channel proved most effective for age differentiation based on magnetically labeled bud scar numbers. Metabolomic analyses revealed changes in certain amino acids and increased NAD+ levels, suggesting metabolic shifts in aging cells. Gene expression studies further underlined these age-related metabolic changes. This innovative platform offers a high-throughput, non-invasive method for age-specific yeast cell fractionation, with potential applications in industries ranging from food and beverages to pharmaceuticals.
Collapse
Affiliation(s)
- L Wittmann
- TUM School of Engineering and Design, Chair of Bioseparation Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
| | - M Eigenfeld
- TUM School of Life Science, Chair of Brewing and Beverage Technology, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany.
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
| | - K Büchner
- TUM School of Life Science, Chair of Brewing and Beverage Technology, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - J Meiler
- TUM School of Engineering and Design, Chair of Bioseparation Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
| | - H Habisch
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
| | - T Madl
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - R Kerpes
- TUM School of Life Science, Chair of Brewing and Beverage Technology, Technical University of Munich, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - T Becker
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenberstr. 4a, 85748 Garching, Germany
| | - S Berensmeier
- TUM School of Engineering and Design, Chair of Bioseparation Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenberstr. 4a, 85748 Garching, Germany
| | - S P Schwaminger
- TUM School of Engineering and Design, Chair of Bioseparation Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany.
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
6
|
Xiao Q, Wang Y, Fan J, Yi Z, Hong H, Xie X, Huang QA, Fu J, Ouyang J, Zhao X, Wang Z, Zhu Z. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images. Biosens Bioelectron 2024; 244:115807. [PMID: 37948914 DOI: 10.1016/j.bios.2023.115807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
With the rapid development of microfluidic platforms in high-throughput single-cell culturing, laborious operation to manipulate massive budding yeast cells (Saccharomyces cerevisiae) in replicative aging studies has been greatly simplified and automated. As a result, large datasets of microscopy images bring challenges to fast and accurately determine yeast replicative lifespan (RLS), which is the most important parameter to study cell aging. Based on our microfluidic diploid yeast long-term culturing (DYLC) chip that features 1100 traps to immobilize single cells and record their proliferation and aging via time-lapse imaging, herein, a dedicated algorithm combined with computer vision and residual neural network (ResNet) was presented to efficiently process tremendous micrographs in a high-throughput and automated manner. The image-processing algorithm includes following pivotal steps: (i) segmenting multi-trap micrographs into time-lapse single-trap sub-images, (ii) labeling 8 yeast budding features and training the 18-layer ResNet, (iii) converting the ResNet predictions in analog values into digital signals, (iv) recognizing cell dynamic events, and (v) determining yeast RLS and budding time interval (BTI) ultimately. The ResNet algorithm achieved high F1 scores (over 92%) demonstrating the effectiveness and accuracy in the recognition of yeast budding events, such as bud appearance, daughter dissection and cell death. Therefore, the results conduct that similar deep learning algorithms could be tailored to analyze high-throughput microscopy images and extract multiple cell behaviors in microfluidic single-cell analysis.
Collapse
Affiliation(s)
- Qin Xiao
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Yingying Wang
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Juncheng Fan
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Zhenxiang Yi
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Hua Hong
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Xiao Xie
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Qing-An Huang
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Jiaming Fu
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Jia Ouyang
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Xiangwei Zhao
- Southeast University, School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Sipailou 2, Nanjing, 210096, China
| | - Zixin Wang
- Sun Yat-Sen University, School of Electronics and Information Technology, Waihuan Dong Road 132, Guangzhou, 510006, China.
| | - Zhen Zhu
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China.
| |
Collapse
|
7
|
Ölmez TT, Moreno DF, Liu P, Johnson ZM, McGinnis MM, Tu BP, Hochstrasser M, Acar M. Sis2 regulates yeast replicative lifespan in a dose-dependent manner. Nat Commun 2023; 14:7719. [PMID: 38012152 PMCID: PMC10682402 DOI: 10.1038/s41467-023-43233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
Application of microfluidic platforms facilitated high-precision measurements of yeast replicative lifespan (RLS); however, comparative quantification of lifespan across strain libraries has been missing. Here we microfluidically measure the RLS of 307 yeast strains, each deleted for a single gene. Despite previous reports of extended lifespan in these strains, we found that 56% of them did not actually live longer than the wild-type; while the remaining 44% showed extended lifespans, the degree of extension was often different from what was previously reported. Deletion of SIS2 gene led to the largest RLS increase observed. Sis2 regulated yeast lifespan in a dose-dependent manner, implying a role for the coenzyme A biosynthesis pathway in lifespan regulation. Introduction of the human PPCDC gene in the sis2Δ background neutralized the lifespan extension. RNA-seq experiments revealed transcriptional increases in cell-cycle machinery components in sis2Δ background. High-precision lifespan measurement will be essential to elucidate the gene network governing lifespan.
Collapse
Affiliation(s)
- Tolga T Ölmez
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Koç University Research Center for Translational Medicine, Koç University, Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
- Department of Basic Medical Sciences, Koc University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
| | - David F Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, 67400, France
| | - Ping Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Zane M Johnson
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Madeline M McGinnis
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark Hochstrasser
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Department of Basic Medical Sciences, Koc University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey.
| |
Collapse
|
8
|
Mouton SN, Boersma AJ, Veenhoff LM. A physicochemical perspective on cellular ageing. Trends Biochem Sci 2023; 48:949-962. [PMID: 37716870 DOI: 10.1016/j.tibs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Leite AC, Costa V, Pereira C. Mitochondria and the cell cycle in budding yeast. Int J Biochem Cell Biol 2023; 161:106444. [PMID: 37419443 DOI: 10.1016/j.biocel.2023.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
As centers for energy production and essential biosynthetic activities, mitochondria are vital for cell growth and proliferation. Accumulating evidence suggests an integrated regulation of these organelles and the nuclear cell cycle in distinct organisms. In budding yeast, a well-established example of this coregulation is the coordinated movement and positional control of mitochondria during the different phases of the cell cycle. The molecular determinants involved in the inheritance of the fittest mitochondria by the bud also seem to be cell cycle-regulated. In turn, loss of mtDNA or defects in mitochondrial structure or inheritance often lead to a cell cycle delay or arrest, indicating that mitochondrial function can also regulate cell cycle progression, possibly through the activation of cell cycle checkpoints. The up-regulation of mitochondrial respiration at G2/M, presumably to fulfil energetic requirements for progression at this phase, also supports a mitochondria-cell cycle interplay. Cell cycle-linked mitochondrial regulation is accomplished at the transcription level and through post-translational modifications, predominantly protein phosphorylation. Here, we address mitochondria-cell cycle interactions in the yeast Saccharomyces cerevisiae and discuss future challenges in the field.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC, Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Vítor Costa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC, Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Clara Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC, Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal.
| |
Collapse
|
10
|
Zylstra A, Hadj-Moussa H, Horkai D, Whale AJ, Piguet B, Houseley J. Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation. PLoS Biol 2023; 21:e3002250. [PMID: 37643194 PMCID: PMC10464983 DOI: 10.1371/journal.pbio.3002250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.
Collapse
Affiliation(s)
- Andre Zylstra
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Baptiste Piguet
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
11
|
Horkai D, Hadj-Moussa H, Whale AJ, Houseley J. Dietary change without caloric restriction maintains a youthful profile in ageing yeast. PLoS Biol 2023; 21:e3002245. [PMID: 37643155 PMCID: PMC10464975 DOI: 10.1371/journal.pbio.3002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
Caloric restriction increases lifespan and improves ageing health, but it is unknown whether these outcomes can be separated or achieved through less severe interventions. Here, we show that an unrestricted galactose diet in early life minimises change during replicative ageing in budding yeast, irrespective of diet later in life. Average mother cell division rate is comparable between glucose and galactose diets, and lifespan is shorter on galactose, but markers of senescence and the progressive dysregulation of gene expression observed on glucose are minimal on galactose, showing that these are not intrinsic aspects of replicative ageing but rather associated processes. Respiration on galactose is critical for minimising hallmarks of ageing, and forced respiration during ageing on glucose by overexpression of the mitochondrial biogenesis factor Hap4 also has the same effect though only in a fraction of cells. This fraction maintains Hap4 activity to advanced age with low senescence and a youthful gene expression profile, whereas other cells in the same population lose Hap4 activity, undergo dramatic dysregulation of gene expression and accumulate fragments of chromosome XII (ChrXIIr), which are tightly associated with senescence. Our findings support the existence of two separable ageing trajectories in yeast. We propose that a complete shift to the healthy ageing mode can be achieved in wild-type cells through dietary change in early life without caloric restriction.
Collapse
Affiliation(s)
- Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
12
|
Eigenfeld M, Wittmann L, Kerpes R, Schwaminger SP, Becker T. Studying the impact of cell age on the yeast growth behaviour of Saccharomyces pastorianus var. carlsbergensis by magnetic separation. Biotechnol J 2023; 18:e2200610. [PMID: 37014328 DOI: 10.1002/biot.202200610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Despite the fact that yeast is a widely used microorganism in the food, beverage, and pharmaceutical industries, the impact of viability and age distribution on cultivation performance has yet to be fully understood. For a detailed analysis of fermentation performance and physiological state, we introduced a method of magnetic batch separation to isolate daughter and mother cells from a heterogeneous culture. By binding functionalised iron oxide nanoparticles, it is possible to separate the chitin-enriched bud scars by way of a linker protein. This reveals that low viability cultures with a high daughter cell content perform similarly to a high viability culture with a low daughter cell content. Magnetic separation results in the daughter cell fraction (>95%) showing a 21% higher growth rate in aerobic conditions than mother cells and a 52% higher rate under anaerobic conditions. These findings emphasise the importance of viability and age during cultivation and are the first step towards improving the efficiency of yeast-based processes.
Collapse
Affiliation(s)
- Marco Eigenfeld
- TUM School of Life Science, Technical University of Munich, Chair of Brewing and Beverage Technology, Freising, Germany
| | - Leonie Wittmann
- TUM School of Engineering and Design, Technical University of Munich, Chair of Bioseparation Engineering, Garching, Germany
| | - Roland Kerpes
- TUM School of Life Science, Technical University of Munich, Chair of Brewing and Beverage Technology, Freising, Germany
| | - Sebastian P Schwaminger
- TUM School of Engineering and Design, Technical University of Munich, Chair of Bioseparation Engineering, Garching, Germany
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Thomas Becker
- TUM School of Life Science, Technical University of Munich, Chair of Brewing and Beverage Technology, Freising, Germany
| |
Collapse
|
13
|
Staneva D, Vasileva B, Podlesniy P, Miloshev G, Georgieva M. Yeast Chromatin Mutants Reveal Altered mtDNA Copy Number and Impaired Mitochondrial Membrane Potential. J Fungi (Basel) 2023; 9:jof9030329. [PMID: 36983497 PMCID: PMC10058930 DOI: 10.3390/jof9030329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Mitochondria are multifunctional, dynamic organelles important for stress response, cell longevity, ageing and death. Although the mitochondrion has its genome, nuclear-encoded proteins are essential in regulating mitochondria biogenesis, morphology, dynamics and function. Moreover, chromatin structure and epigenetic mechanisms govern the accessibility to DNA and control gene transcription, indirectly influencing nucleo-mitochondrial communications. Thus, they exert crucial functions in maintaining proper chromatin structure, cell morphology, gene expression, stress resistance and ageing. Here, we present our studies on the mtDNA copy number in Saccharomyces cerevisiae chromatin mutants and investigate the mitochondrial membrane potential throughout their lifespan. The mutants are arp4 (with a point mutation in the ARP4 gene, coding for actin-related protein 4-Arp4p), hho1Δ (lacking the HHO1 gene, coding for the linker histone H1), and the double mutant arp4 hho1Δ cells with the two mutations. Our findings showed that the three chromatin mutants acquired strain-specific changes in the mtDNA copy number. Furthermore, we detected the disrupted mitochondrial membrane potential in their chronological lifespan. In addition, the expression of nuclear genes responsible for regulating mitochondria biogenesis and turnover was changed. The most pronounced were the alterations found in the double mutant arp4 hho1Δ strain, which appeared as the only petite colony-forming mutant, unable to grow on respiratory substrates and with partial depletion of the mitochondrial genome. The results suggest that in the studied chromatin mutants, hho1Δ, arp4 and arp4 hho1Δ, the nucleus-mitochondria communication was disrupted, leading to impaired mitochondrial function and premature ageing phenotype in these mutants, especially in the double mutant.
Collapse
Affiliation(s)
- Dessislava Staneva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar Podlesniy
- CiberNed (Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas), 28029 Barcelona, Spain
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
14
|
Asgarkhani L, Khandakar I, Pakan R, Swayne TC, Emtage L. Threshold inclusion size triggers conversion of huntingtin to prion-like state that is reversible in newly born cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528394. [PMID: 36824970 PMCID: PMC9949074 DOI: 10.1101/2023.02.13.528394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Aggregation of mutant Huntingtin protein (mHtt) leads to neuronal cell death and human disease. We investigated the effect of inclusion formation on yeast cells. Previous work indicates that mHtt protein moves both in and out of inclusions, potentially undergoing refolding in the inclusion. However, the sustained influx of unfolded protein into an inclusion leads to a dramatic change from a phase-separated body to an irregular, less soluble form at a threshold inclusion size. Altered morphology was associated with a prion-like seeding that accelerated inclusion growth despite loss of soluble cytoplasmic protein. The structural change abolished exchange of material between the inclusion and the cytosol and resulted in early cell death. Affected cells continued to divide occasionally, giving rise to daughters with a similar phenotype. Most newly born cells were able to reverse the prion-like aggregation, restoring both soluble cytoplasmic protein and a normal inclusion structure.
Collapse
|
15
|
Kukhtevich IV, Rivero-Romano M, Rakesh N, Bheda P, Chadha Y, Rosales-Becerra P, Hamperl S, Bureik D, Dornauer S, Dargemont C, Kirmizis A, Schmoller KM, Schneider R. Quantitative RNA imaging in single live cells reveals age-dependent asymmetric inheritance. Cell Rep 2022; 41:111656. [DOI: 10.1016/j.celrep.2022.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
|
16
|
Richter F, Bindschedler S, Calonne-Salmon M, Declerck S, Junier P, Stanley CE. Fungi-on-a-Chip: microfluidic platforms for single-cell studies on fungi. FEMS Microbiol Rev 2022; 46:6674677. [PMID: 36001464 PMCID: PMC9779915 DOI: 10.1093/femsre/fuac039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
This review highlights new advances in the emerging field of 'Fungi-on-a-Chip' microfluidics for single-cell studies on fungi and discusses several future frontiers, where we envisage microfluidic technology development to be instrumental in aiding our understanding of fungal biology. Fungi, with their enormous diversity, bear essential roles both in nature and our everyday lives. They inhabit a range of ecosystems, such as soil, where they are involved in organic matter degradation and bioremediation processes. More recently, fungi have been recognized as key components of the microbiome in other eukaryotes, such as humans, where they play a fundamental role not only in human pathogenesis, but also likely as commensals. In the food sector, fungi are used either directly or as fermenting agents and are often key players in the biotechnological industry, where they are responsible for the production of both bulk chemicals and antibiotics. Although the macroscopic fruiting bodies are immediately recognizable by most observers, the structure, function, and interactions of fungi with other microbes at the microscopic scale still remain largely hidden. Herein, we shed light on new advances in the emerging field of Fungi-on-a-Chip microfluidic technologies for single-cell studies on fungi. We discuss the development and application of microfluidic tools in the fields of medicine and biotechnology, as well as in-depth biological studies having significance for ecology and general natural processes. Finally, a future perspective is provided, highlighting new frontiers in which microfluidic technology can benefit this field.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Corresponding author: Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, United Kingdom. E-mail:
| |
Collapse
|
17
|
Aspert T, Hentsch D, Charvin G. DetecDiv, a generalist deep-learning platform for automated cell division tracking and survival analysis. eLife 2022; 11:79519. [PMID: 35976090 PMCID: PMC9444243 DOI: 10.7554/elife.79519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Automating the extraction of meaningful temporal information from sequences of microscopy images represents a major challenge to characterize dynamical biological processes. So far, strong limitations in the ability to quantitatively analyze single-cell trajectories have prevented large-scale investigations to assess the dynamics of entry into replicative senescence in yeast. Here, we have developed DetecDiv, a microfluidic-based image acquisition platform combined with deep learning-based software for high-throughput single-cell division tracking. We show that DetecDiv can automatically reconstruct cellular replicative lifespans with high accuracy and performs similarly with various imaging platforms and geometries of microfluidic traps. In addition, this methodology provides comprehensive temporal cellular metrics using time-series classification and image semantic segmentation. Last, we show that this method can be further applied to automatically quantify the dynamics of cellular adaptation and real-time cell survival upon exposure to environmental stress. Hence, this methodology provides an all-in-one toolbox for high-throughput phenotyping for cell cycle, stress response, and replicative lifespan assays.
Collapse
Affiliation(s)
- Théo Aspert
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Didier Hentsch
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Gilles Charvin
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| |
Collapse
|
18
|
Vega M, Castillo D, de Cubas L, Wang Y, Huang Y, Hidalgo E, Cabrera M. Antagonistic effects of mitochondrial matrix and intermembrane space proteases on yeast aging. BMC Biol 2022; 20:160. [PMID: 35820914 PMCID: PMC9277893 DOI: 10.1186/s12915-022-01352-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Background In many organisms, aging is characterized by a loss of mitochondrial homeostasis. Multiple factors such as respiratory metabolism, mitochondrial fusion/fission, or mitophagy have been linked to cell longevity, but the exact impact of each one on the aging process is still unclear. Results Using the deletion mutant collection of the fission yeast Schizosaccharomyces pombe, we have developed a genome-wide screening for mutants with altered chronological lifespan. We have identified four mutants associated with proteolysis at the mitochondria that exhibit opposite effects on longevity. The analysis of the respiratory activity of these mutants revealed a positive correlation between increased respiration rate and prolonged lifespan. We also found that the phenotype of the long-lived protease mutants could not be explained by impaired mitochondrial fusion/fission activities, but it was dependent on mitophagy induction. The anti-aging role of mitophagy was supported by the effect of a mutant defective in degradation of mitochondria, which shortened lifespan of the long-lived mutants. Conclusions Our characterization of the mitochondrial protease mutants demonstrates that mitophagy sustains the lifespan extension of long-lived mutants displaying a higher respiration potential. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01352-w.
Collapse
Affiliation(s)
- Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | | | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Margarita Cabrera
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003, Barcelona, Spain. .,Department of Biology, Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
19
|
Cuny AP, Schlottmann FP, Ewald JC, Pelet S, Schmoller KM. Live cell microscopy: From image to insight. BIOPHYSICS REVIEWS 2022; 3:021302. [PMID: 38505412 PMCID: PMC10903399 DOI: 10.1063/5.0082799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/18/2022] [Indexed: 03/21/2024]
Abstract
Live-cell microscopy is a powerful tool that can reveal cellular behavior as well as the underlying molecular processes. A key advantage of microscopy is that by visualizing biological processes, it can provide direct insights. Nevertheless, live-cell imaging can be technically challenging and prone to artifacts. For a successful experiment, many careful decisions are required at all steps from hardware selection to downstream image analysis. Facing these questions can be particularly intimidating due to the requirement for expertise in multiple disciplines, ranging from optics, biophysics, and programming to cell biology. In this review, we aim to summarize the key points that need to be considered when setting up and analyzing a live-cell imaging experiment. While we put a particular focus on yeast, many of the concepts discussed are applicable also to other organisms. In addition, we discuss reporting and data sharing strategies that we think are critical to improve reproducibility in the field.
Collapse
Affiliation(s)
| | - Fabian P. Schlottmann
- Interfaculty Institute of Cell Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Jennifer C. Ewald
- Interfaculty Institute of Cell Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
20
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
21
|
Zhu Z, Geng Y, Wang Y, Liu K, Yi Z, Zhao X, Ouyang S, Zheng K, Fan Y, Wang Z. Real-Time Monitoring of Dissection Events of Single Budding Yeast in a Microfluidic Cell-Culturing Device Integrated With Electrical Impedance Biosensor. Front Bioeng Biotechnol 2021; 9:783428. [PMID: 34778241 PMCID: PMC8579017 DOI: 10.3389/fbioe.2021.783428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023] Open
Abstract
Microfluidic devices in combination with fluorescent microscopy offer high-resolution and high-content platforms to study single-cell morphology, behavior and dynamic process in replicative aging of budding yeast, Saccharomyces cerevisiae. However, a huge mass of recorded images makes the data processing labor-intensive and time-consuming to determine yeast replicative lifespan (RLS), a primary criterion in yeast aging. To address this limitation and pursue label-free RLS assays, electrical impedance spectroscopy (EIS) that can be easily functionalized through microelectrodes in microfluidic devices, was introduced to monitor cell growth and division of budding yeast. Herein, a microfluidic device integrated with EIS biosensor was proposed to perform in-situ impedance measurement of yeast proliferation in single-cell resolution so as to identify the momentary events of daughter dissection from its mother. Single yeast cells were reliably immobilized at the bottleneck-like traps for continuous culturing, during which daughter cells were effectively detached from their mother cells by hydraulic shear forces. Time-lapse impedance measurement was performed every 2 min to monitor the cellular process including budding, division and dissection. By using the K-means clustering algorithm to analyze a self-defined parameter "Dissection Indicator," to our knowledge for the first time, the momentary event of a daughter removing from its mother cell was accurately extracted from EIS signals. Thus, the identification of daughter dissection events based on impedance sensing technology has been validated. With further development, this microfluidic device integrated with electrical impedance biosensor holds promising applications in high-throughput, real-time and label-free analysis of budding yeast aging and RLS.
Collapse
Affiliation(s)
- Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China
| | - Yangye Geng
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China
| | - Yingying Wang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China
| | - Ke Liu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China
| | - Zhenxiang Yi
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Shuiping Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Santiago E, Moreno DF, Acar M. Modeling aging and its impact on cellular function and organismal behavior. Exp Gerontol 2021; 155:111577. [PMID: 34582969 PMCID: PMC8560568 DOI: 10.1016/j.exger.2021.111577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023]
Abstract
Aging is a complex phenomenon of functional decay in a biological organism. Although the effects of aging are readily recognizable in a wide range of organisms, the cause(s) of aging are ill defined and poorly understood. Experimental methods on model organisms have driven significant insight into aging as a process, but have not provided a complete model of aging. Computational biology offers a unique opportunity to resolve this gap in our knowledge by generating extensive and testable models that can help us understand the fundamental nature of aging, identify the presence and characteristics of unaccounted aging factor(s), demonstrate the mechanics of particular factor(s) in driving aging, and understand the secondary effects of aging on biological function. In this review, we will address each of the above roles for computational biology in aging research. Concurrently, we will explore the different applications of computational biology to aging in single-celled versus multicellular organisms. Given the long history of computational biogerontological research on lower eukaryotes, we emphasize the key future goals of gradually integrating prior models into a holistic map of aging and translating successful models to higher-complexity organisms.
Collapse
Affiliation(s)
- Emerson Santiago
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA
| | - David F Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA.
| |
Collapse
|
23
|
Jacquel B, Aspert T, Laporte D, Sagot I, Charvin G. Monitoring single-cell dynamics of entry into quiescence during an unperturbed life cycle. eLife 2021; 10:73186. [PMID: 34723791 PMCID: PMC8594939 DOI: 10.7554/elife.73186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that nonmonotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein superassemblies formation that accompany the entry into a bona fide quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.
Collapse
Affiliation(s)
- Basile Jacquel
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Théo Aspert
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Damien Laporte
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France, Bordeaux, France
| | - Isabelle Sagot
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France, Bordeaux, France
| | - Gilles Charvin
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
24
|
Grosfeld EV, Bidiuk VA, Mitkevich OV, Ghazy ESMO, Kushnirov VV, Alexandrov AI. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors. J Fungi (Basel) 2021; 7:886. [PMID: 34829175 PMCID: PMC8626022 DOI: 10.3390/jof7110886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell death in response to distinct stimuli can manifest different morphological traits. It also depends on various cell death signaling pathways, extensively characterized in higher eukaryotes but less so in microorganisms. The study of cell death in yeast, and specifically Saccharomyces cerevisiae, can potentially be productive for understanding cell death, since numerous killing stimuli have been characterized for this organism. Here, we systematized the literature on external treatments that kill yeast, and which contains at least minimal data on cell death mechanisms. Data from 707 papers from the 7000 obtained using keyword searches were used to create a reference table for filtering types of cell death according to commonly assayed parameters. This table provides a resource for orientation within the literature; however, it also highlights that the common view of similarity between non-necrotic death in yeast and apoptosis in mammals has not provided sufficient progress to create a clear classification of cell death types. Differences in experimental setups also prevent direct comparison between different stimuli. Thus, side-by-side comparisons of various cell death-inducing stimuli under comparable conditions using existing and novel markers that can differentiate between types of cell death seem like a promising direction for future studies.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, 141700 Moscow, Russia;
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Victoria A. Bidiuk
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Olga V. Mitkevich
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vitaliy V. Kushnirov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| |
Collapse
|
25
|
Zhao W, Guo F, Kong L, Liu J, Hong X, Jiang Z, Song H, Cui X, Ruan J, Liu X. Yeast YPK9 deficiency results in shortened replicative lifespan and sensitivity to hydrogen peroxide. Biogerontology 2021; 22:547-563. [PMID: 34524607 DOI: 10.1007/s10522-021-09935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022]
Abstract
YPK9/YOR291W of Saccharomyces cerevisiae encodes a vacuolar membrane protein. Previous research has suggested that Ypk9p is similar to the yeast P5-type ATPase Spf1p and that it plays a role in the sequestration of heavy metals. In addition, bioinformatics analysis has suggested that Ypk9p is a homolog of human ATP13A2, which encodes a protein of the subfamily of P5 ATPases. However, no specific function of Ypk9p has been described to date. In this study, we found, for the first time, that YPK9 is involved in the oxidative stress response and modulation of the replicative lifespan (RLS). We found that YPK9 deficiency confers sensitivity to the oxidative stress inducer hydrogen peroxide accompanied by increased intracellular ROS levels, decreased mitochondrial membrane potential, abnormal mitochondrial function, and increased incidence of early apoptosis in budding yeast. More importantly, YPK9 deficiency can lead to a shortened RLS. In addition, we found that overexpression of the catalase-encoding gene CTA1 can reverse the phenotypic abnormalities of the ypk9Δ yeast strain. Collectively, these findings highlight the involvement of Ypk9p in the oxidative stress response and modulation of RLS.
Collapse
Affiliation(s)
- Wei Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Fang Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Lingyue Kong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Jiaxin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaoshan Hong
- Institute of Gynecology, Women and Children's Hospital of Guangdong Province, Guangzhou, 511442, China
| | - Zhiwen Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Haochang Song
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaojing Cui
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China
| | - Jie Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China.
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, 523808, China.
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
26
|
Geng Y, Zhu Z, Zhang Z, Xu F, Marchisio MA, Wang Z, Pan D, Zhao X, Huang QA. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells. Electrophoresis 2021; 42:1996-2009. [PMID: 33938013 DOI: 10.1002/elps.202100028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023]
Abstract
High-resolution microscopic imaging may cause intensive image processing and potential impact of light irradiation on yeast replicative lifespan (RLS). Electrical impedance spectroscopy (EIS) could be alternatively used to perform high-throughput and label-free yeast RLS assays. Prior to fabricating EIS-integrated microfluidic devices for yeast RLS determination, systematic modeling and theoretical investigation are crucial for device design and optimization. Here, we report three-dimensional (3D) finite-element modeling and simulations of EIS measurement in a microfluidic single yeast in-situ impedance array (SYIIA), which is designed by patterning an electrode matrix underneath a cell-trapping array. SYIIA was instantiated and modeled as a 5 × 5 sensing array comprising 25 units for cell immobilization, culturing, and time-lapse EIS recording. Simulations of yeast growing and budding in a sensing unit demonstrated that EIS signals enable the characterization of cell growth and daughter-cell dissections. In the 5 × 5 sensing array, simulation results indicated that when monitoring a target cell, daughter dissections in its surrounding traps may induce variations of the recorded EIS signals, which could cause mistakes in identifying target daughter-cell dissections. To eliminate the mis-identifications, electrode array pitch was optimized. Therefore, the results could conduct the design and optimization of microfluidic electrode-array-integrated devices for high-throughput and accurate yeast RLS assays.
Collapse
Affiliation(s)
- Yangye Geng
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, P. R. China
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, P. R. China
| | - Zhao Zhang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, P. R. China
| | - Feng Xu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, P. R. China
| | - Mario A Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Dejing Pan
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, P. R. China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, P. R. China
| | - Qing-An Huang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, P. R. China
| |
Collapse
|
27
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
28
|
Xu X, Zhu Z, Wang Y, Geng Y, Xu F, Marchisio MA, Wang Z, Pan D. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps. Anal Bioanal Chem 2021; 413:2181-2193. [PMID: 33517467 DOI: 10.1007/s00216-021-03186-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
Microfluidic methodologies allow for automatic and high-throughput replicative lifespan (RLS) determination of single budding yeast cells. However, the resulted RLS is highly impacted by the robustness of experimental conditions, especially the microfluidic yeast-trapping structures, which are designed for cell retention, growth, budding, and daughter cell dissection. In this work, four microfluidic yeast-trapping structures, which were commonly used to immobilize mother cells and remove daughter cells for entire lifespan of budding yeast, were systematically investigated by means of finite element modeling (FEM). The results from this analysis led us to propose an optimized design, the yeast rotation (YRot) trap, which is a "leaky bowl"-shaped structure composed of two mirrored microcolumns facing each other. The YRot trap enables stable retention of mother cells in its "bowl" and hydrodynamic rotation of buds into its "leaky orifice" such that matured progenies can be dissected in a coincident direction. We validated the functions of the YRot trap in terms of cell rotation and daughter dissection by both FEM simulations and experiments. With the integration of denser YRot traps in microchannels, the microfluidic platform with stable single-yeast immobilization, long-term cell culturing, and coincident daughter dissection could potentially improve the robustness of experimental conditions for precise RLS determination in yeast aging studies.
Collapse
Affiliation(s)
- Xingyu Xu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China.
| | - Yingying Wang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China
| | - Yangye Geng
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China
| | - Feng Xu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China.
| | - Mario A Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, Guangdong, China
| | - Dejing Pan
- CAM-SU Genomic Resource Center, Soochow University, Ren-ai Road 199, Suzhou, 215213, Jiangsu, China
| |
Collapse
|
29
|
Durán DC, Hernández CA, Suesca E, Acevedo R, Acosta IM, Forero DA, Rozo FE, Pedraza JM. Slipstreaming Mother Machine: A Microfluidic Device for Single-Cell Dynamic Imaging of Yeast. MICROMACHINES 2020; 12:mi12010004. [PMID: 33374994 PMCID: PMC7822021 DOI: 10.3390/mi12010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The yeast Saccharomyces cerevisiae is one of the most basic model organisms for studies of aging and other phenomena such as division strategies. These organisms have been typically studied with the use of microfluidic devices to keep cells trapped while under a flow of fresh media. However, all of the existing devices trap cells mechanically, subjecting them to pressures that may affect cell physiology. There is evidence mechanical pressure affects growth rate and the movement of intracellular components, so it is quite possible that it affects other physiological aspects such as aging. To allow studies with the lowest influence of mechanical pressure, we designed and fabricated a device that takes advantage of the slipstreaming effect. In slipstreaming, moving fluids that encounter a barrier flow around it forming a pressure gradient behind it. We trap mother cells in this region and force daughter cells to be in the negative pressure gradient region so that they are taken away by the flow. Additionally, this device can be fabricated using low resolution lithography techniques, which makes it less expensive than devices that require photolithography masks with resolution under 5 µm. With this device, it is possible to measure some of the most interesting aspects of yeast dynamics such as growth rates and Replicative Life Span. This device should allow future studies to eliminate pressure bias as well as extending the range of labs that can do these types of measurements.
Collapse
Affiliation(s)
- David C. Durán
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Correspondence: (D.C.D.); (J.M.P.); Tel.: +57-1-3394949 (ext. 5179 (COL)) (J.M.P.)
| | - César A. Hernández
- Centro de Microelectrónica, Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes CMUA, Bogotá 111711, Colombia;
| | - Elizabeth Suesca
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
| | - Rubén Acevedo
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
| | - Ivón M. Acosta
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Proyecto Curricular Licenciatura en Física, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Diana A. Forero
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Proyecto Curricular Licenciatura en Física, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Francisco E. Rozo
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Proyecto Curricular Licenciatura en Física, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Juan M. Pedraza
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Correspondence: (D.C.D.); (J.M.P.); Tel.: +57-1-3394949 (ext. 5179 (COL)) (J.M.P.)
| |
Collapse
|
30
|
Bheda P, Aguilar-Gómez D, Kukhtevich I, Becker J, Charvin G, Kirmizis A, Schneider R. Microfluidics for single-cell lineage tracking over time to characterize transmission of phenotypes in Saccharomyces cerevisiae. STAR Protoc 2020; 1:100228. [PMID: 33377118 PMCID: PMC7757727 DOI: 10.1016/j.xpro.2020.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is an excellent model organism to dissect the maintenance and inheritance of phenotypes due to its asymmetric division. This requires following individual cells over time as they go through divisions to define pedigrees. Here, we provide a detailed protocol for collecting and analyzing time-lapse imaging data of yeast cells. The microfluidics protocol can achieve improved time resolution for single-cell tracking to enable characterization of maintenance and inheritance of phenotypes. For complete details on the use and execution of this protocol, please refer to Bheda et al. (2020a).
Collapse
Affiliation(s)
- Poonam Bheda
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | - Igor Kukhtevich
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Becker
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Gilles Charvin
- Development and Stem Cells, IGBMC, 67400 Illkirch, France
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Faculty of Biology, Ludwig-Maximilians Universität München, 80333 Munich, Germany
| |
Collapse
|
31
|
Gaille M, Araneda M, Dubost C, Guillermain C, Kaakai S, Ricadat É, Todd N, Rera M. [Ethical and social consequences of biomarkers that predict impending death in humans]. Med Sci (Paris) 2020; 36:1199-1206. [PMID: 33296638 DOI: 10.1051/medsci/2020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fundamental research on ageing has taken an interesting turn in recent years with the rapid development of biomarkers predicting mortality in model organisms, particularly Drosophila, as well as in humans through improvements in approaches to the identification of circulating molecules in mass. These developments lead to a shift in our ability to predict the occurrence of death from the historically population level to the individual level. We question here the ethical, medical and social implications of this change of scale.
Collapse
Affiliation(s)
- Marie Gaille
- Université de Paris, SPHERE, UMR 7219, CNRS-Université Paris Diderot, bâtiment Condorcet, case 7093, 5 rue Thomas Mann, 75205 Paris, France
| | - Marco Araneda
- Université de Paris, Centre de recherche psychanalyse médecine et société (CRPMS) - EA 3522, IUH - EA 3518, bâtiment Olympe de Gouges, 8 rue Albert-Einstein, 75013 Paris, France
| | - Clément Dubost
- Chef de service de réanimation polyvalente, hôpital d'instruction des armées (HIA) Bégin et Groupe de recherche COGNAC-G (Cognition and action group), UMR CNRS-Paris Descartes-SSA, Paris, France
| | - Clémence Guillermain
- Université de Paris, SPHERE, UMR 7219, CNRS-Université Paris Diderot, bâtiment Condorcet, case 7093, 5 rue Thomas Mann, 75205 Paris, France
| | - Sarah Kaakai
- Laboratoire Manceau de mathématiques, Institut du risque et de l'assurance, Le Mans Université, 72000 Le Mans, France
| | - Élise Ricadat
- Université de Paris, Centre de recherche psychanalyse médecine et société (CRPMS) - EA 3522, IUH - EA 3518, bâtiment Olympe de Gouges, 8 rue Albert-Einstein, 75013 Paris, France
| | - Nicolas Todd
- Max Planck Institute for Demographic Research, Rostock, Allemagne
| | - Michael Rera
- Université de Paris, Inserm U1284, Center for Research and Interdisciplinarity (CRI), F-75006 Paris, France
| |
Collapse
|
32
|
Carolina de Souza-Guerreiro T, Meng X, Dacheux E, Firczuk H, McCarthy J. Translational control of gene expression noise and its relationship to ageing in yeast. FEBS J 2020; 288:2278-2293. [PMID: 33090724 DOI: 10.1111/febs.15594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Gene expression noise influences organism evolution and fitness but is poorly understood. There is increasing evidence that the functional roles of components of the translation machinery influence noise intensity. In addition, modulation of the activities of at least some of these same components affects the replicative lifespan of a broad spectrum of organisms. In a novel comparative approach, we modulate the activities of the translation initiation factors eIFG1 and eIF4G2, both of which are involved in the process of recruiting ribosomal 43S preinitiation complexes to the 5' end of eukaryotic mRNAs. We show that tagging of the cell wall using a fluorescent dye allows us to follow gene expression noise as different yeast strains progress through successive cycles of replicative ageing. This procedure reveals a relationship between global protein synthesis rate and gene expression noise (cell-to-cell heterogeneity), which is accompanied by a parallel correlation between gene expression noise and the replicative age of mother cells. An alternative approach, based on microfluidics, confirms the interdependence between protein synthesis rate, gene expression noise and ageing. We additionally show that it is important to characterize the influence of the design of the microfluidic device on the nutritional state of the cells during such experiments. Analysis of the noise data derived from flow cytometry and fluorescence microscopy measurements indicates that both the intrinsic and the extrinsic noise components increase as a function of ageing.
Collapse
Affiliation(s)
| | - Xiang Meng
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Estelle Dacheux
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Helena Firczuk
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - John McCarthy
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
33
|
Mouton SN, Thaller DJ, Crane MM, Rempel IL, Terpstra OT, Steen A, Kaeberlein M, Lusk CP, Boersma AJ, Veenhoff LM. A physicochemical perspective of aging from single-cell analysis of pH, macromolecular and organellar crowding in yeast. eLife 2020; 9:e54707. [PMID: 32990592 PMCID: PMC7556870 DOI: 10.7554/elife.54707] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/28/2020] [Indexed: 01/03/2023] Open
Abstract
Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known. Here, we show that the cytosol of yeast cells acidifies modestly in early aging and sharply after senescence. Using a macromolecular crowding sensor optimized for long-term FRET measurements, we show that crowding is rather stable and that the stability of crowding is a stronger predictor for lifespan than the absolute crowding levels. Additionally, in aged cells, we observe drastic changes in organellar volume, leading to crowding on the micrometer scale, which we term organellar crowding. Our measurements provide an initial framework of physicochemical parameters of replicatively aged yeast cells.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenGroningenNetherlands
| | - David J Thaller
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Matthew M Crane
- Department of Pathology, School of Medicine, University of WashingtonSeattleUnited States
| | - Irina L Rempel
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenGroningenNetherlands
| | - Owen T Terpstra
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenGroningenNetherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenGroningenNetherlands
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of WashingtonSeattleUnited States
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | | | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenGroningenNetherlands
| |
Collapse
|
34
|
Excessive rDNA Transcription Drives the Disruption in Nuclear Homeostasis during Entry into Senescence in Budding Yeast. Cell Rep 2020; 28:408-422.e4. [PMID: 31291577 DOI: 10.1016/j.celrep.2019.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 01/11/2023] Open
Abstract
Budding yeast cells undergo a limited number of divisions before they enter senescence and die. Despite recent mechanistic advances, whether and how molecular events are temporally and causally linked during the transition to senescence remain elusive. Here, using real-time observation of the accumulation of extrachromosomal rDNA circles (ERCs) in single cells, we provide evidence that ERCs build up rapidly with exponential kinetics well before any physiological decline. We then show that ERCs fuel a massive increase in ribosomal RNA (rRNA) levels in the nucleolus, which do not mature into functional ribosomes. This breakdown in nucleolar coordination is followed by a loss of nuclear homeostasis, thus defining a chronology of causally related events leading to cell death. A computational analysis supports a model in which a series of age-independent processes lead to an age-dependent increase in cell mortality, hence explaining the emergence of aging in budding yeast.
Collapse
|
35
|
Chen K, Shen W, Zhang Z, Xiong F, Ouyang Q, Luo C. Age-dependent decline in stress response capacity revealed by proteins dynamics analysis. Sci Rep 2020; 10:15211. [PMID: 32939000 PMCID: PMC7494919 DOI: 10.1038/s41598-020-72167-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The aging process is regarded as the progressive loss of physiological integrity, leading to impaired biological functions and the increased vulnerability to death. Among various biological functions, stress response capacity enables cells to alter gene expression patterns and survive when facing internal and external stresses. Here, we explored changes in stress response capacity during the replicative aging of Saccharomyces cerevisiae. To this end, we used a high-throughput microfluidic device to deliver intermittent pulses of osmotic stress and tracked the dynamic changes in the production of downstream stress-responsive proteins, in a large number of individual aging cells. Cells showed a gradual decline in stress response capacity of these osmotic-related downstream proteins during the aging process after the first 5 generations. Among the downstream stress-responsive genes and unrelated genes tested, the residual level of response capacity of Trehalose-6-Phosphate Synthase (TPS2) showed the best correlation with the cell remaining lifespan. By monitor dynamics of the upstream transcription factors and mRNA of Tps2, it was suggested that the decline in downstream stress response capacity was caused by the decline of translational rate of these proteins during aging.
Collapse
Affiliation(s)
- Kaiyue Chen
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wenting Shen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiwen Zhang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Fangzheng Xiong
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chunxiong Luo
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China. .,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
36
|
Li Y, Jiang Y, Paxman J, O'Laughlin R, Klepin S, Zhu Y, Pillus L, Tsimring LS, Hasty J, Hao N. A programmable fate decision landscape underlies single-cell aging in yeast. Science 2020; 369:325-329. [PMID: 32675375 DOI: 10.1126/science.aax9552] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/24/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Chromatin instability and mitochondrial decline are conserved processes that contribute to cellular aging. Although both processes have been explored individually in the context of their distinct signaling pathways, the mechanism that determines which process dominates during aging of individual cells is unknown. We show that interactions between the chromatin silencing and mitochondrial pathways lead to an epigenetic landscape of yeast replicative aging with multiple equilibrium states that represent different types of terminal states of aging. The structure of the landscape drives single-cell differentiation toward one of these states during aging, whereby the fate is determined quite early and is insensitive to intracellular noise. Guided by a quantitative model of the aging landscape, we genetically engineered a long-lived equilibrium state characterized by an extended life span.
Collapse
Affiliation(s)
- Yang Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yanfei Jiang
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Julie Paxman
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard O'Laughlin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen Klepin
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Yuelian Zhu
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.,UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Lev S Tsimring
- BioCircuits Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,BioCircuits Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA. .,BioCircuits Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
37
|
Lee B, Jeong SG, Jin SH, Mishra R, Peter M, Lee CS, Lee SS. Quantitative analysis of yeast MAPK signaling networks and crosstalk using a microfluidic device. LAB ON A CHIP 2020; 20:2646-2655. [PMID: 32597919 DOI: 10.1039/d0lc00203h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eukaryotic cells developed complex mitogen-activated protein kinase (MAPK) signaling networks to sense their intra- and extracellular environment and respond to various stress conditions. For example, S. cerevisiae uses five distinct MAP kinase pathways to orchestrate meiosis or respond to mating pheromones, osmolarity changes and cell wall stress. Although each MAPK module has been studied individually, the mechanisms underlying crosstalk between signaling pathways remain poorly understood, in part because suitable experimental systems to monitor cellular outputs when applying different signals are lacking. Here, we investigate the yeast MAPK signaling pathways and their crosstalk, taking advantage of a new microfluidic device coupled to quantitative microscopy. We designed specific micropads to trap yeast cells in a single focal plane, and modulate the magnitude of a given stress signal by microfluidic serial dilution while keeping other signaling inputs constant. This approach enabled us to quantify in single cells nuclear relocation of effectors responding to MAPK activation, like Yap1 for oxidative stress, and expression of stress-specific reporter expression, like pSTL1-qV and pFIG1-qV for high-osmolarity or mating pheromone signaling, respectively. Using this quantitative single-cell analysis, we confirmed bimodal behavior of gene expression in response to Hog1 activation, and quantified crosstalk between the pheromone- and cell wall integrity (CWI) signaling pathways. Importantly, we further observed that oxidative stress inhibits pheromone signaling. Mechanistically, this crosstalk is mediated by Pkc1-dependent phosphorylation of the scaffold protein Ste5 on serine 185, which prevents Ste5 recruitment to the plasma membrane.
Collapse
Affiliation(s)
- Byungjin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-Gu, Daejeon 305-764, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
38
|
Gaille M, Araneda M, Dubost C, Guillermain C, Kaakai S, Ricadat E, Todd N, Rera M. Ethical and social implications of approaching death prediction in humans - when the biology of ageing meets existential issues. BMC Med Ethics 2020; 21:64. [PMID: 32718352 PMCID: PMC7385957 DOI: 10.1186/s12910-020-00502-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The discovery of biomarkers of ageing has led to the development of predictors of impending natural death and has paved the way for personalised estimation of the risk of death in the general population. This study intends to identify the ethical resources available to approach the idea of a long-lasting dying process and consider the perspective of death prediction. The reflection on human mortality is necessary but not sufficient to face this issue. Knowledge about death anticipation in clinical contexts allows for a better understanding of it. Still, the very notion of prediction and its implications must be clarified. This study outlines in a prospective way issues that call for further investigation in the various fields concerned: ethical, psychological, medical and social. METHODS The study is based on an interdisciplinary approach, a combination of philosophy, clinical psychology, medicine, demography, biology and actuarial science. RESULTS The present study proposes an understanding of death prediction based on its distinction with the relationship to human mortality and death anticipation, and on the analogy with the implications of genetic testing performed in pre-symptomatic stages of a disease. It leads to the identification of a multi-layered issue, including the individual and personal relationship to death prediction, the potential medical uses of biomarkers of ageing, the social and economic implications of the latter, especially in regard to the way longevity risk is perceived. CONCLUSIONS The present study work strives to propose a first sketch of what the implications of death prediction as such could be - from an individual, medical and social point of view. Both with anti-ageing medicine and the transhumanist quest for immortality, research on biomarkers of ageing brings back to the forefront crucial ethical matters: should we, as human beings, keep ignoring certain things, primarily the moment of our death, be it an estimation of it? If such knowledge was available, who should be informed about it and how such information should be given? Is it a knowledge that could be socially shared?
Collapse
Affiliation(s)
- Marie Gaille
- Université de Paris, SPHERE, UMR 7219, CNRS-Université Paris Diderot, bâtiment Condorcet, case 7093, 5 rue Thomas Mann, 75205, Paris, France.
| | - Marco Araneda
- Université de Paris, CRPMS - EA 3522, IUH - EA 3518, bâtiment Olympe de Gouges, 8 rue Albert Einstein, 75013, Paris, France
| | - Clément Dubost
- Head of intensive care unit, Begin military hospital & CognacG research unit, UMR CNRS-Paris Descartes-SSA, Paris, France
| | - Clémence Guillermain
- Université de Paris, SPHERE, UMR 7219, CNRS-Université Paris Diderot, bâtiment Condorcet, case 7093, 5 rue Thomas Mann, 75205, Paris, France
| | - Sarah Kaakai
- Laboratoire Manceau de Mathématiques, Institut du Risque et de l'Assurance, Le Mans Université, 72000, Le Mans, France
| | - Elise Ricadat
- Université de Paris, CRPMS - EA 3522, IUH - EA 3518, bâtiment Olympe de Gouges, 8 rue Albert Einstein, 75013, Paris, France
| | - Nicolas Todd
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Michael Rera
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284. Sorbonne Université, IBPS, B2A, CNRS, Institut de Biologie Paris - Seine, 75005, Paris, France
| |
Collapse
|
39
|
Moreno DF, Aldea M. Proteostatic stress as a nodal hallmark of replicative aging. Exp Cell Res 2020; 394:112163. [PMID: 32640194 DOI: 10.1016/j.yexcr.2020.112163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Aging is characterized by the progressive decline of physiology at the cell, tissue and organism level, leading to an increased risk of mortality. Proteotoxic stress, mitochondrial dysfunction and genomic instability are considered major universal drivers of cell aging, and accumulating evidence establishes clear biunivocal relationships among these key hallmarks. In this regard, the finite lifespan of the budding yeast, together with the extensive armamentarium of available analytical tools, has made this single cell eukaryote a key model to study aging at molecular and cellular levels. Here we review the current data that link proteostasis to cell cycle progression in the budding yeast, focusing on senescence as an inherent phenotype displayed by aged cells. Recent advances in high-throughput systems to study yeast mother cells while they replicate are providing crucial information on aging-related processes and their temporal interdependencies at a systems level. In our view, the available data point to the existence of multiple feedback mechanisms among the major causal factors of aging, which would converge into the loss of proteostasis as a nodal driver of cell senescence and death.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
40
|
Crane MM, Chen KL, Blue BW, Kaeberlein M. Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging. Proteomics 2020; 20:e1800420. [PMID: 31385433 PMCID: PMC7000301 DOI: 10.1002/pmic.201800420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Indexed: 02/02/2023]
Abstract
All organisms age, but the extent to which all organisms age the same way remains a fundamental unanswered question in biology. Across species, it is now clear that at least some aspects of aging are highly conserved and are perhaps universal, but other mechanisms of aging are private to individual species or sets of closely related species. Within the same species, however, it has generally been assumed that the molecular mechanisms of aging are largely invariant from one individual to the next. With the development of new tools for studying aging at the individual cell level in budding yeast, recent data has called this assumption into question. There is emerging evidence that individual yeast mother cells may undergo fundamentally different trajectories of aging. Individual trajectories of aging are difficult to study by traditional population level assays, but through the application of systems biology approaches combined with novel microfluidic technologies, it is now possible to observe and study these phenomena in real time. Understanding the spectrum of mechanisms that determine how different individuals age is a necessary step toward the goal of personalized geroscience, where healthy longevity is optimized for each individual.
Collapse
Affiliation(s)
- Matthew M Crane
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kenneth L Chen
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA,Department of Genome Sciences, University of Washington, Seattle, WA, USA,Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Ben W. Blue
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Synergistic effects of repair, resilience and retention of damage determine the conditions for replicative ageing. Sci Rep 2020; 10:1556. [PMID: 32005954 PMCID: PMC6994596 DOI: 10.1038/s41598-020-58444-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulation of damaged proteins is a hallmark of ageing, occurring in organisms ranging from bacteria and yeast to mammalian cells. During cell division in Saccharomyces cerevisiae, damaged proteins are retained within the mother cell, resulting in an ageing mother while a new daughter cell exhibits full replicative potential. The cell-specific features determining the ageing remain elusive. It has been suggested that the replicative ageing is dependent on the ability of the cell to repair and retain pre-existing damage. To deepen the understanding of how these factors influence the life of individual cells, we developed and experimentally validated a dynamic model of damage accumulation accounting for replicative ageing on the single cell level. The model includes five essential properties: cell growth, damage formation, damage repair, cell division and cell death, represented in a theoretical framework describing the conditions allowing for replicative ageing, starvation, immortality or clonal senescence. We introduce the resilience to damage, which can be interpreted as the difference in volume between an old and a young cell. We show that the capacity to retain damage deteriorates with high age, that asymmetric division allows for retention of damage, and that there is a trade-off between retention and the resilience property. Finally, we derive the maximal degree of asymmetry as a function of resilience, proposing that asymmetric cell division is beneficial with respect to replicative ageing as it increases the lifespan of a given organism. The proposed model contributes to a deeper understanding of the ageing process in eukaryotic organisms.
Collapse
|
42
|
Andréasson C, Ott M, Büttner S. Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Rep 2019; 20:e47865. [PMID: 31531937 PMCID: PMC6776902 DOI: 10.15252/embr.201947865] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023] Open
Abstract
The eukaryotic cell is morphologically and functionally organized as an interconnected network of organelles that responds to stress and aging. Organelles communicate via dedicated signal transduction pathways and the transfer of information in form of metabolites and energy levels. Recent data suggest that the communication between organellar proteostasis systems is a cornerstone of cellular stress responses in eukaryotic cells. Here, we discuss the integration of proteostasis and energy fluxes in the regulation of cellular stress and aging. We emphasize the molecular architecture of the regulatory transcriptional pathways that both sense and control metabolism and proteostasis. A special focus is placed on mechanistic insights gained from the model organism budding yeast in signaling from mitochondria to the nucleus and how this shapes cellular fitness.
Collapse
Affiliation(s)
- Claes Andréasson
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Martin Ott
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Sabrina Büttner
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| |
Collapse
|
43
|
Moreno DF, Jenkins K, Morlot S, Charvin G, Csikasz-Nagy A, Aldea M. Proteostasis collapse, a hallmark of aging, hinders the chaperone-Start network and arrests cells in G1. eLife 2019; 8:48240. [PMID: 31518229 PMCID: PMC6744273 DOI: 10.7554/elife.48240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022] Open
Abstract
Loss of proteostasis and cellular senescence are key hallmarks of aging, but direct cause-effect relationships are not well understood. We show that most yeast cells arrest in G1 before death with low nuclear levels of Cln3, a key G1 cyclin extremely sensitive to chaperone status. Chaperone availability is seriously compromised in aged cells, and the G1 arrest coincides with massive aggregation of a metastable chaperone-activity reporter. Moreover, G1-cyclin overexpression increases lifespan in a chaperone-dependent manner. As a key prediction of a model integrating autocatalytic protein aggregation and a minimal Start network, enforced protein aggregation causes a severe reduction in lifespan, an effect that is greatly alleviated by increased expression of specific chaperones or cyclin Cln3. Overall, our data show that proteostasis breakdown, by compromising chaperone activity and G1-cyclin function, causes an irreversible arrest in G1, configuring a molecular pathway postulating proteostasis decay as a key contributing effector of cell senescence.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Kirsten Jenkins
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Institute of Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom
| | - Sandrine Morlot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Université de Strasbourg, Illkirch, France
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Université de Strasbourg, Illkirch, France
| | - Attila Csikasz-Nagy
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Institute of Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain.,Department of Basic Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| |
Collapse
|
44
|
O'Laughlin R, Jin M, Li Y, Pillus L, Tsimring LS, Hasty J, Hao N. Advances in quantitative biology methods for studying replicative aging in Saccharomyces cerevisiae. TRANSLATIONAL MEDICINE OF AGING 2019; 4:151-160. [PMID: 33880425 PMCID: PMC8054985 DOI: 10.1016/j.tma.2019.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Aging is a complex, yet pervasive phenomenon in biology. As human cells steadily succumb to the deteriorating effects of aging, so too comes a host of age-related ailments such as neurodegenerative disorders, cardiovascular disease and cancer. Therefore, elucidation of the molecular networks that drive aging is of paramount importance to human health. Progress toward this goal has been aided by studies from simple model organisms such as Saccharomyces cerevisiae. While work in budding yeast has already revealed much about the basic biology of aging as well as a number of evolutionarily conserved pathways involved in this process, recent technological advances are poised to greatly expand our knowledge of aging in this simple eukaryote. Here, we review the latest developments in microfluidics, single-cell analysis and high-throughput technologies for studying single-cell replicative aging in S. cerevisiae. We detail the challenges each of these methods addresses as well as the unique insights into aging that each has provided. We conclude with a discussion of potential future applications of these techniques as well as the importance of single-cell dynamics and quantitative biology approaches for understanding cell aging.
Collapse
Affiliation(s)
- Richard O'Laughlin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Meng Jin
- BioCircuits Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yang Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lorraine Pillus
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.,UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lev S Tsimring
- BioCircuits Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jeff Hasty
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.,BioCircuits Institute, University of California San Diego, La Jolla, CA, 92093, USA.,Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nan Hao
- BioCircuits Institute, University of California San Diego, La Jolla, CA, 92093, USA.,Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
45
|
Chen KL, Ven TN, Crane MM, Chen DE, Feng YC, Suzuki N, Russell AE, de Moraes D, Kaeberlein M. An inexpensive microscopy system for microfluidic studies in budding yeast. TRANSLATIONAL MEDICINE OF AGING 2019; 3:52-56. [PMID: 31511839 PMCID: PMC6738973 DOI: 10.1016/j.tma.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recently, microfluidic technologies have been developed to allow higher throughput collection of yeast replicative lifespan data. Adoption of these devices has been limited, in part, due to the high cost of the motorized microscopy instrumentation from mainline manufacturers. Inspired by recent development of open source microscopy hardware and software, we developed minimal-cost hardware attachments to provide long-term focus stabilization for lower-cost microscopes and open source software to manage concurrent time-lapse image acquisition from multiple microscopes. We hope that these tools will help spur the wider adoption of microfluidic technologies for the study of aging in yeast.
Collapse
Affiliation(s)
- Kenneth L. Chen
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, School of Medicine, University of Washington, Seattle, WA, USA
| | - Toby N. Ven
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew M. Crane
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Dexter E. Chen
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Yen-Chi Feng
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Nozomi Suzuki
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Adam E. Russell
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Diogo de Moraes
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA, USA
- Corresponding author. Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA. (M. Kaeberlein)
| |
Collapse
|
46
|
Rempel IL, Crane MM, Thaller DJ, Mishra A, Jansen DP, Janssens G, Popken P, Akşit A, Kaeberlein M, van der Giessen E, Steen A, Onck PR, Lusk CP, Veenhoff LM. Age-dependent deterioration of nuclear pore assembly in mitotic cells decreases transport dynamics. eLife 2019; 8:48186. [PMID: 31157618 PMCID: PMC6579512 DOI: 10.7554/elife.48186] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/02/2019] [Indexed: 12/28/2022] Open
Abstract
Nuclear transport is facilitated by the Nuclear Pore Complex (NPC) and is essential for life in eukaryotes. The NPC is a long-lived and exceptionally large structure. We asked whether NPC quality control is compromised in aging mitotic cells. Our images of single yeast cells during aging, show that the abundance of several NPC components and NPC assembly factors decreases. Additionally, the single-cell life histories reveal that cells that better maintain those components are longer lived. The presence of herniations at the nuclear envelope of aged cells suggests that misassembled NPCs are accumulated in aged cells. Aged cells show decreased dynamics of transcription factor shuttling and increased nuclear compartmentalization. These functional changes are likely caused by the presence of misassembled NPCs, as we find that two NPC assembly mutants show similar transport phenotypes as aged cells. We conclude that NPC interphase assembly is a major challenge for aging mitotic cells.
Collapse
Affiliation(s)
- Irina L Rempel
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Matthew M Crane
- Department of Pathology, University of Washington, Seattle, United States
| | - David J Thaller
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Ankur Mishra
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Daniel Pm Jansen
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Georges Janssens
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Petra Popken
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Arman Akşit
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, United States
| | - Erik van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
47
|
Dhar R, Missarova AM, Lehner B, Carey LB. Single cell functional genomics reveals the importance of mitochondria in cell-to-cell phenotypic variation. eLife 2019; 8:38904. [PMID: 30638445 PMCID: PMC6366901 DOI: 10.7554/elife.38904] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/13/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations frequently have outcomes that differ across individuals, even when these individuals are genetically identical and share a common environment. Moreover, individual microbial and mammalian cells can vary substantially in their proliferation rates, stress tolerance, and drug resistance, with important implications for the treatment of infections and cancer. To investigate the causes of cell-to-cell variation in proliferation, we used a high-throughput automated microscopy assay to quantify the impact of deleting >1500 genes in yeast. Mutations affecting mitochondria were particularly variable in their outcome. In both mutant and wild-type cells mitochondrial membrane potential - but not amount - varied substantially across individual cells and predicted cell-to-cell variation in proliferation, mutation outcome, stress tolerance, and resistance to a clinically used anti-fungal drug. These results suggest an important role for cell-to-cell variation in the state of an organelle in single cell phenotypic variation.
Collapse
Affiliation(s)
- Riddhiman Dhar
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Alsu M Missarova
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Lucas B Carey
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
48
|
Sagot I, Laporte D. The cell biology of quiescent yeast – a diversity of individual scenarios. J Cell Sci 2019; 132:132/1/jcs213025. [DOI: 10.1242/jcs.213025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Most cells, from unicellular to complex organisms, spend part of their life in quiescence, a temporary non-proliferating state. Although central for a variety of essential processes including tissue homeostasis, development and aging, quiescence is poorly understood. In fact, quiescence encompasses various cellular situations depending on the cell type and the environmental niche. Quiescent cell properties also evolve with time, adding another layer of complexity. Studying quiescence is, above all, limited by the fact that a quiescent cell can be recognized as such only after having proved that it is capable of re-proliferating. Recent cellular biology studies in yeast have reported the relocalization of hundreds of proteins and the reorganization of several cellular machineries upon proliferation cessation. These works have revealed that quiescent cells can display various properties, shedding light on a plethora of individual behaviors. The deciphering of the molecular mechanisms beyond these reorganizations, together with the understanding of their cellular functions, have begun to provide insights into the physiology of quiescent cells. In this Review, we discuss recent findings and emerging concepts in Saccharomyces cerevisiae quiescent cell biology.
Collapse
Affiliation(s)
- Isabelle Sagot
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| | - Damien Laporte
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| |
Collapse
|
49
|
Knorre DA, Azbarova AV, Galkina KV, Feniouk BA, Severin FF. Replicative aging as a source of cell heterogeneity in budding yeast. Mech Ageing Dev 2018; 176:24-31. [DOI: 10.1016/j.mad.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
|
50
|
Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability. Genes Dev 2018; 32:1499-1513. [PMID: 30463903 PMCID: PMC6295172 DOI: 10.1101/gad.318485.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/03/2018] [Indexed: 01/04/2023]
Abstract
Here, Coutelier et al. used a microfluidic-based approach and live-cell imaging in yeast to capture early mutation events during replicative senescence and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Their results demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. In cells lacking telomerase, telomeres gradually shorten during each cell division to reach a critically short length, permanently activate the DNA damage checkpoint, and trigger replicative senescence. The increase in genome instability that occurs as a consequence may contribute to the early steps of tumorigenesis. However, because of the low frequency of mutations and the heterogeneity of telomere-induced senescence, the timing and mechanisms of genome instability increase remain elusive. Here, to capture early mutation events during replicative senescence, we used a combined microfluidic-based approach and live-cell imaging in yeast. We analyzed DNA damage checkpoint activation in consecutive cell divisions of individual cell lineages in telomerase-negative yeast cells and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Cells relied on the adaptation to the DNA damage pathway to bypass the prolonged checkpoint arrests, allowing further cell divisions despite the presence of unrepaired DNA damage. We demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. Therefore, adaptation plays a critical role in shaping the dynamics of genome instability during replicative senescence.
Collapse
|