1
|
Matsuda M, Sokol SY. Prickle2 regulates apical junction remodeling and tissue fluidity during vertebrate neurulation. J Cell Biol 2025; 224:e202407025. [PMID: 39951022 PMCID: PMC11827586 DOI: 10.1083/jcb.202407025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The process of folding the flat neuroectoderm into an elongated neural tube depends on tissue fluidity, a property that allows epithelial deformation while preserving tissue integrity. Neural tube folding also requires the planar cell polarity (PCP) pathway. Here, we report that Prickle2 (Pk2), a core PCP component, increases tissue fluidity by promoting the remodeling of apical junctions (AJs) in Xenopus embryos. This Pk2 activity is mediated by the unique evolutionarily conserved Ser/Thr-rich region (STR) in the carboxyterminal half of the protein. Mechanistically, the effects of Pk2 require Rac1 and are accompanied by increased dynamics of C-cadherin and tricellular junctions, the hotspots of AJ remodeling. Notably, Pk2 depletion leads to the accumulation of mediolaterally oriented cells in the neuroectoderm, whereas the overexpression of Pk2 or Pk1 containing the Pk2-derived STR promotes cell elongation along the anteroposterior axis. We propose that Pk2-dependent regulation of tissue fluidity contributes to anteroposterior tissue elongation in response to extrinsic cues.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Kariri YA, Alsaleem M, Al-Kawaz A, Alhatlani BY, Mongan NP, Green AR, Rakha EA. Cell division cycle 6 is an independent prognostic biomarker in breast cancer. Pathology 2025; 57:297-304. [PMID: 39668074 DOI: 10.1016/j.pathol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 12/14/2024]
Abstract
Cell division cycle 6 (CDC6) is a cell cycle protein involved in cell cycle control, DNA replication and cancer cell apoptosis. This study investigated the prognostic value of CDC6 in breast cancer (BC) utilising large well-characterised cohorts of early-stage BC. CDC6 messenger RNA (mRNA) was assessed using the Molecular Taxonomy of the Breast Cancer International Consortium (n=1980), the Cancer Genome Atlas (n=854) and Kaplan-Meier plotter (n=4,929) cohorts. CDC6 protein expression was evaluated using immunohistochemistry in a large (n=951) well-characterised Nottingham BC cohort. The associations between CDC6, clinicopathological parameters, molecular features and patient outcomes were assessed. High CDC6 expression positively correlated with dysregulation of key BC-related genes, including gene involved in cell cycle, DNA damage repair, epithelial cell migration, and tumour microenvironment control, as well as with markers characteristic of the basal-like phenotype (CK5, CK14 and CK17). High CDC6 mRNA and protein expression were associated with clinicopathological parameters characteristic of aggressive behaviour, including high tumour grade, large tumour size, the presence of lymphovascular invasion and hormone receptor negativity. High CDC6 protein expression was an independent predictor of poor outcome [p=0.007; hazard ratio (HR)=1.3; 95% confidence interval (CI) 1.2-1.9). This study indicates that CDC6 is an independent prognostic biomarker in BC. These results warrant further functional validation for CDC6 as a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Yousif A Kariri
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Mansour Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia
| | - Abdulbaqi Al-Kawaz
- Department of Oral Pathology, College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| | - Bader Y Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Saudi Arabia
| | - Nigel P Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, UK; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK; Pathology Department, Nottingham University Hospitals NHS Trust, Nottingham, UK; Pathology Department, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
3
|
Depret N, Gleizes M, Moreau MM, Poirault-Chassac S, Quiedeville A, Carvalho SDS, Venugopal V, Abed ASA, Ezan J, Barthet G, Mulle C, Desmedt A, Marighetto A, Racca C, Montcouquiol M, Sans N. The correct connectivity of the DG-CA3 circuits involved in declarative memory processes depends on Vangl2-dependent planar cell polarity signaling. Prog Neurobiol 2025; 246:102728. [PMID: 39956311 DOI: 10.1016/j.pneurobio.2025.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
In the hippocampus, dentate gyrus granule cells connect to CA3 pyramidal cells via their axons, the mossy fibers (Mf). The synaptic terminals of Mfs (Mf boutons, MfBs) form large and complex synapses with thorny excrescences (TE) on the proximal dendrites of CA3 pyramidal cells (PCs). MfB/TE synapses have distinctive "detonator" properties due to low initial release probability and large presynaptic facilitation. The molecular mechanisms shaping the morpho-functional properties of MfB/TE synapses are still poorly understood, though alterations in their morphology are associated with Down syndrome, intellectual disabilities, and Alzheimer's disease. Here, we identify the core PCP gene Vangl2 as essential to the morphogenesis and function of MfB/TE synapses. Vangl2 colocalises with the presynaptic heparan sulfate proteoglycan glypican 4 (GPC4) to stabilise the postsynaptic orphan receptor GPR158. Embryonic loss of Vangl2 disrupts the morphology of MfBs and TEs, impairs ultrastructural and molecular organisation, resulting in defective synaptic transmission and plasticity. In adult, the early loss of Vangl2 results in a number of hippocampus-dependent memory deficits including characteristic flexibility of declarative memory, organisation and retention of working / everyday-like memory. These deficits also lead to abnormal generalisation of memories to salient cues and diminished ability to form detailed contextual memories. Together, these results establish Vangl2 as a key regulator of DG-CA3 connectivity and functions.
Collapse
Affiliation(s)
- Noémie Depret
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Marie Gleizes
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Maïté Marie Moreau
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Anne Quiedeville
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Vasika Venugopal
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Alice Shaam Al Abed
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Jérôme Ezan
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Gael Barthet
- Univ. Bordeaux, CNRS, IINS, UMR 5297, Bordeaux F-33000, France
| | | | - Aline Desmedt
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Aline Marighetto
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Claudia Racca
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Nathalie Sans
- Univ. Bordeaux, Inserm, Neurocentre Magendie, U1215, Bordeaux F-33000, France.
| |
Collapse
|
4
|
Yang Y, Mao Y, Zhang Y, Xiong T. Evolving Insights into Prickle2 in Neurodevelopment and Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04795-8. [PMID: 40009262 DOI: 10.1007/s12035-025-04795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
The development of neural circuits is a complex, highly coordinated process crucial for the proper functioning of the nervous system. This process involves the intricate interplay of numerous genes and signaling pathways. Prickle2, a protein encoded by the planar cell polarity (PCP) genes, is a key component of the noncanonical Wnt/PCP signaling pathway and plays a critical role in neural circuit development. Recent studies have highlighted the essential functions of Prickle2 in various stages of neural circuit formation, including the development of the initial segment of neuronal axons, axon elongation and regeneration, dendrite formation, synapse formation, and vesicle transport. The normal expression and spatial distribution of Prickle2 are vital for these processes, and its dysregulation has been associated with several neurological disorders, including congenital neural tube defects, Alzheimer's disease, epilepsy, and autism spectrum disorders. This review aims to systematically summarize the upstream and downstream signaling pathways and regulatory interactions involving Prickle2 in neurodevelopment and neural circuit formation. By discussing the expression patterns of Prickle2 in neurodevelopment and its associations with neurological diseases, we provide insights into the mechanisms through which Prickle2 influences neurodevelopment and its potential implications in neurological disorders.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section Three, South Renmin Road, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, China
- Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanxia Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section Three, South Renmin Road, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, China
| | - Yao Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section Three, South Renmin Road, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, China
| | - Tao Xiong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section Three, South Renmin Road, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) Ministry of Education, Chengdu, China.
| |
Collapse
|
5
|
Liu Y, Peng F, Shu J, Li X, Yuan C. Decoding Epilepsy: Prickle2 and Multifaceted Molecular Pathway Connections. Curr Pharm Des 2025; 31:1130-1145. [PMID: 39754765 DOI: 10.2174/0113816128333500241031100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND The Prickle2 (Pk2) gene shows promising potential in uncovering the underlying causes of epilepsy, a neurological disorder that is currently not well understood. This paper utilizes the online tool PubMed to gather and condense information on the involvement of PCP channels and the associated roles of PCP pathway molecules in the onset of epilepsy. These findings are significant for advancing epilepsy treatment. Additionally, the paper discusses future directions for clinical trials and outlines potential therapeutic targets. METHODS This review systematically analyzes the biological functions and mechanisms of the Prickle2 gene in epilepsy. Studies were retrieved from PubMed using keywords such as "Prickle2", "epilepsy", and "PCP pathway", focusing on research published between 2000 and 2023 in English. Inclusion criteria included original studies and reviews on Prickle2's role in epilepsy. Studies unrelated to these topics or lacking sufficient data were excluded. Key data on Prickle2's functions and its link to epilepsy were extracted, and findings were summarized after a quality assessment of the literature. RESULTS Although there are currently conflicting results regarding the possibility that Prickle2 may cause epilepsy in different organisms, we believe that as more cases involving Prickle2 mutations are reported and more related animal experiments are conducted, the findings will become clearer. CONCLUSION Due to the biological functions and mechanisms associated with the Prickle2 protein, it may serve as a useful biomarker or potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Yuhang Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Fan Peng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Jie Shu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Xiaolan Li
- The Second People's Hospital of China Three Gorges University, Yichang, Hubei, China
- Department of Gynecology, The Second People's Hospital of Yichang, Hubei, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
6
|
Ye Q, Li X, Gao W, Gao J, Zheng L, Zhang M, Yang F, Li H. Role of Rho-associated kinases and their inhibitor fasudil in neurodegenerative diseases. Front Neurosci 2024; 18:1481983. [PMID: 39628659 PMCID: PMC11613983 DOI: 10.3389/fnins.2024.1481983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are prevalent in the elderly. The pathogenesis of NDDs is complex, and currently, there is no cure available. With the increase in aging population, over 20 million people are affected by common NDDs alone (Alzheimer's disease and Parkinson's disease). Therefore, NDDs have profound negative impacts on patients, their families, and society, making them a major global health concern. Rho-associated kinases (ROCKs) belong to the serine/threonine protein kinases family, which modulate diverse cellular processes (e.g., apoptosis). ROCKs may elevate the risk of various NDDs (including Huntington's disease, Parkinson's disease, and Alzheimer's disease) by disrupting synaptic plasticity and promoting inflammatory responses. Therefore, ROCK inhibitors have been regarded as ideal therapies for NDDs in recent years. Fasudil, one of the classic ROCK inhibitor, is a potential drug for treating NDDs, as it repairs nerve damage and promotes axonal regeneration. Thus, the current review summarizes the relationship between ROCKs and NDDs and the mechanism by which fasudil inhibits ROCKs to provide new ideas for the treatment of NDDs.
Collapse
Affiliation(s)
- Qiuyan Ye
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu College of Nursing, Huaian, China
| | - Jiayue Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Zheng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Miaomiao Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengge Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Honglin Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Chen B, Wang L, Li X, Shi Z, Duan J, Wei JA, Li C, Pang C, Wang D, Zhang K, Chen H, Na W, Zhang L, So KF, Zhou L, Jiang B, Yuan TF, Qu Y. Celsr2 regulates NMDA receptors and dendritic homeostasis in dorsal CA1 to enable social memory. Mol Psychiatry 2024; 29:1583-1594. [PMID: 35789199 DOI: 10.1038/s41380-022-01664-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Social recognition and memory are critical for survival. The hippocampus serves as a central neural substrate underlying the dynamic coding and transmission of social information. Yet the molecular mechanisms regulating social memory integrity in hippocampus remain unelucidated. Here we report unexpected roles of Celsr2, an atypical cadherin, in regulating hippocampal synaptic plasticity and social memory in mice. Celsr2-deficient mice exhibited defective social memory, with rather intact levels of sociability. In vivo fiber photometry recordings disclosed decreased neural activity of dorsal CA1 pyramidal neuron in Celsr2 mutants performing social memory task. Celsr2 deficiency led to selective impairment in NMDAR but not AMPAR-mediated synaptic transmission, and to neuronal hypoactivity in dorsal CA1. Those activity changes were accompanied with exuberant apical dendrites and immaturity of spines of CA1 pyramidal neurons. Strikingly, knockdown of Celsr2 in adult hippocampus recapitulated the behavioral and cellular changes observed in knockout mice. Restoring NMDAR transmission or CA1 neuronal activities rescued social memory deficits. Collectively, these results show a critical role of Celsr2 in orchestrating dorsal hippocampal NMDAR function, dendritic and spine homeostasis, and social memory in adulthood.
Collapse
Affiliation(s)
- Bailing Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Laijian Wang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuejun Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Juan Duan
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Ji-An Wei
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Cunzheng Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chaoqin Pang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Diyang Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Kejiao Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Hao Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Wanying Na
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China
| | - Libing Zhou
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| | - Yibo Qu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Kaizuka T, Suzuki T, Kishi N, Tamada K, Kilimann MW, Ueyama T, Watanabe M, Shimogori T, Okano H, Dohmae N, Takumi T. Remodeling of the postsynaptic proteome in male mice and marmosets during synapse development. Nat Commun 2024; 15:2496. [PMID: 38548776 PMCID: PMC10979008 DOI: 10.1038/s41467-024-46529-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Postsynaptic proteins play crucial roles in synaptic function and plasticity. During brain development, alterations in synaptic number, shape, and stability occur, known as synapse maturation. However, the postsynaptic protein composition changes during development are not fully understood. Here, we show the trajectory of the postsynaptic proteome in developing male mice and common marmosets. Proteomic analysis of mice at 2, 3, 6, and 12 weeks of age shows that proteins involved in synaptogenesis are differentially expressed during this period. Analysis of published transcriptome datasets shows that the changes in postsynaptic protein composition in the mouse brain after 2 weeks of age correlate with gene expression changes. Proteomic analysis of marmosets at 0, 2, 3, 6, and 24 months of age show that the changes in the marmoset brain can be categorized into two parts: the first 2 months and after that. The changes observed in the first 2 months are similar to those in the mouse brain between 2 and 12 weeks of age. The changes observed in marmoset after 2 months old include differential expression of synaptogenesis-related molecules, which hardly overlap with that in mice. Our results provide a comprehensive proteomic resource that underlies developmental synapse maturation in rodents and primates.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Noriyuki Kishi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan
| | - Manfred W Kilimann
- Max Planck Institute for Experimental Medicine, Göttingen, 37075, Germany
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Kita, Sapporo, 060-8638, Japan
| | | | - Hideyuki Okano
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8585, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
- Department Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0117, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, 650-0047, Japan.
| |
Collapse
|
9
|
Derrick CJ, Szenker-Ravi E, Santos-Ledo A, Alqahtani A, Yusof A, Eley L, Coleman AHL, Tohari S, Ng AYJ, Venkatesh B, Alharby E, Mansard L, Bonnet-Dupeyron MN, Roux AF, Vaché C, Roume J, Bouvagnet P, Almontashiri NAM, Henderson DJ, Reversade B, Chaudhry B. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum Mol Genet 2024; 33:150-169. [PMID: 37815931 PMCID: PMC10772043 DOI: 10.1093/hmg/ddad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | | | - Adrian Santos-Ledo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Amirah Yusof
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Alistair H L Coleman
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Alvin Yu-Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- MGI Tech Singapore Pte Ltd, 21 Biopolis Rd, 138567, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | | | - Anne-Francoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Joëlle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, 10 Rue du Champ Gaillard, 78300 Poissy, France
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU de Martinique, Fort de France, Fort-de-France 97261, Martinique, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Medical Genetics Department, Koç Hospital Davutpaşa Caddesi 34010 Topkapı Istanbul, Istanbul, Turkey
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
10
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Functional interaction between Vangl2 and N-cadherin regulates planar cell polarization of the developing neural tube and cochlear sensory epithelium. Sci Rep 2023; 13:3905. [PMID: 36890135 PMCID: PMC9995352 DOI: 10.1038/s41598-023-30213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
Although the core constituents of the Wnt/planar cell polarity (PCP) signaling have been extensively studied, their downstream molecules and protein-protein interactions have not yet been fully elucidated. Here, we show genetic and molecular evidence that the PCP factor, Vangl2, functionally interacts with the cell-cell adhesion molecule, N-cadherin (also known as Cdh2), for typical PCP-dependent neural development. Vangl2 and N-cadherin physically interact in the neural plates undergoing convergent extension. Unlike monogenic heterozygotes, digenic heterozygous mice with Vangl2 and Cdh2 mutants exhibited defects in neural tube closure and cochlear hair cell orientation. Despite this genetic interaction, neuroepithelial cells derived from the digenic heterozygotes did not show additive changes from the monogenic heterozygotes of Vangl2 in the RhoA-ROCK-Mypt1 and c-Jun N-terminal kinase (JNK)-Jun pathways of Wnt/PCP signaling. Thus, cooperation between Vangl2 and N-cadherin is at least partly via direct molecular interaction; it is essential for the planar polarized development of neural tissues but not significantly associated with RhoA or JNK pathways.
Collapse
|
12
|
Dorrego-Rivas A, Ezan J, Moreau MM, Poirault-Chassac S, Aubailly N, De Neve J, Blanchard C, Castets F, Fréal A, Battefeld A, Sans N, Montcouquiol M. The core PCP protein Prickle2 regulates axon number and AIS maturation by binding to AnkG and modulating microtubule bundling. SCIENCE ADVANCES 2022; 8:eabo6333. [PMID: 36083912 PMCID: PMC9462691 DOI: 10.1126/sciadv.abo6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Core planar cell polarity (PCP) genes, which are involved in various neurodevelopmental disorders such as neural tube closure, epilepsy, and autism spectrum disorder, have poorly defined molecular signatures in neurons, mostly synapse-centric. Here, we show that the core PCP protein Prickle-like protein 2 (Prickle2) controls neuronal polarity and is a previously unidentified member of the axonal initial segment (AIS) proteome. We found that Prickle2 is present and colocalizes with AnkG480, the AIS master organizer, in the earliest stages of axonal specification and AIS formation. Furthermore, by binding to and regulating AnkG480, Prickle2 modulates its ability to bundle microtubules, a crucial mechanism for establishing neuronal polarity and AIS formation. Prickle2 depletion alters cytoskeleton organization, and Prickle2 levels determine both axon number and AIS maturation. Last, early Prickle2 depletion produces impaired action potential firing.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | - Jerome Ezan
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | | | - Julie De Neve
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | - Francis Castets
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Amélie Fréal
- Department of Functional Genomics, Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Arne Battefeld
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | | |
Collapse
|
13
|
Li C, Wei JA, Wang D, Luo Z, Pang C, Chen K, Duan J, Chen B, Zhou L, Tissir F, Shi L, So KF, Zhang L, Qu Y. Planar cell polarity protein Celsr2 maintains structural and functional integrity of adult cortical synapses. Prog Neurobiol 2022; 219:102352. [PMID: 36089108 DOI: 10.1016/j.pneurobio.2022.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
A few developmental genes remain persistently expressed in the adult stage, whilst their potential functions in the mature brain remain underappreciated. Here, we report the unexpected importance of Celsr2, a core Planar cell polarity (PCP) component, in maintaining the structural and functional integrity of adult neocortex. Celsr2 is highly expressed during development and remains expressed in adult neocortex. In vivo synaptic imaging in Celsr2 deficient mice revealed alterations in spinogenesis and reduced neuronal calcium activities, which are associated with impaired motor learning. These phenotypes were accompanied with anomalies of both postsynaptic organization and presynaptic vesicles. Knockout of Celsr2 in adult mice recapitulated those features, further supporting the role of Celsr2 in maintaining the integrity of mature cortex. In sum, our data identify previously unrecognized roles of Celsr2 in the maintenance of synaptic function and motor learning in adulthood.
Collapse
Affiliation(s)
- Cunzheng Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Ji-An Wei
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Diyang Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Zhihua Luo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Chaoqin Pang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Kai Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Juan Duan
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Bailing Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Libing Zhou
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, PR China
| | - Fadel Tissir
- College of Health and Life Sciences, HBKU, Doha, Qatar; Universite catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, PR China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, PR China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, PR China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, PR China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, PR China.
| | - Yibo Qu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, PR China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, PR China.
| |
Collapse
|
14
|
Voglewede MM, Zhang H. Polarity proteins: Shaping dendritic spines and memory. Dev Biol 2022; 488:68-73. [PMID: 35580729 PMCID: PMC9953585 DOI: 10.1016/j.ydbio.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023]
Abstract
The morphogenesis and plasticity of dendritic spines are associated with synaptic strength, learning, and memory. Dendritic spines are highly compartmentalized structures, which makes proteins involved in cellular polarization and membrane compartmentalization likely candidates regulating their formation and maintenance. Indeed, recent studies suggest polarity proteins help form and maintain dendritic spines by compartmentalizing the spine neck and head. Here, we review emerging evidence that polarity proteins regulate dendritic spine plasticity and stability through the cytoskeleton, scaffolding molecules, and signaling molecules. We specifically analyze various polarity complexes known to contribute to different forms of cell polarization processes and examine the essential conceptual context linking these groups of polarity proteins to dendritic spine morphogenesis, plasticity, and cognitive functions.
Collapse
Affiliation(s)
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
15
|
Boëx M, Cottin S, Halliez M, Bauché S, Buon C, Sans N, Montcouquiol M, Molgó J, Amar M, Ferry A, Lemaitre M, Rouche A, Langui D, Baskaran A, Fontaine B, Messéant J, Strochlic L. The cell polarity protein Vangl2 in the muscle shapes the neuromuscular synapse by binding to and regulating the tyrosine kinase MuSK. Sci Signal 2022; 15:eabg4982. [PMID: 35580169 DOI: 10.1126/scisignal.abg4982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The development of the neuromuscular junction (NMJ) requires dynamic trans-synaptic coordination orchestrated by secreted factors, including Wnt family morphogens. To investigate how these synaptic cues in NMJ development are transduced, particularly in the regulation of acetylcholine receptor (AChR) accumulation in the postsynaptic membrane, we explored the function of Van Gogh-like protein 2 (Vangl2), a core component of Wnt planar cell polarity signaling. We found that conditional, muscle-specific ablation of Vangl2 in mice reproduced the NMJ differentiation defects seen in mice with global Vangl2 deletion. These alterations persisted into adulthood and led to NMJ disassembly, impaired neurotransmission, and deficits in motor function. Vangl2 and the muscle-specific receptor tyrosine kinase MuSK were functionally associated in Wnt signaling in the muscle. Vangl2 bound to and promoted the signaling activity of MuSK in response to Wnt11. The loss of Vangl2 impaired RhoA activation in cultured mouse myotubes and caused dispersed, rather than clustered, organization of AChRs at the postsynaptic or muscle cell side of NMJs in vivo. Our results identify Vangl2 as a key player of the core complex of molecules shaping neuromuscular synapses and thus shed light on the molecular mechanisms underlying NMJ assembly.
Collapse
Affiliation(s)
- Myriam Boëx
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Steve Cottin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Marius Halliez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Stéphanie Bauché
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Céline Buon
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Nathalie Sans
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, UMR-S 1215, Bordeaux 33077, France.,Université Bordeaux, Neurocentre Magendie, Bordeaux, 33000, France
| | - Mireille Montcouquiol
- Institut National de la Santé et de la Recherche Médicale, Neurocentre Magendie, UMR-S 1215, Bordeaux 33077, France.,Université Bordeaux, Neurocentre Magendie, Bordeaux, 33000, France
| | - Jordi Molgó
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux énergies Alternatives, Institut des Sciences du Vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé, Equipe Mixte de Recherche CNRS 9004, Service d'Ingénierie Moléculaire pour la Santé, Gif-sur-Yvette 91191, France
| | - Muriel Amar
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux énergies Alternatives, Institut des Sciences du Vivant Frédéric Joliot, Département Médicaments et Technologies pour la Santé, Equipe Mixte de Recherche CNRS 9004, Service d'Ingénierie Moléculaire pour la Santé, Gif-sur-Yvette 91191, France
| | - Arnaud Ferry
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Mégane Lemaitre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Phénotypage du Petit Animal, Paris 75013, France
| | - Andrée Rouche
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Dominique Langui
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle, Plate-forme d'Imagerie Cellulaire Pitié-Salpêtrière, Paris 75013, France
| | - Asha Baskaran
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut du Cerveau et de la Moelle, Plate-forme d'Imagerie Cellulaire Pitié-Salpêtrière, Paris 75013, France
| | - Bertrand Fontaine
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Service de Neuro-Myologie, Hôpital Universitaire Pitié-Salpêtrière, Paris 75013, France
| | - Julien Messéant
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| | - Laure Strochlic
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Institut de Myologie, Centre de Recherche en Myologie, Paris 75013, France
| |
Collapse
|
16
|
Dreyer CA, VanderVorst K, Carraway KL. Vangl as a Master Scaffold for Wnt/Planar Cell Polarity Signaling in Development and Disease. Front Cell Dev Biol 2022; 10:887100. [PMID: 35646914 PMCID: PMC9130715 DOI: 10.3389/fcell.2022.887100] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
The establishment of polarity within tissues and dynamic cellular morphogenetic events are features common to both developing and adult tissues, and breakdown of these programs is associated with diverse human diseases. Wnt/Planar cell polarity (Wnt/PCP) signaling, a branch of non-canonical Wnt signaling, is critical to the establishment and maintenance of polarity in epithelial tissues as well as cell motility events critical to proper embryonic development. In epithelial tissues, Wnt/PCP-mediated planar polarity relies upon the asymmetric distribution of core proteins to establish polarity, but the requirement for this distribution in Wnt/PCP-mediated cell motility remains unclear. However, in both polarized tissues and migratory cells, the Wnt/PCP-specific transmembrane protein Vangl is required and appears to serve as a scaffold upon which the core pathway components as well as positive and negative regulators of Wnt/PCP signaling assemble. The current literature suggests that the multiple interaction domains of Vangl allow for the binding of diverse signaling partners for the establishment of context- and tissue-specific complexes. In this review we discuss the role of Vangl as a master scaffold for Wnt/PCP signaling in epithelial tissue polarity and cellular motility events in developing and adult tissues, and address how these programs are dysregulated in human disease.
Collapse
Affiliation(s)
| | | | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine and the UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
17
|
Čada Š, Bryja V. Local Wnt signalling in the asymmetric migrating vertebrate cells. Semin Cell Dev Biol 2021; 125:26-36. [PMID: 34896020 DOI: 10.1016/j.semcdb.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
Wnt signalling is known to generate cellular asymmetry via Wnt/planar cell polarity pathway (Wnt/PCP). Wnt/PCP acts locally (i) to orient membrane polarity and asymmetric establishment of intercellular junctions via conserved set of PCP proteins most specifically represented by Vangl and Prickle, and (ii) to asymmetrically rearrange cytoskeletal structures via downstream effectors of Dishevelled (Dvl). This process is best described on stable phenotypes of epithelial cells. Here, however, we review the activity of Wnt signalling in migratory cells which experience the extensive rearrangements of cytoskeleton and consequently dynamic asymmetry, making the localised effects of Wnt signalling easier to distinguish. Firstly, we focused on migration of neuronal axons, which allows to study how the pre-existent cellular asymmetry can influence Wnt signalling outcome. Then, we reviewed the role of Wnt signalling in models of mesenchymal migration including neural crest, melanoma, and breast cancer cells. Last, we collected evidence for local Wnt signalling in amoeboid cells, especially lymphocytes. As the outcome of this review, we identify blank spots in our current understanding of this topic, propose models that synthesise the current observations and allow formulation of testable hypotheses for the future research.
Collapse
Affiliation(s)
- Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
18
|
Deans MR. Conserved and Divergent Principles of Planar Polarity Revealed by Hair Cell Development and Function. Front Neurosci 2021; 15:742391. [PMID: 34733133 PMCID: PMC8558554 DOI: 10.3389/fnins.2021.742391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Planar polarity describes the organization and orientation of polarized cells or cellular structures within the plane of an epithelium. The sensory receptor hair cells of the vertebrate inner ear have been recognized as a preeminent vertebrate model system for studying planar polarity and its development. This is principally because planar polarity in the inner ear is structurally and molecularly apparent and therefore easy to visualize. Inner ear planar polarity is also functionally significant because hair cells are mechanosensors stimulated by sound or motion and planar polarity underlies the mechanosensory mechanism, thereby facilitating the auditory and vestibular functions of the ear. Structurally, hair cell planar polarity is evident in the organization of a polarized bundle of actin-based protrusions from the apical surface called stereocilia that is necessary for mechanosensation and when stereociliary bundle is disrupted auditory and vestibular behavioral deficits emerge. Hair cells are distributed between six sensory epithelia within the inner ear that have evolved unique patterns of planar polarity that facilitate auditory or vestibular function. Thus, specialized adaptations of planar polarity have occurred that distinguish auditory and vestibular hair cells and will be described throughout this review. There are also three levels of planar polarity organization that can be visualized within the vertebrate inner ear. These are the intrinsic polarity of individual hair cells, the planar cell polarity or coordinated orientation of cells within the epithelia, and planar bipolarity; an organization unique to a subset of vestibular hair cells in which the stereociliary bundles are oriented in opposite directions but remain aligned along a common polarity axis. The inner ear with its complement of auditory and vestibular sensory epithelia allows these levels, and the inter-relationships between them, to be studied using a single model organism. The purpose of this review is to introduce the functional significance of planar polarity in the auditory and vestibular systems and our contemporary understanding of the developmental mechanisms associated with organizing planar polarity at these three cellular levels.
Collapse
Affiliation(s)
- Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
19
|
Yasumura M, Hagiwara A, Hida Y, Ohtsuka T. Planar cell polarity protein Vangl2 and its interacting protein Ap2m1 regulate dendritic branching in cortical neurons. Genes Cells 2021; 26:987-998. [PMID: 34626136 DOI: 10.1111/gtc.12899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Van Gogh-like 2 (Vangl2) is a mammalian homolog of Drosophila core planar cell polarity (PCP) protein Vang/Strabismus, which organizes asymmetric cell axes for developmental proliferation, fate determination, and polarized movements in multiple tissues, including neurons. Although the PCP pathway has an essential role for dendrite and dendritic spine formation, the molecular mechanism remains to be clarified. To investigate the mechanism of Vangl2-related neuronal development, we screened for proteins that interact with the Vangl2 cytosolic N-terminus from postnatal day 9 mouse brains using a yeast two-hybrid system. From 61 genes, we identified adaptor-related protein complex 2, mu 1 subunit (Ap2m1) as the Vangl2 N-terminal binding protein. Intriguingly, however, the pull-down assay demonstrated that Vangl2 interacted with Ap2m1 not only at its N-terminus but also at the C-terminal Prickle binding domain. Furthermore, we verified that the downregulation of Ap2m1 in the developing cortical neurons reduced the dendritic branching similar to what occurs in a knockdown of Vangl2. From these results, we suggest that the membrane internalization regulated by the PCP pathway is required for the developmental morphological change in neurons.
Collapse
Affiliation(s)
- Misato Yasumura
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Chuo, Japan.,Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akari Hagiwara
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Yamato Hida
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| |
Collapse
|
20
|
Ban Y, Yu T, Feng B, Lorenz C, Wang X, Baker C, Zou Y. Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex. SCIENCE ADVANCES 2021; 7:eabh2974. [PMID: 34613779 PMCID: PMC8494439 DOI: 10.1126/sciadv.abh2974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/16/2021] [Indexed: 05/04/2023]
Abstract
Whether there exists a common signaling mechanism that assembles all glutamatergic synapses is unknown. We show here that knocking out Prickle1 and Prickle2 reduced the formation of the PSD-95–positive glutamatergic synapses in the hippocampus and medial prefrontal cortex in postnatal development by 70–80%. Prickle1 and Prickle2 double knockout in adulthood lead to the disassembly of 70 to 80% of the postsynaptic-density(PSD)-95–positive glutamatergic synapses. PSD-95–positive glutamatergic synapses in the hippocampus of Prickle2E8Q/E8Q mice were reduced by 50% at postnatal day 14. Prickle2 promotes synapse formation by antagonizing Vangl2 and stabilizing the intercellular complex of the planar cell polarity (PCP) components, whereas Prickle2 E8Q fails to do so. Coculture experiments show that the asymmetric PCP complexes can determine the presynaptic and postsynaptic polarity. In summary, the PCP components regulate the assembly and maintenance of a large number of glutamatergic synapses and specify the direction of synaptic transmission.
Collapse
Affiliation(s)
- Yue Ban
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Yu
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bo Feng
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Charlotte Lorenz
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaojia Wang
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clayton Baker
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Balaraju AK, Hu B, Rodriguez JJ, Murry M, Lin F. Glypican 4 regulates planar cell polarity of endoderm cells by controlling the localization of Cadherin 2. Development 2021; 148:dev199421. [PMID: 34131730 PMCID: PMC8313861 DOI: 10.1242/dev.199421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
Noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling has been implicated in endoderm morphogenesis. However, the underlying cellular and molecular mechanisms of this process are unclear. We found that, during convergence and extension (C&E) in zebrafish, gut endodermal cells are polarized mediolaterally, with GFP-Vangl2 enriched at the anterior edges. Endoderm cell polarity is lost and intercalation is impaired in the absence of glypican 4 (gpc4), a heparan-sulfate proteoglycan that promotes Wnt/PCP signaling, suggesting that this signaling is required for endodermal cell polarity. Live imaging revealed that endoderm C&E is accomplished by polarized cell protrusions and junction remodeling, which are impaired in gpc4-deficient endodermal cells. Furthermore, in the absence of gpc4, Cadherin 2 expression on the endodermal cell surface is increased as a result of impaired Rab5c-mediated endocytosis, which partially accounts for the endodermal defects in these mutants. These findings indicate that Gpc4 regulates endodermal planar cell polarity during endoderm C&E by influencing the localization of Cadherin 2. Thus, our study uncovers a new mechanism by which Gpc4 regulates planar cell polarity and reveals the role of Wnt/PCP signaling in endoderm morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Martínez M, Inestrosa NC. The transcriptional landscape of Alzheimer's disease and its association with Wnt signaling pathway. Neurosci Biobehav Rev 2021; 128:454-466. [PMID: 34224789 DOI: 10.1016/j.neubiorev.2021.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder primarily affecting the elderly. The disease manifests as progressive deterioration in cognitive functions, leading to a loss of autonomy. The identification of transcriptional changes in susceptible signaling pathways has provided clues to the origin and progression of AD and has pinpointed synapse loss as the prominent event in early stages of the disease. Synapse failure represents a key pathological correlate of cognitive decline in patients. Genetics and transcriptomics studies have also identified novel genes, processes, and pathways associated with AD. This evidence suggests that a deficiency in Wnt signaling pathway contributes to AD pathogenesis by inducing synaptic dysfunction and neuronal degeneration. In the adult nervous system, Wnt signaling plays a crucial role in synaptic physiology, modulating the synaptic vesicle cycle, trafficking neurotransmitter receptors, and modulating the expression of different genes associated with these processes. In this review, we describe the general transcriptional landscape associated with AD, specifically transcriptional changes associated with the Wnt signaling pathway and their effects in the context of disease.
Collapse
Affiliation(s)
- Milka Martínez
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
23
|
Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 2021; 121:99-113. [PMID: 34059418 DOI: 10.1016/j.semcdb.2021.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.
Collapse
|
24
|
Robert BJA, Moreau MM, Dos Santos Carvalho S, Barthet G, Racca C, Bhouri M, Quiedeville A, Garret M, Atchama B, Al Abed AS, Guette C, Henderson DJ, Desmedt A, Mulle C, Marighetto A, Montcouquiol M, Sans N. Vangl2 in the Dentate Network Modulates Pattern Separation and Pattern Completion. Cell Rep 2021; 31:107743. [PMID: 32521268 PMCID: PMC7296350 DOI: 10.1016/j.celrep.2020.107743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
The organization of spatial information, including pattern completion and pattern separation processes, relies on the hippocampal circuits, yet the molecular and cellular mechanisms underlying these two processes are elusive. Here, we find that loss of Vangl2, a core PCP gene, results in opposite effects on pattern completion and pattern separation processes. Mechanistically, we show that Vangl2 loss maintains young postmitotic granule cells in an immature state, providing increased cellular input for pattern separation. The genetic ablation of Vangl2 disrupts granule cell morpho-functional maturation and further prevents CaMKII and GluA1 phosphorylation, disrupting the stabilization of AMPA receptors. As a functional consequence, LTP at lateral perforant path-GC synapses is impaired, leading to defects in pattern completion behavior. In conclusion, we show that Vangl2 exerts a bimodal regulation on young and mature GCs, and its disruption leads to an imbalance in hippocampus-dependent pattern completion and separation processes. Vangl2-dependent PCP signaling controls granule cell maturation and network integration Vangl2 stabilizes GluA1-containing receptors at the surface of dendritic spines Granule cells require Vangl2-dependent signaling to elicit LTP Vangl2 loss has opposite functional effects on pattern completion/separation processes
Collapse
Affiliation(s)
- Benjamin J A Robert
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Maïté M Moreau
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Steve Dos Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Gael Barthet
- CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Université Bordeaux, IINS, 33000 Bordeaux, France
| | - Claudia Racca
- Biosciences Institute, Newcastle University, Medical School, Newcastle upon Tyne, NE2 4HH, UK
| | - Mehdi Bhouri
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Anne Quiedeville
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Maurice Garret
- CNRS, INCIA, 33000 Bordeaux, France; Université Bordeaux, INCIA, 30000 Bordeaux, France
| | - Bénédicte Atchama
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Alice Shaam Al Abed
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Christelle Guette
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, NE1 4EP, UK
| | - Aline Desmedt
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Christophe Mulle
- CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Université Bordeaux, IINS, 33000 Bordeaux, France
| | - Aline Marighetto
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France.
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, 33000 Bordeaux, France; Université Bordeaux, Neurocentre Magendie, 33000 Bordeaux, France.
| |
Collapse
|
25
|
Inestrosa NC, Tapia-Rojas C, Cerpa W, Cisternas P, Zolezzi JM. WNT Signaling Is a Key Player in Alzheimer's Disease. Handb Exp Pharmacol 2021; 269:357-382. [PMID: 34486097 DOI: 10.1007/164_2021_532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cellular processes regulated by WNT signaling have been mainly studied during embryonic development and cancer. In the last two decades, the role of WNT in the adult central nervous system has been the focus of interest in our laboratory. In this chapter, we will be summarized β-catenin-dependent and -independent WNT pathways, then we will be revised WNT signaling function at the pre- and post-synaptic level. Concerning Alzheimer's disease (AD) initially, we found that WNT/β-catenin signaling activation exerts a neuroprotective mechanism against the amyloid β (Αβ) peptide toxicity. Later, we found that WNT/β-catenin participates in Tau phosphorylation and in learning and memory. In the last years, we demonstrated that WNT/β-catenin signaling is instrumental in the amyloid precursor protein (APP) processing and that WNT/β-catenin dysfunction results in Aβ production and aggregation. We highlight the importance of WNT/β-catenin signaling dysfunction in the onset of AD and propose that the loss of WNT/β-catenin signaling is a triggering factor of AD. The WNT pathway is therefore positioned as a therapeutic target for AD and could be a valid concept for improving AD therapy. We think that metabolism and inflammation will be relevant when defining future research in the context of WNT signaling and the neurodegeneration associated with AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Laboratory of Neurobiology of Aging, Facultad de Medicina y Ciencia, Universidad de San Sebastián, Sede Los Leones, Santiago, Chile
| | - Waldo Cerpa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
26
|
Zhang J, Dong Y, Lining Huang, Xu X, Liang F, Soriano SG, Zhang Y, Xie Z. Interaction of Tau, IL-6 and mitochondria on synapse and cognition following sevoflurane anesthesia in young mice. Brain Behav Immun Health 2020; 8:100133. [PMID: 34589883 PMCID: PMC8474534 DOI: 10.1016/j.bbih.2020.100133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
Tau phosphorylation is associated with cognitive impairment in young mice. However, the underlying mechanism and targeted interventions remain mostly unknown. We set out to determine the potential interactions of Tau, interleukin 6 (IL-6) and mitochondria following treatment of anesthetic sevoflurane and to assess their influences on synapse number and cognition in young mice. Sevoflurane (3% for 2 h) was given to wild-type, Tau knockout, IL-6 knockout, and cyclophilin D (CypD) knockout mice on postnatal (P) day 6, 7 and 8. We measured amounts of phosphorylated Tau, IL-6, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP, postsynaptic density 95 (PSD-95), synaptophysin, N-cadherin, synapse number, and cognitive function in the mice, employing Western blot, electron microscope and Morris water maze among others. Here we showed that sevoflurane increased Tau phosphorylation and caused IL-6 elevation, mitochondrial dysfunction, synaptic loss and cognitive impairment in young wild-type, but not Tau knockout, mice. In young IL-6 knockout mice, sevoflurane increased Tau phosphorylation but did not cause mitochondrial dysfunction, synaptic loss or cognitive impairment. Finally, sevoflurane increased Tau phosphorylation and IL-6 amount, but did not induce synaptic loss and cognitive impairment, in young CypD knockout mice or WT mice pretreated with idebenone, an analog of co-enzyme Q10. In conclusion, sevoflurane increased Tau phosphorylation, which caused IL-6 elevation, leading to mitochondrial dysfunction in young mice. Such interactions caused synaptic loss and cognitive impairment in the mice. Idebenone mitigated sevoflurane-induced cognitive impairment in young mice. These studies would promote more research to study Tau in young mice. Research in context.Evidence before this studyTau, a microtubule-associated protein that is predominantly expressed inside neurons, is associated with microtubule assembly and function. Tau phosphorylation, aggregation and spread all serve as the pathogenesis of age-dependent neurodegeneration in the old brain, as well as the neuropathogenesis of Alzheimer’s disease. However, the effects of Tau on the cellular changes and the function of the young brain are undetermined. Our previous studies showed that anesthetic sevoflurane induced Tau phosphorylation, IL-6 elevation, mitochondrial dysfunction and synaptic loss in brain tissues of neonatal mice, as well as cognitive impairment in the mice. However, the potential interactions of the Tau phosphorylation, IL-6 elevation and mitochondrial dysfunction and the influences of these interactions on synapse number and cognitive function in neonatal mice remains largely unknown.
Added value of studyEmploying sevoflurane as a clinically relevant tool, and using the approaches including wild-type, Tau, IL-6, and CypD knockout neonatal mice, the present studies showed that Tau phosphorylation caused IL-6 elevation, which induced mitochondrial dysfunction, leading to synaptic loss and cognitive impairment in the neonatal mice. Idebenone, a synthetic analog of coenzyme Q10, mitigated the sevoflurane-induced cognitive impairment in the neonatal mice.
Implications of all the available evidenceThese findings demonstrated the role of Tau phosphorylation in cognitive impairment in neonatal mice, revealed the effects of the interactions of Tau phosphorylation, IL-6 elevation and mitochondrial dysfunction on the synapse number and cognitive function in the mice, and identified potential targeted intervention of the cognitive impairment in the neonatal mice.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Lining Huang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA.,Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Xiaoming Xu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA.,Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Sulpicio G Soriano
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yiying Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| |
Collapse
|
27
|
Viale B, Song L, Petrenko V, Wenger Combremont AL, Contestabile A, Bocchi R, Salmon P, Carleton A, An L, Vutskits L, Kiss JZ. Transient Deregulation of Canonical Wnt Signaling in Developing Pyramidal Neurons Leads to Dendritic Defects and Impaired Behavior. Cell Rep 2020; 27:1487-1502.e6. [PMID: 31042475 DOI: 10.1016/j.celrep.2019.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022] Open
Abstract
During development, the precise implementation of molecular programs is a key determinant of proper dendritic development. Here, we demonstrate that canonical Wnt signaling is active in dendritic bundle-forming layer II pyramidal neurons of the rat retrosplenial cortex during dendritic branching and spine formation. Transient downregulation of canonical Wnt transcriptional activity during the early postnatal period irreversibly reduces dendritic arbor architecture, leading to long-lasting deficits in spatial exploration and/or navigation and spatial memory in the adult. During the late phase of dendritogenesis, canonical Wnt-dependent transcription regulates spine formation and maturation. We identify neurotrophin-3 as canonical Wnt target gene in regulating dendritogenesis. Our findings demonstrate how temporary imbalance in canonical Wnt signaling during specific time windows can result in irreversible dendritic defects, leading to abnormal behavior in the adult.
Collapse
Affiliation(s)
- Beatrice Viale
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Lin Song
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland; School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Volodymyr Petrenko
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | | | - Alessandro Contestabile
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Riccardo Bocchi
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Patrick Salmon
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Laszlo Vutskits
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland; Department of Anesthesiology, Pharmacology and Intensive Care, University Hospitals of Geneva, 1211 Geneva 4, Switzerland
| | - Jozsef Zoltan Kiss
- Department of Basic Neurosciences, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| |
Collapse
|
28
|
Jarjour AA, Velichkova AN, Boyd A, Lord KM, Torsney C, Henderson DJ, Ffrench-Constant C. The formation of paranodal spirals at the ends of CNS myelin sheaths requires the planar polarity protein Vangl2. Glia 2020; 68:1840-1858. [PMID: 32125730 DOI: 10.1002/glia.23809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
During axonal ensheathment, noncompact myelin channels formed at lateral edges of the myelinating process become arranged into tight paranodal spirals that resemble loops when cut in cross section. These adhere to the axon, concentrating voltage-dependent sodium channels at nodes of Ranvier and patterning the surrounding axon into distinct molecular domains. The signals responsible for forming and maintaining the complex structure of paranodal myelin are poorly understood. Here, we test the hypothesis that the planar cell polarity determinant Vangl2 organizes paranodal myelin. We show that Vangl2 is concentrated at paranodes and that, following conditional knockout of Vangl2 in oligodendrocytes, the paranodal spiral loosens, accompanied by disruption to the microtubule cytoskeleton and mislocalization of autotypic adhesion molecules between loops within the spiral. Adhesion of the spiral to the axon is unaffected. This results in disruptions to axonal patterning at nodes of Ranvier, paranodal axon diameter and conduction velocity. When taken together with our previous work showing that loss of the apico-basal polarity protein Scribble has the opposite phenotype-loss of axonal adhesion but no effect on loop-loop autotypic adhesion-our results identify a novel mechanism by which polarity proteins control the shape of nodes of Ranvier and regulate conduction in the CNS.
Collapse
Affiliation(s)
- Andrew A Jarjour
- MRC Centre for Regenerative Medicine and MS Society/University of Edinburgh Centre for Translational Research, Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Atanaska N Velichkova
- Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Amanda Boyd
- MRC Centre for Regenerative Medicine and MS Society/University of Edinburgh Centre for Translational Research, Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Kathryn M Lord
- MRC Centre for Regenerative Medicine and MS Society/University of Edinburgh Centre for Translational Research, Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Carole Torsney
- Centre for Discovery Brain Sciences, The University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Deborah J Henderson
- Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, UK
| | - Charles Ffrench-Constant
- MRC Centre for Regenerative Medicine and MS Society/University of Edinburgh Centre for Translational Research, Scottish Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Dos-Santos Carvalho S, Moreau MM, Hien YE, Garcia M, Aubailly N, Henderson DJ, Studer V, Sans N, Thoumine O, Montcouquiol M. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. eLife 2020; 9:51822. [PMID: 31909712 PMCID: PMC6946565 DOI: 10.7554/elife.51822] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dynamic mechanical interactions between adhesion complexes and the cytoskeleton are essential for axon outgrowth and guidance. Whether planar cell polarity (PCP) proteins, which regulate cytoskeleton dynamics and appear necessary for some axon guidance, also mediate interactions with membrane adhesion is still unclear. Here we show that Vangl2 controls growth cone velocity by regulating the internal retrograde actin flow in an N-cadherin-dependent fashion. Single molecule tracking experiments show that the loss of Vangl2 decreased fast-diffusing N-cadherin membrane molecules and increased confined N-cadherin trajectories. Using optically manipulated N-cadherin-coated microspheres, we correlated this behavior to a stronger mechanical coupling of N-cadherin with the actin cytoskeleton. Lastly, we show that the spatial distribution of Vangl2 within the growth cone is selectively affected by an N-cadherin-coated substrate. Altogether, our data show that Vangl2 acts as a negative regulator of axonal outgrowth by regulating the strength of the molecular clutch between N-cadherin and the actin cytoskeleton.
Collapse
Affiliation(s)
- Steve Dos-Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Maite M Moreau
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Yeri Esther Hien
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Mikael Garcia
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Aubailly
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Vincent Studer
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Olivier Thoumine
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| |
Collapse
|
30
|
Hakanen J, Ruiz-Reig N, Tissir F. Linking Cell Polarity to Cortical Development and Malformations. Front Cell Neurosci 2019; 13:244. [PMID: 31213986 PMCID: PMC6558068 DOI: 10.3389/fncel.2019.00244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
Cell polarity refers to the asymmetric distribution of signaling molecules, cellular organelles, and cytoskeleton in a cell. Neural progenitors and neurons are highly polarized cells in which the cell membrane and cytoplasmic components are compartmentalized into distinct functional domains in response to internal and external cues that coordinate polarity and behavior during development and disease. In neural progenitor cells, polarity has a prominent impact on cell shape and coordinate several processes such as adhesion, division, and fate determination. Polarity also accompanies a neuron from the beginning until the end of its life. It is essential for development and later functionality of neuronal circuitries. During development, polarity governs transitions between multipolar and bipolar during migration of postmitotic neurons, and directs the specification and directional growth of axons. Once reaching final positions in cortical layers, neurons form dendrites which become compartmentalized to ensure proper establishment of neuronal connections and signaling. Changes in neuronal polarity induce signaling cascades that regulate cytoskeletal changes, as well as mRNA, protein, and vesicle trafficking, required for synapses to form and function. Hence, defects in establishing and maintaining cell polarity are associated with several neural disorders such as microcephaly, lissencephaly, schizophrenia, autism, and epilepsy. In this review we summarize the role of polarity genes in cortical development and emphasize the relationship between polarity dysfunctions and cortical malformations.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
31
|
Dush MK, Nascone-Yoder NM. Vangl2 coordinates cell rearrangements during gut elongation. Dev Dyn 2019; 248:569-582. [PMID: 31081963 DOI: 10.1002/dvdy.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The embryonic gut tube undergoes extensive lengthening to generate the surface area required for nutrient absorption across the digestive epithelium. In Xenopus, narrowing and elongation of the tube is driven by radial rearrangements of its core of endoderm cells, a process that concomitantly opens the gut lumen and facilitates epithelial morphogenesis. How endoderm rearrangements are properly oriented and coordinated to achieve this complex morphogenetic outcome is unknown. RESULTS We find that, prior to gut elongation, the core Wnt/PCP component Vangl2 becomes enriched at both the anterior and apical aspects of individual endoderm cells. In Vangl2-depleted guts, the cells remain unpolarized, down-regulate cell-cell adhesion proteins, and, consequently, fail to rearrange, leading to a short gut with an occluded lumen and undifferentiated epithelium. In contrast, endoderm cells with ectopic Vangl2 protein acquire abnormal polarity and adhesive contacts. As a result, endoderm cells also fail to rearrange properly and undergo ectopic differentiation, resulting in guts with multiple torturous lumens, irregular epithelial architecture, and variable intestinal topologies. CONCLUSIONS Asymmetrical enrichment of Vangl2 in individual gut endoderm cells orients polarity and adhesion during radial rearrangements, coordinating digestive epithelial morphogenesis and lumen formation with gut tube elongation.
Collapse
Affiliation(s)
- Michael K Dush
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Nanette M Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
32
|
VANGL2 regulates luminal epithelial organization and cell turnover in the mammary gland. Sci Rep 2019; 9:7079. [PMID: 31068622 PMCID: PMC6506599 DOI: 10.1038/s41598-019-43444-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 01/04/2023] Open
Abstract
The VANGL family of planar cell polarity proteins is implicated in breast cancer however its function in mammary gland biology is unknown. Here, we utilized a panel of Vang1 and Vangl2 mouse alleles to examine the requirement of VANGL family members in the murine mammary gland. We show that Vang1CKOΔ/Δ glands display normal branching while Vangl2flox/flox and Vangl2Lp/Lp tissue exhibit several phenotypes. In MMTV-Cre;Vangl2flox/flox glands, cell turnover is reduced and lumens are narrowed. A Vangl2 missense mutation in the Vangl2Lp/Lp tissue leads to mammary anlage sprouting defects and deficient outgrowth with transplantation of anlage or secondary tissue fragments. In successful Vangl2Lp/Lp outgrowths, three morphological phenotypes are observed: distended ducts, supernumerary end buds, and ectopic acini. Layer specific defects are observed with loss of Vangl2 selectively in either basal or luminal layers of mammary cysts. Loss in the basal compartment inhibits cyst formation, but has the opposite effect in the luminal compartment. Candidate gene analysis on MMTV-Cre;Vangl2flox/flox and Vangl2Lp/Lp tissue reveals a significant reduction in Bmi1 expression, with overexpression of Bmi1 rescuing defects in Vangl2 knockdown cysts. Our results demonstrate that VANGL2 is necessary for normal mammary gland development and indicate differential functional requirements in basal versus luminal mammary compartments.
Collapse
|
33
|
Vangl2 interaction plays a role in the proteasomal degradation of Prickle2. Sci Rep 2019; 9:2912. [PMID: 30814664 PMCID: PMC6393536 DOI: 10.1038/s41598-019-39642-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/28/2019] [Indexed: 01/03/2023] Open
Abstract
The PET and LIM domain-containing protein, Prickle, plays a key role in planar cell polarity (PCP) in Drosophila. It has been reported that mutations in the PRICKLE2 gene, which encodes one of the human orthologues of Prickle, are associated with human diseases such as epilepsy and autism spectrum disorder. To develop preventive and therapeutic strategies for these intractable diseases, we studied the regulation of Prickle2 protein levels in transfected HEK293T cells. Prickle2 levels were negatively regulated by a physical interaction with another PCP protein, Van Gogh-like 2 (Vangl2). The Vangl2-mediated reduction in Prickle2 levels was, at least in part, relieved by proteasome inhibitors or by functional inhibition of the Cullin-1 E3 ubiquitin ligase. Furthermore, the expression of Vangl2 enhanced the polyubiquitination of Prickle2. This ubiquitination was partially blocked by co-expression of a ubiquitin mutant, which cannot be polymerised through their Lys48 residue to induce target proteins toward proteasomal degradation. Together, these results suggest that Prickle2 is polyubiquitinated by the Vangl2 interaction in a Cullin-1-dependent manner to limit its expression levels. This regulation may play a role in the local and temporal fine-tuning of Prickle protein levels during PCP signal-dependent cellular behaviours.
Collapse
|
34
|
Jessen TN, Jessen JR. VANGL2 protein stability is regulated by integrin αv and the extracellular matrix. Exp Cell Res 2018; 374:128-139. [PMID: 30472097 DOI: 10.1016/j.yexcr.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
Vang-like 2 (VANGL2) is a four-pass transmembrane protein required for a variety of polarized cell behaviors underlying embryonic development. Recent data show human VANGL2 interacts with integrin αv to control cell adhesion to extracellular matrix proteins. The goal of this study was to further define the functional relationship between integrin αv and VANGL2. We demonstrate integrin αv regulates VANGL2 protein levels both in vitro and in the zebrafish embryo. While integrin αv knockdown reduces VANGL2 expression at membrane compartments, it does not affect VANGL2 transcription. Knockdown of integrin β5, but not β1 or β3, also decreases VANGL2 protein levels. Inhibition of protein translation using cycloheximide demonstrates that integrin αv knockdown cells have increased VANGL2 degradation while interference with either proteasome or lysosome function restores VANGL2. We further show integrin activation and stimulation of cell-matrix adhesion using MnCl2 fails to influence VANGL2. However, MnCl2 treatment stabilizes VANGL2 protein expression levels in the presence of cycloheximide. In the converse experiment, blockage of integrin-mediated cell-matrix adhesion using a cyclic RGD peptide causes a reduction in VANGL2 protein levels. Together, our findings support a model where integrin αv and cellular interactions with the extracellular matrix are required to maintain VANGL2 protein levels and thus function at the plasma membrane.
Collapse
Affiliation(s)
- Tammy N Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
35
|
He CW, Liao CP, Pan CL. Wnt signalling in the development of axon, dendrites and synapses. Open Biol 2018; 8:rsob.180116. [PMID: 30282660 PMCID: PMC6223216 DOI: 10.1098/rsob.180116] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Wnts are a highly conserved family of secreted glycoproteins that play essential roles in the morphogenesis and body patterning during the development of metazoan species. In recent years, mounting evidence has revealed important functions of Wnt signalling in diverse aspects of neural development, including neuronal polarization, guidance and branching of the axon and dendrites, as well as synapse formation and its structural remodelling. In contrast to Wnt signalling in cell proliferation and differentiation, which mostly acts through β-catenin-dependent pathways, Wnts engage a diverse array of non-transcriptional cascades in neuronal development, such as the planar cell polarity, cytoskeletal or calcium signalling pathways. In this review, we summarize recent advances in the mechanisms of Wnt signalling in the development of axon, dendrite and synapse formation.
Collapse
Affiliation(s)
- Chun-Wei He
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chien-Po Liao
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| | - Chun-Liang Pan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan, Republic of China
| |
Collapse
|
36
|
Hilal ML, Moreau MM, Racca C, Pinheiro VL, Piguel NH, Santoni MJ, Dos Santos Carvalho S, Blanc JM, Abada YSK, Peyroutou R, Medina C, Doat H, Papouin T, Vuillard L, Borg JP, Rachel R, Panatier A, Montcouquiol M, Oliet SHR, Sans N. Activity-Dependent Neuroplasticity Induced by an Enriched Environment Reverses Cognitive Deficits in Scribble Deficient Mouse. Cereb Cortex 2018; 27:5635-5651. [PMID: 28968740 DOI: 10.1093/cercor/bhw333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 12/31/2022] Open
Abstract
Planar cell polarity (PCP) signaling is well known to play a critical role during prenatal brain development; whether it plays specific roles at postnatal stages remains rather unknown. Here, we investigated the role of a key PCP-associated gene scrib in CA1 hippocampal structure and function at postnatal stages. We found that Scrib is required for learning and memory consolidation in the Morris water maze as well as synaptic maturation and NMDAR-dependent bidirectional plasticity. Furthermore, we unveiled a direct molecular interaction between Scrib and PP1/PP2A phosphatases whose levels were decreased in postsynaptic density of conditional knock-out mice. Remarkably, exposure to enriched environment (EE) preserved memory formation in CaMK-Scrib-/- mice by recovering synaptic plasticity and maturation. Thus, Scrib is required for synaptic function involved in memory formation and EE has beneficiary therapeutic effects. Our results demonstrate a distinct new role for a PCP-associated protein, beyond embryonic development, in cognitive functions during adulthood.
Collapse
Affiliation(s)
- Muna L Hilal
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Maité M Moreau
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Claudia Racca
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Vera L Pinheiro
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Nicolas H Piguel
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Marie-Josée Santoni
- CRCM, INSERM U1068, F-13009 Marseille, France.,CRCM, CNRS UMR7258, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13007 Marseille, France
| | - Steve Dos Santos Carvalho
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Jean-Michel Blanc
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,BioXtal Structural Biology Unit, Campus de Luminy, F-13288 Marseille, France.,University of Bordeaux, Plateforme de Biochimie et de Biophysique des protéines, FR Bordeaux Neurocampus, F-33000 Bordeaux, France
| | - Yah-Se K Abada
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Ronan Peyroutou
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Chantal Medina
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Hélène Doat
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Thomas Papouin
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Laurent Vuillard
- BioXtal Structural Biology Unit, Campus de Luminy, F-13288 Marseille, France
| | - Jean-Paul Borg
- CRCM, INSERM U1068, F-13009 Marseille, France.,CRCM, CNRS UMR7258, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13007 Marseille, France
| | - Rivka Rachel
- Mouse Cancer Genetics Program, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | - Aude Panatier
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Stéphane H R Oliet
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| |
Collapse
|
37
|
Ramos-Fernández E, Tapia-Rojas C, Ramírez VT, Inestrosa NC. Wnt-7a Stimulates Dendritic Spine Morphogenesis and PSD-95 Expression Through Canonical Signaling. Mol Neurobiol 2018; 56:1870-1882. [DOI: 10.1007/s12035-018-1162-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023]
|
38
|
López-Escobar B, Caro-Vega JM, Vijayraghavan DS, Plageman TF, Sanchez-Alcazar JA, Moreno RC, Savery D, Márquez-Rivas J, Davidson LA, Ybot-González P. The non-canonical Wnt-PCP pathway shapes the mouse caudal neural plate. Development 2018; 145:dev.157487. [PMID: 29636380 DOI: 10.1242/dev.157487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/03/2018] [Indexed: 01/03/2023]
Abstract
The last stage of neural tube (NT) formation involves closure of the caudal neural plate (NP), an embryonic structure formed by neuromesodermal progenitors and newly differentiated cells that becomes incorporated into the NT. Here, we show in mouse that, as cell specification progresses, neuromesodermal progenitors and their progeny undergo significant changes in shape prior to their incorporation into the NT. The caudo-rostral progression towards differentiation is coupled to a gradual reliance on a unique combination of complex mechanisms that drive tissue folding, involving pulses of apical actomyosin contraction and planar polarised cell rearrangements, all of which are regulated by the Wnt-PCP pathway. Indeed, when this pathway is disrupted, either chemically or genetically, the polarisation and morphology of cells within the entire caudal NP is disturbed, producing delays in NT closure. The most severe disruptions of this pathway prevent caudal NT closure and result in spina bifida. In addition, a decrease in Vangl2 gene dosage also appears to promote more rapid progression towards a neural fate, but not the specification of more neural cells.
Collapse
Affiliation(s)
- Beatriz López-Escobar
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - José Manuel Caro-Vega
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | | | | | - José A Sanchez-Alcazar
- Centro Andaluz de Biología del Desarrollo (CABD), and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain
| | - Roberto Carlos Moreno
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Dawn Savery
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Javier Márquez-Rivas
- Unidad de Gestión Clínica de Neurocirugía, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla 41013, Spain .,Unidad de Gestión Clínica de Neurología y Neurofisiología, Hospital Universitario Virgen Macarena, Sevilla 41009, Spain
| |
Collapse
|
39
|
Nishikawa S. Cytoskeleton, intercellular junctions, planar cell polarity, and cell movement in amelogenesis. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Bailly E, Walton A, Borg JP. The planar cell polarity Vangl2 protein: From genetics to cellular and molecular functions. Semin Cell Dev Biol 2017; 81:62-70. [PMID: 29111415 DOI: 10.1016/j.semcdb.2017.10.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
Planar cell polarity (PCP) refers to the capacity of a tissue, typically, but not exclusively, an epithelium, to transmit directional information across the tissue plane such that its cellular constituents can differentiate, divide or move in a coordinated manner and along a common axis, generally orthogonal to the apical-basal axis. PCP relies on a core module of highly conserved proteins originally identified in Drosophila which can act intra- and extracellularly. In this review, we focus on the vertebrate ortholog of one of these core PCP components, namely the Vangl2 protein. After a brief historical perspective, we discuss novel cellular settings for which a cellular Vangl2 requirement has been recently documented, with a particular emphasis on adult tissues that rely on Vangl2 for the maintenance of their regenerative capacity or their physiological functions. Finally we compile the most recent data about Vangl2 interacting proteins.
Collapse
Affiliation(s)
- Eric Bailly
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm, U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM 105, Marseille, F-13284, France.
| | - Alexandra Walton
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm, U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM 105, Marseille, F-13284, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille (CRCM), 'Cell Polarity, Cell Signalling, and Cancer', Equipe Labellisée Ligue Contre le Cancer, Inserm, U1068, Marseille, F-13009, France; CNRS, UMR7258, Marseille, F-13009, France; Institut Paoli-Calmettes, Marseille, F-13009, France; Aix-Marseille University, UM 105, Marseille, F-13284, France.
| |
Collapse
|
41
|
Amyloid β synaptotoxicity is Wnt-PCP dependent and blocked by fasudil. Alzheimers Dement 2017; 14:306-317. [PMID: 29055813 PMCID: PMC5869054 DOI: 10.1016/j.jalz.2017.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/13/2017] [Accepted: 09/07/2017] [Indexed: 01/18/2023]
Abstract
Introduction Synapse loss is the structural correlate of the cognitive decline indicative of dementia. In the brains of Alzheimer's disease sufferers, amyloid β (Aβ) peptides aggregate to form senile plaques but as soluble peptides are toxic to synapses. We previously demonstrated that Aβ induces Dickkopf-1 (Dkk1), which in turn activates the Wnt–planar cell polarity (Wnt-PCP) pathway to drive tau pathology and neuronal death. Methods We compared the effects of Aβ and of Dkk1 on synapse morphology and memory impairment while inhibiting or silencing key elements of the Wnt-PCP pathway. Results We demonstrate that Aβ synaptotoxicity is also Dkk1 and Wnt-PCP dependent, mediated by the arm of Wnt-PCP regulating actin cytoskeletal dynamics via Daam1, RhoA and ROCK, and can be blocked by the drug fasudil. Discussion Our data add to the importance of aberrant Wnt signaling in Alzheimer's disease neuropathology and indicate that fasudil could be repurposed as a treatment for the disease. Aβ synaptotoxicity is Dickkopf-1 and Wnt-PCP dependent. The Wnt-PCP pathway drives Aβ-driven synapse loss via RhoA and ROCK. ROCK inhibitor fasudil blocks Aβ-driven synapse loss and cognitive impairment. Fasudil should be assessed for repurposing for Alzheimer's disease.
Collapse
|
42
|
Li Y, Li A, Junge J, Bronner M. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage. eLife 2017; 6. [PMID: 28994649 PMCID: PMC5634781 DOI: 10.7554/elife.23279] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.
Collapse
Affiliation(s)
- Yuwei Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ang Li
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, United States
| | - Jason Junge
- Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
43
|
Park AJ, Havekes R, Fu X, Hansen R, Tudor JC, Peixoto L, Li Z, Wu YC, Poplawski SG, Baraban JM, Abel T. Learning induces the translin/trax RNase complex to express activin receptors for persistent memory. eLife 2017; 6. [PMID: 28927503 PMCID: PMC5606845 DOI: 10.7554/elife.27872] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Long-lasting forms of synaptic plasticity and memory require de novo protein synthesis. Yet, how learning triggers this process to form memory is unclear. Translin/trax is a candidate to drive this learning-induced memory mechanism by suppressing microRNA-mediated translational silencing at activated synapses. We find that mice lacking translin/trax display defects in synaptic tagging, which requires protein synthesis at activated synapses, and long-term memory. Hippocampal samples harvested from these mice following learning show increases in several disease-related microRNAs targeting the activin A receptor type 1C (ACVR1C), a component of the transforming growth factor-β receptor superfamily. Furthermore, the absence of translin/trax abolishes synaptic upregulation of ACVR1C protein after learning. Finally, synaptic tagging and long-term memory deficits in mice lacking translin/trax are mimicked by ACVR1C inhibition. Thus, we define a new memory mechanism by which learning reverses microRNA-mediated silencing of the novel plasticity protein ACVR1C via translin/trax.
Collapse
Affiliation(s)
- Alan Jung Park
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Xiuping Fu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Rolf Hansen
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jennifer C Tudor
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Lucia Peixoto
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Zhi Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Yen-Ching Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Shane G Poplawski
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jay M Baraban
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, United States.,Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
44
|
Jordán-Álvarez S, Santana E, Casas-Tintó S, Acebes Á, Ferrús A. The equilibrium between antagonistic signaling pathways determines the number of synapses in Drosophila. PLoS One 2017; 12:e0184238. [PMID: 28892511 PMCID: PMC5593197 DOI: 10.1371/journal.pone.0184238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The number of synapses is a major determinant of behavior and many neural diseases exhibit deviations in that number. However, how signaling pathways control this number is still poorly understood. Using the Drosophila larval neuromuscular junction, we show here a PI3K-dependent pathway for synaptogenesis which is functionally connected with other previously known elements including the Wit receptor, its ligand Gbb, and the MAPkinases cascade. Based on epistasis assays, we determined the functional hierarchy within the pathway. Wit seems to trigger signaling through PI3K, and Ras85D also contributes to the initiation of synaptogenesis. However, contrary to other signaling pathways, PI3K does not require Ras85D binding in the context of synaptogenesis. In addition to the MAPK cascade, Bsk/JNK undergoes regulation by Puc and Ras85D which results in a narrow range of activity of this kinase to determine normalcy of synapse number. The transcriptional readout of the synaptogenesis pathway involves the Fos/Jun complex and the repressor Cic. In addition, we identified an antagonistic pathway that uses the transcription factors Mad and Medea and the microRNA bantam to down-regulate key elements of the pro-synaptogenesis pathway. Like its counterpart, the anti-synaptogenesis signaling uses small GTPases and MAPKs including Ras64B, Ras-like-a, p38a and Licorne. Bantam downregulates the pro-synaptogenesis factors PI3K, Hiw, Ras85D and Bsk, but not AKT. AKT, however, can suppress Mad which, in conjunction with the reported suppression of Mad by Hiw, closes the mutual regulation between both pathways. Thus, the number of synapses seems to result from the balanced output from these two pathways.
Collapse
Affiliation(s)
| | | | | | - Ángel Acebes
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| | - Alberto Ferrús
- Institute Cajal C.S.I.C., Madrid, Spain
- * E-mail: (AF); (AA)
| |
Collapse
|
45
|
A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway. Mol Neurodegener 2017; 12:54. [PMID: 28697798 PMCID: PMC5505151 DOI: 10.1186/s13024-017-0193-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/20/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Autosomal-dominant mutations in the Park8 gene encoding Leucine-rich repeat kinase 2 (LRRK2) have been identified to cause up to 40% of the genetic forms of Parkinson's disease. However, the function and molecular pathways regulated by LRRK2 are largely unknown. It has been shown that LRRK2 serves as a scaffold during activation of WNT/β-catenin signaling via its interaction with the β-catenin destruction complex, DVL1-3 and LRP6. In this study, we examine whether LRRK2 also interacts with signaling components of the WNT/Planar Cell Polarity (WNT/PCP) pathway, which controls the maturation of substantia nigra dopaminergic neurons, the main cell type lost in Parkinson's disease patients. METHODS Co-immunoprecipitation and tandem mass spectrometry was performed in a mouse substantia nigra cell line (SN4741) and human HEK293T cell line in order to identify novel LRRK2 binding partners. Inhibition of the WNT/β-catenin reporter, TOPFlash, was used as a read-out of WNT/PCP pathway activation. The capacity of LRRK2 to regulate WNT/PCP signaling in vivo was tested in Xenopus laevis' early development. RESULTS Our proteomic analysis identified that LRRK2 interacts with proteins involved in WNT/PCP signaling such as the PDZ domain-containing protein GIPC1 and Integrin-linked kinase (ILK) in dopaminergic cells in vitro and in the mouse ventral midbrain in vivo. Moreover, co-immunoprecipitation analysis revealed that LRRK2 binds to two core components of the WNT/PCP signaling pathway, PRICKLE1 and CELSR1, as well as to FLOTILLIN-2 and CULLIN-3, which regulate WNT secretion and inhibit WNT/β-catenin signaling, respectively. We also found that PRICKLE1 and LRRK2 localize in signalosomes and act as dual regulators of WNT/PCP and β-catenin signaling. Accordingly, analysis of the function of LRRK2 in vivo, in X. laevis revelaed that LRKK2 not only inhibits WNT/β-catenin pathway, but induces a classical WNT/PCP phenotype in vivo. CONCLUSIONS Our study shows for the first time that LRRK2 activates the WNT/PCP signaling pathway through its interaction to multiple WNT/PCP components. We suggest that LRRK2 regulates the balance between WNT/β-catenin and WNT/PCP signaling, depending on the binding partners. Since this balance is crucial for homeostasis of midbrain dopaminergic neurons, we hypothesize that its alteration may contribute to the pathophysiology of Parkinson's disease.
Collapse
|
46
|
Messéant J, Ezan J, Delers P, Glebov K, Marchiol C, Lager F, Renault G, Tissir F, Montcouquiol M, Sans N, Legay C, Strochlic L. Wnt proteins contribute to neuromuscular junction formation through distinct signaling pathways. Development 2017; 144:1712-1724. [PMID: 28348167 DOI: 10.1242/dev.146167] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/20/2017] [Indexed: 01/05/2023]
Abstract
Understanding the developmental steps that shape formation of the neuromuscular junction (NMJ) connecting motoneurons to skeletal muscle fibers is crucial. Wnt morphogens are key players in the formation of this specialized peripheral synapse, but their individual and collaborative functions and downstream pathways remain poorly understood at the NMJ. Here, we demonstrate through Wnt4 and Wnt11 gain-of-function studies in cell culture or in mice that Wnts enhance acetylcholine receptor (AChR) clustering and motor axon outgrowth. By contrast, loss of Wnt11 or Wnt-dependent signaling in vivo decreases AChR clustering and motor nerve terminal branching. Both Wnt4 and Wnt11 stimulate AChR mRNA levels and AChR clustering downstream of activation of the β-catenin pathway. Strikingly, Wnt4 and Wnt11 co-immunoprecipitate with Vangl2, a core component of the planar cell polarity (PCP) pathway, which accumulates at embryonic NMJs. Moreover, mice bearing a Vangl2 loss-of-function mutation (loop-tail) exhibit fewer AChR clusters and overgrowth of motor axons bypassing AChR clusters. Together, our results provide genetic and biochemical evidence that Wnt4 and Wnt11 cooperatively contribute to mammalian NMJ formation through activation of both the canonical and Vangl2-dependent core PCP pathways.
Collapse
Affiliation(s)
- Julien Messéant
- CNRS UMR 8119, CNRS UMR 8194, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75270 Cedex 06, France
| | - Jérôme Ezan
- INSERM, Neurocentre Magendie, U1215, Bordeaux 33077, France.,Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux 33077, France
| | - Perrine Delers
- CNRS UMR 8119, CNRS UMR 8194, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75270 Cedex 06, France
| | - Konstantin Glebov
- INSERM, Neurocentre Magendie, U1215, Bordeaux 33077, France.,Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux 33077, France
| | - Carmen Marchiol
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75014, France
| | - Franck Lager
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75014, France
| | - Gilles Renault
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75014, France
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Brussels B1200, Belgium
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, Bordeaux 33077, France.,Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux 33077, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, Bordeaux 33077, France.,Université de Bordeaux, Neurocentre Magendie, U1215, Bordeaux 33077, France
| | - Claire Legay
- CNRS UMR 8119, CNRS UMR 8194, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75270 Cedex 06, France
| | - Laure Strochlic
- CNRS UMR 8119, CNRS UMR 8194, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris 75270 Cedex 06, France
| |
Collapse
|
47
|
Thakar S, Wang L, Yu T, Ye M, Onishi K, Scott J, Qi J, Fernandes C, Han X, Yates JR, Berg DK, Zou Y. Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 2017; 114:E610-E618. [PMID: 28057866 PMCID: PMC5278468 DOI: 10.1073/pnas.1612062114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The signaling mechanisms that choreograph the assembly of the highly asymmetric pre- and postsynaptic structures are still poorly defined. Using synaptosome fractionation, immunostaining, and coimmunoprecipitation, we found that Celsr3 and Vangl2, core components of the planar cell polarity (PCP) pathway, are localized at developing glutamatergic synapses and interact with key synaptic proteins. Pyramidal neurons from the hippocampus of Celsr3 knockout mice exhibit loss of ∼50% of glutamatergic synapses, but not inhibitory synapses, in culture. Wnts are known regulators of synapse formation, and our data reveal that Wnt5a inhibits glutamatergic synapses formed via Celsr3. To avoid affecting earlier developmental processes, such as axon guidance, we conditionally knocked out Celsr3 in the hippocampus 1 week after birth. The CA1 neurons that lost Celsr3 also showed a loss of ∼50% of glutamatergic synapses in vivo without affecting the inhibitory synapses assessed by miniature excitatory postsynaptic current (mEPSC) and electron microscopy. These animals displayed deficits in hippocampus-dependent behaviors in adulthood, including spatial learning and memory and fear conditioning. In contrast to Celsr3 conditional knockouts, we found that the conditional knockout of Vangl2 in the hippocampus 1 week after birth led to a large increase in synaptic density, as evaluated by mEPSC frequency and spine density. PCP signaling is mediated by multiple core components with antagonizing functions. Our results document the opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation.
Collapse
Affiliation(s)
- Sonal Thakar
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Liqing Wang
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Ting Yu
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Mao Ye
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Keisuke Onishi
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - John Scott
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Jiaxuan Qi
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Catarina Fernandes
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Darwin K Berg
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
48
|
Mulligan KA, Cheyette BNR. Neurodevelopmental Perspectives on Wnt Signaling in Psychiatry. MOLECULAR NEUROPSYCHIATRY 2017; 2:219-246. [PMID: 28277568 DOI: 10.1159/000453266] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that Wnt signaling is relevant to pathophysiology of diverse mental illnesses including schizophrenia, bipolar disorder, and autism spectrum disorder. In the 35 years since Wnt ligands were first described, animal studies have richly explored how downstream Wnt signaling pathways affect an array of neurodevelopmental processes and how their disruption can lead to both neurological and behavioral phenotypes. Recently, human induced pluripotent stem cell (hiPSC) models have begun to contribute to this literature while pushing it in increasingly translational directions. Simultaneously, large-scale human genomic studies are providing evidence that sequence variation in Wnt signal pathway genes contributes to pathogenesis in several psychiatric disorders. This article reviews neurodevelopmental and postneurodevelopmental functions of Wnt signaling, highlighting mechanisms, whereby its disruption might contribute to psychiatric illness, and then reviews the most reliable recent genetic evidence supporting that mutations in Wnt pathway genes contribute to psychiatric illness. We are proponents of the notion that studies in animal and hiPSC models informed by the human genetic data combined with the deep knowledge base and tool kits generated over the last several decades of basic neurodevelopmental research will yield near-term tangible advances in neuropsychiatry.
Collapse
Affiliation(s)
- Kimberly A Mulligan
- Department of Biological Sciences, California State University, Sacramento, CA, USA
| | - Benjamin N R Cheyette
- Department of Psychiatry, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Houssin NS, Bharathan NK, Turner SD, Dickinson AJG. Role of JNK during buccopharyngeal membrane perforation, the last step of embryonic mouth formation. Dev Dyn 2016; 246:100-115. [PMID: 28032936 DOI: 10.1002/dvdy.24470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/23/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The buccopharyngeal membrane is a thin layer of cells covering the embryonic mouth. The perforation of this structure creates an opening connecting the external and the digestive tube which is essential for oral cavity formation. In humans, persistence of the buccopharyngeal membrane can lead to orofacial defects such as choanal atresia, oral synechiaes, and cleft palate. Little is known about the causes of a persistent buccopharyngeal membrane and, importantly, how this structure ruptures. RESULTS We have determined, using antisense and pharmacological approaches, that Xenopus embryos deficient c-Jun N-terminal kinase (JNK) signaling have a persistent buccopharyngeal membrane. JNK deficient embryos have decreased cell division and increased cellular stress and apoptosis. However, altering these processes independently of JNK did not affect buccopharyngeal membrane perforation. JNK deficient embryos also have increased intercellular adhesion and defects in e-cadherin localization. Conversely, embryos with overactive JNK have epidermal fragility, increased E-cadherin internalization, and increased membrane localized clathrin. In the buccopharyngeal membrane, clathrin is colocalized with active JNK. Furthermore, inhibition of endocytosis results in a persistent buccopharyngeal membrane, mimicking the JNK deficient phenotype. CONCLUSIONS The results of this study suggest that JNK has a role in the disassembly adherens junctions by means of endocytosis that is required during buccopharyngeal membrane perforation. Developmental Dynamics 246:100-115, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nathalie S Houssin
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Stephen D Turner
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | | |
Collapse
|
50
|
Chen H, Cheng CY. Planar cell polarity (PCP) proteins and spermatogenesis. Semin Cell Dev Biol 2016; 59:99-109. [PMID: 27108805 PMCID: PMC5071175 DOI: 10.1016/j.semcdb.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022]
Abstract
In adult mammalian testes, spermatogenesis is comprised of several discrete cellular events that work in tandem to support the transformation and differentiation of diploid spermatogonia to haploid spermatids in the seminiferous epithelium during the seminiferous epithelial cycle. These include: self-renewal of spermatogonial stem cells via mitosis and their transformation into differentiated spermatogonia, meiosis I/II, spermiogenesis and the release of sperms at spermiation. Studies have shown that these cellular events are under precise and coordinated controls of multiple proteins and signaling pathways. These events are also regulated by polarity proteins that are known to confer classical apico-basal (A/B) polarity in other epithelia. Furthermore, spermatid development is likely supported by planar cell polarity (PCP) proteins since polarized spermatids are aligned across the plane of seminiferous epithelium in an orderly fashion, analogous to hair cells in the cochlea of the inner ear. Thus, the maximal number of spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we briefly summarize recent findings regarding the role of PCP proteins in the testis. This information should be helpful in future studies to better understand the role of PCP proteins in spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|