1
|
Chang HC, Yang CC, Loi LK, Hung CH, Wu CH, Lin YC. Interplay of p62-mTORC1 and EGFR signaling promotes cisplatin resistance in oral cancer. Heliyon 2024; 10:e28406. [PMID: 38560690 PMCID: PMC10979205 DOI: 10.1016/j.heliyon.2024.e28406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Cisplatin resistance poses a major challenge in the treatment of oral squamous cell carcinoma (OSCC). Deeper investigations into the mechanisms underlying this drug resistance is of great importance. Here, we used cellular assays and clinical immunohistochemistry to examine molecular pathways involved in both innate and acquired cisplatin resistance. We demonstrated that the p62-mTORC1 signaling complex plays a pivotal role, and is driven by the EGFR signaling network, specifically through the PI3K-Akt axis and the transcription factor C/EBP-β. Elevated p-mTOR expression was associated with cancer relapse and poor prognosis among oral cancer patients. Additionally, we illustrated that mTOR inhibitors enhance the cytotoxic effect of cisplatin, by employing cancer stem cell characteristics. Our work unveils fundamental mechanisms for cisplatin resistance, thereby presenting therapeutic implications for OSCC.
Collapse
Affiliation(s)
- Hsiu-Chuan Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lai-Keng Loi
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Hsun Hung
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hsien Wu
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Oral Medicine Innovation Center (OMIC), National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Vaishnavi A, Kinsey CG, McMahon M. Preclinical Modeling of Pathway-Targeted Therapy of Human Lung Cancer in the Mouse. Cold Spring Harb Perspect Med 2024; 14:a041385. [PMID: 37788883 PMCID: PMC10760064 DOI: 10.1101/cshperspect.a041385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Animal models, particularly genetically engineered mouse models (GEMMs), continue to have a transformative impact on our understanding of the initiation and progression of hematological malignancies and solid tumors. Furthermore, GEMMs have been employed in the design and optimization of potent anticancer therapies. Increasingly, drug responses are assessed in mouse models either prior, or in parallel, to the implementation of precision medical oncology, in which groups of patients with genetically stratified cancers are treated with drugs that target the relevant oncoprotein such that mechanisms of drug sensitivity or resistance may be identified. Subsequently, this has led to the design and preclinical testing of combination therapies designed to forestall the onset of drug resistance. Indeed, mouse models of human lung cancer represent a paradigm for how a wide variety of GEMMs, driven by a variety of oncogenic drivers, have been generated to study initiation, progression, and maintenance of this disease as well as response to drugs. These studies have now expanded beyond targeted therapy to include immunotherapy. We highlight key aspects of the relationship between mouse models and the evolution of therapeutic approaches, including oncogene-targeted therapies, immunotherapies, acquired drug resistance, and ways in which successful antitumor strategies improve on efficiently translating preclinical approaches into successful antitumor strategies in patients.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Conan G Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
3
|
Chang YS, Gills JJ, Kawabata S, Onozawa M, Della Gatta G, Ferrando AA, Aplan PD, Dennis PA. Inhibition of the NOTCH and mTOR pathways by nelfinavir as a novel treatment for T cell acute lymphoblastic leukemia. Int J Oncol 2023; 63:128. [PMID: 37800623 PMCID: PMC10609462 DOI: 10.3892/ijo.2023.5576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
T cell acute lymphoblastic leukemia (T‑ALL), a neoplasm derived from T cell lineage‑committed lymphoblasts, is characterized by genetic alterations that result in activation of oncogenic transcription factors and the NOTCH1 pathway activation. The NOTCH is a transmembrane receptor protein activated by γ‑secretase. γ‑secretase inhibitors (GSIs) are a NOTCH‑targeted therapy for T‑ALL. However, their clinical application has not been successful due to adverse events (primarily gastrointestinal toxicity), limited efficacy, and drug resistance caused by several mechanisms, including activation of the AKT/mTOR pathway. Nelfinavir is an human immunodeficiency virus 1 aspartic protease inhibitor and has been repurposed as an anticancer drug. It acts by inducing endoplasmic reticulum (ER) stress and inhibiting the AKT/mTOR pathway. Thus, it was hypothesized that nelfinavir might inhibit the NOTCH pathway via γ‑secretase inhibition and blockade of aspartic protease presenilin, which would make nelfinavir effective against NOTCH‑associated T‑ALL. The present study assessed the efficacy of nelfinavir against T‑ALL cells and investigated mechanisms of action in vitro and in preclinical treatment studies using a SCL‑LMO1 transgenic mouse model. Nelfinavir blocks presenilin 1 processing and inhibits γ‑secretase activity as well as the NOTCH1 pathway, thus suppressing T‑ALL cell viability. Additionally, microarray analysis of nelfinavir‑treated T‑ALL cells showed that nelfinavir upregulated mRNA levels of CHAC1 (glutathione‑specific γ‑glutamylcyclotransferase 1, a negative regulator of NOTCH) and sestrin 2 (SESN2; a negative regulator of mTOR). As both factors are upregulated by ER stress, this confirmed that nelfinavir induced ER stress in T‑ALL cells. Moreover, nelfinavir suppressed NOTCH1 mRNA expression in microarray analyses. These findings suggest that nelfinavir inhibited the NOTCH1 pathway by downregulating NOTCH1 mRNA expression, upregulating CHAC1 and suppressing γ‑secretase via presenilin 1 inhibition and the mTOR pathway by upregulating SESN2 via ER stress induction. Further, nelfinavir exhibited therapeutic efficacy against T‑ALL in an SCL‑LMO1 transgenic mouse model. Collectively, these findings highlight the potential of nelfinavir as a novel therapeutic candidate for treatment of patients with T‑ALL.
Collapse
Affiliation(s)
- Yoon Soo Chang
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joell J. Gills
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shigeru Kawabata
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Masahiro Onozawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Giusy Della Gatta
- Institute for Cancer Genetics and Joint Centers for Systems Biology, Columbia University, New York, NY 10032, USA
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics and Joint Centers for Systems Biology, Columbia University, New York, NY 10032, USA
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Phillip A. Dennis
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
5
|
Abstract
Rapamycin (sirolimus) and other rapalogs (everolimus) are anti-cancer and anti-aging drugs, which delay cancer by directly targeting pre-cancerous cells and, indirectly, by slowing down organism aging. Cancer is an age-related disease and, figuratively, by slowing down time (and aging), rapamycin may delay cancer. In several dozen murine models, rapamycin robustly and reproducibly prevents cancer. Rapamycin slows cell proliferation and tumor progression, thus delaying the onset of cancer in carcinogen-treated, genetically cancer-prone and normal mice. Data on the use of rapamycin and everolimus in organ-transplant patients are consistent with their cancer-preventive effects. Treatment with rapamycin was proposed to prevent lung cancer in smokers and former smokers. Clinical trials in high-risk populations are warranted.
Collapse
|
6
|
Wang Z, Xing Y, Li B, Li X, Liu B, Wang Y. Molecular pathways, resistance mechanisms and targeted interventions in non-small-cell lung cancer. MOLECULAR BIOMEDICINE 2022; 3:42. [PMID: 36508072 PMCID: PMC9743956 DOI: 10.1186/s43556-022-00107-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The discovery of tyrosine kinase inhibitors effectively targeting EGFR mutations in lung cancer patients in 2004 represented the beginning of the precision medicine era for this refractory disease. This great progress benefits from the identification of driver gene mutations, and after that, conventional and new technologies such as NGS further illustrated part of the complex molecular pathways of NSCLC. More targetable driver gene mutation identification in NSCLC patients greatly promoted the development of targeted therapy and provided great help for patient outcomes including significantly improved survival time and quality of life. Herein, we review the literature and ongoing clinical trials of NSCLC targeted therapy to address the molecular pathways and targeted intervention progress in NSCLC. In addition, the mutations in EGFR gene, ALK rearrangements, and KRAS mutations in the main sections, and the less common molecular alterations in MET, HER2, BRAF, ROS1, RET, and NTRK are discussed. The main resistance mechanisms of each targeted oncogene are highlighted to demonstrate the current dilemma of targeted therapy in NSCLC. Moreover, we discuss potential therapies to overcome the challenges of drug resistance. In this review, we manage to display the current landscape of targetable therapeutic patterns in NSCLC in this era of precision medicine.
Collapse
Affiliation(s)
- Zixi Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yurou Xing
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bingjie Li
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaoyu Li
- grid.412901.f0000 0004 1770 1022Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bin Liu
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Yongsheng Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
7
|
Gremke N, Polo P, Dort A, Schneikert J, Elmshäuser S, Brehm C, Klingmüller U, Schmitt A, Reinhardt HC, Timofeev O, Wanzel M, Stiewe T. mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability. Nat Commun 2020; 11:4684. [PMID: 32943635 PMCID: PMC7499183 DOI: 10.1038/s41467-020-18504-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cells have a characteristic metabolism, mostly caused by alterations in signal transduction networks rather than mutations in metabolic enzymes. For metabolic drugs to be cancer-selective, signaling alterations need to be identified that confer a druggable vulnerability. Here, we demonstrate that many tumor cells with an acquired cancer drug resistance exhibit increased sensitivity to mechanistically distinct inhibitors of cancer metabolism. We demonstrate that this metabolic vulnerability is driven by mTORC1, which promotes resistance to chemotherapy and targeted cancer drugs, but simultaneously suppresses autophagy. We show that autophagy is essential for tumor cells to cope with therapeutic perturbation of metabolism and that mTORC1-mediated suppression of autophagy is required and sufficient for generating a metabolic vulnerability leading to energy crisis and apoptosis. Our study links mTOR-induced cancer drug resistance to autophagy defects as a cause of a metabolic liability and opens a therapeutic window for the treatment of otherwise therapy-refractory tumor patients.
Collapse
Affiliation(s)
- Niklas Gremke
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Aaron Dort
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Jean Schneikert
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Corinna Brehm
- Institute of Pathology, Philipps-University, Marburg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Anna Schmitt
- Clinic for Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, German Cancer Consortium (DKTK), Essen, Germany
| | - Hans Christian Reinhardt
- Clinic for Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, German Cancer Consortium (DKTK), Essen, Germany
| | - Oleg Timofeev
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany.
- Genomics Core Facility, Philipps-University, Marburg, Germany.
| |
Collapse
|
8
|
Cong Y, Li Q, Zhang X, Chen Y, Yu K. mTOR Promotes Tissue Factor Expression and Activity in EGFR-Mutant Cancer. Front Oncol 2020; 10:1615. [PMID: 32923403 PMCID: PMC7456926 DOI: 10.3389/fonc.2020.01615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) signaling pathway mediates the function of oncogenic receptor tyrosine kinases (RTKs). We aimed to elucidate new role of mTOR in EGFR-mutant (EGFR-mut) non-small cell lung cancer (NSCLC) and glioblastoma (GBM) with a focus on tumor microenvironments. Here, we report a novel regulatory link between mTOR complexes (mTORCs) and tissue factor (TF), an initiator of tumor-derived thrombosis. TF is elevated in EGFR-mut NSCLC/GBM cell lines and tumors from patients with poor prognosis. Application of mTORC1/2 inhibitors (AZD8055, WYE-125132, MTI-31, and rapamycin) or genetic mTORC-depletion all reduced TF expression, which appeared to be differentially mediated depending on cellular context. In U87MG and HCC827 cells, mTORC1 exerted a dominant role via promoting TF mRNA transcription. In EGFR-TKI-resistant H1975 and PC9 cells, it was mTORC2 that played a major role in specific repression of lysosomal-targeted TF protein degradation. Successful inhibition of TF expression was demonstrated in AZD8055- or MTI-31-treated H1975 and U87MG tumors in mice, while a TF-targeted antibody antagonized TF activity without reducing TF protein. Both the mTOR- and TF-targeted therapy induced a multifaceted remodeling of tumor microenvironment reflecting not only a diminished hypercoagulopathy state (fibrin level) but also a reduced stromal fibrosis (collagen distribution), compromised vessel density and/or maturity (CD31 and/or α-SMA) as well as a substantially decreased infiltration of immune-suppressive M2-type tumor-associated macrophages (CD206/F4/80 ratio). Thus, our results have identified TF as a functional biomarker of mTOR. Downregulation of mTOR-TF axis activity likely contributes to the therapeutic mechanism of mTORC1/2- and TF-targeted agents in EGFR-mut advanced NSCLC and GBM.
Collapse
Affiliation(s)
- Ying Cong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Qingrou Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuesai Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yaqing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Ker Yu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
9
|
He H, Xu C, Cheng Z, Qian X, Zheng L. Drug Combinatorial Therapies for the Treatment of KRAS Mutated Lung Cancers. Curr Top Med Chem 2019; 19:2128-2142. [PMID: 31475900 DOI: 10.2174/1568026619666190902150555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
KRAS is the most common oncogene to be mutated in lung cancer, and therapeutics directly targeting KRAS have proven to be challenging. The mutations of KRAS are associated with poor prognosis, and resistance to both adjuvant therapy and targeted EGFR TKI. EGFR TKIs provide significant clinical benefit for patients whose tumors bear EGFR mutations. However, tumors with KRAS mutations rarely respond to the EGFR TKI therapy. Thus, combination therapy is essential for the treatment of lung cancers with KRAS mutations. EGFR TKI combined with inhibitors of MAPKs, PI3K/mTOR, HDAC, Wee1, PARP, CDK and Hsp90, even miRNAs and immunotherapy, were reviewed. Although the effects of the combination vary, the combined therapeutics are one of the best options at present to treat KRAS mutant lung cancer.
Collapse
Affiliation(s)
- Hao He
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Chang Xu
- National Vaccine & Serum Institute, Beijing, China
| | - Zhao Cheng
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xiaoying Qian
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lei Zheng
- School of Pharmacy, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY) 2019; 11:8048-8067. [PMID: 31586989 PMCID: PMC6814615 DOI: 10.18632/aging.102355] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022]
Abstract
From the dawn of civilization, humanity has dreamed of immortality. So why didn't the discovery of the anti-aging properties of mTOR inhibitors change the world forever? I will discuss several reasons, including fear of the actual and fictional side effects of rapamycin, everolimus and other clinically-approved drugs, arguing that no real side effects preclude their use as anti-aging drugs today. Furthermore, the alternative to the reversible (and avoidable) side effects of rapamycin/everolimus are the irreversible (and inevitable) effects of aging: cancer, stroke, infarction, blindness and premature death. I will also discuss why it is more dangerous not to use anti-aging drugs than to use them and how rapamycin-based drug combinations have already been implemented for potential life extension in humans. If you read this article from the very beginning to its end, you may realize that the time is now.
Collapse
|
11
|
Zhang Q, Zhang Y, Chen Y, Qian J, Zhang X, Yu K. A Novel mTORC1/2 Inhibitor (MTI-31) Inhibits Tumor Growth, Epithelial-Mesenchymal Transition, Metastases, and Improves Antitumor Immunity in Preclinical Models of Lung Cancer. Clin Cancer Res 2019; 25:3630-3642. [PMID: 30796032 DOI: 10.1158/1078-0432.ccr-18-2548] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE We aimed to investigate efficacy and mechanism of MTI-31 (LXI-15029), a novel mTORC1/mTORC2 inhibitor currently in human trial (NCT03125746), in non-small cell lung cancer (NSCLC) models of multiple driver mutations and tyrosine kinase inhibitor (TKI)-resistance. EXPERIMENTAL DESIGN Gene depletion, inhibitor treatment, immunological, flow cytometry, cellular, and animal studies were performed to determine in vitro and in vivo efficacy in NSCLC models of driver mutations and elucidate roles by mTOR complexes in regulating migration, epithelial-mesenchymal transition (EMT), metastasis, intracranial tumor growth, and immune-escape. RESULTS MTI-31 potently inhibited cell proliferation (IC50 <1 μmol/L) and in vivo tumor growth in multiple NSCLC models of EGFR/T790M, EML4-ALK, c-Met, or KRAS (MED <10 mg/kg). In EGFR-mutant and/or EML4-ALK-driven NSCLC, MTI-31 or disruption of mTORC2 reduced cell migration, hematogenous metastasis to the lung, and abrogated morphological and functional traits of EMT. Disruption of mTORC2 inhibited EGFR/T790M-positive tumor growth in mouse brain and prolonged animal survival correlating a diminished tumor angiogenesis and recruitment of IBA1+ microglia/macrophages in tumor microenvironment. MTI-31 also suppressed programmed death ligand 1 (PD-L1) in EGFR- and ALK-driven NSCLC, mediated in part by mTORC2/AKT/GSK3β-dependent proteasomal degradation. Depletion of mTOR protein or disruption of mTOR complexes profoundly downregulated PD-L1 and alleviated apoptosis in Jurkat T and primary human T cells in a tumor-T cell coculture system. CONCLUSIONS Our results highlight mTOR as a multifaceted regulator of tumor growth, metastasis, and immune-escape in EGFR/ALK-mutant and TKI-resistant NSCLC cells. The newly characterized mechanisms mediated by the rapamycin-resistant mTORC2 warrant clinical investigation of mTORC1/mTORC2 inhibitors in patients with lung cancer.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Yan Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Yaqing Chen
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Jianchang Qian
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Xuesai Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China.
| |
Collapse
|
12
|
Sukrithan V, Deng L, Barbaro A, Cheng H. Emerging drugs for EGFR-mutated non-small cell lung cancer. Expert Opin Emerg Drugs 2018; 24:5-16. [PMID: 30570396 DOI: 10.1080/14728214.2018.1558203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent the standard of care for patients with metastatic non-small-cell lung cancer (NSCLC) harboring sensitizing EGFR mutations. However, these agents are associated with inevitable treatment resistance. Newer generations of TKIs are under development that may prevent or overcome resistance and enhance intracranial activity. Areas covered: In this review, we will discuss newer generations of EGFR TKIs for EGFR-mutated NSCLC. We will also address resistance mutations and escape pathways associated with these agents such as secondary mutations, downstream signaling, bypass pathways, phenotypic transformation, anti-apoptotic signaling, immune evasion, and angiogenesis. Furthermore, this article encompasses emerging data from combination trials with next-generation TKIs that are being pursued to delay or prevent the occurrence of resistance. Expert opinion: The promise and challenge of precision oncology is encapsulated in the treatment of EGFR-mutated NSCLC with TKIs. Third generation TKIs have shown superior efficacy in the front-line setting and have become standard of care. A better understanding of mechanisms of treatment failure and disease relapse will be required to develop novel therapeutic strategies to further improve patient outcomes in the future.
Collapse
Affiliation(s)
- Vineeth Sukrithan
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Lei Deng
- b Department of Medicine , Jacobi Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Alexander Barbaro
- c Department of Medicine , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Haiying Cheng
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
13
|
Liang SQ, Bührer ED, Berezowska S, Marti TM, Xu D, Froment L, Yang H, Hall SRR, Vassella E, Yang Z, Kocher GJ, Amrein MA, Riether C, Ochsenbein AF, Schmid RA, Peng RW. mTOR mediates a mechanism of resistance to chemotherapy and defines a rational combination strategy to treat KRAS-mutant lung cancer. Oncogene 2018; 38:622-636. [PMID: 30171261 DOI: 10.1038/s41388-018-0479-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/17/2023]
Abstract
Oncogenic KRAS mutations comprise the largest subset of lung cancer defined by genetic alterations, but in the clinic no targeted therapies are available that effectively control mutational KRAS activation. Consequently, patients with KRAS-driven tumors are routinely treated with cytotoxic chemotherapy, which is often transiently effective owing to development of drug resistance. In this study, we show that hyperactivated mammalian target of rapamycin (mTOR) pathway is a characteristic hallmark of KRAS-mutant lung adenocarcinoma after chemotherapy treatment, and that KRAS-mutant lung cancer cells rely on persistent mTOR signaling to resist chemotherapeutic drugs. Coherently, mTOR inhibition circumvents the refractory phenotype and restores sensitivity of resistant KRAS-mutant lung cancer cells to chemotherapy. Importantly, drug combinations of clinically approved mTOR inhibitors and chemotherapy drugs synergize in inhibiting cell proliferation of KRAS-mutant cancer cells in vitro and in vivo, and the efficacy of this combination treatment correlates with the magnitude of mTOR activity induced by chemotherapy alone. These results pinpoint mTOR as a mechanism of resistance to chemotherapy in KRAS-mutant lung cancer and validate a rational and readily translatable strategy that combines mTOR inhibitors with standard chemotherapy to treat KRAS-mutant adenocarcinoma, the most common and deadliest lung cancer subset.
Collapse
Affiliation(s)
- Shun-Qing Liang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Elias D Bührer
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Thomas M Marti
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Duo Xu
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Laurène Froment
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Haitang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sean R R Hall
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Zhang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Gregor J Kocher
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michael A Amrein
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Carsten Riether
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland. .,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland. .,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
14
|
Chiang CT, Demetriou AN, Ung N, Choudhury N, Ghaffarian K, Ruderman DL, Mumenthaler SM. mTORC2 contributes to the metabolic reprogramming in EGFR tyrosine-kinase inhibitor resistant cells in non-small cell lung cancer. Cancer Lett 2018; 434:152-159. [PMID: 30036610 PMCID: PMC7443389 DOI: 10.1016/j.canlet.2018.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
Abstract
Non-small cell lung cancer (NSCLC) patients with activating EGFR mutations are often successfully treated with EGFR tyrosine kinase inhibitor (TKI) such as erlotinib; however, treatment resistance inevitably occurs. Given tumor metabolism of glucose and therapeutic response are intimately linked, we explored the metabolic differences between isogenic erlotinib-sensitive and -resistant NSCLC cell lines. We discovered that the growth of erlotinib-resistant cells is more sensitive to glucose deprivation. Seahorse metabolic assay revealed erlotinib-resistant cells have lower spare respiratory capacity (SRC), an indicator of metabolic flexibility, compared to erlotinib-sensitive cells. Additionally, we found downstream components of mTORC2 signaling to be phosphorylated in erlotinib-resistant cells. Knockdown of an mTORC2 component, Rictor, enhanced the SRC and rescued the growth rate of erlotinib-resistant cells during glucose deprivation. Among NSCLCs with activating EGFR mutations, gene sets involved in glucose metabolism were enriched in patients with high expression of p-NDGR1, a readout of mTORC2 activity. Furthermore, overall survival was negatively correlated with p-NDRG1. Our work uncovers a link between mTORC2 and metabolic reprogramming in EGFR TKI-resistant cells and highlights the significance of mTORC2 in the progression of EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Chun-Te Chiang
- Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Alexandra N Demetriou
- Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Nolan Ung
- Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Niharika Choudhury
- Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Kimya Ghaffarian
- Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Daniel L Ruderman
- Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Abstract
The expanding spectrum of both established and candidate oncogenic driver mutations identified in non-small-cell lung cancer (NSCLC), coupled with the increasing number of clinically available signal transduction pathway inhibitors targeting these driver mutations, offers a tremendous opportunity to enhance patient outcomes. Despite these molecular advances, advanced-stage NSCLC remains largely incurable due to therapeutic resistance. In this Review, we discuss alterations in the targeted oncogene ('on-target' resistance) and in other downstream and parallel pathways ('off-target' resistance) leading to resistance to targeted therapies in NSCLC, and we provide an overview of the current understanding of the bidirectional interactions with the tumour microenvironment that promote therapeutic resistance. We highlight common mechanistic themes underpinning resistance to targeted therapies that are shared by NSCLC subtypes, including those with oncogenic alterations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1), serine/threonine-protein kinase b-raf (BRAF) and other less established oncoproteins. Finally, we discuss how understanding these themes can inform therapeutic strategies, including combination therapy approaches, and overcome the challenge of tumour heterogeneity.
Collapse
Affiliation(s)
- Julia Rotow
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
- Cellular and Molecular Pharmacology, University of California San Francisco, Box 2140, San Francisco, California 94158, USA
| |
Collapse
|
16
|
Matsuoka H, Kaneda H, Sakai K, Koyama A, Nishio K, Nakagawa K. Clinical Response to Everolimus of EGFR–Mutation-Positive NSCLC With Primary Resistance to EGFR TKIs. Clin Lung Cancer 2017; 18:e85-e87. [DOI: 10.1016/j.cllc.2016.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022]
|
17
|
Targeting the Mammalian Target of Rapamycin in Lung Cancer. Am J Med Sci 2016; 352:507-516. [PMID: 27865299 DOI: 10.1016/j.amjms.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/09/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite advances in its prevention and management, the prognosis of patients with lung cancer remains poor. Therefore, much attention is being given to factors that contribute to the development of this disease, the mechanisms that drive oncogenesis and tumor progression and the search for novel targets that could lead to the development of more effective treatments. One cellular pathway implicated in lung cancer development and progression is that of the mammalian target of rapamycin. Studies involving human tissues have linked lung cancer with abnormalities in this pathway. Furthermore, studies in vitro and in vivo using animal models of lung cancer reveal that targeting this pathway might represent an effective means of treating this disease. As a result, there is significant effort invested in the development of drugs targeting mammalian target of rapamycin and related pathways in the clinical setting.
Collapse
|
18
|
Abstract
The movement toward precision medicine with targeted therapeutics for cancer treatment has been hindered by both innate and acquired resistance. Understanding the molecular wiring and plasticity of oncogenic signaling networks is essential to the development of therapeutic strategies to avoid or overcome resistance. The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) represents a highly integrated signaling node that is dysregulated in the majority of human cancers. Several studies have revealed that sustained mTORC1 inhibition is essential to avoid resistance to targeted therapeutics against the driving oncogenic pathway in a given cancer. Here we discuss the role of mTORC1 in dictating the response of tumors to targeted therapeutics and review recent examples from lung cancer, breast cancer, and melanoma.
Collapse
Affiliation(s)
- Erika Ilagan
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
19
|
Abstract
As cancer has become increasingly prevalent, cancer prevention research has evolved towards placing a greater emphasis on reducing cancer deaths and minimizing the adverse consequences of having cancer. 'Precision cancer prevention' takes into account the collaboration of intrinsic and extrinsic factors in influencing cancer incidence and aggressiveness in the context of the individual, as well as recognizing that such knowledge can improve early detection and enable more accurate discrimination of cancerous lesions. However, mouse models, and particularly genetically engineered mouse (GEM) models, have yet to be fully integrated into prevention research. In this Opinion article, we discuss opportunities and challenges for precision mouse modelling, including the essential criteria of mouse models for prevention research, representative success stories and opportunities for more refined analyses in future studies.
Collapse
Affiliation(s)
| | - Aditya Dutta
- Department of Urology, Columbia University Medical Center, New York, NY 10032
| | - Cory Abate-Shen
- Department of Urology, Columbia University Medical Center, New York, NY 10032
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032
- Department of Institute of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032
- Corresponding author: Cory Abate-Shen, Columbia University Medical Center, 1130 St. Nicholas Ave., New York, NY 10032, (CAS) Phone: (212) 851-4731; fax: (212) 851-4787;
| |
Collapse
|
20
|
Bjaanæs MM, Fleischer T, Halvorsen AR, Daunay A, Busato F, Solberg S, Jørgensen L, Kure E, Edvardsen H, Børresen-Dale AL, Brustugun OT, Tost J, Kristensen V, Helland Å. Genome-wide DNA methylation analyses in lung adenocarcinomas: Association with EGFR, KRAS and TP53 mutation status, gene expression and prognosis. Mol Oncol 2016; 10:330-43. [PMID: 26601720 PMCID: PMC5528958 DOI: 10.1016/j.molonc.2015.10.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/25/2015] [Accepted: 10/28/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND DNA methylation alterations are early events in tumorigenesis and important in the regulation of gene expression in cancer cells. Lung cancer patients have in general a poor prognosis, and a deeper insight into the epigenetic landscape in lung adenocarcinoma tumors and its prognostic implications is needed. RESULTS We determined whole-genome DNA methylation profiles of 164 fresh frozen lung adenocarcinoma samples and 19 samples of matched normal lung tissue using the Illumina Infinium 450K array. A large number of differentially methylated CpGs in lung adenocarcinoma tissue were identified, and specific methylation profiles were observed in tumors with mutations in the EGFR-, KRAS- or TP53 genes and according to the patients' smoking status. The methylation levels were correlated with gene expression and both positive and negative correlations were seen. Methylation profiles of the tumor samples identified subtypes of tumors with distinct prognosis, including one subtype enriched for TP53 mutant tumors. A prognostic index based on the methylation levels of 33 CpGs was established, and was significantly associated with prognosis in the univariate analysis using an independent cohort of lung adenocarcinoma patients from The Cancer Genome Atlas project. CpGs in the HOX B and HOX C gene clusters were represented in the prognostic signature. CONCLUSIONS Methylation differences mirror biologically important features in the etiology of lung adenocarcinomas and influence prognosis.
Collapse
Affiliation(s)
- Maria Moksnes Bjaanæs
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Thomas Fleischer
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; The K.G. Jebsen Censtre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
| | - Ann Rita Halvorsen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Antoine Daunay
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, 75010 Paris, France.
| | - Florence Busato
- Laboratory for Epigenetics and Environment (LEE), Centre National de Génotypage, CEA - Institut de Génomique, 91000 Evry, France.
| | - Steinar Solberg
- Department of Cardiothoracic Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| | - Lars Jørgensen
- Department of Cardiothoracic Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| | - Elin Kure
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Hege Edvardsen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.
| | - Odd Terje Brustugun
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment (LEE), Centre National de Génotypage, CEA - Institut de Génomique, 91000 Evry, France.
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; The K.G. Jebsen Censtre for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.
| | - Åslaug Helland
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway; Department of Oncology, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.
| |
Collapse
|
21
|
Wang L, Wang R. Effect of rapamycin (RAPA) on the growth of lung cancer and its mechanism in mice with A549. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9208-9213. [PMID: 26464668 PMCID: PMC4583900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the effects of rapamycin (RAPA) on the tumor growth of lung cancer in the mice bearing A549 and the mechanisms. METHODS 60 mice with A549 lung cancer models established were randomly divided into model group, low RAPA dose group and high RAPA dose group. The low dose group underwent intraperitoneal injection of 1.5 mg/kg RAPA, while the high dose group underwent intraperitoneal injection of 4.5 mg/kg RAPA, and the control group was given the same volume of PBS. 21 d after the administration, the changes of the tumor growth and survival rates of three groups were observed. RT-PCR and Western blot were utilized to analyze Caspase-3 mRNA and protein levels in the tumor tissues of the mice, and TUNEL staining method was used to analyze the cellular apoptosis of tumor tissues. RESULTS Compared with the model group, the low and high dose groups significantly inhibit tumor growth and have remarkably higher survival rates (P<0.05). The high dose group has obviously better effects on inhibiting tumors and a higher survival rate than low dose group (P<0.05). Compared with the model group, the low and high dose groups have significantly increased Caspase-3 mRNA and protein levels in tumor tissues (P<0.05), and higher cellular apoptosis rates in tumor tissues (P<0.05); Caspase-3 mRNA and protein levels and apoptosis rates of the mice's tumor tissues of high dose group are markedly higher than those of low dose group (P<0.05). CONCLUSIONS RAPA can significantly increase the expression of Caspase-3 in tumor tissues and promote the apoptosis of tumor tissue cells, and thus achieve good anti-tumor effects.
Collapse
Affiliation(s)
- Linmei Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou 450014, P. R. China
| | - Ruiling Wang
- Luoyang Normal UniversityLuoyang 471022, P. R. China
| |
Collapse
|
22
|
Kawabata S, Christine Hollander M, Munasinghe JP, Brinster LR, Mercado-Matos JR, Li J, Regales L, Pao W, Jänne PA, Wong KK, Butman JA, Lonser RR, Hansen MR, Gurgel RK, Vortmeyer AO, Dennis PA. Epidermal growth factor receptor as a novel molecular target for aggressive papillary tumors in the middle ear and temporal bone. Oncotarget 2015; 6:11357-68. [PMID: 26027747 PMCID: PMC4484461 DOI: 10.18632/oncotarget.3605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/13/2015] [Indexed: 01/11/2023] Open
Abstract
Adenomatous tumors in the middle ear and temporal bone are rare but highly morbid because they are difficult to detect prior to the development of audiovestibular dysfunction. Complete resection is often disfiguring and difficult because of location and the late stage at diagnosis, so identification of molecular targets and effective therapies is needed. Here, we describe a new mouse model of aggressive papillary ear tumor that was serendipitously discovered during the generation of a mouse model for mutant EGFR-driven lung cancer. Although these mice did not develop lung tumors, 43% developed head tilt and circling behavior. Magnetic resonance imaging (MRI) scans showed bilateral ear tumors located in the tympanic cavity. These tumors expressed mutant EGFR as well as active downstream targets such as Akt, mTOR and ERK1/2. EGFR-directed therapies were highly effective in eradicating the tumors and correcting the vestibular defects, suggesting these tumors are addicted to EGFR. EGFR activation was also observed in human ear neoplasms, which provides clinical relevance for this mouse model and rationale to test EGFR-targeted therapies in these rare neoplasms.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenoma/drug therapy
- Adenoma/metabolism
- Adenoma/pathology
- Animals
- Antineoplastic Agents/pharmacology
- Behavior, Animal
- Drug Design
- Ear Neoplasms/drug therapy
- Ear Neoplasms/genetics
- Ear Neoplasms/metabolism
- Ear Neoplasms/pathology
- Ear, Middle/drug effects
- Ear, Middle/metabolism
- Ear, Middle/pathology
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Genotype
- Humans
- Magnetic Resonance Imaging
- Male
- Mice, Transgenic
- Molecular Targeted Therapy
- Motor Activity
- Mutation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Phenotype
- Promoter Regions, Genetic
- Pulmonary Surfactant-Associated Protein C/genetics
- Signal Transduction/drug effects
- Skull Neoplasms/drug therapy
- Skull Neoplasms/metabolism
- Skull Neoplasms/pathology
- Temporal Bone/drug effects
- Temporal Bone/metabolism
- Temporal Bone/pathology
- Uteroglobin/genetics
- Uteroglobin/metabolism
- X-Ray Microtomography
Collapse
Affiliation(s)
- Shigeru Kawabata
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Christine Hollander
- Medical Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Present address: Laboratory of Cancer Biology and Genetics, CCR, NCI, Bethesda, MD, USA
| | - Jeeva P. Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA
| | | | - José R. Mercado-Matos
- Medical Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jie Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucia Regales
- Memorial Sloan-Kettering Cancer Center, New York, USA
| | - William Pao
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pasi A. Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John A. Butman
- Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
| | | | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Richard K. Gurgel
- Division of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT, USA
| | | | - Phillip A. Dennis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Abstract
SUMMARY Ten years after the approval of erlotinib, EGFR inhibitor resistance remains a major clinical challenge. The translation of afatinib plus cetuximab into the clinic provides a promising new option for the treatment of patients with EGFR-mutated lung cancer.
Collapse
Affiliation(s)
- Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|