1
|
Seaby EG, Godwin A, Meyer-Dilhet G, Clerc V, Grand X, Fletcher T, Monteiro L, Kerkhofs M, Carelli V, Palombo F, Seri M, Olivucci G, Grippa M, Ciaccio C, D’Arrigo S, Iascone M, Bermudez M, Fischer J, Di Donato N, Goesswein S, Leung ML, Koboldt DC, Myers C, Arnadottir GA, Stefansson K, Sulem P, Goldberg EM, Bruel AL, Tran-Mau-Them F, Willems M, Bjornsson HT, Hognason HB, Thorolfsdottir ET, Agolini E, Novelli A, Zampino G, Onesimo R, Lachlan K, Baralle D, Rehm HL, O’Donnell-Luria A, Courchet J, Guille M, Bourgeois CF, Ennis S. Monoallelic de novo variants in DDX17 cause a neurodevelopmental disorder. Brain 2025; 148:1155-1168. [PMID: 39405200 PMCID: PMC11967813 DOI: 10.1093/brain/awae320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 04/05/2025] Open
Abstract
DDX17 is an RNA helicase shown to be involved in critical processes during the early phases of neuronal differentiation. Globally, we compiled a case series of 11 patients with neurodevelopmental phenotypes harbouring de novo monoallelic variants in DDX17. All 11 patients in our case series had a neurodevelopmental phenotype, whereby intellectual disability, delayed speech and language, and motor delay predominated. We performed in utero cortical electroporation in the brain of developing mice, assessing axon complexity and outgrowth of electroporated neurons, comparing wild-type and Ddx17 knockdown. We then undertook ex vivo cortical electroporation on neuronal progenitors to quantitatively assess axonal development at a single cell resolution. Mosaic ddx17 crispants and heterozygous knockouts in Xenopus tropicalis were generated for assessment of morphology, behavioural assays and neuronal outgrowth measurements. We further undertook transcriptomic analysis of neuroblastoma SH-SY5Y cells, to identify differentially expressed genes in DDX17-KD cells compared to controls. Knockdown of Ddx17 in electroporated mouse neurons in vivo showed delayed neuronal migration as well as decreased cortical axon complexity. Mouse primary cortical neurons revealed reduced axon outgrowth upon knockdown of Ddx17 in vitro. The axon outgrowth phenotype was replicated in crispant ddx17 tadpoles and in heterozygotes. Heterozygous tadpoles had clear neurodevelopmental defects and showed an impaired neurobehavioral phenotype. Transcriptomic analysis identified a statistically significant number of differentially expressed genes involved in neurodevelopmental processes in DDX17-KD cells compared to control cells. We have identified potential neurodevelopment disease-causing variants in a gene not previously associated with genetic disease, DDX17. We provide evidence for the role of the gene in neurodevelopment in both mammalian and non-mammalian species and in controlling the expression of key neurodevelopment genes.
Collapse
Affiliation(s)
- Eleanor G Seaby
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Translational Genomics Group, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Annie Godwin
- European Xenopus Resource Centre, School of Environmental and Life Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Géraldine Meyer-Dilhet
- Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR5261, INSERM U1315, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Valentine Clerc
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1293, Université Claude Bernard Lyon 1, Lyon 69007, France
| | - Xavier Grand
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1293, Université Claude Bernard Lyon 1, Lyon 69007, France
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Tia Fletcher
- European Xenopus Resource Centre, School of Environmental and Life Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Laloe Monteiro
- Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR5261, INSERM U1315, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Martijn Kerkhofs
- Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR5261, INSERM U1315, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, 40139, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna 40138, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, 40139, Italy
| | - Marco Seri
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Mina Grippa
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Stefano D’Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Maria Iascone
- Laboratorio di genetica Medica, Ospedale papà Giovanni XXIII, Bergamo 24127, Italy
| | - Marion Bermudez
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden 01307, Germany
| | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden 01307, Germany
| | - Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden 01307, Germany
| | - Sophie Goesswein
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden 01307, Germany
| | - Marco L Leung
- Departments of Pathology and Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel C Koboldt
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Cortlandt Myers
- Department of Pediatrics and Clinical Genetics, Nationwide Children’s Hospital and Ohio State University, Columbus, OH 43210, USA
| | | | | | | | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ange-Line Bruel
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon 21000, France
- INSERM UMR1231 GAD, Université de Bourgogne, Dijon 21000, France
| | - Frederic Tran-Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon 21000, France
- INSERM UMR1231 GAD, Université de Bourgogne, Dijon 21000, France
| | - Marjolaine Willems
- Medical Genetics Department, University Hospital of Montpellier, Montpellier 34295, France
| | - Hans Tomas Bjornsson
- Department of Genetic and Molecular Medicine, Landspitali Hospital, Reykjavik, IS-105, Iceland
| | - Hakon Bjorn Hognason
- Department of Genetic and Molecular Medicine, Landspitali Hospital, Reykjavik, IS-105, Iceland
| | | | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00146, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00146, Italy
| | - Giuseppe Zampino
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
- Medicine and Surgery School, Università Cattolica del S. Cuore, Rome 00168, Italy
| | - Roberta Onesimo
- Rare Diseases Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Katherine Lachlan
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton SO16 5YA, UK
| | - Diana Baralle
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Heidi L Rehm
- Translational Genomics Group, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anne O’Donnell-Luria
- Translational Genomics Group, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julien Courchet
- Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR5261, INSERM U1315, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Lyon 69008, France
| | - Matt Guille
- European Xenopus Resource Centre, School of Environmental and Life Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1293, Université Claude Bernard Lyon 1, Lyon 69007, France
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Altounian M, Bellon A, Mann F. Neuronal miR-17-5p contributes to interhemispheric cortical connectivity defects induced by prenatal alcohol exposure. Cell Rep 2023; 42:113020. [PMID: 37610874 DOI: 10.1016/j.celrep.2023.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Structural and functional deficits in brain connectivity are reported in patients with fetal alcohol spectrum disorders (FASDs), but whether and how prenatal alcohol exposure (PAE) affects axonal development of neurons and disrupts wiring between brain regions is unknown. Here, we develop a mouse model of moderate alcohol exposure during prenatal brain wiring to study the effects of PAE on corpus callosum (CC) development. PAE induces aberrant navigation of interhemispheric CC axons that persists even after exposure ends, leading to ectopic termination in the contralateral cortex. The neuronal miR-17-5p and its target ephrin type A receptor 4 (EphA4) mediate the effect of alcohol on the contralateral targeting of CC axons. Thus, altered microRNA-mediated regulation of axonal guidance may have implications for interhemispheric cortical connectivity and associated behaviors in FASD.
Collapse
Affiliation(s)
| | - Anaïs Bellon
- Aix Marseille University, INSERM, INMED, Marseille, France
| | - Fanny Mann
- Aix Marseille University, CNRS, IBDM, Marseille, France.
| |
Collapse
|
3
|
Zheng R, Pan Y, Liu X, Liu F, Li A, Zheng D, Luo Y. Comprehensive analysis of REST corepressors ( RCORs) in pan-cancer. Front Cell Dev Biol 2023; 11:1162344. [PMID: 37342230 PMCID: PMC10277624 DOI: 10.3389/fcell.2023.1162344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
REST corepressors (RCORs) are the core component of the LSD1/CoREST/HDACs transcriptional repressor complex, which have been revealed differently expressed in various cancers, but the therapeutic and prognostic mechanisms in cancer are still poorly understood. In this study, we analyzed expression, prognostic value, molecular subtypes, genetic alteration, immunotherapy response and drug sensitivity of RCORs in pan-cancer. Clinical correlation, stemness index, immune infiltration and regulatory networks of RCORs in hepatocellular carcinoma (HCC) were detected through TCGA and GSCA database. In-vitro experiments were conducted to explore the role of RCOR1 in HCC cells. The expression of RCORs varied among different cancers, and have prognostic values in several cancers. Cancer subtypes were categorized according to the expression of RCORs with clinical information. RCORs were significantly correlated with immunotherapy response, MSI, drug sensitivity and genetic alteration in pan-cancer. In HCC, RCORs were considered as potential predictor of stemness and also had association with immune infiltration. The ceRNA-TF-kinase regulatory networks of RCORs were constructed. Besides, RCOR1 acts as an oncogene in HCC and promotes the proliferation of HCC cells by inhibiting cell cycle arrest and cell apoptosis. Taken together, our study revealed the potential molecular mechanisms of RCORs in pan-cancer, offering a benchmark for disease-related research.
Collapse
Affiliation(s)
- Rong Zheng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
| | - Yingying Pan
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
| | - Xinhui Liu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
| | - Feiye Liu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
| | - Dayong Zheng
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
| | - Yue Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Zhang WH, Jiang L, Li M, Liu J. MicroRNA‑124: an emerging therapeutic target in central nervous system disorders. Exp Brain Res 2023; 241:1215-1226. [PMID: 36961552 PMCID: PMC10129929 DOI: 10.1007/s00221-022-06524-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 03/25/2023]
Abstract
The central nervous system (CNS) consists of neuron and non-neuron cells including neural stem/precursor cells (NSPCs), neuroblasts, glia cells (mainly astrocyte, oligodendroglia and microglia), which thereby form a precise and complicated network and exert diverse functions through interactions of numerous bioactive ingredients. MicroRNAs (miRNAs), with small size approximately ~ 21nt and as well-documented post-transcriptional key regulators of gene expression, are a cluster of evolutionarily conserved endogenous non-coding RNAs. More than 2000 different miRNAs has been discovered till now. MicroRNA-124(miR-124), the most brain-rich microRNA, has been validated to possess important functions in the central nervous system, including neural stem cell proliferation and differentiation, cell fate determination, neuron migration, synapse plasticity and cognition, cell apoptosis etc. According to recent studies, herein, we provide a review of this conversant miR-124 to further understand the potential functions and therapeutic and clinical value in brain diseases.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Lian Jiang
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Mei Li
- Department of Pediatrics, The 4th Hospital of Hebei Medical University, Shijiazhuang, 050010, China
| | - Jing Liu
- Department of Pediatrics, Chinese PLA Medical School/Chinese PLA General Hospital, Beijing, 100095, China.
- Department of Neonatology, Maternal and Child Health Hospital of Chaoyang District, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
6
|
Papadimitriou E, Koutsoudaki PN, Thanou I, Karagkouni D, Karamitros T, Chroni-Tzartou D, Gaitanou M, Gkemisis C, Margariti M, Xingi E, Tzartos SJ, Hatzigeorgiou AG, Thomaidou D. A miR-124-mediated post-transcriptional mechanism controlling the cell fate switch of astrocytes to induced neurons. Stem Cell Reports 2023; 18:915-935. [PMID: 36963393 PMCID: PMC10147664 DOI: 10.1016/j.stemcr.2023.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/26/2023] Open
Abstract
The microRNA (miRNA) miR-124 has been employed supplementary to neurogenic transcription factors (TFs) and other miRNAs to enhance direct neurogenic conversion. The aim of this study was to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced neurons (iNs) on its own and elucidate its independent mechanism of reprogramming action. Our data show that miR-124 is a potent driver of the reprogramming switch of astrocytes toward an immature neuronal fate by directly targeting the RNA-binding protein Zfp36L1 implicated in ARE-mediated mRNA decay and subsequently derepressing Zfp36L1 neurogenic interactome. To this end, miR-124 contribution in iNs' production largely recapitulates endogenous neurogenesis pathways, being further enhanced upon addition of the neurogenic compound ISX9, which greatly improves iNs' differentiation and functional maturation. Importantly, miR-124 is potent in guiding direct conversion of reactive astrocytes to immature iNs in vivo following cortical trauma, while ISX9 supplementation confers a survival advantage to newly produced iNs.
Collapse
Affiliation(s)
- Elsa Papadimitriou
- Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Paraskevi N Koutsoudaki
- Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Irini Thanou
- Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Dimitra Karagkouni
- DIANA-Lab, Hellenic Pasteur Institute & Department of Computer Science and Biomedical Informatics, University of Thessaly, Larissa, Greece
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Dafni Chroni-Tzartou
- Laboratory of Molecular Neurobiology and Immunology, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology - Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Christos Gkemisis
- Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Margariti
- Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Socrates J Tzartos
- Laboratory of Molecular Neurobiology and Immunology, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Artemis G Hatzigeorgiou
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Dimitra Thomaidou
- Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece; Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
7
|
Molecular Mechanisms Involved in the Regulation of Neurodevelopment by miR-124. Mol Neurobiol 2023; 60:3569-3583. [PMID: 36840845 DOI: 10.1007/s12035-023-03271-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
miR-124 is a miRNA predominantly expressed in the nervous system and accounts for more than a quarter of the total miRNAs in the brain. It regulates neurogenesis, neuronal differentiation, neuronal maturation, and synapse formation and is the most important miRNA in the brain. Furthermore, emerging evidence has suggested miR-124 may be associated with the pathogenesis of various neurodevelopmental and neuropsychiatric disorders. Here, we provide an overview of the role of miR-124 in neurodevelopment and the underling mechanisms, and finally, we prospect the significance of miR-124 research to the field of neuroscience.
Collapse
|
8
|
Jiang X, Liu S, Fu YR, Liu XJ, Li XJ, Yang B, Jiang HF, Shen ZZ, Alemu EA, Vazquez P, Tang Y, Kaarbø M, McVoy MA, Rayner S, Luo MH. Human cytomegalovirus infection perturbs neural progenitor cell fate via the expression of viral microRNAs. J Med Virol 2023; 95:e28574. [PMID: 36772841 DOI: 10.1002/jmv.28574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Human cytomegalovirus (HCMV) preferentially targets neural progenitor cells (NPCs) in congenitally infected fetal brains, inducing neurodevelopmental disorders. While HCMV expresses several microRNAs (miRNAs) during infection, their roles in NPC infection are unclear. Here, we characterized expression of cellular and viral miRNAs in HCMV-infected NPCs during early infection by microarray and identified seven differentially expressed cellular miRNAs and six significantly upregulated HCMV miRNAs. Deep learning approaches were used to identify potential targets of significantly upregulated HCMV miRNAs against differentially expressed cellular messenger RNA (mRNAs), and the associations with miRNA-mRNA expression changes were observed. Gene ontology enrichment analysis indicated cellular gene targets were significantly enriched in pathways involved in neurodevelopment and cell-cycle processes. Viral modulation of selected miRNAs and cellular gene targets involved in neurodevelopmental processes were further validated by real-time quantitative reverse transcription polymerase chain reaction. Finally, a predicted 3' untranslated region target site of hcmv-miR-US25-1 in Jag1, a factor important for neurogenesis, was confirmed by mutagenesis. Reduction of Jag1 RNA and protein levels in NPCs was observed in response to transient expression of hcmv-miR-US25-1. A hcmv-miR-US25-1 mutant virus (ΔmiR-US25) displayed limited ability to downregulate Jag1 mRNA levels and protein levels during the early infection stage compared with the wild type virus. Our collective experimental and computational investigation of miRNAs and cellular mRNAs expression in HCMV-infected NPCs yields new insights into the roles of viral miRNAs in regulating NPC fate and their contributions to HCMV neuropathogenesis.
Collapse
Affiliation(s)
- Xuan Jiang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangdong, China.,Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Siqing Liu
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ya-Ru Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, China
| | - Xi-Juan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Jun Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bo Yang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangdong, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hai-Fei Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhang-Zhou Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Medical School, Huangshi, China
| | | | - Pavel Vazquez
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Yaping Tang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangdong, China
| | - Mari Kaarbø
- Department of Microbiology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Brown W, Bardhan A, Darrah K, Tsang M, Deiters A. Optical Control of MicroRNA Function in Zebrafish Embryos. J Am Chem Soc 2022; 144:16819-16826. [PMID: 36073798 DOI: 10.1021/jacs.2c04479] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MicroRNAs play crucial and dynamic roles in vertebrate development and diseases. Some, like miR-430, are highly expressed during early embryo development and regulate hundreds of transcripts, which can make it difficult to study their role in the timing and location of specific developmental processes using conventional morpholino oligonucleotide (MO) knockdown or genetic deletion approaches. We demonstrate that light-activated circular morpholino oligonucleotides (cMOs) can be applied to the conditional control of microRNA function. We targeted miR-430 in zebrafish embryos to study its role in the development of the embryo body and the heart. Using 405 nm irradiation, precise spatial and temporal control over miR-430 function was demonstrated, offering insight into the cell populations and developmental timepoints involved in each process.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kristie Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
Yuan X, Sun L, Jeske R, Nkosi D, York SB, Liu Y, Grant SC, Meckes DG, Li Y. Engineering extracellular vesicles by three-dimensional dynamic culture of human mesenchymal stem cells. J Extracell Vesicles 2022; 11:e12235. [PMID: 35716062 PMCID: PMC9206229 DOI: 10.1002/jev2.12235] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Human mesenchymal stem cell (hMSC) derived extracellular vesicles (EVs) have shown therapeutic potential in recent studies. However, the corresponding therapeutic components are largely unknown, and scale-up production of hMSC EVs is a major challenge for translational applications. In the current study, hMSCs were grown as 3D aggregates under wave motion to promote EV secretion. Results demonstrate that 3D hMSC aggregates promote activation of the endosomal sorting complexes required for transport (ESCRT)-dependent and -independent pathways. mRNA sequencing revealed global transcriptome alterations for 3D hMSC aggregates. Compared to 2D-hMSC-EVs, the quantity of 3D-hMSC-EVs was enhanced significantly (by 2-fold), with smaller sizes, higher miR-21 and miR-22 expression, and an altered protein cargo (e.g., upregulation of cytokines and anti-inflammatory factors) uncovered by proteomics analysis, possibly due to altered EV biogenesis. Functionally, 3D-hMSC-EVs rejuvenated senescent stem cells and exhibited enhanced immunomodulatory potentials. In summary, this study provides a promising strategy for scalable production of high-quality EVs from hMSCs with enhanced therapeutic potential.
Collapse
Affiliation(s)
- Xuegang Yuan
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Present address:
Broad Stem Cell Research Center, David Geffen School of MedicineUniversity of California‐Los Angeles (UCLA)Los AngelesCAUSA
- The National High Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Richard Jeske
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Dingani Nkosi
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Sara B. York
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Yuan Liu
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Samuel C. Grant
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
- The National High Magnetic Field LaboratoryTallahasseeFloridaUSA
| | - David G. Meckes
- Department of Biomedical SciencesCollege of MedicineTallahasseeFloridaUSA
| | - Yan Li
- Department of Chemical and Biomedical EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
11
|
Tomasello U, Klingler E, Niquille M, Mule N, Santinha AJ, de Vevey L, Prados J, Platt RJ, Borrell V, Jabaudon D, Dayer A. miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation. Cell Rep 2022; 38:110381. [PMID: 35172154 PMCID: PMC8864305 DOI: 10.1016/j.celrep.2022.110381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cortical expansion in primate brains relies on enlargement of germinal zones during a prolonged developmental period. Although most mammals have two cortical germinal zones, the ventricular zone (VZ) and subventricular zone (SVZ), gyrencephalic species display an additional germinal zone, the outer subventricular zone (oSVZ), which increases the number and diversity of neurons generated during corticogenesis. How the oSVZ emerged during evolution is poorly understood, but recent studies suggest a role for non-coding RNAs, which allow tight genetic program regulation during development. Here, using in vivo functional genetics, single-cell RNA sequencing, live imaging, and electrophysiology to assess progenitor and neuronal properties in mice, we identify two oSVZ-expressed microRNAs (miRNAs), miR-137 and miR-122, which regulate key cellular features of cortical expansion. miR-137 promotes basal progenitor self-replication and superficial layer neuron fate, whereas miR-122 decreases the pace of neuronal differentiation. These findings support a cell-type-specific role of miRNA-mediated gene expression in cortical expansion. oSVZ-expressed microRNAs 137 and 122 promote superficial layer identity of neurons miR-137 promotes basal progenitor proliferation and layer 2/3 neuron generation miR-122 slows down neuronal differentiation pace
Collapse
Affiliation(s)
- Ugo Tomasello
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Esther Klingler
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Mathieu Niquille
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Nandkishor Mule
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Antonio J Santinha
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Laura de Vevey
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Julien Prados
- Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Victor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Clinic of Neurology, Geneva University Hospital, 1205 Geneva, Switzerland.
| | - Alexandre Dayer
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| |
Collapse
|
12
|
Darrah KE, Deiters A. Translational control of gene function through optically regulated nucleic acids. Chem Soc Rev 2021; 50:13253-13267. [PMID: 34739027 DOI: 10.1039/d1cs00257k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and in vivo models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level.
Collapse
Affiliation(s)
- Kristie E Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|
13
|
Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-dos-Santos C, de Souza TP, Souza Port’s NM, dos Santos Pinheiro JA, Ribeiro-dos-Santos Â, Vidal AF. Nuclear and Mitochondrial Genome, Epigenome and Gut Microbiome: Emerging Molecular Biomarkers for Parkinson's Disease. Int J Mol Sci 2021; 22:9839. [PMID: 34576000 PMCID: PMC8471599 DOI: 10.3390/ijms22189839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Collapse
Affiliation(s)
- Gleyce Fonseca Cabral
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ana Paula Schaan
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Giovanna C. Cavalcante
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Camille Sena-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Tatiane Piedade de Souza
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Natacha M. Souza Port’s
- Laboratório de Neurofarmacologia Molecular, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jhully Azevedo dos Santos Pinheiro
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará–R. dos Mundurucus, Belém 66073-000, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
| | - Amanda F. Vidal
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil; (G.F.C.); (A.P.S.); (G.C.C.); (C.S.-d.-S.); (T.P.d.S.); (J.A.d.S.P.)
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, R. Augusto Correa, Belém 66075-110, Brazil
- ITVDS—Instituto Tecnológico Vale Desenvolvimento Sustentável–R. Boaventura da Silva, Belém 66055-090, Brazil
| |
Collapse
|
14
|
Prieto-Colomina A, Fernández V, Chinnappa K, Borrell V. MiRNAs in early brain development and pediatric cancer: At the intersection between healthy and diseased embryonic development. Bioessays 2021; 43:e2100073. [PMID: 33998002 DOI: 10.1002/bies.202100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The size and organization of the brain are determined by the activity of progenitor cells early in development. Key mechanisms regulating progenitor cell biology involve miRNAs. These small noncoding RNA molecules bind mRNAs with high specificity, controlling their abundance and expression. The role of miRNAs in brain development has been studied extensively, but their involvement at early stages remained unknown until recently. Here, recent findings showing the important role of miRNAs in the earliest phases of brain development are reviewed, and it is discussed how loss of specific miRNAs leads to pathological conditions, particularly adult and pediatric brain tumors. Let-7 miRNA downregulation and the initiation of embryonal tumors with multilayered rosettes (ETMR), a novel link recently discovered by the laboratory, are focused upon. Finally, it is discussed how miRNAs may be used for the diagnosis and therapeutic treatment of pediatric brain tumors, with the hope of improving the prognosis of these devastating diseases.
Collapse
Affiliation(s)
- Anna Prieto-Colomina
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Virginia Fernández
- Neurobiology of miRNA, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Kaviya Chinnappa
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
15
|
Yan K, Niu L, Tian H, Su F, Chen Y. Long Noncoding RNA Maternally Expressed Gene 3 Targets miR-30b and Regulates the AKT Serine/Threonine Kinase 1/Phosphoinositide 3-Kinase Signaling Pathway of H2O2-Induced Proliferation, Apoptosis, and Oxidative Stress in Retinal Ganglion Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oxidative stress is an important factor affecting retinal ganglion cell (RGC) apoptosis. RGC apoptosis is the main pathophysiological feature of visual impairment as a result of glaucoma. Recently, it has been found that long noncoding RNA (lncRNA) and microRNAs are involved in RGC
apoptosis. Here, the function of lncRNA maternally expressed gene 3 (MEG3) and miR-30b in H2 O2-induced RGC proliferation, apoptosis, and oxidative stress was investigated. The expression levels of MEG3 and miR-30b were detected by RT-PCR; the effects of MEG3 and miR-30b
on the proliferation and apoptosis of RGCs were observed by flow cytometry; the levels of apoptosis-related proteins and AKT/PI3K signal pathway proteins were detected by protein immunoassay; and the regulation of miR-34a by pvt1 was verified by in vivo and in vitro experiments.
The expression of MEG3 and miR-30b increased and decreased significantly in RGCs treated by H2O2. MEG3 expression decreased, apoptosis level-related proteins decreased, the apoptosis rate reduced, and the activity of MDA and SOD decreased. When the expression of miR-34a
was inhibited, the proliferation rate of RGCs increased, the apoptosis rate decreased, and the level of apoptosis-related proteins decreased, which reversed MEG3’s effect on RGC apoptosis and proliferation. Furthermore, pvt1 could bind the miR-30b promoter and regulate it with in
vitro expression and in vivo expression. Besides, we found that miR-30b can regulate the AKT/PI3K signaling pathway and participate in cell apoptosis and hyperplasia in stress response. LncRNA MEG3 targets miR-30b and regulates the AKT/PI3K signaling pathway on H2 O2-induced
cell apoptosis, hyperplasia, and oxidative stress of RGCs.
Collapse
Affiliation(s)
- Kai Yan
- Department of Ophthalmology, School of Nursing, Pingdingshan Polytechnic College, Pingdingshan 467001, Henan, PR China
| | - Lin Niu
- Department of Rehabilitation, College of Medical Technology and Engineering, Zhengzhou Railway Vocational and Technical College, Zhengzhou 450000, Henan, PR China
| | - Huili Tian
- Pingdingshan Federation of Persons with Disabilities Low Vision Rehabilitation Centre, Pingdingshan 467000, Henan, PR China
| | - Fanfan Su
- Department of Ophthalmology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou 434020, Hubei, PR China
| | - Yao Chen
- Department of Ophthalmology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou 434020, Hubei, PR China
| |
Collapse
|
16
|
Castelli V, Antonucci I, d'Angelo M, Tessitore A, Zelli V, Benedetti E, Ferri C, Desideri G, Borlongan C, Stuppia L, Cimini A. Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model. Stem Cells Transl Med 2021; 10:251-266. [PMID: 33027557 PMCID: PMC7848376 DOI: 10.1002/sctm.20-0268] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Stem cells offer the basis for the promotion of robust new therapeutic approaches for a variety of human disorders. There are still many limitations to be overcome before clinical therapeutic application, including a better understanding of the mechanism by which stem cell therapies may lead to enhanced recovery. In vitro investigations are necessary to dissect the mechanisms involved and to support the potential development in stem cell-based therapies. In spite of growing interest in human amniotic fluid stem cells, not much is known about the characteristics of their secretome and regarding the potential neuroprotective mechanism in different pathologies, including stroke. To get more insight on amniotic fluid cells therapeutic potential, signal transduction pathways activated by human amniotic fluid stem cells (hAFSCs)-derived secretome in a stroke in vitro model (ischemia/reperfusion [I/R] model) were investigated by Western blot. Moreover, miRNA expression in the exosomal fraction of the conditioned medium was analyzed. hAFSCs-derived secretome was able to activate pro-survival and anti-apoptotic pathways. MicroRNA analysis in the exosomal component revealed a panel of 16 overexpressed miRNAs involved in the regulation of coherent signaling pathways. In particular, the pathways of relevance in ischemia/reperfusion, such as neurotrophin signaling, and those related to neuroprotection and neuronal cell death, were analyzed. The results obtained strongly point toward the neuroprotective effects of the hAFSCs-conditioned medium in the in vitro stroke model here analyzed. This can be achieved by the modulation and activation of pro-survival processes, at least in part, due to the activity of secreted miRNAs.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Ivana Antonucci
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences“G. d'Annunzio” UniversityChieti‐PescaraItaly
- Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ UniversityChieti‐PescaraItaly
| | - Michele d'Angelo
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences (DISCAB)University of L'AquilaL'AquilaItaly
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences (DISCAB)University of L'AquilaL'AquilaItaly
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Claudio Ferri
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | | | - Cesar Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida College of MedicineTampaFloridaUSA
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences“G. d'Annunzio” UniversityChieti‐PescaraItaly
- Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ UniversityChieti‐PescaraItaly
| | - Annamaria Cimini
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
- Sbarro Institute for Cancer Research and Molecular Medicine and Centre for BiotechnologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
17
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
18
|
An evolutionarily acquired microRNA shapes development of mammalian cortical projections. Proc Natl Acad Sci U S A 2020; 117:29113-29122. [PMID: 33139574 PMCID: PMC7682328 DOI: 10.1073/pnas.2006700117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mammalian central nervous system contains unique projections from the cerebral cortex thought to underpin complex motor and cognitive skills, including the corticospinal tract and corpus callosum. The neurons giving rise to these projections—corticospinal and callosal projection neurons—develop from the same progenitors, but acquire strikingly different fates. The broad evolutionary conservation of known genes controlling cortical projection neuron fates raises the question of how the more narrowly conserved corticospinal and callosal projections evolved. We identify a microRNA cluster selectively expressed by corticospinal projection neurons and exclusive to placental mammals. One of these microRNAs promotes corticospinal fate via regulation of the callosal gene LMO4, suggesting a mechanism whereby microRNA regulation during development promotes evolution of neuronal diversity. The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.
Collapse
|
19
|
Oliveira NCM, Lins ÉM, Massirer KB, Bengtson MH. Translational Control during Mammalian Neocortex Development and Postembryonic Neuronal Function. Semin Cell Dev Biol 2020; 114:36-46. [PMID: 33020045 DOI: 10.1016/j.semcdb.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
The control of mRNA translation has key roles in the regulation of gene expression and biological processes such as mammalian cellular differentiation and identity. Methodological advances in the last decade have resulted in considerable progress towards understanding how translational control contributes to the regulation of diverse biological phenomena. In this review, we discuss recent findings in the involvement of translational control in the mammalian neocortex development and neuronal biology. We focus on regulatory mechanisms that modulate translational efficiency during neural stem cells self-renewal and differentiation, as well as in neuronal-related processes such as synapse, plasticity, and memory.
Collapse
Affiliation(s)
- Natássia Cristina Martins Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Érico Moreto Lins
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; PhD Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP 13083-862, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Mário Henrique Bengtson
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil.
| |
Collapse
|
20
|
Bame M, McInnis MG, O'Shea KS. MicroRNA Alterations in Induced Pluripotent Stem Cell-Derived Neurons from Bipolar Disorder Patients: Pathways Involved in Neuronal Differentiation, Axon Guidance, and Plasticity. Stem Cells Dev 2020; 29:1145-1159. [PMID: 32438891 PMCID: PMC7469698 DOI: 10.1089/scd.2020.0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Bipolar disorder (BP) is a complex psychiatric condition characterized by severe fluctuations in mood for which underlying pathological mechanisms remain unclear. Family and twin studies have identified a hereditary component to the disorder, but a single causative gene (or set of genes) has not been identified. MicroRNAs (miRNAs) are small, noncoding RNAs ∼20 nucleotides in length, that are responsible for the posttranslational regulation of multiple genes. They have been shown to play important roles in neural development as well as in the adult brain, and several miRNAs have been reported to be dysregulated in postmortem brain tissue isolated from bipolar patients. Because there are no viable cellular models to study BP, we have taken advantage of the recent discovery that somatic cells can be reprogrammed to pluripotency then directed to form the full complement of neural cells. Analysis of RNAs extracted from Control and BP patient-derived neurons identified 58 miRNAs that were differentially expressed between the two groups. Using quantitative polymerase chain reaction we validated six miRNAs that were elevated and two miRNAs that were expressed at lower levels in BP-derived neurons. Analysis of the targets of the miRNAs indicate that they may regulate a number of cellular pathways, including axon guidance, Mapk, Ras, Hippo, Neurotrophin, and Wnt signaling. Many are involved in processes previously implicated in BP, such as cell migration, axon guidance, dendrite and synapse development, and function. We have validated targets of several different miRNAs, including AXIN2, BDNF, RELN, and ANK3 as direct targets of differentially expressed miRNAs using luciferase assays. Identification of pathways altered in patient-derived neurons suggests that disruption of these regulatory networks that may contribute to the complex phenotypes in BP.
Collapse
Affiliation(s)
- Monica Bame
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - K. Sue O'Shea
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Ravanidis S, Bougea A, Papagiannakis N, Koros C, Simitsi AM, Pachi I, Breza M, Stefanis L, Doxakis E. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. Ann Clin Transl Neurol 2020; 7:1594-1607. [PMID: 32860338 PMCID: PMC7480914 DOI: 10.1002/acn3.51146] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Objective There is a pressing need to identify and validate, minimally invasive, molecular biomarkers that will complement current practices and increase the diagnostic accuracy in Parkinson’s disease (PD). Brain‐enriched miRNAs regulate all aspects of neuron development and function; importantly, they are secreted by neurons in amounts that can be readily detected in the plasma. Τhe aim of the present study was to validate a set of previously identified brain‐enriched miRNAs with diagnostic potential for idiopathic PD and recognize the molecular pathways affected by these deregulated miRNAs. Methods RT‐qPCR was performed in the plasma of 92 healthy controls and 108 idiopathic PD subjects. Statistical and in silico analyses were used to validate deregulated miRNAs and pathways in PD, respectively. Results miR‐22‐3p, miR‐124‐3p, miR‐136‐3p, miR‐154‐5p, and miR‐323a‐3p levels were found to be differentially expressed between healthy controls and PD patients. miR‐330‐5p, miR‐433‐3p, and miR‐495‐3p levels were overall higher in male subjects. Most of these miRNAs are clustered at Chr14q32 displaying CREB1, CEBPB, and MAZ transcription factor binding sites. Gene Ontology annotation analysis of deregulated miRNA targets revealed that “Protein modification,” “Transcription factor activity,” and “Cell death” terms were over‐represented. Kyoto Encyclopedia of Genes and Genome analysis revealed that “Long‐term depression,” “TGF‐beta signaling,” and “FoxO signaling” pathways were significantly affected. Interpretation We validated a panel of brain‐enriched miRNAs that can be used along with other measures for the detection of PD, revealed molecular pathways targeted by these deregulated miRNAs, and identified upstream transcription factors that may be directly implicated in PD pathogenesis.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Anastasia Bougea
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Nikolaos Papagiannakis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Christos Koros
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Athina Maria Simitsi
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Ioanna Pachi
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Marianthi Breza
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| |
Collapse
|
22
|
Liu Y, Zhang Y. ETV5 is Essential for Neuronal Differentiation of Human Neural Progenitor Cells by Repressing NEUROG2 Expression. Stem Cell Rev Rep 2020; 15:703-716. [PMID: 31273540 DOI: 10.1007/s12015-019-09904-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural progenitor cells (NPCs) are multipotent cells that have the potential to produce neurons and glial cells in the neural system. NPCs undergo identity maintenance or differentiation regulated by different kinds of transcription factors. Here we present evidence that ETV5, which is an ETS transcription factor, promotes the generation of glial cells and drives the neuronal subtype-specific genes in newly differentiated neurons from the human embryonic stem cells-derived NPCs. Next, we find a new role for ETV5 in the repression of NEUROG2 expression in NPCs. ETV5 represses NEUROG2 transcription via NEUROG2 promoter and requires the ETS domain. We identify ETV5 has the binding sites and is implicated in silent chromatin in NEUROG2 promoter by chromatin immunoprecipitation (ChIP) assays. Further, NEUROG2 transcription repression by ETV5 was shown to be dependent on a transcriptional corepressor (CoREST). During NPC differentiation toward neurons, ETV5 represses NEUROG2 expression and blocks the appearance of glutamatergic neurons. This finding suggests that ETV5 negatively regulates NEUROG2 expression and increases the number of GABAergic subtype neurons derived from NPCs. Thus, ETV5 represents a potent new candidate protein with benefits for the generation of GABAergic neurons.
Collapse
Affiliation(s)
- Yang Liu
- School of Medicine, Tongji University, No.1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuanyuan Zhang
- School of Medicine, Tongji University, No.1239, Siping Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
23
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Rojo Arias JE, Busskamp V. Challenges in microRNAs' targetome prediction and validation. Neural Regen Res 2019; 14:1672-1677. [PMID: 31169173 PMCID: PMC6585557 DOI: 10.4103/1673-5374.257514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/14/2019] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules with important roles in post-transcriptional regulation of gene expression. In recent years, the predicted number of miRNAs has skyrocketed, largely as a consequence of high-throughput sequencing technologies becoming ubiquitous. This dramatic increase in miRNA candidates poses multiple challenges in terms of data deposition, curation, and validation. Although multiple databases containing miRNA annotations and targets have been developed, ensuring data quality by validating miRNA-target interactions requires the efforts of the research community. In order to generate databases containing biologically active miRNAs, it is imperative to overcome a multitude of hurdles, including restricted miRNA expression patterns, distinct miRNA biogenesis machineries, and divergent miRNA-mRNA interaction dynamics. In the present review, we discuss recent advances and limitations in miRNA prediction, identification, and validation. Lastly, we focus on the most enriched neuronal miRNA, miR-124, and its gene regulatory network in human neurons, which has been revealed using a combined computational and experimental approach.
Collapse
Affiliation(s)
| | - Volker Busskamp
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
25
|
Translating neural stem cells to neurons in the mammalian brain. Cell Death Differ 2019; 26:2495-2512. [PMID: 31551564 DOI: 10.1038/s41418-019-0411-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.
Collapse
|
26
|
Lambert MP, Terrone S, Giraud G, Benoit-Pilven C, Cluet D, Combaret V, Mortreux F, Auboeuf D, Bourgeois CF. The RNA helicase DDX17 controls the transcriptional activity of REST and the expression of proneural microRNAs in neuronal differentiation. Nucleic Acids Res 2019; 46:7686-7700. [PMID: 29931089 PMCID: PMC6125624 DOI: 10.1093/nar/gky545] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
The Repressor Element 1-silencing transcription factor (REST) represses a number of neuronal genes in non-neuronal cells or in undifferentiated neural progenitors. Here, we report that the DEAD box RNA helicase DDX17 controls important REST-related processes that are critical during the early phases of neuronal differentiation. First, DDX17 associates with REST, promotes its binding to the promoter of a subset of REST-targeted genes and co-regulates REST transcriptional repression activity. During neuronal differentiation, we observed a downregulation of DDX17 along with that of the REST complex that contributes to the activation of neuronal genes. Second, DDX17 and its paralog DDX5 regulate the expression of several proneural microRNAs that are known to target the REST complex during neurogenesis, including miR-26a/b that are also direct regulators of DDX17 expression. In this context, we propose a new mechanism by which RNA helicases can control the biogenesis of intronic miRNAs. We show that the processing of the miR-26a2 precursor is dependent on RNA helicases, owing to an intronic regulatory region that negatively impacts on both miRNA processing and splicing of its host intron. Our work places DDX17 in the heart of a pathway involving REST and miRNAs that allows neuronal gene repression.
Collapse
Affiliation(s)
- Marie-Pierre Lambert
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, INSERM U1210, CNRS UMR 5239, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Sophie Terrone
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, INSERM U1210, CNRS UMR 5239, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Guillaume Giraud
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, INSERM U1210, CNRS UMR 5239, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Clara Benoit-Pilven
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, INSERM U1210, CNRS UMR 5239, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - David Cluet
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, INSERM U1210, CNRS UMR 5239, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Valérie Combaret
- Laboratoire de Recherche Translationnelle, Centre Léon Bérard, F-69008 Lyon, France
| | - Franck Mortreux
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, INSERM U1210, CNRS UMR 5239, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, INSERM U1210, CNRS UMR 5239, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Universite de Lyon, INSERM U1210, CNRS UMR 5239, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, F-69007 Lyon, France
| |
Collapse
|
27
|
Santiago SE, Barnes AP. Neuronal Polarization Packs a One-Two Punch. Neuron 2019; 100:1007-1009. [PMID: 30521770 DOI: 10.1016/j.neuron.2018.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this issue of Neuron, Ambrozkiewicz et al. (2018) define a new molecular circuit controlling neuronal polarization and migration through the transcription factor SOX9 to coordinate the production of regulators of both protein synthesis and degradation.
Collapse
Affiliation(s)
- Sarah E Santiago
- Oregon Health and Science University, Knight Cardiovascular Institute, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Anthony P Barnes
- Oregon Health and Science University, Knight Cardiovascular Institute, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
28
|
Wu C, Zhang X, Chen P, Ruan X, Liu W, Li Y, Sun C, Hou L, Yin B, Qiang B, Shu P, Peng X. MicroRNA-129 modulates neuronal migration by targeting Fmr1 in the developing mouse cortex. Cell Death Dis 2019; 10:287. [PMID: 30911036 PMCID: PMC6433925 DOI: 10.1038/s41419-019-1517-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023]
Abstract
During cortical development, neuronal migration is one of the most important steps for normal cortical formation and function, and defects in this process cause many brain diseases. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we found that miR-129-5p and miR-129-3p were expressed in both neural progenitor cells and cortical neurons in the developing murine cortex. Moreover, abnormal miR-129 expression could block radial migration of both the deeper layer and upper layer neurons, and impair the multipolar to bipolar transition. However, antagomir-mediated inhibition resulted in overmigration of neurons. In addition, we showed that Fragile X Mental Retardation gene 1 (Fmr1), which is mutated in the autism spectrum disorder fragile X syndrome, is an important regulatory target for miR-129-5p. Furthermore, Fmr1 loss-of-function and gain-of-function experiments showed opposite effects on miR-129 regulation of neuronal migration, and restoring Fmr1 expression could counteract the deleterious effect of miR-129 on neuronal migration. Taken together, our results suggest that miR-129-5p could modulate the expression of fragile X mental retardation 1 protein (FMRP) to ensure normal neuron positioning in the developing cerebral cortex.
Collapse
Affiliation(s)
- Chao Wu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Xiaoling Zhang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Pan Chen
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Xiangbin Ruan
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Wei Liu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Yanchao Li
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Changjie Sun
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Lin Hou
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China
| | - Pengcheng Shu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China.
| | - Xiaozhong Peng
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primates Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, 650118, Kunming, China.
| |
Collapse
|
29
|
Beamer EH, Jurado-Arjona J, Jimenez-Mateos EM, Morgan J, Reschke CR, Kenny A, de Leo G, Olivos-Oré LA, Arribas-Blázquez M, Madden SF, Merchán-Rubira J, Delanty N, Farrell MA, O'Brien DF, Avila J, Diaz-Hernandez M, Miras-Portugal MT, Artalejo AR, Hernandez F, Henshall DC, Engel T. MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. Front Mol Neurosci 2018; 11:442. [PMID: 30618601 PMCID: PMC6298134 DOI: 10.3389/fnmol.2018.00442] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Prolonged seizures (status epilepticus, SE) may drive hippocampal dysfunction and epileptogenesis, at least partly, through an elevation in neurogenesis, dysregulation of migration and aberrant dendritic arborization of newly-formed neurons. MicroRNA-22 was recently found to protect against the development of epileptic foci, but the mechanisms remain incompletely understood. Here, we investigated the contribution of microRNA-22 to SE-induced aberrant adult neurogenesis. SE was induced by intraamygdala microinjection of kainic acid (KA) to model unilateral hippocampal neuropathology in mice. MicroRNA-22 expression was suppressed using specific oligonucleotide inhibitors (antagomir-22) and newly-formed neurons were visualized using the thymidine analog iodo-deoxyuridine (IdU) and a green fluorescent protein (GFP)-expressing retrovirus to visualize the dendritic tree and synaptic spines. Using this approach, we quantified differences in the rate of neurogenesis and migration, the structure of the apical dendritic tree and density and morphology of dendritic spines in newly-formed neurons.SE resulted in an increased rate of hippocampal neurogenesis, including within the undamaged contralateral dentate gyrus (DG). Newly-formed neurons underwent aberrant migration, both within the granule cell layer and into ectopic sites. Inhibition of microRNA-22 exacerbated these changes. The dendritic diameter and the density and average volume of dendritic spines were unaffected by SE, but these parameters were all elevated in mice in which microRNA-22 was suppressed. MicroRNA-22 inhibition also reduced the length and complexity of the dendritic tree, independently of SE. These data indicate that microRNA-22 is an important regulator of morphogenesis of newly-formed neurons in adults and plays a role in supressing aberrant neurogenesis associated with SE.
Collapse
Affiliation(s)
- Edward H Beamer
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jeronimo Jurado-Arjona
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro Investigación Biomédica en Red Enfermedades Neurodegenerativa (CIBERNED), Madrid, Spain
| | - Eva M Jimenez-Mateos
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James Morgan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cristina R Reschke
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - Aidan Kenny
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gioacchino de Leo
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Luis A Olivos-Oré
- Department of Pharmacology and Toxicology, Veterinary Faculty, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| | - Marina Arribas-Blázquez
- Department of Pharmacology and Toxicology, Veterinary Faculty, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jesús Merchán-Rubira
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro Investigación Biomédica en Red Enfermedades Neurodegenerativa (CIBERNED), Madrid, Spain
| | - Norman Delanty
- FutureNeuro Research Centre, RCSI, Dublin, Ireland.,Beaumont Hospital, Dublin, Ireland
| | | | | | - Jesus Avila
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro Investigación Biomédica en Red Enfermedades Neurodegenerativa (CIBERNED), Madrid, Spain
| | - Miguel Diaz-Hernandez
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - M Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio R Artalejo
- Department of Pharmacology and Toxicology, Veterinary Faculty, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| | - Felix Hernandez
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro Investigación Biomédica en Red Enfermedades Neurodegenerativa (CIBERNED), Madrid, Spain
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, RCSI, Dublin, Ireland
| |
Collapse
|
30
|
Abstract
The noncoding portion of the genome, including microRNAs, has been fertile evolutionary soil for cortical development in primates. A major contribution to cortical expansion in primates is the generation of novel precursor cell populations. Because miRNA expression profiles track closely with cell identity, it is likely that numerous novel microRNAs have contributed to cellular diversity in the brain. The tools to determine the genomic context within which novel microRNAs emerge and how they become integrated into molecular circuitry are now in hand.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Tomasz Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143, USA.,Department of Anatomy, University of California, San Francisco, California 94158, USA
| |
Collapse
|
31
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
32
|
Antoniou A, Khudayberdiev S, Idziak A, Bicker S, Jacob R, Schratt G. The dynamic recruitment of TRBP to neuronal membranes mediates dendritogenesis during development. EMBO Rep 2017; 19:embr.201744853. [PMID: 29263199 PMCID: PMC5835843 DOI: 10.15252/embr.201744853] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs are important regulators of local protein synthesis during neuronal development. We investigated the dynamic regulation of microRNA production and found that the majority of the microRNA‐generating complex, consisting of Dicer, TRBP, and PACT, specifically associates with intracellular membranes in developing neurons. Stimulation with brain‐derived neurotrophic factor (BDNF), which promotes dendritogenesis, caused the redistribution of TRBP from the endoplasmic reticulum into the cytoplasm, and its dissociation from Dicer, in a Ca2+‐dependent manner. As a result, the processing of a subset of neuronal precursor microRNAs, among them the dendritically localized pre‐miR16, was impaired. Decreased production of miR‐16‐5p, which targeted the BDNF mRNA itself, was rescued by expression of a membrane‐targeted TRBP. Moreover, miR‐16‐5p or membrane‐targeted TRBP expression blocked BDNF‐induced dendritogenesis, demonstrating the importance of neuronal TRBP dynamics for activity‐dependent neuronal development. We propose that neurons employ specialized mechanisms to modulate local gene expression in dendrites, via the dynamic regulation of microRNA biogenesis factors at intracellular membranes of the endoplasmic reticulum, which in turn is crucial for neuronal dendrite complexity and therefore neuronal circuit formation and function.
Collapse
Affiliation(s)
- Anna Antoniou
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Sharof Khudayberdiev
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Agata Idziak
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Silvia Bicker
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University of Marburg, Marburg, Germany
| | - Gerhard Schratt
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
33
|
Lennox AL, Mao H, Silver DL. RNA on the brain: emerging layers of post-transcriptional regulation in cerebral cortex development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28837264 DOI: 10.1002/wdev.290] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Embryonic development is a critical period during which neurons of the brain are generated and organized. In the developing cerebral cortex, this requires complex processes of neural progenitor proliferation, neuronal differentiation, and migration. Each step relies upon highly regulated control of gene expression. In particular, RNA splicing, stability, localization, and translation have emerged as key post-transcriptional regulatory nodes of mouse corticogenesis. Trans-regulators of RNA metabolism, including microRNAs (miRs) and RNA-binding proteins (RBPs), orchestrate diverse steps of cortical development. These trans-factors function either individually or cooperatively to influence RNAs, often of similar classes, termed RNA regulons. New technological advances raise the potential for an increasingly sophisticated understanding of post-transcriptional control in the developing neocortex. Many RNA-binding factors are also implicated in neurodevelopmental diseases of the cortex. Therefore, elucidating how RBPs and miRs converge to influence mRNA expression in progenitors and neurons will give valuable insights into mechanisms of cortical development and disease. WIREs Dev Biol 2018, 7:e290. doi: 10.1002/wdev.290 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory RNA Nervous System Development > Vertebrates: Regional Development Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease.
Collapse
Affiliation(s)
- Ashley L Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Hanqian Mao
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
34
|
Van den Ackerveken P, Mounier A, Huyghe A, Sacheli R, Vanlerberghe PB, Volvert ML, Delacroix L, Nguyen L, Malgrange B. The miR-183/ItgA3 axis is a key regulator of prosensory area during early inner ear development. Cell Death Differ 2017; 24:2054-2065. [PMID: 28777373 DOI: 10.1038/cdd.2017.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/15/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs are important regulators of gene expression and are involved in cellular processes such as proliferation or differentiation, particularly during development of numerous organs including the inner ear. However, it remains unknown if miRNAs are required during the earliest stages of otocyst and cochlear duct development. Here, we report that a conditional loss of Dicer expression in the otocyst impairs the early development of the inner ear as a result of the accumulation of DNA damage that trigger p53-mediated apoptosis. Moreover, cochlear progenitors in the prosensory domain do not exit the cell cycle. Our unbiased approach identified ItgA3 as a target of miR-183, which are both enriched in the otic vesicle. We observed that the repression of integrin alpha 3 by miR-183 controls cell proliferation in the developing cochlea. Collectively, our results reveal that Dicer and miRNAs play essential roles in the regulation of early inner ear development.
Collapse
Affiliation(s)
- Priscilla Van den Ackerveken
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Anaïs Mounier
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Aurelia Huyghe
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Rosalie Sacheli
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Pierre-Bernard Vanlerberghe
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Marie-Laure Volvert
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Laurence Delacroix
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| |
Collapse
|
35
|
Rajman M, Schratt G. MicroRNAs in neural development: from master regulators to fine-tuners. Development 2017; 144:2310-2322. [DOI: 10.1242/dev.144337] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proper formation and function of neuronal networks is required for cognition and behavior. Indeed, pathophysiological states that disrupt neuronal networks can lead to neurodevelopmental disorders such as autism, schizophrenia or intellectual disability. It is well-established that transcriptional programs play major roles in neural circuit development. However, in recent years, post-transcriptional control of gene expression has emerged as an additional, and probably equally important, regulatory layer. In particular, it has been shown that microRNAs (miRNAs), an abundant class of small regulatory RNAs, can regulate neuronal circuit development, maturation and function by controlling, for example, local mRNA translation. It is also becoming clear that miRNAs are frequently dysregulated in neurodevelopmental disorders, suggesting a role for miRNAs in the etiology and/or maintenance of neurological disease states. Here, we provide an overview of the most prominent regulatory miRNAs that control neural development, highlighting how they act as ‘master regulators’ or ‘fine-tuners’ of gene expression, depending on context, to influence processes such as cell fate determination, cell migration, neuronal polarization and synapse formation.
Collapse
Affiliation(s)
- Marek Rajman
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Gerhard Schratt
- Biochemisch-Pharmakologisches Centrum, Institut für Physiologische Chemie, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
36
|
Kos A, de Mooij-Malsen AJ, van Bokhoven H, Kaplan BB, Martens GJ, Kolk SM, Aschrafi A. MicroRNA-338 modulates cortical neuronal placement and polarity. RNA Biol 2017; 14:905-913. [PMID: 28494198 DOI: 10.1080/15476286.2017.1325067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The precise spatial and temporal regulation of gene expression orchestrates the many intricate processes during brain development. In the present study we examined the role of the brain-enriched microRNA-338 (miR-338) during mouse cortical development. Reduction of miR-338 levels in the developing mouse cortex, using a sequence-specific miR-sponge, resulted in a loss of neuronal polarity in the cortical plate and significantly reduced the number of neurons within this cortical layer. Conversely, miR-338 overexpression in developing mouse cortex increased the number of neurons, which exhibited a multipolar morphology. All together, our results raise the possibility for a direct role for this non-coding RNA, which was recently associated with schizophrenia, in the regulation of cortical neuronal polarity and layer placement.
Collapse
Affiliation(s)
- Aron Kos
- a Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Annetrude J de Mooij-Malsen
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands.,f Institute of Physiology, CAU Kiel University , Germany
| | - Hans van Bokhoven
- a Department of Cognitive Neuroscience , Radboud University Medical Center , Nijmegen , The Netherlands.,c Department of Human Genetics , Radboud University Medical Center , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Barry B Kaplan
- e Laboratory of Molecular Biology, National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA
| | - Gerard J Martens
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Sharon M Kolk
- b Department of Molecular Animal Physiology , Radboud University , Nijmegen , The Netherlands.,d Donders Institute for Brain, Cognition, and Behaviour , Centre for Neuroscience , Nijmegen , The Netherlands
| | - Armaz Aschrafi
- e Laboratory of Molecular Biology, National Institute of Mental Health , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
37
|
Venø MT, Venø ST, Rehberg K, van Asperen JV, Clausen BH, Holm IE, Pasterkamp RJ, Finsen B, Kjems J. Cortical Morphogenesis during Embryonic Development Is Regulated by miR-34c and miR-204. Front Mol Neurosci 2017; 10:31. [PMID: 28232790 PMCID: PMC5299138 DOI: 10.3389/fnmol.2017.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/26/2017] [Indexed: 01/26/2023] Open
Abstract
The porcine brain closely resembles the human brain in aspects such as development and morphology. Temporal miRNA profiling in the developing embryonic porcine cortex revealed a distinct set of miRNAs, including miR-34c and miR-204, which exhibited a highly specific expression profile across the time of cortical folding. These miRNAs were found to target Doublecortin (DCX), known to be involved in neuron migration during cortical folding of gyrencephalic brains. In vivo modulation of miRNA expression in mouse embryos confirmed that miR-34c and miR-204 can control neuronal migration and cortical morphogenesis, presumably by posttranscriptional regulation of DCX.
Collapse
Affiliation(s)
- Morten T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center, Aarhus University Aarhus, Denmark
| | - Susanne T Venø
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center, Aarhus University Aarhus, Denmark
| | - Kati Rehberg
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Jessy V van Asperen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Bettina H Clausen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark Odense, Denmark
| | - Ida E Holm
- Laboratory for Experimental Neuropathology, Department of Pathology, Randers Hospital Randers, Denmark
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Bente Finsen
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark Odense, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Interdisciplinary Nanoscience Center, Aarhus University Aarhus, Denmark
| |
Collapse
|
38
|
Huntingtin-Mediated Multipolar-Bipolar Transition of Newborn Cortical Neurons Is Critical for Their Postnatal Neuronal Morphology. Neuron 2017; 93:99-114. [DOI: 10.1016/j.neuron.2016.11.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/25/2016] [Accepted: 11/16/2016] [Indexed: 01/05/2023]
|
39
|
Quinlan S, Kenny A, Medina M, Engel T, Jimenez-Mateos EM. MicroRNAs in Neurodegenerative Diseases. MIRNAS IN AGING AND CANCER 2017; 334:309-343. [DOI: 10.1016/bs.ircmb.2017.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
de Miranda AS, Zhang CJ, Katsumoto A, Teixeira AL. Hippocampal adult neurogenesis: Does the immune system matter? J Neurol Sci 2016; 372:482-495. [PMID: 27838002 DOI: 10.1016/j.jns.2016.10.052] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/28/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
Abstract
Adult hippocampal neurogenesis involves proliferation, survival, differentiation and integration of newborn neurons into pre-existing neuronal networks. Although its functional significance in the central nervous system (CNS) has not comprehensively elucidated, adult neurogenesis has been attributed a role in cognition, learning and memory. There is a growing body of evidence that CNS resident as well as peripheral immune cells participate in regulating hippocampal adult neurogenesis. Microglial cells are closely associated with neural stem/progenitor cell (NSPC) in the neurogenic niche engaged in a bidirectional communication with neurons, which may be important for adult neurogenesis. Microglial and neuronal crosstalk is mediated in part by CX3CL1/CX3CR1 signaling and a disruption in this pathway has been associated with impaired neurogenesis. It has been also reported that microglial neuroprotective or neurotoxic effects in adult neurogenesis occur in a context-dependent manner. Apart from microglia other brain resident and peripheral immune cells including pericytes, perivascular macrophages, mast cells and T-cells also modulate this phenomenon. It is worth mentioning that under some physiological circumstances such as normal aging there is a significant decrease in hippocampal neurogenesis. A role for innate and adaptive immune system in adult neurogenesis has been also reported during aging. Here, we review the current evidence regarding neuro-immune interactions in the regulation of neurogenesis under distinct conditions, including aging.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Laboratory of Neurobiology "Conceição Machado", Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Cun-Jin Zhang
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Neurology, Key Laboratory of Neurorepair and Regeneration, Tianjin and Ministry of Education, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Atsuko Katsumoto
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Antônio Lúcio Teixeira
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
41
|
Tielens S, Huysseune S, Godin JD, Chariot A, Malgrange B, Nguyen L. Elongator controls cortical interneuron migration by regulating actomyosin dynamics. Cell Res 2016; 26:1131-1148. [PMID: 27670698 DOI: 10.1038/cr.2016.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/27/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
The migration of cortical interneurons is a fundamental process for the establishment of cortical connectivity and its impairment underlies several neurological disorders. During development, these neurons are born in the ganglionic eminences and they migrate tangentially to populate the cortical layers. This process relies on various morphological changes that are driven by dynamic cytoskeleton remodelings. By coupling time lapse imaging with molecular analyses, we show that the Elongator complex controls cortical interneuron migration in mouse embryos by regulating nucleokinesis and branching dynamics. At the molecular level, Elongator fine-tunes actomyosin forces by regulating the distribution and turnover of actin microfilaments during cell migration. Thus, we demonstrate that Elongator cell-autonomously promotes cortical interneuron migration by controlling actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Sylvia Tielens
- GIGA-Neurosciences, 4000 Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium
| | - Sandra Huysseune
- GIGA-Neurosciences, 4000 Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium
| | - Juliette D Godin
- GIGA-Neurosciences, 4000 Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium.,GIGA-Molecular Biology of Diseases, 4000 Liège, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, 4000 Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, 4000 Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), 4000 Liège, Belgium
| |
Collapse
|
42
|
Luoni A, Riva MA. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacol Ther 2016; 167:13-27. [PMID: 27452338 DOI: 10.1016/j.pharmthera.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
The emergence of psychiatric disorders relies on the interaction between genetic vulnerability and environmental adversities. Several studies have demonstrated a crucial role for epigenetics (e.g. DNA methylation, post-translational histone modifications and microRNA-mediated post-transcriptional regulation) in the translation of environmental cues into adult behavioural outcome, which can prove to be harmful thus increasing the risk to develop psychopathology. Within this frame, non-coding RNAs, especially microRNAs, came to light as pivotal regulators of many biological processes occurring in the Central Nervous System, both during the neuronal development as well as in the regulation of adult function, including learning, memory and neuronal plasticity. On these basis, in recent years it has been hypothesised a central role for microRNA modulation and expression regulation in many brain disorders, including neurodegenerative disorders and mental illnesses. Indeed, the aim of the present review is to present the most recent state of the art regarding microRNA involvement in psychiatric disorders. We will first describe the mechanisms that regulate microRNA biogenesis and we will report evidences of microRNA dysregulation in peripheral body fluids, in postmortem brain tissues from patients suffering from psychopathology as well as in animal models. Last, we will discuss the potential to consider microRNAs as putative target for pharmacological intervention, using common psychotropic drugs or more specific tools, with the aim to normalize functions that are disrupted in different psychiatric conditions.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
43
|
Xue Q, Yu C, Wang Y, Liu L, Zhang K, Fang C, Liu F, Bian G, Song B, Yang A, Ju G, Wang J. miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Sci Rep 2016; 6:26781. [PMID: 27221778 PMCID: PMC4879704 DOI: 10.1038/srep26781] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022] Open
Abstract
A single microRNA (miRNA) can regulate expression of multiple proteins, and expression of an individual protein may be controlled by numerous miRNAs. This regulatory pattern strongly suggests that synergistic effects of miRNAs play critical roles in regulating biological processes. miR-9 and miR-124, two of the most abundant miRNAs in the mammalian nervous system, have important functions in neuronal development. In this study, we identified the small GTP-binding protein Rap2a as a common target of both miR-9 and miR-124. miR-9 and miR-124 together, but neither miRNA alone, strongly suppressed Rap2a, thereby promoting neuronal differentiation of neural stem cells (NSCs) and dendritic branching of differentiated neurons. Rap2a also diminished the dendritic complexity of mature neurons by decreasing the levels of pAKT and pGSK3β. Our results reveal a novel pathway in which miR-9 and miR-124 synergistically repress expression of Rap2a to sustain homeostatic dendritic complexity during neuronal development and maturation.
Collapse
Affiliation(s)
- Qian Xue
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Caiyong Yu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wang
- Oral and maxillofacial surgery, Stomatology Hospital of Xi'an Jiaotong University, 710004, China
| | - Ling Liu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Chao Fang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Fangfang Liu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Ganlan Bian
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Bing Song
- Cardiff Institute of Tissue Engineering &Repair, School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK
| | - Angang Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Gong Ju
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Jian Wang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
44
|
Guven-Ozkan T, Busto GU, Schutte SS, Cervantes-Sandoval I, O'Dowd DK, Davis RL. MiR-980 Is a Memory Suppressor MicroRNA that Regulates the Autism-Susceptibility Gene A2bp1. Cell Rep 2016; 14:1698-1709. [PMID: 26876166 DOI: 10.1016/j.celrep.2016.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/26/2015] [Accepted: 01/09/2016] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs have been associated with many different biological functions, but little is known about their roles in conditioned behavior. We demonstrate that Drosophila miR-980 is a memory suppressor gene functioning in multiple regions of the adult brain. Memory acquisition and stability were both increased by miR-980 inhibition. Whole cell recordings and functional imaging experiments indicated that miR-980 regulates neuronal excitability. We identified the autism susceptibility gene, A2bp1, as an mRNA target for miR-980. A2bp1 levels varied inversely with miR-980 expression; memory performance was directly related to A2bp1 levels. In addition, A2bp1 knockdown reversed the memory gains produced by miR-980 inhibition, consistent with A2bp1 being a downstream target of miR-980 responsible for the memory phenotypes. Our results indicate that miR-980 represses A2bp1 expression to tune the excitable state of neurons, and the overall state of excitability translates to memory impairment or improvement.
Collapse
Affiliation(s)
- Tugba Guven-Ozkan
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Germain U Busto
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Soleil S Schutte
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Diane K O'Dowd
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
45
|
Wohl SG, Reh TA. miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Müller glia. Glia 2016; 64:743-62. [PMID: 26732729 DOI: 10.1002/glia.22958] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 01/21/2023]
Abstract
The Müller glia of fish provide a source for neuronal regeneration after injury, but they do not do so in mammals. We previously showed that lentiviral gene transfer of the transcription factor Achaete-scute homolog 1 (Ascl1/Mash1) in murine Müller glia cultures resulted in partial reprogramming of the cells to retinal progenitors. The microRNAs (miRNAs) miR-124-9-9* facilitate neuronal reprogramming of fibroblasts, but their role in glia reprogramming has not been reported. The aim of this study was to test whether (1) lentiviral gene transfer of miR-124-9-9* can reprogram Müller glia into retinal neurons and (2) miR-124-9-9* can improve Ascl1-induced reprogramming. Primary Müller glia cultures were generated from postnatal day (P) 11/12 mice, transduced with lentiviral particles, i.e., miR-124-9-9*-RFP, nonsense-RFP, Ascl1-GFP, or GFP-control. Gene expression and immunofluorescence analyses were performed within 3 weeks after infection. 1. Overexpression of miR-124-9-9* induced the expression of the proneural factor Ascl1 and additional markers of neurons, including TUJ1 and MAP2. 2. When Ascl1 and miR-124-9-9* were combined, 50 to 60% of Müller glia underwent neuronal reprogramming, whereas Ascl1 alone results in a 30 to 35% reprogramming rate. 3. Analysis of the miR-124-9-9* treated glial cells showed a reduction in the level of Ctdsp1 and Ptbp1, indicating a critical role for the REST pathway in the repression of neuronal genes in Müller glia. Our data further suggest that miR-124-9-9* and the REST complex may play a role in regulating the reprogramming of Müller glia to progenitors that underlies retinal regeneration in zebrafish.
Collapse
Affiliation(s)
| | - Thomas Andrew Reh
- Department of Biological Structure, University of Washington, Seattle, Washington
| |
Collapse
|
46
|
Tielens S, Godin JD, Nguyen L. Real-time Recordings of Migrating Cortical Neurons from GFP and Cre Recombinase Expressing Mice. ACTA ACUST UNITED AC 2016; 74:3.29.1-3.29.23. [PMID: 26729032 DOI: 10.1002/0471142301.ns0329s74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cerebral cortex is one of the most intricate regions of the brain that requires elaborate cell migration patterns for its development. Experimental observations show that projection neurons migrate radially within the cortical wall, whereas interneurons migrate along multiple tangential paths to reach the developing cortex. Tight regulation of the cell migration processes ensures proper positioning and functional integration of neurons to specific cerebral cortical circuits. Disruption of neuronal migration often leads to cortical dysfunction and/or malformation associated with neurological disorders. Unveiling the molecular control of neuron migration is thus fundamental to understanding the physiological or pathological development of the cerebral cortex. In this unit, protocols allowing detailed analysis of patterns of migration of both interneurons and projection neurons under different experimental conditions (i.e., loss or gain of function) are presented.
Collapse
Affiliation(s)
- Sylvia Tielens
- GIGA-Neurosciences, University of Liège, Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| | - Juliette D Godin
- GIGA-Neurosciences, University of Liège, Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège, Liège, Belgium.,Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Liège, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), University of Liège, Liège, Belgium
| |
Collapse
|
47
|
Swahari V, Nakamura A, Baran-Gale J, Garcia I, Crowther AJ, Sons R, Gershon TR, Hammond S, Sethupathy P, Deshmukh M. Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum. Cell Rep 2015; 14:216-24. [PMID: 26748703 DOI: 10.1016/j.celrep.2015.12.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/23/2015] [Accepted: 12/06/2015] [Indexed: 01/09/2023] Open
Abstract
Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.
Collapse
Affiliation(s)
- Vijay Swahari
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Ayumi Nakamura
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeanette Baran-Gale
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Idoia Garcia
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew J Crowther
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert Sons
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy R Gershon
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott Hammond
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Praveen Sethupathy
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mohanish Deshmukh
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Ohtaka-Maruyama C, Okado H. Molecular Pathways Underlying Projection Neuron Production and Migration during Cerebral Cortical Development. Front Neurosci 2015; 9:447. [PMID: 26733777 PMCID: PMC4682034 DOI: 10.3389/fnins.2015.00447] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Glutamatergic neurons of the mammalian cerebral cortex originate from radial glia (RG) progenitors in the ventricular zone (VZ). During corticogenesis, neuroblasts migrate toward the pial surface using two different migration modes. One is multipolar (MP) migration with random directional movement, and the other is locomotion, which is a unidirectional movement guided by the RG fiber. After reaching their final destination, the neurons finalize their migration by terminal translocation, which is followed by maturation via dendrite extension to initiate synaptogenesis and thereby complete neural circuit formation. This switching of migration modes during cortical development is unique in mammals, which suggests that the RG-guided locomotion mode may contribute to the evolution of the mammalian neocortical 6-layer structure. Many factors have been reported to be involved in the regulation of this radial neuronal migration process. In general, the radial migration can be largely divided into four steps; (1) maintenance and departure from the VZ of neural progenitor cells, (2) MP migration and transition to bipolar cells, (3) RG-guided locomotion, and (4) terminal translocation and dendrite maturation. Among these, many different gene mutations or knockdown effects have resulted in failure of the MP to bipolar transition (step 2), suggesting that it is a critical step, particularly in radial migration. Moreover, this transition occurs at the subplate layer. In this review, we summarize recent advances in our understanding of the molecular mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects of neuronal migration in corticogenesis.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| | - Haruo Okado
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| |
Collapse
|
49
|
Mainigi M, Rosenzweig JM, Lei J, Mensah V, Thomaier L, Talbot CC, Olalere D, Ord T, Rozzah R, Johnston MV, Burd I. Peri-Implantation Hormonal Milieu: Elucidating Mechanisms of Adverse Neurodevelopmental Outcomes. Reprod Sci 2015; 23:785-94. [PMID: 26614264 DOI: 10.1177/1933719115618280] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While live births resulting from assisted reproductive technology (ART) exceed 1% of total births annually, the effect of ART on fetal development is not well understood. Data have demonstrated that IVF leads to alterations in DNA methylation and gene expression in the placenta that may have long-term effects on health and disease. Studies have linked adverse neurodevelopmental outcomes to ART, although human studies are inconclusive. In order to isolate the peri-implantation environment and its effects on brain development, we utilized a mouse model with and without superovulation and examined the effect of adult behavior as well as adult cortical neuronal density. Adult offspring of superovulated dams showed increased anxiety-like behavior compared to offspring of naturally mated dams (P < .05). There was no difference in memory and learning tests between the 2 groups. The adult brains from offspring of superovulated recipients had fewer neurons per field compared to naturally mated control offspring (P < .05). In order to examine potential pathways leading to these changes, we measured messenger RNA and microRNA (miRNA) expression in fetal brains at E18.5. Microarray analysis found that miRNAs miR-122, miR-144, and miR-211, involved in regulation of neuronal migration and differentiation, were downregulated in brains of offspring exposed to a superovulated environment(P < .05). There was also altered expression of genes involved in neuronal development. These results suggest that the peri-implantation environment can affect neurodevelopment and can lead to behavioral changes in adulthood. Human studies with long-term follow-up of children from ART are necessary to further investigate the influence of ART on the offspring.
Collapse
Affiliation(s)
- Monica Mainigi
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jason M Rosenzweig
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Virginia Mensah
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren Thomaier
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C Conover Talbot
- Microarray Core, Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Devvora Olalere
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Teri Ord
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rayyan Rozzah
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael V Johnston
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neuroscience, Kennedy Krieger Institute, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neuroscience, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
50
|
Davis GM, Haas MA, Pocock R. MicroRNAs: Not "Fine-Tuners" but Key Regulators of Neuronal Development and Function. Front Neurol 2015; 6:245. [PMID: 26635721 PMCID: PMC4656843 DOI: 10.3389/fneur.2015.00245] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that operate as prominent post-transcriptional regulators of eukaryotic gene expression. miRNAs are abundantly expressed in the brain of most animals and exert diverse roles. The anatomical and functional complexity of the brain requires the precise coordination of multilayered gene regulatory networks. The flexibility, speed, and reversibility of miRNA function provide precise temporal and spatial gene regulatory capabilities that are crucial for the correct functioning of the brain. Studies have shown that the underlying molecular mechanisms controlled by miRNAs in the nervous systems of invertebrate and vertebrate models are remarkably conserved in humans. We endeavor to provide insight into the roles of miRNAs in the nervous systems of these model organisms and discuss how such information may be used to inform regarding diseases of the human brain.
Collapse
Affiliation(s)
- Gregory M. Davis
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Matilda A. Haas
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|