1
|
Cheung S, Bredikhin D, Gerber T, Steenbergen PJ, Basu S, Bailleul R, Hansen P, Paix A, Benton MA, Korswagen HC, Arendt D, Stegle O, Ikmi A. Systemic coordination of whole-body tissue remodeling during local regeneration in sea anemones. Dev Cell 2025; 60:780-793.e7. [PMID: 39615481 DOI: 10.1016/j.devcel.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 03/14/2025]
Abstract
The complexity of regeneration extends beyond local wound responses, eliciting systemic processes across the entire organism. However, the functional relevance and coordination of distant molecular processes remain unclear. In the cnidarian Nematostella vectensis, we show that local regeneration triggers a systemic homeostatic response, leading to coordinated whole-body remodeling. Leveraging spatial transcriptomics, endogenous protein tagging, and live imaging, we comprehensively dissect this systemic response at the organismal scale. We identify proteolysis as a critical process driven by both local and systemic upregulation of metalloproteases. We show that metalloproteinase expression levels and activity scale with the extent of tissue loss. This proportional response drives long-range tissue and extracellular matrix movement. Our findings demonstrate the adaptive nature of the systematic response in regeneration, enabling the organism to maintain shape homeostasis while coping with a wide range of injuries.
Collapse
Affiliation(s)
- Stephanie Cheung
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg 69117, Germany
| | - Danila Bredikhin
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany; Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Tobias Gerber
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg 69117, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Petrus J Steenbergen
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg 69117, Germany
| | - Soham Basu
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg 69117, Germany
| | - Richard Bailleul
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg 69117, Germany
| | - Pauline Hansen
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg 69117, Germany
| | - Alexandre Paix
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg 69117, Germany
| | - Matthew A Benton
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg 69117, Germany
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Detlev Arendt
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg 69117, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany; Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, Cambridgeshire, UK.
| | - Aissam Ikmi
- European Molecular Biology Laboratory (EMBL), Developmental Biology Unit, Heidelberg 69117, Germany.
| |
Collapse
|
2
|
Knabl P, Mörsdorf D, Genikhovich G. A whole-body atlas of BMP signaling activity in an adult sea anemone. BMC Biol 2025; 23:49. [PMID: 39984987 PMCID: PMC11846459 DOI: 10.1186/s12915-025-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND BMP signaling is responsible for the second body axis patterning in Bilateria and in the bilaterally symmetric members of the bilaterian sister clade Cnidaria-corals and sea anemones. However, medusozoan cnidarians (jellyfish, hydroids) are radially symmetric, and yet their genomes contain BMP signaling components. This evolutionary conservation suggests that BMP signaling must have other functions not related to axial patterning, which keeps BMP signaling components under selective pressure. RESULTS To find out what these functions might be, we generated a detailed whole-body atlas of BMP activity in the sea anemone Nematostella. In the adult polyp, we discover an unexpected diversity of domains with BMP signaling activity, which is especially prominent in the head, as well as across the neuro-muscular and reproductive parts of the gastrodermis. In accordance, analysis of two medusozoan species, the true jellyfish Aurelia and the box jellyfish Tripedalia, revealed similarly broad and diverse BMP activity. CONCLUSIONS Our study reveals multiple, distinct domains of BMP signaling in Anthozoa and Medusozoa, supporting the versatile nature of the BMP pathway across Cnidaria. Most prominently, BMP signaling appears to be involved in tentacle formation, neuronal development, and gameto- or gonadogenesis.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - David Mörsdorf
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Holstein TW. The significance of Ethel Browne's research on Hydra for the organizer concept. Cells Dev 2024; 178:203907. [PMID: 38417631 DOI: 10.1016/j.cdev.2024.203907] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024]
Abstract
This article focuses on the roots of the organizer concept, which was developed by Hans Spemann during his studies of early embryonic development in amphibians. The fundamental properties of this axis-inducing signaling center have been elucidated through pioneering molecular research by Eddy De Robertis' laboratory and other researchers. Evolutionary comparisons have disclosed the presence of this signaling center, involving the interaction of Wnt and TGF-beta signaling pathways, existed not only in vertebrates but also in basal Metazoa such as Cnidaria. - Notably, even prior to the groundbreaking experiments conducted by Hilde Mangold and Hans Spemann, Ethel Browne conducted similar transplantation experiments on Hydra polyps. They were performed under the guidance of Thomas H Morgan and in the laboratory of Edmund B Wilson. Howard Lenhoff was the first to draw connections between Ethel Browne's transplantation experiments and those of Spemann and Mangold, igniting a vivid debate on the precedence of the organizer concept and its recognition in Nobel Prize considerations. This review critically compares the experiments conducted by Spemann and Mangold with those preceding their seminal work, concluding that the organizer concept clearly builds upon earlier research aimed at understanding developmental gradients, such as in the simple model Hydra. However, these approaches were not pursued further by Morgan, who shifted his focus towards unraveling the genetic control of development in flies, an approach that ultimately revealed the molecular identity of the Spemann organizer in vertebrates.
Collapse
Affiliation(s)
- Thomas W Holstein
- Heidelberg University, Centre for Organismal Studies (COS), Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Mörsdorf D, Knabl P, Genikhovich G. Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria. Dev Genes Evol 2024; 234:1-19. [PMID: 38472535 PMCID: PMC11226491 DOI: 10.1007/s00427-024-00714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Bilateria encompass the vast majority of the animal phyla. As the name states, they are bilaterally symmetric, that is with a morphologically clear main body axis connecting their anterior and posterior ends, a second axis running between their dorsal and ventral surfaces, and with a left side being roughly a mirror image of their right side. Bone morphogenetic protein (BMP) signalling has widely conserved functions in the formation and patterning of the second, dorso-ventral (DV) body axis, albeit to different extents in different bilaterian species. Whilst initial findings in the fruit fly Drosophila and the frog Xenopus highlighted similarities amongst these evolutionarily very distant species, more recent analyses featuring other models revealed considerable diversity in the mechanisms underlying dorsoventral patterning. In fact, as phylogenetic sampling becomes broader, we find that this axis patterning system is so evolvable that even its core components can be deployed differently or lost in different model organisms. In this review, we will try to highlight the diversity of ways by which BMP signalling controls bilaterality in different animals, some of which do not belong to Bilateria. Future research combining functional analyses and modelling is bound to give us some understanding as to where the limits to the extent of the evolvability of BMP-dependent axial patterning may lie.
Collapse
Affiliation(s)
- David Mörsdorf
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
| | - Paul Knabl
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Dept. Neurosciences and Developmental Biology, University of Vienna, UBB, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
5
|
Knabl P, Schauer A, Pomreinke AP, Zimmermann B, Rogers KW, Čapek D, Müller P, Genikhovich G. Analysis of SMAD1/5 target genes in a sea anemone reveals ZSWIM4-6 as a novel BMP signaling modulator. eLife 2024; 13:e80803. [PMID: 38323609 PMCID: PMC10849676 DOI: 10.7554/elife.80803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of ViennaViennaAustria
| | - Alexandra Schauer
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- University of KonstanzKonstanzGermany
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| |
Collapse
|
6
|
Steinmetz PRH. Development: Sea anemone segments polarise. Curr Biol 2023; 33:R717-R719. [PMID: 37433272 DOI: 10.1016/j.cub.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The evolutionary origin of animal segmentation has been debated for centuries. A new study now reveals genetic similarities between the patterning of segmental pouches in a sea anemone, traditionally considered as unsegmented, and segmental structures of vertebrates and arthropods.
Collapse
Affiliation(s)
- Patrick R H Steinmetz
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway.
| |
Collapse
|
7
|
He S, Shao W, Chen SC, Wang T, Gibson MC. Spatial transcriptomics reveals a cnidarian segment polarity program in Nematostella vectensis. Curr Biol 2023:S0960-9822(23)00676-0. [PMID: 37315559 DOI: 10.1016/j.cub.2023.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
During early animal evolution, the emergence of axially polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here, we demonstrate the molecular basis for segment polarization in developing larvae of the sea anemone Nematostella vectensis. Utilizing spatial transcriptomics, we first constructed a 3D gene expression atlas of developing larval segments. Capitalizing on accurate in silico predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both bone morphogenetic protein (BMP) signaling and the Hox-Gbx cascade. Functionally, Lbx mutagenesis eliminated all molecular evidence of segment polarization at the larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles (RMs) in primary polyps. These results demonstrate the molecular basis for segment polarity in a non-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Wanqing Shao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| |
Collapse
|
8
|
He S, Shao W, Chen S(C, Wang T, Gibson MC. Spatial transcriptomics reveals a conserved segment polarity program that governs muscle patterning in Nematostella vectensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523347. [PMID: 36711919 PMCID: PMC9882047 DOI: 10.1101/2023.01.09.523347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During early animal evolution, the emergence of axially-polarized segments was central to the diversification of complex bilaterian body plans. Nevertheless, precisely how and when segment polarity pathways arose remains obscure. Here we demonstrate the molecular basis for segment polarization in developing larvae of the pre-bilaterian sea anemone Nematostella vectensis . Utilizing spatial transcriptomics, we first constructed a 3-D gene expression atlas of developing larval segments. Capitalizing on accurate in silico predictions, we identified Lbx and Uncx, conserved homeodomain-containing genes that occupy opposing subsegmental domains under the control of both BMP signaling and the Hox-Gbx cascade. Functionally, Lbx mutagenesis eliminated all molecular evidence of segment polarization at larval stage and caused an aberrant mirror-symmetric pattern of retractor muscles in primary polyps. These results demonstrate the molecular basis for segment polarity in a pre-bilaterian animal, suggesting that polarized metameric structures were present in the Cnidaria-Bilateria common ancestor over 600 million years ago. Highlights Nematostella endomesodermal tissue forms metameric segments and displays a transcriptomic profile similar to that observed in bilaterian mesoderm Construction of a comprehensive 3-D gene expression atlas enables systematic dissection of segmental identity in endomesoderm Lbx and Uncx , two conserved homeobox-containing genes, establish segment polarity in Nematostella The Cnidarian-Bilaterian common ancestor likely possessed the genetic toolkit to generate polarized metameric structures.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Current Address: Howard Hughes Medical Institute, Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Wanqing Shao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Current Address: Research Computing, Boston Children’s Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Matthew C. Gibson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| |
Collapse
|
9
|
Steinworth BM, Martindale MQ, Ryan JF. Gene Loss may have Shaped the Cnidarian and Bilaterian Hox and ParaHox Complement. Genome Biol Evol 2022; 15:6889381. [PMID: 36508343 PMCID: PMC9825252 DOI: 10.1093/gbe/evac172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Hox and ParaHox transcription factors are important for specifying cell fates along the primary body axes during the development of most animals. Within Cnidaria, much of the research on Hox/ParaHox genes has focused on Anthozoa (anemones and corals) and Hydrozoa (hydroids) and has concentrated on the evolution and function of cnidarian Hox genes in relation to their bilaterian counterparts. Here we analyze together the full complement of Hox and ParaHox genes from species representing all four medusozoan classes (Staurozoa, Cubozoa, Hydrozoa, and Scyphozoa) and both anthozoan classes (Octocorallia and Hexacorallia). Our results show that Hox genes involved in patterning the directive axes of anthozoan polyps are absent in the stem leading to Medusozoa. For the first time, we show spatial and temporal expression patterns of Hox and ParaHox genes in the upside-down jellyfish Cassiopea xamachana (Scyphozoa), which are consistent with diversification of medusozoan Hox genes both from anthozoans and within medusozoa. Despite unprecedented taxon sampling, our phylogenetic analyses, like previous studies, are characterized by a lack of clear homology between most cnidarian and bilaterian Hox and Hox-related genes. Unlike previous studies, we propose the hypothesis that the cnidarian-bilaterian ancestor possessed a remarkably large Hox complement and that extensive loss of Hox genes was experienced by both cnidarian and bilaterian lineages.
Collapse
Affiliation(s)
- Bailey M Steinworth
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, Florida 32080,Department of Biology, University of Florida, Gainesville, Florida 32611
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, Florida 32080,Department of Biology, University of Florida, Gainesville, Florida 32611
| | | |
Collapse
|
10
|
Muscular hydraulics drive larva-polyp morphogenesis. Curr Biol 2022; 32:4707-4718.e8. [PMID: 36115340 DOI: 10.1016/j.cub.2022.08.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
Abstract
Development is a highly dynamic process in which organisms often experience changes in both form and behavior, which are typically coupled to each other. However, little is known about how organismal-scale behaviors such as body contractility and motility impact morphogenesis. Here, we use the cnidarian Nematostella vectensis as a developmental model to uncover a mechanistic link between organismal size, shape, and behavior. Using quantitative live imaging in a large population of developing animals, combined with molecular and biophysical experiments, we demonstrate that the muscular-hydraulic machinery that controls body movement also drives larva-polyp morphogenesis. We show that organismal size largely depends on cavity inflation through fluid uptake, whereas body shape is constrained by the organization of the muscular system. The generation of ethograms identifies different trajectories of size and shape development in sessile and motile animals, which display distinct patterns of body contractions. With a simple theoretical model, we conceptualize how pressures generated by muscular hydraulics can act as a global mechanical regulator that coordinates tissue remodeling. Altogether, our findings illustrate how organismal contractility and motility behaviors can influence morphogenesis.
Collapse
|
11
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
12
|
Erofeeva TV, Grigorenko AP, Gusev FE, Kosevich IA, Rogaev EI. Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:269-293. [PMID: 35526848 DOI: 10.1134/s0006297922030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
Collapse
Affiliation(s)
- Taisia V Erofeeva
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia P Grigorenko
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Fedor E Gusev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor A Kosevich
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Evgeny I Rogaev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
13
|
Presnell JS, Wirsching E, Weis VM. Tentacle patterning during Exaiptasia diaphana pedal lacerate development differs between symbiotic and aposymbiotic animals. PeerJ 2022; 10:e12770. [PMID: 35047238 PMCID: PMC8757374 DOI: 10.7717/peerj.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/19/2021] [Indexed: 01/07/2023] Open
Abstract
Exaiptasia diaphana, a tropical sea anemone known as Aiptasia, is a tractable model system for studying the cellular, physiological, and ecological characteristics of cnidarian-dinoflagellate symbiosis. Aiptasia is widely used as a proxy for coral-algal symbiosis, since both Aiptasia and corals form a symbiosis with members of the family Symbiodiniaceae. Laboratory strains of Aiptasia can be maintained in both the symbiotic (Sym) and aposymbiotic (Apo, without algae) states. Apo Aiptasia allow for the study of the influence of symbiosis on different biological processes and how different environmental conditions impact symbiosis. A key feature of Aiptasia is the ease of propagating both Sym and Apo individuals in the laboratory through a process called pedal laceration. In this form of asexual reproduction, small pieces of tissue rip away from the pedal disc of a polyp, then these lacerates eventually develop tentacles and grow into new polyps. While pedal laceration has been described in the past, details of how tentacles are formed or how symbiotic and nutritional state influence this process are lacking. Here we describe the stages of development in both Sym and Apo pedal lacerates. Our results show that Apo lacerates develop tentacles earlier than Sym lacerates, while over the course of 20 days, Sym lacerates end up with a greater number of tentacles. We describe both tentacle and mesentery patterning during lacerate development and show that they form through a single pattern in early stages regardless of symbiotic state. In later stages of development, Apo lacerate tentacles and mesenteries progress through a single pattern, while variable patterns were observed in Sym lacerates. We discuss how Aiptasia lacerate mesentery and tentacle patterning differs from oral disc regeneration and how these patterning events compare to postembryonic development in Nematostella vectensis, another widely-used sea anemone model. In addition, we demonstrate that Apo lacerates supplemented with a putative nutrient source developed an intermediate number of tentacles between un-fed Apo and Sym lacerates. Based on these observations, we hypothesize that pedal lacerates progress through two different, putatively nutrient-dependent phases of development. In the early phase, the lacerate, regardless of symbiotic state, preferentially uses or relies on nutrients carried over from the adult polyp. These resources are sufficient for lacerates to develop into a functional polyp. In the late phase of development, continued growth and tentacle formation is supported by nutrients obtained from either symbionts and/or the environment through heterotrophic feeding. Finally, we advocate for the implementation of pedal lacerates as an additional resource in the Aiptasia model system toolkit for studies of cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
- Jason S. Presnell
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America,Department of Human Genetics, University of Utah, Salt Lake City, UT, United States of America
| | - Elizabeth Wirsching
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America,Department of Biology, Western Washington University, Bellingham, WA, United States of America
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
14
|
Wijesena N, Sun H, Kumburegama S, Wikramanayake AH. Distinct Frizzled receptors independently mediate endomesoderm specification and primary archenteron invagination during gastrulation in Nematostella. Dev Biol 2021; 481:215-225. [PMID: 34767794 DOI: 10.1016/j.ydbio.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/03/2022]
Abstract
Endomesodermal cell fate specification and archenteron formation during gastrulation are tightly linked developmental processes in most metazoans. However, studies have shown that in the anthozoan cnidarian Nematostella vectensis, Wnt/β-catenin (cWnt) signalling-mediated endomesodermal cell fate specification can be experimentally uncoupled from Wnt/Planar Cell Polarity (PCP) signalling-mediated primary archenteron invagination. The upstream signalling mechanisms regulating cWnt signalling-dependent endomesoderm cell fate specification and Wnt/PCP signalling-mediated primary archenteron invagination in Nematostella embryos are not well understood. By screening for potential upstream mediators of cWnt and Wnt/PCP signalling, we identified two Nematostella Frizzled homologs that are expressed early in development. NvFzd1 is expressed maternally and in a broad pattern during early development while NvFzd10 is zygotically expressed at the animal pole in blastula stage embryos and is restricted to the invaginating cells of the presumptive endomesoderm. Molecular and morphological characterization of NvFzd1 and NvFzd10 knock-down phenotypes provide evidence for distinct regulatory roles for the two receptors in endomesoderm cell fate specification and primary archenteron invagination. These results provide further experimental evidence for the independent regulation of endomesodermal cell fate specification and primary archenteron invagination during gastrulation in Nematostella. Moreover, these results provide additional support for the previously proposed two-step model for the independent evolution of cWnt-mediated cell fate specification and Wnt/PCP-mediated primary archenteron invagination.
Collapse
Affiliation(s)
- Naveen Wijesena
- Department of Biology, University of Miami, Coral Gables, FL33146, USA; Department of Biology, University of Bergen, Bergen, Norway
| | - Hongyan Sun
- Department of Biology, University of Miami, Coral Gables, FL33146, USA
| | - Shalika Kumburegama
- Department of Biology, University of Miami, Coral Gables, FL33146, USA; Department of Zoology, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|
15
|
Nematostella vectensis, an Emerging Model for Deciphering the Molecular and Cellular Mechanisms Underlying Whole-Body Regeneration. Cells 2021; 10:cells10102692. [PMID: 34685672 PMCID: PMC8534814 DOI: 10.3390/cells10102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
The capacity to regenerate lost or injured body parts is a widespread feature within metazoans and has intrigued scientists for centuries. One of the most extreme types of regeneration is the so-called whole body regenerative capacity, which enables regeneration of fully functional organisms from isolated body parts. While not exclusive to this habitat, whole body regeneration is widespread in aquatic/marine invertebrates. Over the past decade, new whole-body research models have emerged that complement the historical models Hydra and planarians. Among these, the sea anemone Nematostella vectensis has attracted increasing interest in regard to deciphering the cellular and molecular mechanisms underlying the whole-body regeneration process. This manuscript will present an overview of the biological features of this anthozoan cnidarian as well as the available tools and resources that have been developed by the scientific community studying Nematostella. I will further review our current understanding of the cellular and molecular mechanisms underlying whole-body regeneration in this marine organism, with emphasis on how comparing embryonic development and regeneration in the same organism provides insight into regeneration specific elements.
Collapse
|
16
|
Technau U. Gastrulation and germ layer formation in the sea anemone Nematostella vectensis and other cnidarians. Mech Dev 2020; 163:103628. [PMID: 32603823 DOI: 10.1016/j.mod.2020.103628] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023]
Abstract
Among the basally branching metazoans, cnidarians display well-defined gastrulation processes leading to a diploblastic body plan, consisting of an endodermal and an ectodermal cell layer. As the outgroup to all Bilateria, cnidarians are an interesting group to investigate ancestral developmental mechanisms. Interestingly, all known gastrulation mechanisms known in Bilateria are already found in different species of Cnidaria. Here I review the morphogenetic processes found in different Cnidaria and focus on the investigation of the cellular and molecular mechanisms in the sea anemone Nematostella vectensis, which has been a major model organism among cnidarians for evolutionary developmental biology. Many of the genes involved in germ layer specification and morphogenetic processes in Bilateria are also found active during gastrulation of Nematostella and other cnidarians, suggesting an ancestral role of this process. The molecular analyses indicate a tight link between gastrulation and axis patterning processes by Wnt and FGF signaling. Interestingly, the endodermal layer displays many features of the mesodermal layer in Bilateria, while the pharyngeal ectoderm has an endodermal expression profile. Comparative analyses as well as experimental studies using embryonic aggregates suggest that minor differences in the gene regulatory networks allow the embryo to transition relatively easily from one mode of gastrulation to another.
Collapse
Affiliation(s)
- Ulrich Technau
- University of Vienna, Dept. of Neurosciences and Developmental Biology, Althanstrasse 14, 1090 Wien, Austria.
| |
Collapse
|
17
|
Binary fission in Trichoplax is orthogonal to the subsequent division plane. Mech Dev 2020; 162:103608. [PMID: 32387588 DOI: 10.1016/j.mod.2020.103608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/17/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022]
Abstract
Asexual reproduction in Trichoplax occurs mainly by binary fission and occasionally by the budding of epithelial spheres called "swarmers". The process that leads to binary fission and the mechanisms involved in this segregation are practically unknown. Trichoplax lacks a defined shape, presenting a constantly changing outline due to its continuous movements and body contractions. For this reason, and due to the absence of anatomical references, it has been classified as an asymmetric organism. Here, we report that a transient wound is formed in the marginal epithelium of the two new individuals produced by binary fission. By tracking the location of this epithelial wound, we can determine that successive dichotomous divisions are orthogonal to the previous division. We also found that LiCl paralyzes the cilia beating movement and body contractions and causes the placozoans to become circular in shape. This effect, as well as a stereotypic body folding behavior observed in detached placozoans and cell labeling experiments of the upper epithelium, indicate a cylindrical body symmetry for Placozoa.
Collapse
|
18
|
Arnellos A, Keijzer F. Bodily Complexity: Integrated Multicellular Organizations for Contraction-Based Motility. Front Physiol 2019; 10:1268. [PMID: 31680996 PMCID: PMC6803425 DOI: 10.3389/fphys.2019.01268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023] Open
Abstract
Compared to other forms of multicellularity, the animal case is unique. Animals-barring some exceptions-consist of collections of cells that are connected and integrated to such an extent that these collectives act as unitary, large free-moving entities capable of sensing macroscopic properties and events. This animal configuration is so well-known that it is often taken as a natural one that 'must' have evolved, given environmental conditions that make large free-moving units 'obviously' adaptive. Here we question the seemingly evolutionary inevitableness of animals and introduce a thesis of bodily complexity: The multicellular organization characteristic for typical animals requires the integration of a multitude of intrinsic bodily features between its sensorimotor, physiological, and developmental aspects, and the related contraction-based tissue- and cellular-level events and processes. The evolutionary road toward this bodily complexity involves, we argue, various intermediate organizational steps that accompany and support the wider transition from cilia-based to contraction/muscle-based motility, and which remain insufficiently acknowledged. Here, we stress the crucial and specific role played by muscle-based and myoepithelial tissue contraction-acting as a physical platform for organizing both the multicellular transmission of mechanical forces and multicellular signaling-as key foundation of animal motility, sensing and maintenance, and development. We illustrate and discuss these bodily features in the context of the four basal animal phyla-Porifera, Ctenophores, Placozoans, and Cnidarians-that split off before the bilaterians, a supergroup that incorporates all complex animals.
Collapse
Affiliation(s)
- Argyris Arnellos
- IAS-Research Centre for Life, Mind & Society, Department of Logic and Philosophy of Science, University of the Basque Country, San Sebastián, Spain.,Department of Product and Systems Design Engineering, Complex Systems and Service Design Lab, University of the Aegean, Syros, Greece
| | - Fred Keijzer
- Department of Theoretical Philosophy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Genomic analysis of the tryptome reveals molecular mechanisms of gland cell evolution. EvoDevo 2019; 10:23. [PMID: 31583070 PMCID: PMC6767649 DOI: 10.1186/s13227-019-0138-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022] Open
Abstract
Background Understanding the drivers of morphological diversity is a persistent challenge in evolutionary biology. Here, we investigate functional diversification of secretory cells in the sea anemone Nematostella vectensis to understand the mechanisms promoting cellular specialization across animals. Results We demonstrate regionalized expression of gland cell subtypes in the internal ectoderm of N. vectensis and show that adult gland cell identity is acquired very early in development. A phylogenetic survey of trypsins across animals suggests that this gene family has undergone numerous expansions. We reveal unexpected diversity in trypsin protein structure and show that trypsin diversity arose through independent acquisitions of non-trypsin domains. Finally, we show that trypsin diversification in N. vectensis was effected through a combination of tandem duplication, exon shuffling, and retrotransposition. Conclusions Together, these results reveal the numerous evolutionary mechanisms that drove trypsin duplication and divergence during the morphological specialization of cell types and suggest that the secretory cell phenotype is highly adaptable as a vehicle for novel secretory products.
Collapse
|
20
|
Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, Jager M, Condamine T, Pottin K, Romano S, Steger J, Sinigaglia C, Barreau C, Quiroga Artigas G, Ruggiero A, Fourrage C, Kraus JEM, Poulain J, Aury JM, Wincker P, Quéinnec E, Technau U, Manuel M, Momose T, Houliston E, Copley RR. The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle. Nat Ecol Evol 2019; 3:801-810. [PMID: 30858591 DOI: 10.1038/s41559-019-0833-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish Clytia hemisphaerica and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterized by distinct transcriptome signatures reflecting abrupt life-cycle transitions and all deploy a mixture of phylogenetically old and new genes. Medusa-specific transcription factors, including many with bilaterian orthologues, associate with diverse neurosensory structures. Compared to Clytia, the polyp-only hydrozoan Hydra has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content evolution and sequence evolution. Absence of expression and gene loss among Clytia orthologues of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally considered the ancestral cnidarian forms, in Clytia the medusa maximally deploys the ancestral cnidarian-bilaterian transcription factor gene complement.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Coralie Horin
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Sandra Chevalier
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Pascal Lapébie
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
| | - Philippe Dru
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Sophie Peron
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Muriel Jager
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Thomas Condamine
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France
| | - Karen Pottin
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Laboratoire de Biologie du Développement (IBPS-LBD, UMR7622), Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Séverine Romano
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Julia Steger
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Laboratoire de Biologie du Développement (IBPS-LBD, UMR7622), Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Paris, France
| | - Chiara Sinigaglia
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242-INRA USC 1370, Lyon cedex 07, France
| | - Carine Barreau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Gonzalo Quiroga Artigas
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Antonella Ruggiero
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, Montpellier Cedex 5, France
| | - Cécile Fourrage
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.,Service de Génétique UMR 781, Hôpital Necker-APHP, Paris, France
| | - Johanna E M Kraus
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Eric Quéinnec
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna, Austria
| | - Michaël Manuel
- Evolution Paris-Seine, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, Paris, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Sorbonne Université, MNHN, CNRS, EPHE, Paris, France
| | - Tsuyoshi Momose
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France
| | - Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Sorbonne Université, CNRS, Villefranche-sur-mer, France.
| |
Collapse
|
21
|
Karabulut A, He S, Chen CY, McKinney SA, Gibson MC. Electroporation of short hairpin RNAs for rapid and efficient gene knockdown in the starlet sea anemone, Nematostella vectensis. Dev Biol 2019; 448:7-15. [PMID: 30641041 DOI: 10.1016/j.ydbio.2019.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
A mechanistic understanding of evolutionary developmental biology requires the development of novel techniques for the manipulation of gene function in phylogenetically diverse organismal systems. Recently, gene-specific knockdown by microinjection of short hairpin RNA (shRNA) was applied in the sea anemone Nematostella vectensis, demonstrating that the shRNA approach can be used for efficient and robust sequence-specific knockdown of a gene of interest. However, the time- and labor-intensive process of microinjection limits access to this technique and its application in large scale experiments. To address this issue, here we present an electroporation protocol for shRNA delivery into Nematostella eggs. This method leverages the speed and simplicity of electroporation, enabling users to manipulate gene expression in hundreds of eggs or embryos within minutes. We provide a detailed description of the experimental procedure, including reagents, electroporation conditions, preparation of Nematostella eggs, and follow-up care of experimental animals. Finally, we demonstrate the knockdown of several endogenous and exogenous genes with known phenotypes and discuss the potential applications of this method.
Collapse
Affiliation(s)
- Ahmet Karabulut
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Shuonan He
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Cheng-Yi Chen
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Sean A McKinney
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; Dept. Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160 USA.
| |
Collapse
|
22
|
He S, Del Viso F, Chen CY, Ikmi A, Kroesen AE, Gibson MC. An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis. Science 2018; 361:1377-1380. [PMID: 30262503 DOI: 10.1126/science.aar8384] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/09/2018] [Indexed: 11/02/2022]
Abstract
Hox genes encode conserved developmental transcription factors that govern anterior-posterior (A-P) pattering in diverse bilaterian animals, which display bilateral symmetry. Although Hox genes are also present within Cnidaria, these simple animals lack a definitive A-P axis, leaving it unclear how and when a functionally integrated Hox code arose during evolution. We used short hairpin RNA (shRNA)-mediated knockdown and CRISPR-Cas9 mutagenesis to demonstrate that a Hox-Gbx network controls radial segmentation of the larval endoderm during development of the sea anemone Nematostella vectensis. Loss of Hox-Gbx activity also elicits marked defects in tentacle patterning along the directive (orthogonal) axis of primary polyps. On the basis of our results, we propose that an axial Hox code may have controlled body patterning and tissue segmentation before the evolution of the bilaterian A-P axis.
Collapse
Affiliation(s)
- Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Cheng-Yi Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Aissam Ikmi
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Amanda E Kroesen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA. .,Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
23
|
Kirillova A, Genikhovich G, Pukhlyakova E, Demilly A, Kraus Y, Technau U. Germ-layer commitment and axis formation in sea anemone embryonic cell aggregates. Proc Natl Acad Sci U S A 2018; 115:1813-1818. [PMID: 29440382 PMCID: PMC5828576 DOI: 10.1073/pnas.1711516115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Robust morphogenetic events are pivotal for animal embryogenesis. However, comparison of the modes of development of different members of a phylum suggests that the spectrum of developmental trajectories accessible for a species might be far broader than can be concluded from the observation of normal development. Here, by using a combination of microsurgery and transgenic reporter gene expression, we show that, facing a new developmental context, the aggregates of dissociated embryonic cells of the sea anemone Nematostella vectensis take an alternative developmental trajectory. The self-organizing aggregates rely on Wnt signals produced by the cells of the original blastopore lip organizer to form body axes but employ morphogenetic events typical for normal development of distantly related cnidarians to re-establish the germ layers. The reaggregated cells show enormous plasticity including the capacity of the ectodermal cells to convert into endoderm. Our results suggest that new developmental trajectories may evolve relatively easily when highly plastic embryonic cells face new constraints.
Collapse
Affiliation(s)
- Anastasia Kirillova
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
- Department of Evolutionary Biology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Grigory Genikhovich
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria;
| | - Ekaterina Pukhlyakova
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Adrien Demilly
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria
| | - Yulia Kraus
- Department of Evolutionary Biology, Biological Faculty, Moscow State University, 119234 Moscow, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Center of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
24
|
Cnidarian Zic Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29442315 DOI: 10.1007/978-981-10-7311-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
To understand the ancestral and evolved roles of zic homologs, it is important to reconstruct the putative roles of ancient zic homologs in the animal phylogeny. Most studies of zic genes have been conducted in model systems that are members of the bilaterian phylum. However, two additional phyla have zic homologs encoded in their genomes. The three animal phyla that contain zic homologs all share a common ancestor and collectively are termed the parahoxozoans (cnidarians (corals, sea anemones, and jellyfish), placozoans (Trichoplax adhaerens), and bilaterians (chordates, insects, nematodes, annelids, echinoderms, etc.). In this chapter we briefly discuss our understanding of zic genes in the parahoxozoans with a particular focus on how expression of cnidarian zic homologs in the medusozoan Hydra vulgaris and the anthozoan Nematostella vectensis informs our understanding of the putative ancestral roles zic homologs played in the cnidarian-bilaterian common ancestor.
Collapse
|
25
|
Abstract
Bilaterality – the possession of two orthogonal body axes – is the name-giving trait of all bilaterian animals. These body axes are established during early embryogenesis and serve as a three-dimensional coordinate system that provides crucial spatial cues for developing cells, tissues, organs and appendages. The emergence of bilaterality was a major evolutionary transition, as it allowed animals to evolve more complex body plans. Therefore, how bilaterality evolved and whether it evolved once or several times independently is a fundamental issue in evolutionary developmental biology. Recent findings from non-bilaterian animals, in particular from Cnidaria, the sister group to Bilateria, have shed new light into the evolutionary origin of bilaterality. Here, we compare the molecular control of body axes in radially and bilaterally symmetric cnidarians and bilaterians, identify the minimal set of traits common for Bilateria, and evaluate whether bilaterality arose once or more than once during evolution.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
26
|
Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, Polka JK, Oliferenko S, Gerbich T, Gladfelter A, Umen J, Bezanilla M, Lancaster MA, He S, Gibson MC, Goldstein B, Tanaka EM, Hu CK, Brunet A. Non-model model organisms. BMC Biol 2017; 15:55. [PMID: 28662661 PMCID: PMC5492503 DOI: 10.1186/s12915-017-0391-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future.
Collapse
Affiliation(s)
- James J Russell
- Department of Biology, Howard Hughes Medical Institute Stanford University, Stanford, CA, 94305, USA
| | - Julie A Theriot
- Departments of Biochemistry and of Microbiology & Immunology, Howard Hughes Medical Institute Stanford University, Stanford, CA, 94305, USA.
| | - Pranidhi Sood
- Department of Biochemistry & Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA
| | - Wallace F Marshall
- Department of Biochemistry & Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA.
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY, 10032, USA
| | | | - Jessica K Polka
- Visiting Scholar, Whitehead Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Therese Gerbich
- 516 Fordham Hall, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Amy Gladfelter
- 516 Fordham Hall, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - James Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St. Louis, MO, 63132, USA
| | | | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH, Cambridge, UK
| | - Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Glenn Laboratories for the Biology of Aging at Stanford, Stanford, CA, 94305, USA
| |
Collapse
|
27
|
Antagonistic BMP-cWNT signaling in the cnidarian Nematostella vectensis reveals insight into the evolution of mesoderm. Proc Natl Acad Sci U S A 2017; 114:E5608-E5615. [PMID: 28652368 DOI: 10.1073/pnas.1701607114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gastrulation was arguably the key evolutionary innovation that enabled metazoan diversification, leading to the formation of distinct germ layers and specialized tissues. Differential gene expression specifying cell fate is governed by the inputs of intracellular and/or extracellular signals. Beta-catenin/Tcf and the TGF-beta bone morphogenetic protein (BMP) provide critical molecular signaling inputs during germ layer specification in bilaterian metazoans, but there has been no direct experimental evidence for a specific role for BMP signaling during endomesoderm specification in the early branching metazoan Nematostella vectensis (an anthozoan cnidarian). Using forward transcriptomics, we show that beta-catenin/Tcf signaling and BMP2/4 signaling provide differential inputs into the cnidarian endomesodermal gene regulatory network (GRN) at the onset of gastrulation (24 h postfertilization) in N. vectensis Surprisingly, beta-catenin/Tcf signaling and BMP2/4 signaling regulate a subset of common downstream target genes in the GRN in opposite ways, leading to the spatial and temporal differentiation of fields of cells in the developing embryo. Thus, we show that regulatory interactions between beta-catenin/Tcf signaling and BMP2/4 signaling are required for the specification and determination of different embryonic regions and the patterning of the oral-aboral axis in Nematostella We also show functionally that the conserved "kernel" of the bilaterian heart mesoderm GRN is operational in N. vectensis, which reinforces the hypothesis that the endoderm and mesoderm in triploblastic bilaterians evolved from the bifunctional endomesoderm (gastrodermis) of a diploblastic ancestor, and that slow rhythmic contractions might have been one of the earliest functions of mesodermal tissue.
Collapse
|
28
|
Abdol AM, Röttinger E, Jansson F, Kaandorp JA. A novel technique to combine and analyse spatial and temporal expression datasets: A case study with the sea anemone Nematostella vectensis to identify potential gene interactions. Dev Biol 2017; 428:204-214. [PMID: 28602952 DOI: 10.1016/j.ydbio.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/28/2017] [Accepted: 06/02/2017] [Indexed: 11/30/2022]
Abstract
Understanding genetic interactions during early development of a given organism, is the first step toward unveiling gene regulatory networks (GRNs) that govern a biological process of interest. Predicting such interactions from large expression datasets by performing targeted knock-down/knock-out approaches is a challenging task. We use the currently available expression datasets (in situ hybridization images & qPCR time series) for a basal anthozoan the sea anemone N. vectensis to construct continuous spatiotemporal gene expression patterns during its early development. Moreover, by combining cluster results from each dataset we develop a method that provides testable hypotheses about potential genetic interactions. We show that the analysis of spatial gene expression patterns reveals functional regions of the embryo during the gastrulation. The clustering results from qPCR time series unveils significant temporal events and highlights genes potentially involved in N. vectensis gastrulation. Furthermore, we introduce a method for merging the clustering results from spatial and temporal datasets by which we can group genes that are expressed in the same region and at the time. We demonstrate that the merged clusters can be used to identify GRN interactions involved in various processes and to predict possible activators or repressors of any gene in the dataset. Finally, we validate our methods and results by predicting the repressor effect of NvErg on NvBra in the central domain during the gastrulation that has recently been confirmed by functional analysis.
Collapse
Affiliation(s)
- Amir M Abdol
- Computational Science Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Nice, France.
| | - Fredrik Jansson
- Computational Science Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jaap A Kaandorp
- Computational Science Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
29
|
|
30
|
Tan S, Huan P, Liu B. Expression patterns indicate that BMP2/4 and Chordin, not BMP5-8 and Gremlin, mediate dorsal-ventral patterning in the mollusk Crassostrea gigas. Dev Genes Evol 2017; 227:75-84. [PMID: 27987051 DOI: 10.1007/s00427-016-0570-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
Though several bilaterian animals use a conserved BMP2/4-Chordin antagonism to pattern the dorsal-ventral (DV) axis, the only lophotrochozoan species in which early DV patterning has been studied to date, the leech Helobdella robusta, appears to employ BMP5-8 and Gremlin. These findings call into question the conservation of a common DV patterning mechanism among bilaterian animals. To explore whether the unusual DV patterning mechanism in H. robusta is also used in other lophotrochozoan species, we investigated the expression of orthologous genes in the early embryo of a bivalve mollusk, Crassostrea gigas. Searching of the genome and phylogenetic analysis revealed that C. gigas possesses single orthologs of BMP2/4, Chordin, and BMP5-8 and no Gremlin homolog. Whole mount in situ hybridization revealed mRNA localization of BMP2/4 and Chordin on the opposite sides of embryos, suggesting the potential involvement of a BMP2/4-Chordin antagonism in DV patterning in this species. Furthermore, universal BMP5-8 expression and the absence of a Gremlin homolog in the C. gigas genome called into question any major contribution by BMP5-8 and Gremlin to early DV patterning in this species. Additionally, we identified seven genes showing asymmetric expression along the DV axis, providing further insight into DV patterning in C. gigas. We present the first report of a Chordin gene in a lophotrochozoan species and of the opposite expression of BMP2/4 (dorsal) and Chordin (ventral) along the D/V axis of a lophotrochozoan embryo. The findings of this study further the knowledge of axis formation in lophotrochozoan species and provide insight into the evolution of the animal DV patterning mechanism.
Collapse
Affiliation(s)
- Sujian Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
31
|
Leclère L, Röttinger E. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Front Cell Dev Biol 2017; 4:157. [PMID: 28168188 PMCID: PMC5253434 DOI: 10.3389/fcell.2016.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.
Collapse
Affiliation(s)
- Lucas Leclère
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) Villefranche-sur-mer, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN) Nice, France
| |
Collapse
|
32
|
Martín-Durán JM, Passamaneck YJ, Martindale MQ, Hejnol A. The developmental basis for the recurrent evolution of deuterostomy and protostomy. Nat Ecol Evol 2016; 1:5. [PMID: 28812551 DOI: 10.1038/s41559-016-0005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
The mouth opening of bilaterian animals develops either separate from (deuterostomy) or connected to (protostomy) the embryonic blastopore, the site of endomesoderm internalization. Although this distinction preluded the classification of bilaterian animals in Deuterostomia and Protostomia, and has influenced major scenarios of bilaterian evolution, the developmental basis for the appearance of these different embryonic patterns remains unclear. To identify the underlying mechanisms, we compared the development of two brachiopod species that show deuterostomy (Novocrania anomala) and protostomy (Terebratalia transversa), respectively. We show that the differential activity of Wnt signalling, together with the timing and location of mesoderm formation, correlate with the differential behaviour and fate of the blastopore. We further assess these principles in the spiral-cleaving group Annelida, and propose that the developmental relationships of mouth and blastoporal openings are secondary by-products of variations in axial and mesoderm development. This challenges the previous evolutionary emphasis on extant blastoporal behaviours to explain the origin and diversification of bilaterian animals.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen 5006, Norway
| | - Yale J Passamaneck
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, Florida 32080, USA.,Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, Hawaii 96813, USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, Florida 32080, USA.,Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, Hawaii 96813, USA
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen 5006, Norway
| |
Collapse
|
33
|
Rentzsch F, Layden M, Manuel M. The cellular and molecular basis of cnidarian neurogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 6. [PMID: 27882698 PMCID: PMC6680159 DOI: 10.1002/wdev.257] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/30/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
Neurogenesis initiates during early development and it continues through later developmental stages and in adult animals to enable expansion, remodeling, and homeostasis of the nervous system. The generation of nerve cells has been analyzed in detail in few bilaterian model organisms, leaving open many questions about the evolution of this process. As the sister group to bilaterians, cnidarians occupy an informative phylogenetic position to address the early evolution of cellular and molecular aspects of neurogenesis and to understand common principles of neural development. Here we review studies in several cnidarian model systems that have revealed significant similarities and interesting differences compared to neurogenesis in bilaterian species, and between different cnidarian taxa. Cnidarian neurogenesis is currently best understood in the sea anemone Nematostella vectensis, where it includes epithelial neural progenitor cells that express transcription factors of the soxB and atonal families. Notch signaling regulates the number of these neural progenitor cells, achaete‐scute and dmrt genes are required for their further development and Wnt and BMP signaling appear to be involved in the patterning of the nervous system. In contrast to many vertebrates and Drosophila, cnidarians have a high capacity to generate neurons throughout their lifetime and during regeneration. Utilizing this feature of cnidarian biology will likely allow gaining new insights into the similarities and differences of embryonic and regenerative neurogenesis. The use of different cnidarian model systems and their expanding experimental toolkits will thus continue to provide a better understanding of evolutionary and developmental aspects of nervous system formation. WIREs Dev Biol 2017, 6:e257. doi: 10.1002/wdev.257 This article is categorized under:
Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Organ System Comparisons Between Species
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Michaël Manuel
- Sorbonne Universités, UMPC Univ Paris 06, CNRS, Evolution Paris-Seine, Institut de Biologie Paris-Seine (IBPS), Paris, France
| |
Collapse
|
34
|
Kelava I, Rentzsch F, Technau U. Evolution of eumetazoan nervous systems: insights from cnidarians. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0065. [PMID: 26554048 PMCID: PMC4650132 DOI: 10.1098/rstb.2015.0065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system—in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution.
Collapse
Affiliation(s)
- Iva Kelava
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Fabian Rentzsch
- Sars Centre, Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
35
|
Hejnol A, Pang K. Xenacoelomorpha's significance for understanding bilaterian evolution. Curr Opin Genet Dev 2016; 39:48-54. [PMID: 27322587 DOI: 10.1016/j.gde.2016.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/02/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022]
Abstract
The Xenacoelomorpha, with its phylogenetic position as sister group of the Nephrozoa (Protostomia+Deuterostomia), plays a key-role in understanding the evolution of bilaterian cell types and organ systems. Current studies of the morphological and developmental diversity of this group allow us to trace the evolution of different organ systems within the group and to reconstruct characters of the most recent common ancestor of Xenacoelomorpha. The disparity of the clade shows that there cannot be a single xenacoelomorph 'model' species and strategic sampling is essential for understanding the evolution of major traits. With this strategy, fundamental insights into the evolution of molecular mechanisms and their role in shaping animal organ systems can be expected in the near future.
Collapse
Affiliation(s)
- Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.
| | - Kevin Pang
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| |
Collapse
|
36
|
Rentzsch F, Technau U. Genomics and development of Nematostella vectensis and other anthozoans. Curr Opin Genet Dev 2016; 39:63-70. [PMID: 27318695 DOI: 10.1016/j.gde.2016.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/14/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
Due to their rather simple body plan with only few organs and a low number of cell types, cnidarians have long been recognized as an important animal group for evolutionary comparisons of animal body plans. Recent studies have shown, however, that the genomes of cnidarians and their epigenetic and posttranscriptional regulation are more complex than their morphology might suggest. How these complex genomes are deployed during embryonic development is an open question. With a focus on the sea anemone Nematostella vectensis we describe new findings about the development of the nervous system from neural progenitor cells and how Wnt and BMP signalling control axial patterning. These studies show that beyond evolutionary comparisons, cnidarian model organisms can provide new insights into generic questions in developmental biology.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, 5008 Bergen, Norway.
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
37
|
Leclère L, Bause M, Sinigaglia C, Steger J, Rentzsch F. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8. Development 2016; 143:1766-77. [PMID: 26989171 PMCID: PMC4874479 DOI: 10.1242/dev.120931] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/08/2016] [Indexed: 01/25/2023]
Abstract
The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct patterning along the primary body axis. Investigating the early steps of aboral pole formation in the sea anemone Nematostella vectensis, we found that, at blastula stage, oral genes are expressed before aboral genes and that Nvβ-catenin regulates both oral and aboral development. In the oral hemisphere, Nvβ-catenin specifies all subdomains except the oral-most, NvSnailA-expressing domain, which is expanded upon Nvβ-catenin knockdown. In addition, Nvβ-catenin establishes the aboral patterning system by promoting the expression of NvSix3/6 at the aboral pole and suppressing the Wnt receptor NvFrizzled5/8 at the oral pole. NvFrizzled5/8 expression thereby gets restricted to the aboral domain. At gastrula stage, NvSix3/6 and NvFrizzled5/8 are both expressed in the aboral domain, but they have opposing activities, with NvSix3/6 maintaining and NvFrizzled5/8 restricting the size of the aboral domain. At planula stage, NvFrizzled5/8 is required for patterning within the aboral domain and for regulating the size of the apical organ by modulation of a previously characterized FGF feedback loop. Our findings suggest conserved roles for Six3/6 and Frizzled5/8 in aboral/anterior development and reveal key functions for Nvβ-catenin in the patterning of the entire oral-aboral axis of Nematostella.
Collapse
Affiliation(s)
- Lucas Leclère
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 181 chemin du Lazaret, Villefranche-sur-mer 06230, France
| | - Markus Bause
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| | - Chiara Sinigaglia
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| | - Julia Steger
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt 55, Bergen 5008, Norway
| |
Collapse
|
38
|
Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:408-28. [PMID: 26894563 PMCID: PMC5067631 DOI: 10.1002/wdev.222] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023]
Abstract
Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), CNRS UMR 7284, INSERM U1081, Université de Nice-Sophia-Antipolis, Nice, France
| |
Collapse
|
39
|
Chang YC, Pai CY, Chen YC, Ting HC, Martinez P, Telford MJ, Yu JK, Su YH. Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning. Dev Biol 2016; 410:108-18. [DOI: 10.1016/j.ydbio.2015.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
|
40
|
Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp. Sci Rep 2016; 6:19867. [PMID: 26804034 PMCID: PMC4726165 DOI: 10.1038/srep19867] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
Symbiosis between photosynthetic algae and heterotrophic organisms is widespread. One prominent example of high ecological relevance is the endosymbiosis between dinoflagellate algae of the genus Symbiodinium and reef-building corals, which typically acquire symbionts anew each generation during larval stages. The tropical sea anemone Aiptasia sp. is a laboratory model system for this endosymbiosis and, similar to corals, produces non-symbiotic larvae that establish symbiosis by phagocytosing Symbiodinium from the environment into the endoderm. Here we generate the first overview of Aiptasia embryogenesis and larval development and establish in situ hybridization to analyze expression patterns of key early developmental regulators. Next, we quantify morphological changes in developing larvae and find a substantial enlargement of the gastric cavity over time. Symbiont acquisition starts soon after mouth formation and symbionts occupy a major portion of the host cell in which they reside. During the first 14 days of development, infection efficiency remains constant while in contrast, localization of phagocytosed symbionts changes, indicating that the occurrence of functional phagocytosing cells may be developmentally regulated. Taken together, here we provide the essential framework to further develop Aiptasia as a model system for the analysis of symbiosis establishment in cnidarian larvae at the molecular level.
Collapse
|
41
|
Amiel AR, Johnston HT, Nedoncelle K, Warner JF, Ferreira S, Röttinger E. Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone, Nematostella vectensis. Int J Mol Sci 2015; 16:28449-71. [PMID: 26633371 PMCID: PMC4691047 DOI: 10.3390/ijms161226100] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 01/05/2023] Open
Abstract
Cnidarians, the extant sister group to bilateria, are well known for their impressive regenerative capacity. The sea anemone Nematostella vectensis is a well-established system for the study of development and evolution that is receiving increased attention for its regenerative capacity. Nematostella is able to regrow missing body parts within five to six days after its bisection, yet studies describing the morphological, cellular, and molecular events underlying this process are sparse and very heterogeneous in their experimental approaches. In this study, we lay down the basic framework to study oral regeneration in Nematostella vectensis. Using various imaging and staining techniques we characterize in detail the morphological, cellular, and global molecular events that define specific landmarks of this process. Furthermore, we describe in vivo assays to evaluate wound healing success and the initiation of pharynx reformation. Using our described landmarks for regeneration and in vivo assays, we analyze the effects of perturbing either transcription or cellular proliferation on the regenerative process. Interestingly, neither one of these experimental perturbations has major effects on wound closure, although they slightly delay or partially block it. We further show that while the inhibition of transcription blocks regeneration in a very early step, inhibiting cellular proliferation only affects later events such as pharynx reformation and tentacle elongation.
Collapse
Affiliation(s)
- Aldine R Amiel
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Hereroa T Johnston
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Karine Nedoncelle
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Jacob F Warner
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Solène Ferreira
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| | - Eric Röttinger
- Institute for Research on Cancer and Aging, Université de Nice Sophia-Antipolis UMR 7284, INSERM U1081, CNRS UMR 7284, Nice 06107 Cedex 02, France.
| |
Collapse
|
42
|
Technau U, Schwaiger M. Recent advances in genomics and transcriptomics of cnidarians. Mar Genomics 2015; 24 Pt 2:131-8. [PMID: 26421490 DOI: 10.1016/j.margen.2015.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 01/05/2023]
Abstract
The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago.
Collapse
Affiliation(s)
- Ulrich Technau
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Michaela Schwaiger
- Department of Molecular Evolution and Development, Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
43
|
Meinhardt H. Dorsoventral patterning by the Chordin-BMP pathway: a unified model from a pattern-formation perspective for drosophila, vertebrates, sea urchins and nematostella. Dev Biol 2015; 405:137-48. [DOI: 10.1016/j.ydbio.2015.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 01/15/2023]
|
44
|
Abstract
The non-bilaterian animals comprise organisms in the phyla Porifera, Cnidaria, Ctenophora and Placozoa. These early-diverging phyla are pivotal to understanding the evolution of bilaterian animals. After the exponential increase in research in evolutionary development (evo-devo) in the last two decades, these organisms are again in the spotlight of evolutionary biology. In this work, I briefly review some aspects of the developmental biology of nonbilaterians that contribute to understanding the evolution of development and of the metazoans. The evolution of the developmental genetic toolkit, embryonic polarization, the origin of gastrulation and mesodermal cells, and the origin of neural cells are discussed. The possibility that germline and stem cell lineages have the same origin is also examined. Although a considerable number of non-bilaterian species are already being investigated, the use of species belonging to different branches of non-bilaterian lineages and functional experimentation with gene manipulation in the majority of the non-bilaterian lineages will be necessary for further progress in this field.
Collapse
Affiliation(s)
- Emilio Lanna
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal da Bahia, Salvador, BA, Brazil
| |
Collapse
|
45
|
Genikhovich G, Fried P, Prünster MM, Schinko JB, Gilles AF, Fredman D, Meier K, Iber D, Technau U. Axis Patterning by BMPs: Cnidarian Network Reveals Evolutionary Constraints. Cell Rep 2015; 10:1646-1654. [PMID: 25772352 PMCID: PMC4460265 DOI: 10.1016/j.celrep.2015.02.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 12/17/2014] [Accepted: 02/13/2015] [Indexed: 12/11/2022] Open
Abstract
BMP signaling plays a crucial role in the establishment of the dorso-ventral body axis in bilaterally symmetric animals. However, the topologies of the bone morphogenetic protein (BMP) signaling networks vary drastically in different animal groups, raising questions about the evolutionary constraints and evolvability of BMP signaling systems. Using loss-of-function analysis and mathematical modeling, we show that two signaling centers expressing different BMPs and BMP antagonists maintain the secondary axis of the sea anemone Nematostella. We demonstrate that BMP signaling is required for asymmetric Hox gene expression and mesentery formation. Computational analysis reveals that network parameters related to BMP4 and Chordin are constrained both in Nematostella and Xenopus, while those describing the BMP signaling modulators can vary significantly. Notably, only chordin, but not bmp4 expression needs to be spatially restricted for robust signaling gradient formation. Our data provide an explanation of the evolvability of BMP signaling systems in axis formation throughout Eumetazoa.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Patrick Fried
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - M Mandela Prünster
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Johannes B Schinko
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Anna F Gilles
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - David Fredman
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; Computational Biology Unit, University of Bergen, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Karin Meier
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department for Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|