1
|
Yulo PRJ, Desprat N, Gerth ML, Ritzl-Rinkenberger B, Farr AD, Liu Y, Zhang XX, Miller M, Cava F, Rainey PB, Hendrickson HL. Evolutionary rescue of spherical mreB deletion mutants of the rod-shape bacterium Pseudomonas fluorescens SBW25. eLife 2025; 13:RP98218. [PMID: 40163529 PMCID: PMC11957537 DOI: 10.7554/elife.98218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.
Collapse
Affiliation(s)
- Paul Richard J Yulo
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
| | - Nicolas Desprat
- Laboratoire de Physique de l'ENS, Université Paris Cité, Ecole normale supérieure, UniversitéPSL, Sorbonne Université, CNRS, 75005 ParisParisFrance
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research UniversityParisFrance
- Université Paris CitéParisFrance
| | - Monica L Gerth
- New Zealand Institute for Advanced Study, Massey UniversityAucklandNew Zealand
| | - Barbara Ritzl-Rinkenberger
- Department of Molecular Biology, Umeå UniversityUmeåSweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå Centre for Microbial Research, Umeå UniversityUmeåSweden
| | - Andrew D Farr
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Yunhao Liu
- New Zealand Institute for Advanced Study, Massey UniversityAucklandNew Zealand
| | - Xue-Xian Zhang
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
| | - Michael Miller
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
| | - Felipe Cava
- Department of Molecular Biology, Umeå UniversityUmeåSweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå Centre for Microbial Research, Umeå UniversityUmeåSweden
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey UniversityAucklandNew Zealand
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary BiologyPlönGermany
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSLParisFrance
| | - Heather L Hendrickson
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
- School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| |
Collapse
|
2
|
Thweatt JL, Harman CE, Araújo MN, Marlow JJ, Oliver GC, Sabuda MC, Sevgen S, Wilpiszeki RL. Chapter 6: The Breadth and Limits of Life on Earth. ASTROBIOLOGY 2024; 24:S124-S142. [PMID: 38498824 DOI: 10.1089/ast.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.
Collapse
Affiliation(s)
- Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA. (Former)
| | - C E Harman
- Planetary Systems Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Serhat Sevgen
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | |
Collapse
|
3
|
Schaible MJ, Szeinbaum N, Bozdag GO, Chou L, Grefenstette N, Colón-Santos S, Rodriguez LE, Styczinski MJ, Thweatt JL, Todd ZR, Vázquez-Salazar A, Adams A, Araújo MN, Altair T, Borges S, Burton D, Campillo-Balderas JA, Cangi EM, Caro T, Catalano E, Chen K, Conlin PL, Cooper ZS, Fisher TM, Fos SM, Garcia A, Glaser DM, Harman CE, Hermis NY, Hooks M, Johnson-Finn K, Lehmer O, Hernández-Morales R, Hughson KHG, Jácome R, Jia TZ, Marlow JJ, McKaig J, Mierzejewski V, Muñoz-Velasco I, Nural C, Oliver GC, Penev PI, Raj CG, Roche TP, Sabuda MC, Schaible GA, Sevgen S, Sinhadc P, Steller LH, Stelmach K, Tarnas J, Tavares F, Trubl G, Vidaurri M, Vincent L, Weber JM, Weng MM, Wilpiszeki RL, Young A. Chapter 1: The Astrobiology Primer 3.0. ASTROBIOLOGY 2024; 24:S4-S39. [PMID: 38498816 DOI: 10.1089/ast.2021.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.
Collapse
Affiliation(s)
- Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M J Styczinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- University of Washington, Seattle, Washington, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA
| | | | - Dana Burton
- Department of Anthropology, George Washington University, Washington DC, USA
| | | | - Eryn M Cangi
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | - Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Z S Cooper
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Santiago Mestre Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amanda Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - D M Glaser
- Arizona State University, Tempe, Arizona, USA
| | - Chester E Harman
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada, Spain
| | - M Hooks
- NASA Johnson Space Center, Houston, Texas, USA
| | - K Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Owen Lehmer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kynan H G Hughson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jordan McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Veronica Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - George A Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Serhat Sevgen
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Kamil Stelmach
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - J Tarnas
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Frank Tavares
- Space Enabled Research Group, MIT Media Lab, Cambridge, Massachusetts, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica Vidaurri
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Department of Physics and Astronomy, Howard University, Washington DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
4
|
García Vázquez A, Mitarai N, Jauffred L. Genetic mixing and demixing on expanding spherical frontiers. ISME COMMUNICATIONS 2024; 4:ycae009. [PMID: 38524760 PMCID: PMC10958774 DOI: 10.1093/ismeco/ycae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024]
Abstract
Genetic fluctuation during range expansion is a key process driving evolution. When a bacterial population is expanding on a 2D surface, random fluctuations in the growth of the pioneers at the front line cause a strong demixing of genotypes. Even when there is no selective advantage, sectors of low genetic diversity are formed. Experimental studies of range expansions in surface-attached colonies of fluorescently labelled micro-organisms have contributed significantly to our understanding of fundamental evolutionary dynamics. However, experimental studies on genetic fluctuations in 3D range expansions have been sparse, despite their importance for tumour or biofilm development. We encapsulated populations of two fluorescent Escherichia coli strains in inoculation droplets (volumes [Formula: see text] nl). The confined ensemble of cells grew when embedded in a hydrogel-with nutrients-and developed 3D colonies with well-defined, sector-like regions. Using confocal laser scanning microscopy, we imaged the development of 3D colonies and the emergence of sectors. We characterized how cell concentration in the inoculation droplet controls sectors, growth rate, and the transition from branched colonies to quasi-spherical colonies. We further analysed how sectors on the surface change over time. We complement these experimental results with a modified 3D Eden growth model. The model in 3D spherical growth predicts a phase, where sectors are merging, followed by a steady increase (constant rate), and the experimentally analysed sectors were consistent with this prediction. Therefore, our results demonstrate qualitative differences between radial (2D) and spherical (3D) range expansions and their importance in gene fixation processes.
Collapse
Affiliation(s)
- Alba García Vázquez
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
| | - Liselotte Jauffred
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
| |
Collapse
|
5
|
Mortier J, Govers SK, Cambré A, Van Eyken R, Verheul J, den Blaauwen T, Aertsen A. Protein aggregates act as a deterministic disruptor during bacterial cell size homeostasis. Cell Mol Life Sci 2023; 80:360. [PMID: 37971522 PMCID: PMC11072981 DOI: 10.1007/s00018-023-05002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Mechanisms underlying deviant cell size fluctuations among clonal bacterial siblings are generally considered to be cryptic and stochastic in nature. However, by scrutinizing heat-stressed populations of the model bacterium Escherichia coli, we uncovered the existence of a deterministic asymmetry in cell division that is caused by the presence of intracellular protein aggregates (PAs). While these structures typically locate at the cell pole and segregate asymmetrically among daughter cells, we now show that the presence of a polar PA consistently causes a more distal off-center positioning of the FtsZ division septum. The resulting increased length of PA-inheriting siblings persists over multiple generations and could be observed in both E. coli and Bacillus subtilis populations. Closer investigation suggests that a PA can physically perturb the nucleoid structure, which subsequently leads to asymmetric septation.
Collapse
Affiliation(s)
- Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sander K Govers
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Ronald Van Eyken
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Jolanda Verheul
- Swammerdam Institute for Life Sciences, Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Tanneke den Blaauwen
- Swammerdam Institute for Life Sciences, Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Vashistha H, Jammal-Touma J, Singh K, Rabin Y, Salman H. Bacterial cell-size changes resulting from altering the relative expression of Min proteins. Nat Commun 2023; 14:5710. [PMID: 37714867 PMCID: PMC10504268 DOI: 10.1038/s41467-023-41487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
The timing of cell division, and thus cell size in bacteria, is determined in part by the accumulation dynamics of the protein FtsZ, which forms the septal ring. FtsZ localization depends on membrane-associated Min proteins, which inhibit FtsZ binding to the cell pole membrane. Changes in the relative concentrations of Min proteins can disrupt FtsZ binding to the membrane, which in turn can delay cell division until a certain cell size is reached, in which the dynamics of Min proteins frees the cell membrane long enough to allow FtsZ ring formation. Here, we study the effect of Min proteins relative expression on the dynamics of FtsZ ring formation and cell size in individual Escherichia coli bacteria. Upon inducing overexpression of minE, cell size increases gradually to a new steady-state value. Concurrently, the time required to initiate FtsZ ring formation grows as the size approaches the new steady-state, at which point the ring formation initiates as early as before induction. These results highlight the contribution of Min proteins to cell size control, which may be partially responsible for the size fluctuations observed in bacterial populations, and may clarify how the size difference acquired during asymmetric cell division is offset.
Collapse
Affiliation(s)
- Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Joanna Jammal-Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kulveer Singh
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Yitzhak Rabin
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Jones I, Dent L, Higo T, Roumeliotis T, Arias Garcia M, Shree H, Choudhary J, Pedersen M, Bakal C. Characterization of proteome-size scaling by integrative omics reveals mechanisms of proliferation control in cancer. SCIENCE ADVANCES 2023; 9:eadd0636. [PMID: 36696495 PMCID: PMC9876555 DOI: 10.1126/sciadv.add0636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Almost all living cells maintain size uniformity through successive divisions. Proteins that over and underscale with size can act as rheostats, which regulate cell cycle progression. Using a multiomic strategy, we leveraged the heterogeneity of melanoma cell lines to identify peptides, transcripts, and phosphorylation events that differentially scale with cell size. Subscaling proteins are enriched in regulators of the DNA damage response and cell cycle progression, whereas super-scaling proteins included regulators of the cytoskeleton, extracellular matrix, and inflammatory response. Mathematical modeling suggested that decoupling growth and proliferative signaling may facilitate cell cycle entry over senescence in large cells when mitogenic signaling is decreased. Regression analysis reveals that up-regulation of TP53 or CDKN1A/p21CIP1 is characteristic of proliferative cancer cells with senescent-like sizes/proteomes. This study provides one of the first demonstrations of size-scaling phenomena in cancer and how morphology influences the chemistry of the cell.
Collapse
Affiliation(s)
- Ian Jones
- Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK
| | - Lucas Dent
- Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK
| | - Tomoaki Higo
- Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK
| | | | - Maria Arias Garcia
- Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK
| | - Hansa Shree
- Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK
| | - Jyoti Choudhary
- Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK
| | - Malin Pedersen
- Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK
| | - Chris Bakal
- Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
8
|
Shared biophysical mechanisms determine early biofilm architecture development across different bacterial species. PLoS Biol 2022; 20:e3001846. [PMID: 36288405 PMCID: PMC9605341 DOI: 10.1371/journal.pbio.3001846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Bacterial biofilms are among the most abundant multicellular structures on Earth and play essential roles in a wide range of ecological, medical, and industrial processes. However, general principles that govern the emergence of biofilm architecture across different species remain unknown. Here, we combine experiments, simulations, and statistical analysis to identify shared biophysical mechanisms that determine early biofilm architecture development at the single-cell level, for the species Vibrio cholerae, Escherichia coli, Salmonella enterica, and Pseudomonas aeruginosa grown as microcolonies in flow chambers. Our data-driven analysis reveals that despite the many molecular differences between these species, the biofilm architecture differences can be described by only 2 control parameters: cellular aspect ratio and cell density. Further experiments using single-species mutants for which the cell aspect ratio and the cell density are systematically varied, and mechanistic simulations show that tuning these 2 control parameters reproduces biofilm architectures of different species. Altogether, our results show that biofilm microcolony architecture is determined by mechanical cell-cell interactions, which are conserved across different species.
Collapse
|
9
|
Knapp BD, Ward MD, Bowman GR, Shi H, Huang KC. Multiple conserved states characterize the twist landscape of the bacterial actin homolog MreB. Comput Struct Biotechnol J 2022; 20:5838-5846. [PMID: 36382191 PMCID: PMC9627593 DOI: 10.1016/j.csbj.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/01/2022] Open
Abstract
Filament formation by cytoskeletal proteins is critical to their involvement in myriad cellular processes. The bacterial actin homolog MreB, which is essential for cell-shape determination in many rod-shaped bacteria, has served as a model system for studying the mechanics of cytoskeletal filaments. Previous molecular dynamics (MD) simulations revealed that the twist of MreB double protofilaments is dependent on the bound nucleotide, as well as binding to the membrane or the accessory protein RodZ, and MreB mutations that modulate twist also affect MreB spatial organization and cell shape. Here, we show that MreB double protofilaments can adopt multiple twist states during microsecond-scale MD simulations. A deep learning algorithm trained only on high- and low-twist states robustly identified all twist conformations across most perturbations of ATP-bound MreB, suggesting the existence of a conserved set of states whose occupancy is affected by each perturbation to MreB. Simulations replacing ATP with ADP indicated that twist states were generally stable after hydrolysis. These findings suggest a rich twist landscape that could provide the capacity to tune MreB activity and therefore its effects on cell shape.
Collapse
Affiliation(s)
| | - Michael D. Ward
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63130, USA
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gregory R. Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63130, USA
- Center for the Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
10
|
Cesar S, Willis L, Huang KC. Bacterial respiration during stationary phase induces intracellular damage that leads to delayed regrowth. iScience 2022; 25:103765. [PMID: 35243217 PMCID: PMC8858994 DOI: 10.1016/j.isci.2022.103765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Spencer Cesar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Corresponding author
| |
Collapse
|
11
|
Tripathi AK, Saxena P, Thakur P, Rauniyar S, Samanta D, Gopalakrishnan V, Singh RN, Sani RK. Transcriptomics and Functional Analysis of Copper Stress Response in the Sulfate-Reducing Bacterium Desulfovibrio alaskensis G20. Int J Mol Sci 2022; 23:1396. [PMID: 35163324 PMCID: PMC8836040 DOI: 10.3390/ijms23031396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Copper (Cu) is an essential micronutrient required as a co-factor in the catalytic center of many enzymes. However, excess Cu can generate pleiotropic effects in the microbial cell. In addition, leaching of Cu from pipelines results in elevated Cu concentration in the environment, which is of public health concern. Sulfate-reducing bacteria (SRB) have been demonstrated to grow in toxic levels of Cu. However, reports on Cu toxicity towards SRB have primarily focused on the degree of toxicity and subsequent elimination. Here, Cu(II) stress-related effects on a model SRB, Desulfovibrio alaskensis G20, is reported. Cu(II) stress effects were assessed as alterations in the transcriptome through RNA-Seq at varying Cu(II) concentrations (5 µM and 15 µM). In the pairwise comparison of control vs. 5 µM Cu(II), 61.43% of genes were downregulated, and 38.57% were upregulated. In control vs. 15 µM Cu(II), 49.51% of genes were downregulated, and 50.5% were upregulated. The results indicated that the expression of inorganic ion transporters and translation machinery was massively modulated. Moreover, changes in the expression of critical biological processes such as DNA transcription and signal transduction were observed at high Cu(II) concentrations. These results will help us better understand the Cu(II) stress-response mechanism and provide avenues for future research.
Collapse
Affiliation(s)
- Abhilash Kumar Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh Kumar Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA; (A.K.T.); (P.S.); (P.T.); (S.R.); (D.S.); (V.G.); (R.N.S.)
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Composite and Nanocomposite Advanced Manufacturing Centre—Biomaterials, Rapid City, SD 57701, USA
| |
Collapse
|
12
|
Silvis MR, Rajendram M, Shi H, Osadnik H, Gray AN, Cesar S, Peters JM, Hearne CC, Kumar P, Todor H, Huang KC, Gross CA. Morphological and Transcriptional Responses to CRISPRi Knockdown of Essential Genes in Escherichia coli. mBio 2021; 12:e0256121. [PMID: 34634934 PMCID: PMC8510551 DOI: 10.1128/mbio.02561-21] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023] Open
Abstract
CRISPR interference (CRISPRi) has facilitated the study of essential genes in diverse organisms using both high-throughput and targeted approaches. Despite the promise of this technique, no comprehensive arrayed CRISPRi library targeting essential genes exists for the model bacterium Escherichia coli, or for any Gram-negative species. Here, we built and characterized such a library. Each of the ∼500 strains in our E. coli library contains an inducible, chromosomally integrated single guide RNA (sgRNA) targeting an essential (or selected nonessential) gene and can be mated with a pseudo-Hfr donor strain carrying a dcas9 cassette to create a CRISPRi knockdown strain. Using this system, we built an arrayed library of CRISPRi strains and performed population and single-cell growth and morphology measurements as well as targeted follow-up experiments. These studies found that inhibiting translation causes an extended lag phase, identified new modulators of cell morphology, and revealed that the morphogene mreB is subject to transcriptional feedback regulation, which is critical for the maintenance of morphology. Our findings highlight canonical and noncanonical roles for essential genes in numerous aspects of cellular homeostasis. IMPORTANCE Essential genes make up only ∼5 to 10% of the genetic complement in most organisms but occupy much of their protein synthesis and account for almost all antibiotic targets. Despite the importance of essential genes, their intractability has, until recently, hampered efforts to study them. CRISPRi has facilitated the study of essential genes by allowing inducible and titratable depletion. However, all large-scale CRISPRi studies in Gram-negative bacteria thus far have used plasmids to express CRISPRi components and have been constructed in pools, limiting their utility for targeted assays and complicating the determination of antibiotic effects. Here, we use a modular method to construct an arrayed library of chromosomally integrated CRISPRi strains targeting the essential genes of the model bacterium Escherichia coli. This library enables targeted studies of essential gene depletions and high-throughput determination of antibiotic targets and facilitates studies targeting the outer membrane, an essential component that serves as the major barrier to antibiotics.
Collapse
Affiliation(s)
- Melanie R. Silvis
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Manohary Rajendram
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Hendrik Osadnik
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Andrew N. Gray
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Spencer Cesar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Cameron C. Hearne
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Parth Kumar
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Horia Todor
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Carol A. Gross
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Winkle JJ, Karamched BR, Bennett MR, Ott W, Josić K. Emergent spatiotemporal population dynamics with cell-length control of synthetic microbial consortia. PLoS Comput Biol 2021; 17:e1009381. [PMID: 34550968 PMCID: PMC8489724 DOI: 10.1371/journal.pcbi.1009381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
The increased complexity of synthetic microbial biocircuits highlights the need for distributed cell functionality due to concomitant increases in metabolic and regulatory burdens imposed on single-strain topologies. Distributed systems, however, introduce additional challenges since consortium composition and spatiotemporal dynamics of constituent strains must be robustly controlled to achieve desired circuit behaviors. Here, we address these challenges with a modeling-based investigation of emergent spatiotemporal population dynamics using cell-length control in monolayer, two-strain bacterial consortia. We demonstrate that with dynamic control of a strain's division length, nematic cell alignment in close-packed monolayers can be destabilized. We find that this destabilization confers an emergent, competitive advantage to smaller-length strains-but by mechanisms that differ depending on the spatial patterns of the population. We used complementary modeling approaches to elucidate underlying mechanisms: an agent-based model to simulate detailed mechanical and signaling interactions between the competing strains, and a reductive, stochastic lattice model to represent cell-cell interactions with a single rotational parameter. Our modeling suggests that spatial strain-fraction oscillations can be generated when cell-length control is coupled to quorum-sensing signaling in negative feedback topologies. Our research employs novel methods of population control and points the way to programming strain fraction dynamics in consortial synthetic biology.
Collapse
Affiliation(s)
- James J Winkle
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Bhargav R Karamched
- Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Matthew R Bennett
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - William Ott
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
14
|
Precise regulation of the relative rates of surface area and volume synthesis in bacterial cells growing in dynamic environments. Nat Commun 2021; 12:1975. [PMID: 33785742 PMCID: PMC8009875 DOI: 10.1038/s41467-021-22092-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
The steady-state size of bacterial cells correlates with nutrient-determined growth rate. Here, we explore how rod-shaped bacterial cells regulate their morphology during rapid environmental changes. We quantify cellular dimensions throughout passage cycles of stationary-phase cells diluted into fresh medium and grown back to saturation. We find that cells exhibit characteristic dynamics in surface area to volume ratio (SA/V), which are conserved across genetic and chemical perturbations as well as across species and growth temperatures. A mathematical model with a single fitting parameter (the time delay between surface and volume synthesis) is quantitatively consistent with our SA/V experimental observations. The model supports that this time delay is due to differential expression of volume and surface-related genes, and that the first division after dilution occurs at a tightly controlled SA/V. Our minimal model thus provides insight into the connections between bacterial growth rate and cell shape in dynamic environments. Bacterial cells actively change their size and shape in response to external environments. Here, Shi et al. explore how cells regulate their morphology during rapid environmental changes, showing that the characteristic dynamics of surface area-to-volume ratio are conserved across genetic and chemical perturbations, as well as across species and growth temperatures.
Collapse
|
15
|
Ewunkem AJ, Rodgers L, Campbell D, Staley C, Subedi K, Boyd S, Graves JL. Experimental Evolution of Magnetite Nanoparticle Resistance in Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:790. [PMID: 33808798 PMCID: PMC8003623 DOI: 10.3390/nano11030790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Both ionic and nanoparticle iron have been proposed as materials to control multidrug-resistant (MDR) bacteria. However, the potential bacteria to evolve resistance to nanoparticle bacteria remains unexplored. To this end, experimental evolution was utilized to produce five magnetite nanoparticle-resistant (FeNP1-5) populations of Escherichia coli. The control populations were not exposed to magnetite nanoparticles. The 24-h growth of these replicates was evaluated in the presence of increasing concentrations magnetite NPs as well as other ionic metals (gallium III, iron II, iron III, and silver I) and antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). Scanning electron microscopy was utilized to determine cell size and shape in response to magnetite nanoparticle selection. Whole genome sequencing was carried out to determine if any genomic changes resulted from magnetite nanoparticle resistance. After 25 days of selection, magnetite resistance was evident in the FeNP treatment. The FeNP populations also showed a highly significantly (p < 0.0001) greater 24-h growth as measured by optical density in metals (Fe (II), Fe (III), Ga (III), Ag, and Cu II) as well as antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). The FeNP-resistant populations also showed a significantly greater cell length compared to controls (p < 0.001). Genomic analysis of FeNP identified both polymorphisms and hard selective sweeps in the RNA polymerase genes rpoA, rpoB, and rpoC. Collectively, our results show that E. coli can rapidly evolve resistance to magnetite nanoparticles and that this result is correlated resistances to other metals and antibiotics. There were also changes in cell morphology resulting from adaptation to magnetite NPs. Thus, the various applications of magnetite nanoparticles could result in unanticipated changes in resistance to both metal and antibiotics.
Collapse
Affiliation(s)
- Akamu J. Ewunkem
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| | - LaShunta Rodgers
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA;
| | - Daisha Campbell
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Constance Staley
- Department of Chemistry, Bennett College, Greensboro, NC 27401, USA;
| | - Kiran Subedi
- College of Agricultural and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Sada Boyd
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;
| | - Joseph L. Graves
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
16
|
Hinzke T, Kleiner M, Meister M, Schlüter R, Hentschker C, Pané-Farré J, Hildebrandt P, Felbeck H, Sievert SM, Bonn F, Völker U, Becher D, Schweder T, Markert S. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. eLife 2021; 10:58371. [PMID: 33404502 PMCID: PMC7787665 DOI: 10.7554/elife.58371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
Collapse
Affiliation(s)
- Tjorven Hinzke
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany.,Energy Bioengineering Group, University of Calgary, Calgary, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Mareike Meister
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Horst Felbeck
- Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, United States
| | - Florian Bonn
- Institute of Biochemistry, University Hospital, Goethe University School of Medicine Frankfurt, Frankfurt, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
17
|
Atolia E, Cesar S, Arjes HA, Rajendram M, Shi H, Knapp BD, Khare S, Aranda-Díaz A, Lenski RE, Huang KC. Environmental and Physiological Factors Affecting High-Throughput Measurements of Bacterial Growth. mBio 2020; 11:e01378-20. [PMID: 33082255 PMCID: PMC7587430 DOI: 10.1128/mbio.01378-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/10/2020] [Indexed: 11/20/2022] Open
Abstract
Bacterial growth under nutrient-rich and starvation conditions is intrinsically tied to the environmental history and physiological state of the population. While high-throughput technologies have enabled rapid analyses of mutant libraries, technical and biological challenges complicate data collection and interpretation. Here, we present a framework for the execution and analysis of growth measurements with improved accuracy over that of standard approaches. Using this framework, we demonstrate key biological insights that emerge from consideration of culturing conditions and history. We determined that quantification of the background absorbance in each well of a multiwell plate is critical for accurate measurements of maximal growth rate. Using mathematical modeling, we demonstrated that maximal growth rate is dependent on initial cell density, which distorts comparisons across strains with variable lag properties. We established a multiple-passage protocol that alleviates the substantial effects of glycerol on growth in carbon-poor media, and we tracked growth rate-mediated fitness increases observed during a long-term evolution of Escherichia coli in low glucose concentrations. Finally, we showed that growth of Bacillus subtilis in the presence of glycerol induces a long lag in the next passage due to inhibition of a large fraction of the population. Transposon mutagenesis linked this phenotype to the incorporation of glycerol into lipoteichoic acids, revealing a new role for these envelope components in resuming growth after starvation. Together, our investigations underscore the complex physiology of bacteria during bulk passaging and the importance of robust strategies to understand and quantify growth.IMPORTANCE How starved bacteria adapt and multiply under replete nutrient conditions is intimately linked to their history of previous growth, their physiological state, and the surrounding environment. While automated equipment has enabled high-throughput growth measurements, data interpretation and knowledge gaps regarding the determinants of growth kinetics complicate comparisons between strains. Here, we present a framework for growth measurements that improves accuracy and attenuates the effects of growth history. We determined that background absorbance quantification and multiple passaging cycles allow for accurate growth rate measurements even in carbon-poor media, which we used to reveal growth-rate increases during long-term laboratory evolution of Escherichia coli Using mathematical modeling, we showed that maximum growth rate depends on initial cell density. Finally, we demonstrated that growth of Bacillus subtilis with glycerol inhibits the future growth of most of the population, due to lipoteichoic acid synthesis. These studies highlight the challenges of accurate quantification of bacterial growth behaviors.
Collapse
Affiliation(s)
- Esha Atolia
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Spencer Cesar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Heidi A Arjes
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Manohary Rajendram
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Benjamin D Knapp
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
| | - Somya Khare
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
18
|
A bacterial size law revealed by a coarse-grained model of cell physiology. PLoS Comput Biol 2020; 16:e1008245. [PMID: 32986690 PMCID: PMC7553314 DOI: 10.1371/journal.pcbi.1008245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/13/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
Universal observations in Biology are sometimes described as “laws”. In E. coli, experimental studies performed over the past six decades have revealed major growth laws relating ribosomal mass fraction and cell size to the growth rate. Because they formalize complex emerging principles in biology, growth laws have been instrumental in shaping our understanding of bacterial physiology. Here, we discovered a novel size law that connects cell size to the inverse of the metabolic proteome mass fraction and the active fraction of ribosomes. We used a simple whole-cell coarse-grained model of cell physiology that combines the proteome allocation theory and the structural model of cell division. This integrated model captures all available experimental data connecting the cell proteome composition, ribosome activity, division size and growth rate in response to nutrient quality, antibiotic treatment and increased protein burden. Finally, a stochastic extension of the model explains non-trivial correlations observed in single cell experiments including the adder principle. This work provides a simple and robust theoretical framework for studying the fundamental principles of cell size determination in unicellular organisms. Bacteria respond to environmental changes by adjusting their molecular composition, cell size and growth rate. This plasticity is thought to result from years of evolution and to be at least in part optimal for bacterial physiology. Over the past decades, quantitative studies of bacterial growth have revealed simple phenomenological relationships, called “growth laws”, which link cell size and cell composition to the growth rate. Simplified mathematical models of cell physiology are useful tools to gain quantitative understanding of the molecular mechanisms that underlie growth laws. For instance, these models helped explaining how optimal allocation of cellular resource to physiological processes and pathways governs the cell molecular composition in response to specific environmental conditions. In this study, we have extended and integrated existing mathematical models and used experimental data from several recent studies to understand the co-regulation of cell composition, cell size and the cellular growth rate. The model predictions uncovered a novel “size law” that links cell size to the levels of metabolic proteins and the fraction of active ribosomes present in the cell. This work provides a useful theoretical tool and a quantitative basis for understanding mechanistically bacterial physiology as a function of external conditions.
Collapse
|
19
|
AimB Is a Small Protein Regulator of Cell Size and MreB Assembly. Biophys J 2020; 119:593-604. [PMID: 32416080 DOI: 10.1016/j.bpj.2020.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
The MreB actin-like cytoskeleton assembles into dynamic polymers that coordinate cell shape in many bacteria. In contrast to most other cytoskeleton systems, few MreB-interacting proteins have been well characterized. Here, we identify a small protein from Caulobacter crescentus, an assembly inhibitor of MreB (AimB). AimB overexpression mimics inhibition of MreB polymerization, leading to increased cell width and MreB delocalization. Furthermore, aimB appears to be essential, and its depletion results in decreased cell width and increased resistance to A22, a small-molecule inhibitor of MreB assembly. Molecular dynamics simulations suggest that AimB binds MreB at its monomer-monomer protofilament interaction cleft and that this interaction is favored for C. crescentus MreB over Escherichia coli MreB because of a closer match in the degree of opening with AimB size, suggesting coevolution of AimB with MreB conformational dynamics in C. crescentus. We support this model through functional analysis of point mutants in both AimB and MreB, photo-cross-linking studies with site-specific unnatural amino acids, and species-specific activity of AimB. Together, our findings are consistent with AimB promoting MreB dynamics by inhibiting monomer-monomer assembly interactions, representing a new mechanism for regulating actin-like polymers and the first identification of a non-toxin MreB assembly inhibitor. Because AimB has only 104 amino acids and small proteins are often poorly characterized, our work suggests the possibility of more bacterial cytoskeletal regulators to be found in this class. Thus, like FtsZ and eukaryotic actin, MreB may have a rich repertoire of regulators to tune its precise assembly and dynamics.
Collapse
|
20
|
Weber de Melo V, Lowe R, Hurd PJ, Petchey OL. Phenotypic responses to temperature in the ciliate Tetrahymena thermophila. Ecol Evol 2020; 10:7616-7626. [PMID: 32760552 PMCID: PMC7391332 DOI: 10.1002/ece3.6486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/28/2020] [Accepted: 05/21/2020] [Indexed: 01/20/2023] Open
Abstract
Understanding the effects of temperature on ecological and evolutionary processes is crucial for generating future climate adaptation scenarios. Using experimental evolution, we evolved the model ciliate Tetrahymena thermophila in an initially novel high temperature environment for more than 35 generations, closely monitoring population dynamics and morphological changes. We observed initially long lag phases in the high temperature environment that over about 26 generations reduced to no lag phase, a strong reduction in cell size and modifications in cell shape at high temperature. When exposing the adapted populations to their original temperature, most phenotypic traits returned to the observed levels in the ancestral populations, indicating phenotypic plasticity is an important component of this species thermal stress response. However, persistent changes in cell size were detected, indicating possible costs related to the adaptation process. Exploring the molecular basis of thermal adaptation will help clarify the mechanisms driving these phenotypic responses.
Collapse
Affiliation(s)
- Vanessa Weber de Melo
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Robert Lowe
- The Blizard InstituteQueen Mary University of LondonLondonUK
| | - Paul J. Hurd
- School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
21
|
Shi H, Quint DA, Grason GM, Gopinathan A, Huang KC. Chiral twisting in a bacterial cytoskeletal polymer affects filament size and orientation. Nat Commun 2020; 11:1408. [PMID: 32179732 PMCID: PMC7075873 DOI: 10.1038/s41467-020-14752-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
In many rod-shaped bacteria, the actin homolog MreB directs cell-wall insertion and maintains cell shape, but it remains unclear how structural changes to MreB affect its organization in vivo. Here, we perform molecular dynamics simulations for Caulobacter crescentus MreB to extract mechanical parameters for inputs into a coarse-grained biophysical polymer model that successfully predicts MreB filament properties in vivo. Our analyses indicate that MreB double protofilaments can exhibit left-handed twisting that is dependent on the bound nucleotide and membrane binding; the degree of twisting correlates with the length and orientation of MreB filaments observed in vitro and in vivo. Our molecular dynamics simulations also suggest that membrane binding of MreB double protofilaments induces a stable membrane curvature of similar magnitude to that observed in vivo. Thus, our multiscale modeling correlates cytoskeletal filament size with conformational changes inferred from molecular dynamics simulations, providing a paradigm for connecting protein filament structure and mechanics to cellular organization and function. The actin homolog MreB directs cell-wall insertion and maintains cell shape in many rod-shaped bacteria. Here, Shi et al. perform molecular dynamics simulations for MreB to extract mechanical parameters for inputs into a coarse-grained biophysical polymer model that predicts MreB filament properties.
Collapse
Affiliation(s)
- Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - David A Quint
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Department of Physics, University of California at Merced, Merced, CA, 95343, USA.,NSF-CREST: Center for Cellular and Biomolecular Machines, University of California at Merced, Merced, CA, 95343, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ajay Gopinathan
- Department of Physics, University of California at Merced, Merced, CA, 95343, USA.,NSF-CREST: Center for Cellular and Biomolecular Machines, University of California at Merced, Merced, CA, 95343, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA. .,Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
22
|
The evolution of spherical cell shape; progress and perspective. Biochem Soc Trans 2020; 47:1621-1634. [PMID: 31829405 PMCID: PMC6925525 DOI: 10.1042/bst20180634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/29/2023]
Abstract
Bacterial cell shape is a key trait governing the extracellular and intracellular factors of bacterial life. Rod-like cell shape appears to be original which implies that the cell wall, division, and rod-like shape came together in ancient bacteria and that the myriad of shapes observed in extant bacteria have evolved from this ancestral shape. In order to understand its evolution, we must first understand how this trait is actively maintained through the construction and maintenance of the peptidoglycan cell wall. The proteins that are primarily responsible for cell shape are therefore the elements of the bacterial cytoskeleton, principally FtsZ, MreB, and the penicillin-binding proteins. MreB is particularly relevant in the transition between rod-like and spherical cell shape as it is often (but not always) lost early in the process. Here we will highlight what is known of this particular transition in cell shape and how it affects fitness before giving a brief perspective on what will be required in order to progress the field of cell shape evolution from a purely mechanistic discipline to one that has the perspective to both propose and to test reasonable hypotheses regarding the ecological drivers of cell shape change.
Collapse
|
23
|
Jena P, Bhattacharya M, Bhattacharjee G, Satpati B, Mukherjee P, Senapati D, Srinivasan R. Bimetallic gold-silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. NANOSCALE 2020; 12:3731-3749. [PMID: 31993609 DOI: 10.1039/c9nr10700b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The actin cytoskeleton is required for the maintenance of the cell shape and viability of bacteria. It remains unknown to which extent nanoparticles (NPs) can orchestrate the mechanical instability by disrupting the cytoskeletal network in bacterial cells. Our work demonstrates that Au-Ag NPs disrupt the bacterial actin cytoskeleton specifically, fluidize the inner membrane and lead to killing of bacterial cells. In this study, we have tried to emphasize on the key parameters important for NP-cell interactions and found that the shape, specific elemental surface localization and enhanced electrostatic interaction developed due to the acquired partial positive charge by silver atoms in the aggregated NPs are some of the major factors contributing towards better NP interactions and subsequent cell death. In vivo studies in bacterial cells showed that the NPs exerted a mild perturbation of the membrane potential. However, its most striking effect was on the actin cytoskeleton MreB resulting in morphological changes in the bacterial cell shape from rods to predominantly spheres. Exposure to NPs resulted in the delocalization of MreB patches from the membrane but not the tubulin homologue FtsZ. Concomitant with the redistribution of MreB localization, a dramatic increase of membrane fluid regions was observed. Our studies reveal for the first time that Au-Ag NPs can mediate bacterial killing and disrupt the actin cytoskeletal functions in bacteria.
Collapse
Affiliation(s)
- Prajna Jena
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, sector -3, Salt Lake City, Kolkata, India.
| | - Maireyee Bhattacharya
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India.
| | - Gourab Bhattacharjee
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India
| | - Biswarup Satpati
- Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India
| | - Prasun Mukherjee
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, sector -3, Salt Lake City, Kolkata, India.
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata-700064, India.
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
24
|
Shi H, Bratton BP, Gitai Z, Huang KC. How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction. Cell 2019. [PMID: 29522748 DOI: 10.1016/j.cell.2018.02.050] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell shape matters across the kingdoms of life, and cells have the remarkable capacity to define and maintain specific shapes and sizes. But how are the shapes of micron-sized cells determined from the coordinated activities of nanometer-sized proteins? Here, we review general principles that have surfaced through the study of rod-shaped bacterial growth. Imaging approaches have revealed that polymers of the actin homolog MreB play a central role. MreB both senses and changes cell shape, thereby generating a self-organizing feedback system for shape maintenance. At the molecular level, structural and computational studies indicate that MreB filaments exhibit tunable mechanical properties that explain their preference for certain geometries and orientations along the cylindrical cell body. We illustrate the regulatory landscape of rod-shape formation and the connectivity between cell shape, cell growth, and other aspects of cell physiology. These discoveries provide a framework for future investigations into the architecture and construction of microbes.
Collapse
Affiliation(s)
- Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin P Bratton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
25
|
RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape. Nat Commun 2018; 9:1280. [PMID: 29599448 PMCID: PMC5876373 DOI: 10.1038/s41467-018-03633-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
In the rod-shaped bacterium Escherichia coli, the actin-like protein MreB localizes in a curvature-dependent manner and spatially coordinates cell-wall insertion to maintain cell shape, although the molecular mechanism by which cell width is regulated remains unknown. Here we demonstrate that the membrane protein RodZ regulates the biophysical properties of MreB and alters the spatial organization of E. coli cell-wall growth. The relative expression levels of MreB and RodZ change in a manner commensurate with variations in growth rate and cell width, and RodZ systematically alters the curvature-based localization of MreB and cell width in a concentration-dependent manner. We identify MreB mutants that alter the bending properties of MreB filaments in molecular dynamics simulations similar to RodZ binding, and show that these mutants rescue rod-like shape in the absence of RodZ alone or in combination with wild-type MreB. Thus, E. coli can control its shape and dimensions by differentially regulating RodZ and MreB to alter the patterning of cell-wall insertion, highlighting the rich regulatory landscape of cytoskeletal molecular biophysics. Membrane protein RodZ interacts with the actin-like protein MreB, which coordinates cell-wall insertion to maintain the typical rod-like shape of E. coli cells. Here, the authors provide evidence that RodZ modulates the biophysical properties of MreB and alters the spatial organization of cell-wall growth.
Collapse
|
26
|
The phenomenology of cell size control. Curr Opin Cell Biol 2017; 49:53-58. [DOI: 10.1016/j.ceb.2017.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/26/2017] [Indexed: 01/27/2023]
|
27
|
Cesar S, Huang KC. Thinking big: the tunability of bacterial cell size. FEMS Microbiol Rev 2017; 41:672-678. [PMID: 28961755 DOI: 10.1093/femsre/fux026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/10/2017] [Indexed: 11/13/2022] Open
Abstract
The determination of cell size is a fundamental challenge for all living organisms. In a given growth condition, cell size for a particular bacterial species typically falls within a narrow distribution. Nonetheless, size can vary enormously across species, and the size of a single bacterium can even vary substantially across growth conditions. Recent phenomenological studies have revived classic interest in how cells maintain their size and how they adjust their size with changes in growth rate. However, the mechanisms by which cells establish a particular size are relatively enigmatic. Here, we review existing knowledge on how size in rod-shaped bacteria is shaped by nutrient, mechanical, and genetic factors. We also examine obstacles to accurate size measurement and recent technologies that help to overcome these hurdles. Finally, we discuss the relevance of cell size to bacterial physiology.
Collapse
Affiliation(s)
- Spencer Cesar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Abstract
An innovative approach to harness cellular dimensions reveals fundamental links between cell size and other cellular processes in the bacterium Escherichia coli.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock AR 72205, USA.
| |
Collapse
|
29
|
Shi H, Colavin A, Bigos M, Tropini C, Monds RD, Huang KC. Deep Phenotypic Mapping of Bacterial Cytoskeletal Mutants Reveals Physiological Robustness to Cell Size. Curr Biol 2017; 27:3419-3429.e4. [DOI: 10.1016/j.cub.2017.09.065] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/31/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022]
|
30
|
|
31
|
Miettinen TP, Caldez MJ, Kaldis P, Björklund M. Cell size control - a mechanism for maintaining fitness and function. Bioessays 2017; 39. [PMID: 28752618 DOI: 10.1002/bies.201700058] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The maintenance of cell size homeostasis has been studied for years in different cellular systems. With the focus on 'what regulates cell size', the question 'why cell size needs to be maintained' has been largely overlooked. Recent evidence indicates that animal cells exhibit nonlinear cell size dependent growth rates and mitochondrial metabolism, which are maximal in intermediate sized cells within each cell population. Increases in intracellular distances and changes in the relative cell surface area impose biophysical limitations on cells, which can explain why growth and metabolic rates are maximal in a specific cell size range. Consistently, aberrant increases in cell size, for example through polyploidy, are typically disadvantageous to cellular metabolism, fitness and functionality. Accordingly, cellular hypertrophy can potentially predispose to or worsen metabolic diseases. We propose that cell size control may have emerged as a guardian of cellular fitness and metabolic activity.
Collapse
Affiliation(s)
- Teemu P Miettinen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matias J Caldez
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), Singapore, Singapore
| | - Mikael Björklund
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
32
|
Abstract
Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.
Collapse
Affiliation(s)
- George K Auer
- Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Douglas B Weibel
- Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
33
|
Abstract
Environmental perturbations can lead to changes in bacterial cell size that are not predicted by current models. A recent study presents a model that accurately predicts cell size under a variety of environmental conditions, from just a few measurable variables.
Collapse
Affiliation(s)
- Stephen Vadia
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
34
|
Ursell T, Lee TK, Shiomi D, Shi H, Tropini C, Monds RD, Colavin A, Billings G, Bhaya-Grossman I, Broxton M, Huang BE, Niki H, Huang KC. Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library. BMC Biol 2017; 15:17. [PMID: 28222723 PMCID: PMC5320674 DOI: 10.1186/s12915-017-0348-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The determination and regulation of cell morphology are critical components of cell-cycle control, fitness, and development in both single-cell and multicellular organisms. Understanding how environmental factors, chemical perturbations, and genetic differences affect cell morphology requires precise, unbiased, and validated measurements of cell-shape features. RESULTS Here we introduce two software packages, Morphometrics and BlurLab, that together enable automated, computationally efficient, unbiased identification of cells and morphological features. We applied these tools to bacterial cells because the small size of these cells and the subtlety of certain morphological changes have thus far obscured correlations between bacterial morphology and genotype. We used an online resource of images of the Keio knockout library of nonessential genes in the Gram-negative bacterium Escherichia coli to demonstrate that cell width, width variability, and length significantly correlate with each other and with drug treatments, nutrient changes, and environmental conditions. Further, we combined morphological classification of genetic variants with genetic meta-analysis to reveal novel connections among gene function, fitness, and cell morphology, thus suggesting potential functions for unknown genes and differences in modes of action of antibiotics. CONCLUSIONS Morphometrics and BlurLab set the stage for future quantitative studies of bacterial cell shape and intracellular localization. The previously unappreciated connections between morphological parameters measured with these software packages and the cellular environment point toward novel mechanistic connections among physiological perturbations, cell fitness, and growth.
Collapse
Affiliation(s)
- Tristan Ursell
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Department of Physics, University of Oregon, Eugene, OR, 97403, USA
| | - Timothy K Lee
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Daisuke Shiomi
- National Institute of Genetics, Shizuoka, Japan.,Current address: Department of Life Science, Rikkyo University, Tokyo, Japan
| | - Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Carolina Tropini
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Russell D Monds
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Current address: Synthetic Genomics Inc., La Jolla, CA, 92037, USA
| | - Alexandre Colavin
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Gabriel Billings
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | | | - Michael Broxton
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
35
|
Strain Library Imaging Protocol for high-throughput, automated single-cell microscopy of large bacterial collections arrayed on multiwell plates. Nat Protoc 2017; 12:429-438. [PMID: 28125106 DOI: 10.1038/nprot.2016.181] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Single-cell microscopy is a powerful tool for studying gene functions using strain libraries, but it suffers from throughput limitations. Here we describe the Strain Library Imaging Protocol (SLIP), which is a high-throughput, automated microscopy workflow for large strain collections that requires minimal user involvement. SLIP involves transferring arrayed bacterial cultures from multiwell plates onto large agar pads using inexpensive replicator pins and automatically imaging the resulting single cells. The acquired images are subsequently reviewed and analyzed by custom MATLAB scripts that segment single-cell contours and extract quantitative metrics. SLIP yields rich data sets on cell morphology and gene expression that illustrate the function of certain genes and the connections among strains in a library. For a library arrayed on 96-well plates, image acquisition can be completed within 4 min per plate.
Collapse
|
36
|
Abstract
The clearest phenotypic characteristic of microbial cells is their shape, but we do not understand how cell shape affects the dense communities, known as biofilms, where many microbes live. Here, we use individual-based modeling to systematically vary cell shape and study its impact in simulated communities. We compete cells with different cell morphologies under a range of conditions and ask how shape affects the patterning and evolutionary fitness of cells within a community. Our models predict that cell shape will strongly influence the fate of a cell lineage: we describe a mechanism through which coccal (round) cells rise to the upper surface of a community, leading to a strong spatial structuring that can be critical for fitness. We test our predictions experimentally using strains of Escherichia coli that grow at a similar rate but differ in cell shape due to single amino acid changes in the actin homolog MreB. As predicted by our model, cell types strongly sort by shape, with round cells at the top of the colony and rod cells dominating the basal surface and edges. Our work suggests that cell morphology has a strong impact within microbial communities and may offer new ways to engineer the structure of synthetic communities.
Collapse
|
37
|
Harris LK, Theriot JA. Relative Rates of Surface and Volume Synthesis Set Bacterial Cell Size. Cell 2016; 165:1479-1492. [PMID: 27259152 DOI: 10.1016/j.cell.2016.05.045] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/18/2016] [Accepted: 05/12/2016] [Indexed: 01/28/2023]
Abstract
Many studies have focused on the mechanisms underlying length and width determination in rod-shaped bacteria. Here, we focus instead on cell surface area to volume ratio (SA/V) and demonstrate that SA/V homeostasis underlies size determination. We propose a model whereby the instantaneous rates of surface and volume synthesis both scale with volume. This model predicts that these relative rates dictate SA/V and that cells approach a new steady-state SA/V exponentially, with a decay constant equal to the volume growth rate. To test this, we exposed diverse bacterial species to sublethal concentrations of a cell wall biosynthesis inhibitor and observed dose-dependent decreases in SA/V. Furthermore, this decrease was exponential and had the expected decay constant. The model also quantitatively describes SA/V alterations induced by other chemical, nutritional, and genetic perturbations. We additionally present evidence for a surface material accumulation threshold underlying division, sensitizing cell length to changes in SA/V requirements.
Collapse
Affiliation(s)
- Leigh K Harris
- Biophysics Program, Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Julie A Theriot
- Biophysics Program, Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Kysela DT, Randich AM, Caccamo PD, Brun YV. Diversity Takes Shape: Understanding the Mechanistic and Adaptive Basis of Bacterial Morphology. PLoS Biol 2016; 14:e1002565. [PMID: 27695035 PMCID: PMC5047622 DOI: 10.1371/journal.pbio.1002565] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The modern age of metagenomics has delivered unprecedented volumes of data describing the genetic and metabolic diversity of bacterial communities, but it has failed to provide information about coincident cellular morphologies. Much like metabolic and biosynthetic capabilities, morphology comprises a critical component of bacterial fitness, molded by natural selection into the many elaborate shapes observed across the bacterial domain. In this essay, we discuss the diversity of bacterial morphology and its implications for understanding both the mechanistic and the adaptive basis of morphogenesis. We consider how best to leverage genomic data and recent experimental developments in order to advance our understanding of bacterial shape and its functional importance.
Collapse
Affiliation(s)
- David T. Kysela
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Amelia M. Randich
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Paul D. Caccamo
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Yves V. Brun
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
39
|
Ouzounov N, Nguyen JP, Bratton BP, Jacobowitz D, Gitai Z, Shaevitz JW. MreB Orientation Correlates with Cell Diameter in Escherichia coli. Biophys J 2016; 111:1035-43. [PMID: 27602731 PMCID: PMC5018124 DOI: 10.1016/j.bpj.2016.07.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022] Open
Abstract
Bacteria have remarkably robust cell shape control mechanisms. For example, cell diameter only varies by a few percent across a given population. The bacterial actin homolog, MreB, is necessary for establishment and maintenance of rod shape although the detailed properties of MreB that are important for shape control remained unknown. In this study, we perturb MreB in two ways: by treating cells with the polymerization-inhibiting drug A22 and by creating point mutants in mreB. These perturbations modify the steady-state diameter of cells over a wide range, from 790 ± 30 nm to 1700 ± 20 nm. To determine which properties of MreB are important for diameter control, we correlated structural characteristics of fluorescently tagged MreB polymers with cell diameter by simultaneously analyzing three-dimensional images of MreB and cell shape. Our results indicate that the helical pitch angle of MreB inversely correlates with the cell diameter of Escherichia coli. Other correlations between MreB and cell diameter are not found to be significant. These results demonstrate that the physical properties of MreB filaments are important for shape control and support a model in which MreB organizes the cell wall growth machinery to produce a chiral cell wall structure and dictate cell diameter.
Collapse
Affiliation(s)
- Nikolay Ouzounov
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Jeffrey P Nguyen
- Department of Physics, Princeton University, Princeton, New Jersey
| | - Benjamin P Bratton
- Department of Molecular Biology, Princeton University, Princeton, New Jersey; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - David Jacobowitz
- Department of Physics, Princeton University, Princeton, New Jersey
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Joshua W Shaevitz
- Department of Physics, Princeton University, Princeton, New Jersey; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
40
|
Abstract
Cells of a given type maintain a characteristic cell size to function efficiently in their ecological or organismal context. They achieve this through the regulation of growth rates or by actively sensing size and coupling this signal to cell division. We focus this review on potential size-sensing mechanisms, including geometric, external cue, and titration mechanisms. Mechanisms that titrate proteins against DNA are of particular interest because they are consistent with the robust correlation of DNA content and cell size. We review the literature, which suggests that titration mechanisms may underlie cell-size sensing in Xenopus embryos, budding yeast, and Escherichia coli, whereas alternative mechanisms may function in fission yeast.
Collapse
Affiliation(s)
- Amanda A Amodeo
- Department of Biology, Stanford University, Stanford, California 94305
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
41
|
Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments. Microbiol Mol Biol Rev 2016; 80:187-203. [PMID: 26864431 DOI: 10.1128/mmbr.00031-15] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition.
Collapse
|
42
|
Desmarais SM, Tropini C, Miguel A, Cava F, Monds RD, de Pedro MA, Huang KC. High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography. J Biol Chem 2015; 290:31090-100. [PMID: 26468288 DOI: 10.1074/jbc.m115.661660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 01/22/2023] Open
Abstract
The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.
Collapse
Affiliation(s)
| | - Carolina Tropini
- From the Departments of Bioengineering and the Biophysics Program, Stanford University, Stanford, California 94305
| | | | - Felipe Cava
- the Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, 90187 Sweden
| | - Russell D Monds
- From the Departments of Bioengineering and the Bio-X Program, Stanford University, Stanford, California 94305, and
| | - Miguel A de Pedro
- the Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Kerwyn Casey Huang
- From the Departments of Bioengineering and the Biophysics Program, Stanford University, Stanford, California 94305, the Bio-X Program, Stanford University, Stanford, California 94305, and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305,
| |
Collapse
|
43
|
Huang KC. Applications of imaging for bacterial systems biology. Curr Opin Microbiol 2015; 27:114-20. [PMID: 26356259 DOI: 10.1016/j.mib.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 01/27/2023]
Abstract
Imaging has fueled exciting advances in bacterial cell biology, which have led to exquisite understanding of mechanisms of protein localization and cell growth in select cases. Nonetheless, it remains a challenge to connect subcellular dynamics to cellular phenotypes. In this review, I explore synergies between imaging and systems approaches to bacterial physiology. I highlight how single-cell, time-lapse imaging under environmental or chemical perturbations yields insights that complement traditional observations based on population-level growth on long time-scales. Next, I discuss applications of high-throughput fluorescence imaging to dissect genetic pathways and drug targets. Finally, I describe how confocal imaging is illuminating the role of spatial organization in the structure and function of bacterial communities, from biofilms to the intestinal microbiota.
Collapse
Affiliation(s)
- Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
Vadia S, Levin PA. Growth rate and cell size: a re-examination of the growth law. Curr Opin Microbiol 2015; 24:96-103. [PMID: 25662920 PMCID: PMC4380629 DOI: 10.1016/j.mib.2015.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/27/2014] [Accepted: 01/10/2015] [Indexed: 11/25/2022]
Abstract
Research into the mechanisms regulating bacterial cell size has its
origins in a single paper published over 50 years ago. In it Schaechter and
colleagues made the observation that the chemical composition and size of a
bacterial cell is a function of growth rate, independent of the medium used to
achieve that growth rate, a finding that is colloquially referred to as the
growth law. Recent findings hint at unforeseen complexity in the growth law, and
suggest that nutrients rather than growth rate are the primary arbiter of size.
The emerging picture suggests that size is a complex, multifactorial phenomenon
mediated through the varied impacts of central carbon metabolism on cell cycle
progression and biosynthetic capacity.
Collapse
Affiliation(s)
- Stephen Vadia
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO 63130, United States
| | - Petra Anne Levin
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO 63130, United States.
| |
Collapse
|
45
|
Quantitative biology: from genes, cells to networks. QUANTITATIVE BIOLOGY 2014. [DOI: 10.1007/s40484-014-0038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|