1
|
Bagger SM, Schihada H, Walser ALS, Drzazga AK, Grätz L, Palmisano T, Kuhn CK, Mavri M, Mølleskov-Jensen AS, Tall GG, Schöneberg T, Mathiasen SJ, Javitch JA, Schulte G, Spiess K, Rosenkilde MM. Complex G-protein signaling of the adhesion GPCR, ADGRA3. J Biol Chem 2025; 301:108441. [PMID: 40127866 PMCID: PMC12059339 DOI: 10.1016/j.jbc.2025.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
ADGRA3 (GPR125) is an orphan adhesion G protein-coupled receptor (aGPCR) involved in planar cell polarity, primarily through recruitment of the signaling components disheveled (DVL) during vertebrate gastrulation and discs large homolog 1, implicated in cancer. Limited knowledge exists of the canonical G protein-coupled receptor pathways downstream of ADGRA3. Here, we employed a series of human cell line-based signaling assays to gain insight into the G protein-mediated signaling of ADGRA3. We designed ADGRA3 constructs based on transcript variant analysis in publicly available human liver and brain RNA-seq datasets. Cleavage in the GPCR autoproteolysis site (GPS) is an aGPCR hallmark; thus, we generated a truncated ADGRA3 (C-terminal fragment, CTF) corresponding to a potential cleavage at the GPS. We found low-level activation of Gi and Gs by ADGRA3 and slightly more by its CTF. As the N terminus of the CTF constitutes a class-defined tethered agonist (so-called stachel peptide), we removed the initial three amino acids of the CTF. This resulted in abrogated G protein-mediated signaling, as observed for other aGPCRs. Due to the central role of ADGRA3 in planar cell polarity signaling through DVL recruitment, we investigated the G-protein signaling in the absence of DVL1-3 and found it sustained. No transcriptional activation was observed in an assay of downstream β-catenin activity. Collectively, this establishes classical G protein-mediated signaling for ADGRA3.
Collapse
Affiliation(s)
- Sofie M Bagger
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Schihada
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Anna L S Walser
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K Drzazga
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Grätz
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Tiago Palmisano
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Christina K Kuhn
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Maša Mavri
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Sophie Mølleskov-Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Torsten Schöneberg
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Signe J Mathiasen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet, Stockholm, Sweden
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Sun S, Wang W. Mechanosensitive adhesion G protein-coupled receptors: Insights from health and disease. Genes Dis 2025; 12:101267. [PMID: 39935605 PMCID: PMC11810715 DOI: 10.1016/j.gendis.2024.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/15/2024] [Accepted: 02/28/2024] [Indexed: 02/13/2025] Open
Abstract
Ontogeny cannot be separated from mechanical forces. Cells are continuously subjected to different types of mechanical stimuli that convert into intracellular signals through mechanotransduction. As a member of the G protein-coupled receptor superfamily, adhesion G protein-coupled receptors (aGPCRs) have attracted extensive attention due to their unique extracellular domain and adhesion properties. In the past few decades, increasing evidence has indicated that sensing mechanical stimuli may be one of the main physiological activities of aGPCRs. Here, we review the general structure and activation mechanisms of these receptors and highlight the lesion manifestations relevant to each mechanosensitive aGPCR.
Collapse
Affiliation(s)
- Shiying Sun
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Wen Wang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Key Laboratory of Stomatology, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
3
|
Lehmann L, Groß VE, Behlendorf R, Prömel S. The N terminus-only function of adhesion GPCRs: emerging concepts. Trends Pharmacol Sci 2025; 46:231-248. [PMID: 39955242 DOI: 10.1016/j.tips.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) play key roles in health and disease. They are unique in that they not only activate G-protein pathways but also have distinct functions that rely solely on their N termini, making them complex drug targets. To date there have been only descriptive observations about these enigmatic N terminus-only functions. Emerging evidence from several aGPCRs now indicates that these are a defining characteristic of these receptors that allows them to operate bidirectionally across environments. Recent advances in characterizing aGPCR splice variants and receptor structure have revealed the G protein-independent mechanisms that underlie their N terminus-only functions. This review consolidates current findings, explores how the N termini integrate functions, and identifies common principles across aGPCRs. We consider the therapeutic implications and discuss how specifically targeting N terminus functions provides a novel perspective on the pharmacological potential of aGPCRs.
Collapse
Affiliation(s)
- Laura Lehmann
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Victoria Elisabeth Groß
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rene Behlendorf
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simone Prömel
- Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Seufert F, Pérez-Hernández G, Pándy-Szekeres G, Guixà-González R, Langenhan T, Gloriam DE, Hildebrand PW. Generic residue numbering of the GAIN domain of adhesion GPCRs. Nat Commun 2025; 16:246. [PMID: 39747076 PMCID: PMC11697300 DOI: 10.1038/s41467-024-55466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The GPCR autoproteolysis inducing (GAIN) domain is an ancient protein fold ubiquitous in adhesion G protein-coupled receptors (aGPCR). It contains a tethered agonist necessary and sufficient for receptor activation. The GAIN domain is a hotspot for pathological mutations. However, the low primary sequence conservation of GAIN domains has thus far hindered the knowledge transfer across different GAIN domains in human receptors as well as species orthologs. Here, we present a scheme for generic residue numbering of GAIN domains, based on structural alignments of over 14,000 modeled GAIN domain structures. This scheme is implemented in the GPCR database (GPCRdb) and elucidates the domain topology across different aGPCRs and their homologs in a large panel of species. We identify conservation hotspots and statistically cancer-enriched positions in human aGPCRs and show the transferability of positional and structural information between GAIN domain homologs. The GAIN-GRN scheme provides a robust strategy to allocate structural homologies at the primary and secondary levels also to GAIN domains of polycystic kidney disease 1/PKD1-like proteins, which now renders positions in both GAIN domain types comparable to one another. In summary, our work enables researchers to generate hypothesis and rationalize experiments related to GAIN domain function and pathology.
Collapse
Affiliation(s)
- Florian Seufert
- Institute for Medical Physics and Biophysics, Leipzig University, Medical Faculty, Leipzig, Germany
| | - Guillermo Pérez-Hernández
- Institute for Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Magyar Tudósok körútja 2., Budapest, Hungary
| | - Ramon Guixà-González
- Institute for Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig, Germany
- Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Leipzig University, Medical Faculty, Leipzig, Germany.
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig, Germany.
| |
Collapse
|
5
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
6
|
Kordon SP, Cechova K, Bandekar SJ, Leon K, Dutka P, Siffer G, Kossiakoff AA, Vafabakhsh R, Araç D. Conformational coupling between extracellular and transmembrane domains modulates holo-adhesion GPCR function. Nat Commun 2024; 15:10545. [PMID: 39627215 PMCID: PMC11615224 DOI: 10.1038/s41467-024-54836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECRs) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the transmembrane region and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the transmembrane region within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism for aGPCR activation.
Collapse
Affiliation(s)
- Szymon P Kordon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA
| | - Kristina Cechova
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sumit J Bandekar
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Przemysław Dutka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Gracie Siffer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
- Center for Mechanical Excitability, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Pawnikar S, Magenheimer BS, Joshi K, Nevarez-Munoz E, Haldane A, Maser RL, Miao Y. Activation of polycystin-1 signaling by binding of stalk-derived peptide agonists. eLife 2024; 13:RP95992. [PMID: 39373641 PMCID: PMC11458180 DOI: 10.7554/elife.95992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Polycystin-1 (PC1) is the protein product of the PKD1 gene whose mutation causes autosomal dominant Polycystic Kidney Disease (ADPKD). PC1 is an atypical G protein-coupled receptor (GPCR) with an autocatalytic GAIN domain that cleaves PC1 into extracellular N-terminal and membrane-embedded C-terminal (CTF) fragments. Recently, activation of PC1 CTF signaling was shown to be regulated by a stalk tethered agonist (TA), resembling the mechanism observed for adhesion GPCRs. Here, synthetic peptides of the first 9- (p9), 17- (p17), and 21-residues (p21) of the PC1 stalk TA were shown to re-activate signaling by a stalkless CTF mutant in human cell culture assays. Novel Peptide Gaussian accelerated molecular dynamics (Pep-GaMD) simulations elucidated binding conformations of p9, p17, and p21 and revealed multiple specific binding regions to the stalkless CTF. Peptide agonists binding to the TOP domain of PC1 induced close TOP-putative pore loop interactions, a characteristic feature of stalk TA-mediated PC1 CTF activation. Additional sequence coevolution analyses showed the peptide binding regions were consistent with covarying residue pairs identified between the TOP domain and the stalk TA. These insights into the structural dynamic mechanism of PC1 activation by TA peptide agonists provide an in-depth understanding that will facilitate the development of therapeutics targeting PC1 for ADPKD treatment.
Collapse
Affiliation(s)
- Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of KansasLawrenceUnited States
| | - Brenda S Magenheimer
- Clinical Laboratory Sciences, University of Kansas Medical CenterKansas CityUnited States
- The Jared Grantham Kidney Institute, University of Kansas Medical CenterKansas CityUnited States
| | - Keya Joshi
- Department of Pharmacology and Computational Medicine Program, University of North CarolinaChapel HillUnited States
| | - Ericka Nevarez-Munoz
- Clinical Laboratory Sciences, University of Kansas Medical CenterKansas CityUnited States
| | - Allan Haldane
- Department of Physics, and Center for Biophysics and Computational Biology, Temple UniversityPhiladelphiaUnited States
| | - Robin L Maser
- Clinical Laboratory Sciences, University of Kansas Medical CenterKansas CityUnited States
- The Jared Grantham Kidney Institute, University of Kansas Medical CenterKansas CityUnited States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Yinglong Miao
- Department of Pharmacology and Computational Medicine Program, University of North CarolinaChapel HillUnited States
| |
Collapse
|
8
|
Xu Y, Xu H, Yan J, Song G. Mechanical force induced activation of adhesion G protein-coupled receptor. MECHANOBIOLOGY IN MEDICINE 2024; 2:100078. [PMID: 40395494 PMCID: PMC12082320 DOI: 10.1016/j.mbm.2024.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2025]
Abstract
Among the various families of G protein-couple receptors (GPCR), the adhesion family of GPCRs is specialized by its expansive extracellular region, which facilitates the recruitment of various ligands. Previous hypothesis proposed that aGPCRs are activated by mechanical force, wherein a Stachel peptide is liberated from the GPCR autoproteolysis-inducing (GAIN) domain and subsequently binds to the transmembrane domain (7TM) upon activation. In this review, we summarize recent advancements in structural studies of aGPCRs, unveiling a conserved structural change of the Stachel peptide from the GAIN domain-embedded β-strand conformation to the 7TM-loaded α-helical conformation. Notably, using single-molecule studies, we directly observed the unfolding of GAIN domain and the release of Stachel peptide under physiological level of force, precisely supporting the mechanosensing mechanism for aGPCRs. We observed that the current complex structures of aGPCR adhesion domains with their respective ligands share a common pattern with the C-termini of each binding partner extending in opposite directions, suggesting a similar shearing stretch geometry for these aGPCRs to transmit the mechanical force generated in the circulating environment to the GAIN domain for its unfolding. Outstanding questions, including the relative orientations and interactions between 7TM and its preceding GAIN and adhesion domains of different aGPCRs, may require further structural and mechanical studies at the full-length receptor scale or cell-based level. Our analysis extends the current view of aGPCR structural organization and activation and offers valuable insights for the development of mechanosensor based on aGPCRs or discovery of mechanotherapy against aGPCRs.
Collapse
Affiliation(s)
- Yueming Xu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huanhuan Xu
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Gaojie Song
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
9
|
Dates AN, Jones DTD, Smith JS, Skiba MA, Rich MF, Burruss MM, Kruse AC, Blacklow SC. Heterogeneity of tethered agonist signaling in adhesion G protein-coupled receptors. Cell Chem Biol 2024; 31:1542-1553.e4. [PMID: 38608683 PMCID: PMC11330365 DOI: 10.1016/j.chembiol.2024.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Adhesion G protein-coupled receptor (aGPCR) signaling influences development and homeostasis in a wide range of tissues. In the current model for aGPCR signaling, ligand binding liberates a conserved sequence that acts as an intramolecular, tethered agonist (TA), yet this model has not been evaluated systematically for all aGPCRs. Here, we assessed the TA-dependent activities of all 33 aGPCRs in a suite of transcriptional reporter, G protein activation, and β-arrestin recruitment assays using a new fusion protein platform. Strikingly, only ∼50% of aGPCRs exhibited robust TA-dependent activation, and unlike other GPCR families, aGPCRs showed a notable preference for G12/13 signaling. AlphaFold2 predictions assessing TA engagement in the predicted intramolecular binding pocket aligned with the TA dependence of the cellular responses. This dataset provides a comprehensive resource to inform the investigation of all human aGPCRs and for targeting aGPCRs therapeutically.
Collapse
Affiliation(s)
- Andrew N Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel T D Jones
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey S Smith
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Maria F Rich
- University of Cincinnati School of Medicine, Department of Molecular Genetics, Biochemistry, and Microbiology, Cincinnati, OH 45267, USA
| | - Maggie M Burruss
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Pawnikar S, Magenheimer BS, Joshi K, Munoz EN, Haldane A, Maser RL, Miao Y. Activation of Polycystin-1 Signaling by Binding of Stalk-derived Peptide Agonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574465. [PMID: 38260358 PMCID: PMC10802338 DOI: 10.1101/2024.01.06.574465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polycystin-1 (PC1) is the membrane protein product of the PKD1 gene whose mutation is responsible for 85% of the cases of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is primarily characterized by the formation of renal cysts and potential kidney failure. PC1 is an atypical G protein-coupled receptor (GPCR) consisting of 11 transmembrane helices and an autocatalytic GAIN domain that cleaves PC1 into extracellular N-terminal (NTF) and membrane-embedded C-terminal (CTF) fragments. Recently, signaling activation of the PC1 CTF was shown to be regulated by a stalk tethered agonist (TA), a distinct mechanism observed in the adhesion GPCR family. A novel allosteric activation pathway was elucidated for the PC1 CTF through a combination of Gaussian accelerated molecular dynamics (GaMD), mutagenesis and cellular signaling experiments. Here, we show that synthetic, soluble peptides with 7 to 21 residues derived from the stalk TA, in particular, peptides including the first 9 residues (p9), 17 residues (p17) and 21 residues (p21) exhibited the ability to re-activate signaling by a stalkless PC1 CTF mutant in cellular assays. To reveal molecular mechanisms of stalk peptide-mediated signaling activation, we have applied a novel Peptide GaMD (Pep-GaMD) algorithm to elucidate binding conformations of selected stalk peptide agonists p9, p17 and p21 to the stalkless PC1 CTF. The simulations revealed multiple specific binding regions of the stalk peptide agonists to the PC1 protein including an "intermediate" bound yet inactive state. Our Pep-GaMD simulation findings were consistent with the cellular assay experimental data. Binding of peptide agonists to the TOP domain of PC1 induced close TOP-putative pore loop interactions, a characteristic feature of the PC1 CTF signaling activation mechanism. Using sequence covariation analysis of PC1 homologs, we further showed that the peptide binding regions were consistent with covarying residue pairs identified between the TOP domain and the stalk TA. Therefore, structural dynamic insights into the mechanisms of PC1 activation by stalk-derived peptide agonists have enabled an in-depth understanding of PC1 signaling. They will form a foundation for development of PC1 as a therapeutic target for the treatment of ADPKD.
Collapse
Affiliation(s)
- Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047
| | - Brenda S. Magenheimer
- Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160
| | - Keya Joshi
- Department of Pharmacology and Computational Medicine Program, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Ericka Nevarez Munoz
- Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Allan Haldane
- Dept of Physics, and Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA 19122
| | - Robin L. Maser
- Departments of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160
| | - Yinglong Miao
- Department of Pharmacology and Computational Medicine Program, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
11
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
12
|
Cevheroğlu O, Demirbaş B, Öğütcü D, Murat M. ADGRG1, an adhesion G protein-coupled receptor, forms oligomers. FEBS J 2024; 291:2461-2478. [PMID: 38468592 DOI: 10.1111/febs.17117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/26/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
G protein-coupled receptor (GPCR) oligomerization is a highly debated topic in the field. While initially believed to function as monomers, current literature increasingly suggests that these cell surface receptors, spanning almost all GPCR families, function as homo- or hetero-oligomers. Yet, the functional consequences of these oligomeric complexes remain largely unknown. Adhesion GPCRs (aGPCRs) present an intriguing family of receptors characterized by their large and multi-domain N-terminal fragments (NTFs), intricate activation mechanisms, and the prevalence of numerous splice variants in almost all family members. In the present study, bioluminescence energy transfer (BRET) and Förster resonance energy transfer (FRET) were used to study the homo-oligomerization of adhesion G protein-coupled receptor G1 (ADGRG1; also known as GPR56) and to assess the involvement of NTFs in these receptor complexes. Based on the results presented herein, we propose that ADGRG1 forms 7-transmembrane-driven homo-oligomers on the plasma membrane. Additionally, Stachel motif interactions appear to influence the conformation of these receptor complexes.
Collapse
Affiliation(s)
| | - Berkay Demirbaş
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| | - Dilara Öğütcü
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| | - Merve Murat
- Department of Biological Sciences, Middle East Technical University, Çankaya, Turkey
| |
Collapse
|
13
|
Stephan G, Haddock S, Wang S, Erdjument-Bromage H, Liu W, Ravn-Boess N, Frenster JD, Bready D, Cai J, Ronnen R, Sabio-Ortiz J, Fenyo D, Neubert TA, Placantonakis DG. Modulation of GPR133 (ADGRD1) signaling by its intracellular interaction partner extended synaptotagmin 1. Cell Rep 2024; 43:114229. [PMID: 38758649 PMCID: PMC11209873 DOI: 10.1016/j.celrep.2024.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/12/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM slows tumor growth, suggesting tumorigenic functions of ESYT1. Our findings demonstrate a mechanism for the modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Sara Haddock
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rebecca Ronnen
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
14
|
Žáčková S, Pávová M, Trylčová J, Chalupová J, Priss A, Lukšan O, Weber J. Upregulation of mRNA Expression of ADGRD1/GPR133 and ADGRG7/GPR128 in SARS-CoV-2-Infected Lung Adenocarcinoma Calu-3 Cells. Cells 2024; 13:791. [PMID: 38786015 PMCID: PMC11119037 DOI: 10.3390/cells13100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.
Collapse
Affiliation(s)
- Sandra Žáčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
- Department of Genetics and Microbiology, Charles University, Faculty of Sciences, 128 44 Prague, Czech Republic
| | - Marcela Pávová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jana Trylčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jitka Chalupová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| |
Collapse
|
15
|
Kuhn CK, Stenzel U, Berndt S, Liebscher I, Schöneberg T, Horn S. The repertoire and structure of adhesion GPCR transcript variants assembled from publicly available deep-sequenced human samples. Nucleic Acids Res 2024; 52:3823-3836. [PMID: 38421639 DOI: 10.1093/nar/gkae145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example. On average, 24 different transcript variants were detected for each of the 33 human aGPCR genes, and several dominant transcript variants were not yet annotated. Variable transcription starts and complex exon-intron structures encode a flexible protein domain architecture of the N- and C termini and the seven-transmembrane helix domain (7TMD). Notably, we discovered the first GPCR (ADGRG7/GPR128) with eight transmembrane helices. Both the N- and C terminus of this aGPCR were intracellularly oriented, anchoring the N terminus in the plasma membrane. Moreover, the assessment of tissue-specific transcript variants, also for other gene classes, in our application may change the evaluation of disease-causing mutations, as their position in different transcript variants may explain tissue-specific phenotypes.
Collapse
Affiliation(s)
- Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Udo Stenzel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Department of Biochemistry, School of Medicine, University of Global Health Equity (UGHE), PO Box 6955 Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
16
|
Kordon SP, Cechova K, Bandekar SJ, Leon K, Dutka P, Siffer G, Kossiakoff AA, Vafabakhsh R, Araç D. Structural analysis and conformational dynamics of a holo-adhesion GPCR reveal interplay between extracellular and transmembrane domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581807. [PMID: 38464178 PMCID: PMC10925191 DOI: 10.1101/2024.02.25.581807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Adhesion G Protein-Coupled Receptors (aGPCRs) are key cell-adhesion molecules involved in numerous physiological functions. aGPCRs have large multi-domain extracellular regions (ECR) containing a conserved GAIN domain that precedes their seven-pass transmembrane domain (7TM). Ligand binding and mechanical force applied on the ECR regulate receptor function. However, how the ECR communicates with the 7TM remains elusive, because the relative orientation and dynamics of the ECR and 7TM within a holoreceptor is unclear. Here, we describe the cryo-EM reconstruction of an aGPCR, Latrophilin3/ADGRL3, and reveal that the GAIN domain adopts a parallel orientation to the membrane and has constrained movement. Single-molecule FRET experiments unveil three slow-exchanging FRET states of the ECR relative to the 7TM within the holoreceptor. GAIN-targeted antibodies, and cancer-associated mutations at the GAIN-7TM interface, alter FRET states, cryo-EM conformations, and receptor signaling. Altogether, this data demonstrates conformational and functional coupling between the ECR and 7TM, suggesting an ECR-mediated mechanism of aGPCR activation.
Collapse
|
17
|
Scharf MM, Humphrys LJ, Berndt S, Di Pizio A, Lehmann J, Liebscher I, Nicoli A, Niv MY, Peri L, Schihada H, Schulte G. The dark sides of the GPCR tree - research progress on understudied GPCRs. Br J Pharmacol 2024. [PMID: 38339984 DOI: 10.1111/bph.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.
Collapse
Affiliation(s)
- Magdalena M Scharf
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Juliane Lehmann
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chemoinformatics and Protein Modelling, Department of Molecular Life Science, School of Life Science, Technical University of Munich, Freising, Germany
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannes Schihada
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gunnar Schulte
- Karolinska Institutet, Dept. Physiology & Pharmacology, Sec. Receptor Biology & Signaling, Stockholm, Sweden
| |
Collapse
|
18
|
Vieira Contreras F, Auger GM, Müller L, Richter V, Huetteroth W, Seufert F, Hildebrand PW, Scholz N, Thum AS, Ljaschenko D, Blanco-Redondo B, Langenhan T. The adhesion G-protein-coupled receptor mayo/CG11318 controls midgut development in Drosophila. Cell Rep 2024; 43:113640. [PMID: 38180839 DOI: 10.1016/j.celrep.2023.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/14/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024] Open
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) form a large family of cell surface molecules with versatile tasks in organ development. Many aGPCRs still await their functional and pharmacological deorphanization. Here, we characterized the orphan aGPCR CG11318/mayo of Drosophila melanogaster and found it expressed in specific regions of the gastrointestinal canal and anal plates, epithelial specializations that control ion homeostasis. Genetic removal of mayo results in tachycardia, which is caused by hyperkalemia of the larval hemolymph. The hyperkalemic effect can be mimicked by a raise in ambient potassium concentration, while normal potassium levels in mayoKO mutants can be restored by pharmacological inhibition of potassium channels. Intriguingly, hyperkalemia and tachycardia are caused non-cell autonomously through mayo-dependent control of enterocyte proliferation in the larval midgut, which is the primary function of this aGPCR. These findings characterize the ancestral aGPCR Mayo as a homeostatic regulator of gut development.
Collapse
Affiliation(s)
- Fernando Vieira Contreras
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Genevieve M Auger
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Lena Müller
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Vincent Richter
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Wolf Huetteroth
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Florian Seufert
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Andreas S Thum
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Beatriz Blanco-Redondo
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; Institute of Biology, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Germany.
| |
Collapse
|
19
|
Röthe J, Kraft R, Ricken A, Kaczmarek I, Matz-Soja M, Winter K, Dietzsch AN, Buchold J, Ludwig MG, Liebscher I, Schöneberg T, Thor D. The adhesion GPCR GPR116/ADGRF5 has a dual function in pancreatic islets regulating somatostatin release and islet development. Commun Biol 2024; 7:104. [PMID: 38228886 PMCID: PMC10791652 DOI: 10.1038/s42003-024-05783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Glucose homeostasis is maintained by hormones secreted from different cell types of the pancreatic islets and controlled by manifold input including signals mediated through G protein-coupled receptors (GPCRs). RNA-seq analyses revealed expression of numerous GPCRs in mouse and human pancreatic islets, among them Gpr116/Adgrf5. GPR116 is an adhesion GPCR mainly found in lung and required for surfactant secretion. Here, we demonstrate that GPR116 is involved in the somatostatin release from pancreatic delta cells using a whole-body as well as a cell-specific knock-out mouse model. Interestingly, the whole-body GPR116 deficiency causes further changes such as decreased beta-cell mass, lower number of small islets, and reduced pancreatic insulin content. Glucose homeostasis in global GPR116-deficient mice is maintained by counter-acting mechanisms modulating insulin degradation. Our data highlight an important function of GPR116 in controlling glucose homeostasis.
Collapse
Affiliation(s)
- Juliane Röthe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Robert Kraft
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Madlen Matz-Soja
- Medical Department II - Gastroenterology, Hepatology, Infectious Diseases, Pneumology, University Medical Center, Leipzig, Germany
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, Infectious Diseases, and Pneumology, University Hospital, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Julia Buchold
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
20
|
Li Q, Huo A, Li M, Wang J, Yin Q, Chen L, Chu X, Qin Y, Qi Y, Li Y, Cui H, Cong Q. Structure, ligands, and roles of GPR126/ADGRG6 in the development and diseases. Genes Dis 2024; 11:294-305. [PMID: 37588228 PMCID: PMC10425801 DOI: 10.1016/j.gendis.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Accepted: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are the second largest diverse group within the GPCR superfamily, which play critical roles in many physiological and pathological processes through cell-cell and cell-extracellular matrix interactions. The adhesion GPCR Adgrg6, also known as GPR126, is one of the better-characterized aGPCRs. GPR126 was previously found to have critical developmental roles in Schwann cell maturation and its mediated myelination in the peripheral nervous system in both zebrafish and mammals. Current studies have extended our understanding of GPR126-mediated roles during development and in human diseases. In this review, we highlighted these recent advances in GPR126 in expression profile, molecular structure, ligand-receptor interactions, and associated physiological and pathological functions in development and diseases.
Collapse
Affiliation(s)
- Qi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anran Huo
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengqi Li
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiali Wang
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Lumiao Chen
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xin Chu
- Department of Emergency Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuan Qin
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuwan Qi
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Li
- Department of Neurology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang 313000, China
| | - Hengxiang Cui
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qifei Cong
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
21
|
Fan Y, Yan XY, Guan W. GPR56, an Adhesion GPCR with Multiple Roles in Human Diseases, Current Status and Future Perspective. Curr Drug Targets 2024; 25:558-573. [PMID: 38752635 DOI: 10.2174/0113894501298344240507080149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Human G protein-coupled receptor 56 (GPR56) belongs to a member of the adhesion G-protein coupled receptor (aGPCR) family and widely exists in the central nervous system and various types of tumor tissues. Recent studies have shown that abnormal expression or dysfunction of GPR56 is closely associated with many physiological and pathological processes, including brain development, neuropsychiatric disorders, cardiovascular diseases and cancer progression. In addition, GPR56 has been proven to enhance the susceptibility of some antipsychotics and anticarcinogens in response to the treatment of neuropsychological diseases and cancer. Although there have been some reports about the functions of GPR56, the underlying mechanisms implicated in these diseases have not been clarified thoroughly, especially in depression and epilepsy. Therefore, in this review, we described the molecular structure and signal transduction pathway of GPR56 and carried out a comprehensive summary of GPR56's function in the development of psychiatric disorders and cancer. Our review showed that GPR56 deficiency led to depressive-like behaviors and an increase in resistance to antipsychotic treatment. In contrast, the upregulation of GPR56 contributed to tumor cell proliferation and metastasis in malignant diseases such as glioblastoma, colorectal cancer, and ovarian cancer. Moreover, we elucidated specific signaling pathways downstream of GPR56 related to the pathogenesis of these diseases. In summary, our review provides compelling arguments for an attractive therapeutic target of GPR56 in improving the therapeutic efficiency for patients suffering from psychiatric disorders and cancer.
Collapse
Affiliation(s)
- Yan Fan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang 215600, Jiangsu, China
| | - Xiao-Yan Yan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang 215600, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
22
|
Adediwura VA, Miao Y. Mechanistic Insights into Peptide Binding and Deactivation of an Adhesion G Protein-Coupled Receptor. Molecules 2023; 29:164. [PMID: 38202747 PMCID: PMC10780249 DOI: 10.3390/molecules29010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Adhesion G protein-coupled receptors (ADGRGs) play critical roles in the reproductive, neurological, cardiovascular, and endocrine systems. In particular, ADGRG2 plays a significant role in Ewing sarcoma cell proliferation, parathyroid cell function, and male fertility. In 2022, a cryo-EM structure was reported for the active ADGRG2 bound by an optimized peptide agonist IP15 and the Gs protein. The IP15 peptide agonist was also modified to antagonists 4PH-E and 4PH-D with mutations of the 4PH residue to Glu and Asp, respectively. However, experimental structures of inactive antagonist-bound ADGRs remain to be resolved, and the activation mechanism of ADGRs such as ADGRG2 is poorly understood. Here, we applied Gaussian accelerated molecular dynamics (GaMD) simulations to probe conformational dynamics of the agonist- and antagonist-bound ADGRG2. By performing GaMD simulations, we were able to identify important low-energy conformations of ADGRG2 in the active, intermediate, and inactive states, as well as explore the binding conformations of each peptide. Moreover, our simulations revealed critical peptide-receptor residue interactions during the deactivation of ADGRG2. In conclusion, through GaMD simulations, we uncovered mechanistic insights into peptide (agonist and antagonist) binding and deactivation of the ADGRG2. These findings will potentially facilitate rational design of new peptide modulators of ADGRG2 and other ADGRs.
Collapse
Affiliation(s)
| | - Yinglong Miao
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
23
|
Ravn-Boess N, Roy N, Hattori T, Bready D, Donaldson H, Lawson C, Lapierre C, Korman A, Rodrick T, Liu E, Frenster JD, Stephan G, Wilcox J, Corrado AD, Cai J, Ronnen R, Wang S, Haddock S, Sabio Ortiz J, Mishkit O, Khodadadi-Jamayran A, Tsirigos A, Fenyö D, Zagzag D, Drube J, Hoffmann C, Perna F, Jones DR, Possemato R, Koide A, Koide S, Park CY, Placantonakis DG. The expression profile and tumorigenic mechanisms of CD97 (ADGRE5) in glioblastoma render it a targetable vulnerability. Cell Rep 2023; 42:113374. [PMID: 37938973 PMCID: PMC10841603 DOI: 10.1016/j.celrep.2023.113374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGCs) in vitro and in vivo. We find that CD97 promotes glycolytic metabolism via the mitogen-activated protein kinase (MAPK) pathway, which depends on phosphorylation of its C terminus and recruitment of β-arrestin. We also demonstrate that THY1/CD90 is a likely CD97 ligand in GBM. Lastly, we show that an anti-CD97 antibody-drug conjugate selectively kills tumor cells in vitro. Our studies identify CD97 as a regulator of tumor metabolism, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it therapeutically in GBM.
Collapse
Affiliation(s)
- Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nainita Roy
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Takamitsu Hattori
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hayley Donaldson
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christopher Lawson
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Cathryn Lapierre
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Aryeh Korman
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tori Rodrick
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Enze Liu
- Department of Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, IN 46202, USA
| | - Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Wilcox
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alexis D Corrado
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rebecca Ronnen
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara Haddock
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan Sabio Ortiz
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Orin Mishkit
- Preclinical Imaging Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Aris Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Zagzag
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Drube
- Institute for Molecular Cell Biology, Universitätsklinikum Jena, 07745 Jena, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, Universitätsklinikum Jena, 07745 Jena, Germany
| | | | - Drew R Jones
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Richard Possemato
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christopher Y Park
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
24
|
Kleinau G, Ali AH, Wiechert F, Szczepek M, Schmidt A, Spahn CMT, Liebscher I, Schöneberg T, Scheerer P. Intramolecular activity regulation of adhesion GPCRs in light of recent structural and evolutionary information. Pharmacol Res 2023; 197:106971. [PMID: 38032292 DOI: 10.1016/j.phrs.2023.106971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The class B2 of GPCRs known as adhesion G protein-coupled receptors (aGPCRs) has come under increasing academic and nonacademic research focus over the past decade due to their physiological importance as mechano-sensors in cell-cell and cell-matrix contexts. A major advance in understanding signal transduction of aGPCRs was achieved by the identification of the so-called Stachel sequence, which acts as an intramolecular agonist at the interface between the N terminus (Nt) and the seven-transmembrane helix domain (7TMD). Distinct extracellular signals received by the Nt are integrated at the Stachel into structural changes of the 7TMD towards an active state conformation. Until recently, little information was available on how the activation process of aGPCRs is realized at the molecular level. In the past three years several structures of the 7TMD plus the Stachel in complex with G proteins have been determined, which provide new insights into the architecture and molecular function of this receptor class. Herein, we review this structural information to extract common and distinct aGPCR features with particular focus on the Stachel binding site within the 7TMD. Our analysis extends the current view of aGPCR activation and exposes similarities and differences not only between diverse aGPCR members, but also compared to other GPCR classes.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Amal Hassan Ali
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Franziska Wiechert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Michal Szczepek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, 04103 Leipzig, Germany; School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda.
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
25
|
Fu C, Huang W, Tang Q, Niu M, Guo S, Langenhan T, Song G, Yan J. Unveiling Mechanical Activation: GAIN Domain Unfolding and Dissociation in Adhesion GPCRs. NANO LETTERS 2023; 23:9179-9186. [PMID: 37831892 PMCID: PMC10607210 DOI: 10.1021/acs.nanolett.3c01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Indexed: 10/15/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have extracellular regions (ECRs) containing GPCR autoproteolysis-inducing (GAIN) domains. The GAIN domain enables the ECR to self-cleave into N- and C-terminal fragments. However, the impact of force on the GAIN domain's conformation, critical for mechanosensitive aGPCR activation, remains unclear. Our study investigated the mechanical stability of GAIN domains in three aGPCRs (B, G, and L subfamilies) at a loading rate of 1 pN/s. We discovered that forces of a few piconewtons can destabilize the GAIN domains. In autocleaved aGPCRs ADGRG1/GPR56 and ADGRL1/LPHN1, these forces cause the GAIN domain detachment from the membrane-proximal Stachel sequence, preceded by partial unfolding. In noncleavable aGPCR ADGRB3/BAI3 and cleavage-deficient mutant ADGRG1/GPR56-T383G, complex mechanical unfolding of the GAIN domain occurs. Additionally, GAIN domain detachment happens during cell migration. Our findings support the mechanical activation hypothesis of aGPCRs, emphasizing the sensitivity of the GAIN domain structure and detachment to physiological force ranges.
Collapse
Affiliation(s)
- Chaoyu Fu
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Qingnan Tang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Minghui Niu
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shiwen Guo
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Tobias Langenhan
- Rudolf
Schönheimer Institute of Biochemistry, Division of General
Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Gaojie Song
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yan
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, Singapore 117557, Singapore
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
26
|
Kaczmarek I, Wower I, Ettig K, Kuhn CK, Kraft R, Landgraf K, Körner A, Schöneberg T, Horn S, Thor D. Identifying G protein-coupled receptors involved in adipose tissue function using the innovative RNA-seq database FATTLAS. iScience 2023; 26:107841. [PMID: 37766984 PMCID: PMC10520334 DOI: 10.1016/j.isci.2023.107841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) modulate the function of adipose tissue (AT) in general and of adipocytes, specifically. Although it is well-established that GPCRs are widely expressed in AT, their repertoire as well as their regulation and function in (patho)physiological conditions (e.g., obesity) is not fully resolved. Here, we established FATTLAS, an interactive public database, for improved access and analysis of RNA-seq data of mouse and human AT. After extracting the GPCRome of non-obese and obese individuals, highly expressed and differentially regulated GPCRs were identified. Exemplarily, we describe four receptors (GPR146, MRGPRF, FZD5, PTGER2) and analyzed their functions in a (pre)adipocyte cell model. Besides all receptors being involved in adipogenesis, MRGPRF is essential for adipocyte viability and regulates cAMP levels, while GPR146 modulates adipocyte lipolysis via constitutive activation of Gi proteins. Taken together, by implementing and using FATTLAS we describe four hitherto unrecognized GPCRs associated with AT function and adipogenesis.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Isabel Wower
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Katja Ettig
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Brogan AP, Habib C, Hobbs SJ, Kranzusch PJ, Rudner DZ. Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis. Proc Natl Acad Sci U S A 2023; 120:e2310862120. [PMID: 37756332 PMCID: PMC10556640 DOI: 10.1073/pnas.2310862120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis, this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted β-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI-SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways.
Collapse
Affiliation(s)
- Anna P. Brogan
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Cameron Habib
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Samuel J. Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA02115
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
28
|
Cevheroğlu O, Demir N, Kesici MS, Özçubukçu S, Son ÇD. Downstream signalling of the disease-associated mutations on GPR56/ADGRG1. Basic Clin Pharmacol Toxicol 2023; 133:331-341. [PMID: 37056198 DOI: 10.1111/bcpt.13873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023]
Abstract
GPR56/ADGRG1 is an adhesion G protein-coupled receptor (GPCR) and mutations on this receptor cause cortical malformation due to the over-migration of neural progenitor cells on brain surface. At pial surface, GPR56 interacts with collagen III, induces Rho-dependent activation through Gα12/13 and inhibits the neuronal migration. In human glioma cells, GPR56 inhibits cell migration through Gαq/11 -dependent Rho pathway. GPR56-tetraspanin complex is known to couple Gαq/11 . GPR56 is an aGPCR that couples with various G proteins and signals through different downstream pathways. In this study, bilateral frontoparietal polymicrogyria (BFPP) mutants disrupting GPR56 function but remaining to be expressed on plasma membrane were used to study receptor signalling through Gα12 , Gα13 and Gα11 with BRET biosensors. GPR56 showed coupling with all three G proteins and activated heterotrimeric G protein signalling upon stimulation with Stachel peptide. However, BFPP mutants showed different signalling defects for each G protein indicative of distinct activation and signalling properties of GPR56 for Gα12 , Gα13 or Gα11 . β-arrestin recruitment was also investigated following the activation of GPR56 with Stachel peptide using BRET biosensors. N-terminally truncated GPR56 showed enhanced β-arrestin recruitment; however, neither wild-type receptor nor BFPP mutants gave any measurable recruitment upon Stachel stimulation, pointing different activation mechanisms for β-arrestin involvement.
Collapse
Affiliation(s)
| | - Nil Demir
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| | | | - Salih Özçubukçu
- Department of Chemistry, Middle East Technical University, Ankara, Türkiye
| | - Çağdaş D Son
- Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
| |
Collapse
|
29
|
Ojeda-Muñiz EY, Rodríguez-Hernández B, Correoso-Braña KG, Segura-Landa PL, Boucard AA. Biased signalling is structurally encoded as an autoproteolysis event in adhesion G protein-coupled receptor Latrophilin-3/ADGRL3. Basic Clin Pharmacol Toxicol 2023; 133:342-352. [PMID: 37464463 DOI: 10.1111/bcpt.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) possess a unique topology, including the presence of a GPCR proteolysis site (GPS), which, upon autoproteolysis, generates two functionally distinct fragments that remain non-covalently associated at the plasma membrane. A proposed activation mechanism for aGPCRs involves the exposure of a tethered agonist, which depends on cleavage at the GPS. However, this hypothesis has been challenged by the observation that non-cleavable aGPCRs exhibit constitutive activity, thus making the function of GPS cleavage widely enigmatic. In this study, we sought to elucidate the function of GPS-mediated cleavage through the study of G protein coupling with Latrophilin-3/ADGRL3, a prototypical aGPCR involved in synapse formation and function. Using BRET-based G protein biosensors, we reveal that an autoproteolysis-deficient mutant of ADGRL3 retains constitutive activity. Surprisingly, we uncover that cleavage deficiency leads to a signalling bias directed at potentiating the activity of select G proteins such as Gi2 and G12/13. These data unveil the underpinnings of biased signalling for aGPCRs defined by GPS autoproteolysis.
Collapse
Affiliation(s)
- Estefania Y Ojeda-Muñiz
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), México City, Mexico
| | - Brenda Rodríguez-Hernández
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), México City, Mexico
| | - Kerlys G Correoso-Braña
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), México City, Mexico
| | - Petra L Segura-Landa
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), México City, Mexico
| | - Antony A Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), México City, Mexico
| |
Collapse
|
30
|
Bernadyn TF, Vizurraga A, Adhikari R, Kwarcinski F, Tall GG. GPR114/ADGRG5 is activated by its tethered peptide agonist because it is a cleaved adhesion GPCR. J Biol Chem 2023; 299:105223. [PMID: 37673336 PMCID: PMC10622838 DOI: 10.1016/j.jbc.2023.105223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Family B2 or adhesion G protein-coupled receptors (AGPCRs) are distinguished by variable extracellular regions that contain a modular protease, termed the GPCR autoproteolysis-inducing domain that self-cleaves the receptor into an N-terminal fragment (NTF) and a C-terminal fragment (CTF), or seven transmembrane domain (7TM). The NTF and CTF remain bound after cleavage through noncovalent interactions. NTF binding to a ligand(s) presented by nearby cells, or the extracellular matrix anchors the NTF, such that cell movement generates force to induce NTF/CTF dissociation and expose the AGPCR tethered peptide agonist. The released tethered agonist (TA) binds rapidly to the 7TM orthosteric site to activate signaling. The orphan AGPCR, GPR114 was reported to be uncleaved, yet paradoxically capable of activation by its TA. GPR114 has an identical cleavage site and TA to efficiently cleave GPR56. Here, we used immunoblotting and biochemical assays to demonstrate that GPR114 is a cleaved receptor, and the self-cleavage is required for GPR114 TA-activation of Gs and no other classes of G proteins. Mutagenesis studies defined features of the GPR114 and GPR56 GAINA subdomains that influenced self-cleavage efficiency. Thrombin treatment of protease-activated receptor 1 leader/AGPCR fusion proteins demonstrated that acute decryption of the GPR114/56 TAs activated signaling. GPR114 was found to be expressed in an eosinophilic-like cancer cell line (EoL-1 cells) and endogenous GPR114 was efficiently self-cleaved. Application of GPR114 TA peptidomimetics to EoL-1 cells stimulated cAMP production. Our findings may aid future delineation of GPR114 function in eosinophil cAMP signaling related to migration, chemotaxis, or degranulation.
Collapse
Affiliation(s)
- Tyler F Bernadyn
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexander Vizurraga
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rashmi Adhikari
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Frank Kwarcinski
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
31
|
Gupta C, Bernadyn TF, Tall GG. Structural clarity is brought to adhesion G protein-coupled receptor tethered agonism. Basic Clin Pharmacol Toxicol 2023; 133:295-300. [PMID: 36585032 PMCID: PMC10310886 DOI: 10.1111/bcpt.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
An elusive problem in the adhesion G protein-coupled receptor (AGPCR) field is full understanding of the activation mechanisms of the 33-member receptor class. With the recent solution of active-state structures of nearly one quarter of AGPCRs, clarity has been brought to how AGPCRs are activated in response to endogenous full agonists. AGPCRs are self-activated via a tethered peptide agonist (TA) that transitions from a concealed or encrypted location to a decrypted state that binds to a typical GPCR orthosteric binding pocket. Here, we summarize the key milestones that led to the discovery of the AGPCR TA activation mechanism and discuss how extracellular shear forces may initiate TA decryption in physiological contexts. We compare the new active-state AGPCR structures and note that the orthosteric site-engaged TAs adopt a remarkably similar partial α-helical hook-like conformation, despite divergence of overall receptor similarity. Further, we contrast the TA-bound AGPCR structures to a partially active AGPCR structure to highlight the transitions AGPCRs may undergo during activation. Finally, we provide commentary on the validity of alternative AGPCR activation mechanisms.
Collapse
Affiliation(s)
- Charu Gupta
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Tyler F Bernadyn
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
32
|
Rosenkilde MM, Mathiasen S. Adhesion G protein-coupled receptor's structure, function and role in biology-Status from the 10 th adhesion GPCR workshop in Copenhagen, 2022. Basic Clin Pharmacol Toxicol 2023; 133:281-285. [PMID: 37635311 DOI: 10.1111/bcpt.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Mathiasen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Hsiao CC, Vos E, van Gisbergen KPJM, Hamann J. The adhesion G protein-coupled receptor GPR56/ADGRG1 in cytotoxic lymphocytes. Basic Clin Pharmacol Toxicol 2023; 133:286-294. [PMID: 36750420 DOI: 10.1111/bcpt.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
GPR56/ADGRG1 is an adhesion G protein-coupled receptor connected to brain development, haematopoiesis, male fertility, and tumorigenesis. Nevertheless, expression of GPR56 is not restricted to developmental processes. Studies over the last years have demonstrated a marked presence of GPR56 in human cytotoxic NK and T cells. Expression of GPR56 in these cells is driven by the transcription factor HOBIT, corresponds with the production of cytolytic mediators and the presence of CX3 CR1 and CD57, indicates a state of terminal differentiation and cellular exhaustion, and disappears upon cellular activation. Functional studies indicate that GPR56 regulates cell migration and effector functions and thereby acts as an inhibitory immune checkpoint. We here discuss the current state of knowledge regarding GPR56 in cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Els Vos
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Cazorla-Vázquez S, Kösters P, Bertz S, Pfister F, Daniel C, Dedden M, Zundler S, Jobst-Schwan T, Amann K, Engel FB. Adhesion GPCR Gpr126 (Adgrg6) Expression Profiling in Zebrafish, Mouse, and Human Kidney. Cells 2023; 12:1988. [PMID: 37566066 PMCID: PMC10417176 DOI: 10.3390/cells12151988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) comprise the second-largest class of GPCRs, the most common target for approved pharmacological therapies. aGPCRs play an important role in development and disease and have recently been associated with the kidney. Several aGPCRs are expressed in the kidney and some aGPCRs are either required for kidney development or their expression level is altered in diseased kidneys. Yet, general aGPCR function and their physiological role in the kidney are poorly understood. Here, we characterize in detail Gpr126 (Adgrg6) expression based on RNAscope® technology in zebrafish, mice, and humans during kidney development in adults. Gpr126 expression is enriched in the epithelial linage during nephrogenesis and persists in the adult kidney in parietal epithelial cells, collecting ducts, and urothelium. Single-cell RNAseq analysis shows that gpr126 expression is detected in zebrafish in a distinct ionocyte sub-population. It is co-detected selectively with slc9a3.2, slc4a4a, and trpv6, known to be involved in apical acid secretion, buffering blood or intracellular pH, and to maintain high cytoplasmic Ca2+ concentration, respectively. Furthermore, gpr126-expressing cells were enriched in the expression of potassium transporter kcnj1a.1 and gcm2, which regulate the expression of a calcium sensor receptor. Notably, the expression patterns of Trpv6, Kcnj1a.1, and Gpr126 in mouse kidneys are highly similar. Collectively, our approach permits a detailed insight into the spatio-temporal expression of Gpr126 and provides a basis to elucidate a possible role of Gpr126 in kidney physiology.
Collapse
Affiliation(s)
- Salvador Cazorla-Vázquez
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| | - Peter Kösters
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Frederick Pfister
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.D.); (S.Z.)
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.D.); (S.Z.)
| | - Tilman Jobst-Schwan
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| |
Collapse
|
35
|
Seufert F, Chung YK, Hildebrand PW, Langenhan T. 7TM domain structures of adhesion GPCRs: what's new and what's missing? Trends Biochem Sci 2023; 48:726-739. [PMID: 37349240 DOI: 10.1016/j.tibs.2023.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Adhesion-type G protein-coupled receptors (aGPCRs) have long resisted approaches to resolve the structural details of their heptahelical transmembrane (7TM) domains. Single-particle cryogenic electron microscopy (cryo-EM) has recently produced aGPCR 7TM domain structures for ADGRD1, ADGRG1, ADGRG2, ADGRG3, ADGRG4, ADGRG5, ADGRF1, and ADGRL3. We review the unique properties, including the position and conformation of their activating tethered agonist (TA) and signaling motifs within the 7TM bundle, that the novel structures have helped to identify. We also discuss questions that the kaleidoscope of novel aGPCR 7TM domain structures have left unanswered. These concern the relative positions, orientations, and interactions of the 7TM and GPCR autoproteolysis-inducing (GAIN) domains with one another. Clarifying their interplay remains an important goal of future structural studies on aGPCRs.
Collapse
Affiliation(s)
- Florian Seufert
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Yin Kwan Chung
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
36
|
Frenster JD, Erdjument-Bromage H, Stephan G, Ravn-Boess N, Wang S, Liu W, Bready D, Wilcox J, Kieslich B, Jankovic M, Wilde C, Horn S, Sträter N, Liebscher I, Schöneberg T, Fenyo D, Neubert TA, Placantonakis DG. PTK7 is a positive allosteric modulator of GPR133 signaling in glioblastoma. Cell Rep 2023; 42:112679. [PMID: 37354459 PMCID: PMC10445595 DOI: 10.1016/j.celrep.2023.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/24/2023] [Accepted: 05/23/2023] [Indexed: 06/26/2023] Open
Abstract
The adhesion G-protein-coupled receptor GPR133 (ADGRD1) supports growth of the brain malignancy glioblastoma. How the extracellular interactome of GPR133 in glioblastoma modulates signaling remains unknown. Here, we use affinity proteomics to identify the transmembrane protein PTK7 as an extracellular binding partner of GPR133 in glioblastoma. PTK7 binds the autoproteolytically generated N-terminal fragment of GPR133 and its expression in trans increases GPR133 signaling. This effect requires the intramolecular cleavage of GPR133 and PTK7's anchoring in the plasma membrane. PTK7's allosteric action on GPR133 signaling is additive with but topographically distinct from orthosteric activation by soluble peptide mimicking the endogenous tethered Stachel agonist. GPR133 and PTK7 are expressed in adjacent cells in glioblastoma, where their knockdown phenocopies each other. We propose that this ligand-receptor interaction is relevant to the pathogenesis of glioblastoma and possibly other physiological processes in healthy tissues.
Collapse
Affiliation(s)
- Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Wilcox
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Björn Kieslich
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany; Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Manuel Jankovic
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Caroline Wilde
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
37
|
Vizurraga AL, Robertson MJ, Yu M, Skiniotis G, Tall GG. Hexahydroquinoline Derivatives Are Selective Agonists for the Adhesion G Protein-Coupled Receptor ADGRG1/GPR56. Mol Pharmacol 2023; 104:28-41. [PMID: 37290962 PMCID: PMC10289240 DOI: 10.1124/molpharm.123.000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023] Open
Abstract
GPR56 is a widely expressed adhesion GPCR (AGPCR) that has pleotropic roles in brain development, platelet function, cancer, and more. Nearly all AGPCRs possess extracellular regions that bind protein ligands and conceal a cryptic tethered peptide agonist. AGPCR reception of mechanical or shear force is thought to release the tethered agonist permitting its binding to the AGPCR orthosteric site for consequent activation of G protein signaling. This multistep mechanism of AGPCR activation is difficult to target, emphasizing the need for tool compounds and potential therapeutics that modulate AGPCRs directly. We expanded our cell-based pilot screen for GPR56 small molecule activators to screen >200,000 compounds and identified two promising agonists: 2-(furan-2-yl)-1-[(4-phenylphenyl)carbonyl]pyrrolidine, or compound 4, and propan-2-yl-4-(2-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, or compound 36. Both compounds activated GPR56 receptors enginered to have impaired tethered agonists and/or be cleavage deficient. Compound 4 activated a subset of group VIII AGPCRs while compound 36 had exclusive specificity for GPR56 among the GPCRs tested. Compound 36 SAR analysis identified an analog with the isopropyl R group replaced with a cyclopentyl ring and the electrophilic bromine replaced with a CF3 group. Analog 36.40 had 40% increased potency over compound 36 and was 20-fold more potent than synthetic peptidomimetics designed from the GPR56 tethered agonist. The new GPCR56 tool compounds discovered in this screen may be used to further advance understanding of GPR56 function and aid development of AGPCR-targeted therapeutics. SIGNIFICANCE STATEMENT: Adhesion G protein coupled receptors (AGPCRs) are a large, clinically relevant class of GPCRs with no available therapeutics, in part due to their unique mechanism of activation. GPR56 is a widely expressed model AGPCR involved in cancer metastasis, hemostasis, and neuron myelination. In the present study, we identified novel small molecule agonists for GPR56. These molecules are among the most potent identified thus far and may become useful leads in the development of a GPR56-targeted therapeutic.
Collapse
Affiliation(s)
- Alexander L Vizurraga
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan (A.L.V., M.Y., G.G.T.); and
- Departments of Molecular and Cellular Physiology (M.J.R., G.S.) and Structural Biology (G.S.), Stanford University School of Medicine, Stanford, California
| | - Michael J Robertson
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan (A.L.V., M.Y., G.G.T.); and
- Departments of Molecular and Cellular Physiology (M.J.R., G.S.) and Structural Biology (G.S.), Stanford University School of Medicine, Stanford, California
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan (A.L.V., M.Y., G.G.T.); and
- Departments of Molecular and Cellular Physiology (M.J.R., G.S.) and Structural Biology (G.S.), Stanford University School of Medicine, Stanford, California
| | - Georgios Skiniotis
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan (A.L.V., M.Y., G.G.T.); and
- Departments of Molecular and Cellular Physiology (M.J.R., G.S.) and Structural Biology (G.S.), Stanford University School of Medicine, Stanford, California
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan (A.L.V., M.Y., G.G.T.); and
- Departments of Molecular and Cellular Physiology (M.J.R., G.S.) and Structural Biology (G.S.), Stanford University School of Medicine, Stanford, California
| |
Collapse
|
38
|
Brogan AP, Habib C, Hobbs SJ, Kranzusch PJ, Rudner DZ. Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546760. [PMID: 37425962 PMCID: PMC10327162 DOI: 10.1101/2023.06.27.546760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Gram-positive bacteria use SigI/RsgI-family sigma factor/anti-sigma factor pairs to sense and respond to cell wall defects and plant polysaccharides. In Bacillus subtilis this signal transduction pathway involves regulated intramembrane proteolysis (RIP) of the membrane-anchored anti-sigma factor RsgI. However, unlike most RIP signaling pathways, site-1 cleavage of RsgI on the extracytoplasmic side of the membrane is constitutive and the cleavage products remain stably associated, preventing intramembrane proteolysis. The regulated step in this pathway is their dissociation, which is hypothesized to involve mechanical force. Release of the ectodomain enables intramembrane cleavage by the RasP site-2 protease and activation of SigI. The constitutive site-1 protease has not been identified for any RsgI homolog. Here, we report that RsgI's extracytoplasmic domain has structural and functional similarities to eukaryotic SEA domains that undergo autoproteolysis and have been implicated in mechanotransduction. We show that site-1 proteolysis in B. subtilis and Clostridial RsgI family members is mediated by enzyme-independent autoproteolysis of these SEA-like (SEAL) domains. Importantly, the site of proteolysis enables retention of the ectodomain through an undisrupted ß-sheet that spans the two cleavage products. Autoproteolysis can be abrogated by relief of conformational strain in the scissile loop, in a mechanism analogous to eukaryotic SEA domains. Collectively, our data support the model that RsgI-SigI signaling is mediated by mechanotransduction in a manner that has striking parallels with eukaryotic mechanotransducive signaling pathways. SIGNIFICANCE SEA domains are broadly conserved among eukaryotes but absent in bacteria. They are present on diverse membrane-anchored proteins some of which have been implicated in mechanotransducive signaling pathways. Many of these domains have been found to undergo autoproteolysis and remain noncovalently associated following cleavage. Their dissociation requires mechanical force. Here, we identify a family of bacterial SEA-like (SEAL) domains that arose independently from their eukaryotic counterparts but have structural and functional similarities. We show these SEAL domains autocleave and the cleavage products remain stably associated. Importantly, these domains are present on membrane-anchored anti-sigma factors that have been implicated in mechanotransduction pathways analogous to those in eukaryotes. Our findings suggest that bacterial and eukaryotic signaling systems have evolved a similar mechanism to transduce mechanical stimuli across the lipid bilayer.
Collapse
Affiliation(s)
- Anna P. Brogan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Cameron Habib
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Samuel J. Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Philip J. Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - David Z. Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
39
|
Bui DLH, Roach A, Li J, Bandekar SJ, Orput E, Raghavan R, Araç D, Sando RC. The adhesion GPCRs CELSR1-3 and LPHN3 engage G proteins via distinct activation mechanisms. Cell Rep 2023; 42:112552. [PMID: 37224017 PMCID: PMC10592476 DOI: 10.1016/j.celrep.2023.112552] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a large GPCR class that direct diverse fundamental biological processes. One prominent mechanism for aGPCR agonism involves autoproteolytic cleavage, which generates an activating, membrane-proximal tethered agonist (TA). How universal this mechanism is for all aGPCRs is unclear. Here, we investigate G protein induction principles of aGPCRs using mammalian latrophilin 3 (LPHN3) and cadherin EGF LAG-repeat 7-transmembrane receptors 1-3 (CELSR1-3), members of two aGPCR families conserved from invertebrates to vertebrates. LPHNs and CELSRs mediate fundamental aspects of brain development, yet CELSR signaling mechanisms are unknown. We find that CELSR1 and CELSR3 are cleavage deficient, while CELSR2 is efficiently cleaved. Despite differential autoproteolysis, CELSR1-3 all engage GαS, and CELSR1 or CELSR3 TA point mutants retain GαS coupling activity. CELSR2 autoproteolysis enhances GαS coupling, yet acute TA exposure alone is insufficient. These studies support that aGPCRs signal via multiple paradigms and provide insights into CELSR biological function.
Collapse
Affiliation(s)
- Duy Lan Huong Bui
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Andrew Roach
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sumit J Bandekar
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Elizabeth Orput
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Ritika Raghavan
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard C Sando
- Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
40
|
Wilde C, Chaudhry PM, Luo R, Simon KU, Piao X, Liebscher I. Collagen VI Is a Gi-Biased Ligand of the Adhesion GPCR GPR126/ADGRG6. Cells 2023; 12:1551. [PMID: 37296671 PMCID: PMC10252604 DOI: 10.3390/cells12111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
GPR126/ADGRG6, a member of the adhesion G-protein-coupled receptor family, balances cell differentiation and proliferation through fine-tuning of intracellular cAMP levels, which is achieved through coupling to Gs and Gi proteins. While GPR126-mediated cAMP increase has been proven to be essential for differentiation of Schwann cells, adipocytes and osteoblasts, Gi-signaling of the receptor was found to propagate breast cancer cell proliferation. Extracellular ligands or mechanical forces can modulate GPR126 activity but require an intact encrypted agonist sequence, coined the Stachel. Even though coupling to Gi can be seen for constitutively active truncated receptor versions of GPR126 as well as with a peptide agonist derived from the Stachel sequence, all known N-terminal modulators have so far only been shown to modulate Gs coupling. Here, we identified collagen VI as the first extracellular matrix ligand of GPR126 that induces Gi signaling at the receptor, which shows that N-terminal binding partners can mediate selective G protein signaling cascades that are masked by fully active truncated receptor variants.
Collapse
Affiliation(s)
- Caroline Wilde
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | | | - Rong Luo
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02467, USA
| | - Kay-Uwe Simon
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Xianhua Piao
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02467, USA
- Newborn Brain Research Institute, University of California, San Francisco, CA 94158, USA
- Weill Institute for Neuroscience, University of California, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94158, USA
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
41
|
Guan Y, Du HB, Yang Z, Wang YZ, Ren R, Liu WW, Zhang C, Zhang JH, An WT, Li NN, Zeng XX, Li J, Sun YX, Wang YF, Yang F, Yang J, Xiong W, Yu X, Chai RJ, Tu XM, Sun JP, Xu ZG. Deafness-Associated ADGRV1 Mutation Impairs USH2A Stability through Improper Phosphorylation of WHRN and WDSUB1 Recruitment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205993. [PMID: 37066759 PMCID: PMC10238197 DOI: 10.1002/advs.202205993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/14/2023] [Indexed: 06/04/2023]
Abstract
The ankle-link complex (ALC) consists of USH2A, WHRN, PDZD7, and ADGRV1 and plays an important role in hair cell development. At present, its architectural organization and signaling role remain unclear. By establishing Adgrv1 Y6236fsX1 mutant mice as a model of the deafness-associated human Y6244fsX1 mutation, the authors show here that the Y6236fsX1 mutation disrupts the interaction between adhesion G protein-coupled receptor V subfamily member 1 (ADGRV1) and other ALC components, resulting in stereocilia disorganization and mechanoelectrical transduction (MET) deficits. Importantly, ADGRV1 inhibits WHRN phosphorylation through regional cAMP-PKA signaling, which in turn regulates the ubiquitination and stability of USH2A via local signaling compartmentalization, whereas ADGRV1 Y6236fsX1 does not. Yeast two-hybrid screening identified the E3 ligase WDSUB1 that binds to WHRN and regulates the ubiquitination of USH2A in a WHRN phosphorylation-dependent manner. Further FlAsH-BRET assay, NMR spectrometry, and mutagenesis analysis provided insights into the architectural organization of ALC and interaction motifs at single-residue resolution. In conclusion, the present data suggest that ALC organization and accompanying local signal transduction play important roles in regulating the stability of the ALC.
Collapse
Affiliation(s)
- Ying Guan
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Hai-Bo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
- Air Force Medical Center, PLA, Beijing, 100142, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Yu-Zhu Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Wen-Wen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Jia-Hai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Wen-Tao An
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Na-Na Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Xiao-Xue Zeng
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
| | - Jie Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, 100084, China
| | - Yi-Xiao Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Yan-Fei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, 84132, USA
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing, 100084, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ren-Jie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiao-Ming Tu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230022, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, 250012, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Shandong University School of Life Sciences, Qingdao, 266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
42
|
Jacenik D, Hikisz P, Beswick EJ, Fichna J. The clinical relevance of the adhesion G protein-coupled receptor F5 for human diseases and cancers. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166683. [PMID: 36878303 PMCID: PMC10164118 DOI: 10.1016/j.bbadis.2023.166683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Among the numerous adhesion G protein-coupled receptors (GPCRs), adhesion G protein-coupled estrogen receptor F5 (ADGRF5) contains unique domains in the long N-terminal tail which can determine cell-cell and cell-matrix interaction as well as cell adhesion. Nevertheless, the biology of ADGRF5 is complex and still poorly explored. Accumulating evidence suggests that the ADGRF5 activity is fundamental in health and disease. For instance, ADGRF5 is essential in the proper function of lungs and kidney as well as the endocrine system, and its signification in vascularization and tumorigenesis has been demonstrated. The most recent studies have provided findings about the diagnostic potential of ADGRF5 in osteoporosis and cancers, and ongoing studies suggest other diseases as well. Here, we elaborate on the current state of knowledge about the ADGRF5 in the physiology and pathophysiology of human diseases and highlight its high potential as a novel target in various therapeutic areas.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States.
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
43
|
Jones DTD, Dates AN, Rawson SD, Burruss MM, Lipper CH, Blacklow SC. Tethered agonist activated ADGRF1 structure and signalling analysis reveal basis for G protein coupling. Nat Commun 2023; 14:2490. [PMID: 37120430 PMCID: PMC10148833 DOI: 10.1038/s41467-023-38083-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/14/2023] [Indexed: 05/01/2023] Open
Abstract
Adhesion G Protein Coupled Receptors (aGPCRs) have evolved an activation mechanism to translate extracellular force into liberation of a tethered agonist (TA) to effect cell signalling. We report here that ADGRF1 can signal through all major G protein classes and identify the structural basis for a previously reported Gαq preference by cryo-EM. Our structure shows that Gαq preference in ADGRF1 may derive from tighter packing at the conserved F569 of the TA, altering contacts between TM helix I and VII, with a concurrent rearrangement of TM helix VII and helix VIII at the site of Gα recruitment. Mutational studies of the interface and of contact residues within the 7TM domain identify residues critical for signalling, and suggest that Gαs signalling is more sensitive to mutation of TA or binding site residues than Gαq. Our work advances the detailed molecular understanding of aGPCR TA activation, identifying features that potentially explain preferential signal modulation.
Collapse
Affiliation(s)
- Daniel T D Jones
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - Andrew N Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaun D Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Maggie M Burruss
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Colin H Lipper
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
44
|
Huong Bui DL, Roach A, Li J, Bandekar SJ, Orput E, Raghavan R, Araç D, Sando R. The adhesion GPCRs CELSR1-3 and LPHN3 engage G proteins via distinct activation mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535287. [PMID: 37066404 PMCID: PMC10103989 DOI: 10.1101/2023.04.02.535287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Adhesion GPCRs (aGPCRs) are a large GPCR class that direct diverse fundamental biological processes. One prominent mechanism for aGPCR agonism involves autoproteolytic cleavage, which generates an activating, membrane-proximal tethered agonist (TA). How universal this mechanism is for all aGPCRs is unclear. Here, we investigate G protein induction principles of aGPCRs using mammalian LPHN3 and CELSR1-3, members of two aGPCR families conserved from invertebrates to vertebrates. LPHNs and CELSRs mediate fundamental aspects of brain development, yet CELSR signaling mechanisms are unknown. We found that CELSR1 and CELSR3 are cleavage-deficient, while CELSR2 is efficiently cleaved. Despite differential autoproteolysis, CELSR1-3 all engage GαS, and CELSR1 or CELSR3 TA point mutants retain GαS coupling activity. CELSR2 autoproteolysis enhances GαS coupling, yet acute TA exposure alone is insufficient. These studies support that aGPCRs signal via multiple paradigms and provide insights into CELSR biological function.
Collapse
|
45
|
Pederick DT, Perry-Hauser NA, Meng H, He Z, Javitch JA, Luo L. Context-dependent requirement of G protein coupling for Latrophilin-2 in target selection of hippocampal axons. eLife 2023; 12:e83529. [PMID: 36939320 PMCID: PMC10118387 DOI: 10.7554/elife.83529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/16/2023] [Indexed: 03/21/2023] Open
Abstract
The formation of neural circuits requires extensive interactions of cell-surface proteins to guide axons to their correct target neurons. Trans-cellular interactions of the adhesion G protein-coupled receptor latrophilin-2 (Lphn2) with its partner teneurin-3 instruct the precise assembly of hippocampal networks by reciprocal repulsion. Lphn2 acts as a repulsive receptor in distal CA1 neurons to direct their axons to the proximal subiculum, and as a repulsive ligand in the proximal subiculum to direct proximal CA1 axons to the distal subiculum. It remains unclear if Lphn2-mediated intracellular signaling is required for its role in either context. Here, we show that Lphn2 couples to Gα12/13 in heterologous cells; this coupling is increased by constitutive exposure of the tethered agonist. Specific mutations of Lphn2's tethered agonist region disrupt its G protein coupling and autoproteolytic cleavage, whereas mutating the autoproteolytic cleavage site alone prevents cleavage but preserves a functional tethered agonist. Using an in vivo misexpression assay, we demonstrate that wild-type Lphn2 misdirects proximal CA1 axons to the proximal subiculum and that Lphn2 tethered agonist activity is required for its role as a repulsive receptor in axons. By contrast, neither tethered agonist activity nor autoproteolysis were necessary for Lphn2's role as a repulsive ligand in the subiculum target neurons. Thus, tethered agonist activity is required for Lphn2-mediated neural circuit assembly in a context-dependent manner.
Collapse
Affiliation(s)
- Daniel T Pederick
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Nicole A Perry-Hauser
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and SurgeonsNew YorkUnited States
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
46
|
Wang F, Wang Y, Qiu W, Zhang Q, Yang H, Song G. Crystal Structure of the Extracellular Domains of GPR110. J Mol Biol 2023; 435:167979. [PMID: 36716818 DOI: 10.1016/j.jmb.2023.167979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) play a pivotal role in human immune responses, cellular communication, organ development, and other processes. GPR110 belongs to the aGPCR subfamily VI and was initially identified as an oncogene involved in lung and prostate cancers. GPR110 contains tandem adhesion domains at the extracellular region that mediate inter-cellular signaling. However, the structural organization and signaling mechanism for these tandem domains remain unclear. Here, we report the crystal structure of a GPR110 fragment composing the SEA, HormR, and GAIN domains at 2.9 Å resolution. The structure together with MD simulations reveal rigid connections between these domains that are stabilized by complementary interfaces. Strikingly, we found N-linked carbohydrates attached to N389 of the GAIN domain form extensive contacts with the preceding HormR domain. These interactions appear to be critical for folding, as removal of the glycosylation site greatly decreases expression of the GPR110 extracellular fragment. We further demonstrate that the ligand synaptamide fits well within the hydrophobic pocket occupied by the Stachel peptide in the rest state. This suggests that the agonist may function by removing the Stachel peptide which in turn redocks to the orthosteric pocket for receptor activation. Taken together, our structural findings and analyses provide novel insights into the activation mechanism for aGPCRs.
Collapse
Affiliation(s)
- Fangfang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Wang
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Weicheng Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
47
|
Scholz N, Dahse AK, Kemkemer M, Bormann A, Auger GM, Vieira Contreras F, Ernst LF, Staake H, Körner MB, Buhlan M, Meyer-Mölck A, Chung YK, Blanco-Redondo B, Klose F, Jarboui MA, Ljaschenko D, Bigl M, Langenhan T. Molecular sensing of mechano- and ligand-dependent adhesion GPCR dissociation. Nature 2023; 615:945-953. [PMID: 36890234 DOI: 10.1038/s41586-023-05802-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) bear notable similarity to Notch proteins1, a class of surface receptors poised for mechano-proteolytic activation2-4, including an evolutionarily conserved mechanism of cleavage5-8. However, so far there is no unifying explanation for why aGPCRs are autoproteolytically processed. Here we introduce a genetically encoded sensor system to detect the dissociation events of aGPCR heterodimers into their constituent N-terminal and C-terminal fragments (NTFs and CTFs, respectively). An NTF release sensor (NRS) of the neural latrophilin-type aGPCR Cirl (ADGRL)9-11, from Drosophila melanogaster, is stimulated by mechanical force. Cirl-NRS activation indicates that receptor dissociation occurs in neurons and cortex glial cells. The release of NTFs from cortex glial cells requires trans-interaction between Cirl and its ligand, the Toll-like receptor Tollo (Toll-8)12, on neural progenitor cells, whereas expressing Cirl and Tollo in cis suppresses dissociation of the aGPCR. This interaction is necessary to control the size of the neuroblast pool in the central nervous system. We conclude that receptor autoproteolysis enables non-cell-autonomous activities of aGPCRs, and that the dissociation of aGPCRs is controlled by their ligand expression profile and by mechanical force. The NRS system will be helpful in elucidating the physiological roles and signal modulators of aGPCRs, which constitute a large untapped reservoir of drug targets for cardiovascular, immune, neuropsychiatric and neoplastic diseases13.
Collapse
Affiliation(s)
- Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| | - Anne-Kristin Dahse
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marguerite Kemkemer
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Anne Bormann
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Genevieve M Auger
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Fernando Vieira Contreras
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Lucia F Ernst
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Hauke Staake
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marek B Körner
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Max Buhlan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Amelie Meyer-Mölck
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Yin Kwan Chung
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Beatriz Blanco-Redondo
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Franziska Klose
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Mohamed Ali Jarboui
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Marina Bigl
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
48
|
Liu D, Zhang P, Zhang K, Bi C, Li L, Xu Y, Zhang T, Zhang J. Role of GPR56 in Platelet Activation and Arterial Thrombosis. Thromb Haemost 2023; 123:295-306. [PMID: 36402131 DOI: 10.1055/a-1983-0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adhesion G protein-coupled receptor GPR56 mediates cell-cell and cell-extracellular matrix interactions. To examine the function of GPR56 in platelet activation and arterial thrombosis, we generated GPR56-knockout mice and evaluated GPR56 expression in human and mouse platelets. The results revealed that the levels of the GPR56 N-terminal fragment were significantly higher on the first day after myocardial infarction than on the seventh day in the plasma of patients with ST-segment-elevation myocardial infarction. Next, we investigated the effects of GPR56 on platelet function in vitro and in vivo. We observed that collagen-induced aggregation and adenosine triphosphate release were reduced in Gpr56 -/- platelets. Furthermore, P-selectin expression on the Gpr56 -/- platelet surface was also reduced, and the spreading area on immobilized collagen was decreased in Gpr56 -/- platelets. Furthermore, collagen-induced platelet activation in human platelets was inhibited by an anti-GPR56 antibody. Gpr56 -/- mice showed an extended time to the first occlusion in models with cremaster arteriole laser injury and FeCl3-induced carotid artery injury. GPR56 activated the G protein 13 signaling pathway following collagen stimulation, which promoted platelet adhesion and thrombus formation at the site of vascular injury. Thus, our study confirmed that GPR56 regulated the formation of arterial thrombosis. Inhibition of the initial response of GPR56 to collagen could significantly inhibit platelet activation and thrombus formation. Our results provide new insights for research into antiplatelet drugs.
Collapse
Affiliation(s)
- Dongsheng Liu
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kandi Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changlong Bi
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Stephan G, Erdjument-Bromage H, Liu W, Frenster JD, Ravn-Boess N, Bready D, Cai J, Fenyo D, Neubert T, Placantonakis DG. Modulation of GPR133 (ADGRD1) Signaling by its Intracellular Interaction Partner Extended Synaptotagmin 1 (ESYT1). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527921. [PMID: 36798364 PMCID: PMC9934660 DOI: 10.1101/2023.02.09.527921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
GPR133 (ADGRD1) is an adhesion G protein-coupled receptor that signals through Gαs and is required for growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM impairs tumor growth in vitro, suggesting functions of ESYT1 beyond the interaction with GPR133. Our findings suggest a novel mechanism for modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Joshua D. Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
50
|
Isoform- and ligand-specific modulation of the adhesion GPCR ADGRL3/Latrophilin3 by a synthetic binder. Nat Commun 2023; 14:635. [PMID: 36746957 PMCID: PMC9902482 DOI: 10.1038/s41467-023-36312-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are cell-surface proteins with large extracellular regions that bind to multiple ligands to regulate key biological functions including neurodevelopment and organogenesis. Modulating a single function of a specific aGPCR isoform while affecting no other function and no other receptor is not trivial. Here, we engineered an antibody, termed LK30, that binds to the extracellular region of the aGPCR ADGRL3, and specifically acts as an agonist for ADGRL3 but not for its isoform, ADGRL1. The LK30/ADGRL3 complex structure revealed that the LK30 binding site on ADGRL3 overlaps with the binding site for an ADGRL3 ligand - teneurin. In cellular-adhesion assays, LK30 specifically broke the trans-cellular interaction of ADGRL3 with teneurin, but not with another ADGRL3 ligand - FLRT3. Our work provides proof of concept for the modulation of isoform- and ligand-specific aGPCR functions using unique tools, and thus establishes a foundation for the development of fine-tuned aGPCR-targeted therapeutics.
Collapse
|