1
|
Chen K, Ye L, Yu Y, Guo P, Tan A. Sex-biased fertility degeneration induced by depletion of an auxiliary piRNA-pathway factor Qin in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 181:104319. [PMID: 40334926 DOI: 10.1016/j.ibmb.2025.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
The PIWI-interacting RNA (piRNA) pathway is the major defense system for transposable elements (TEs) silencing in animal gonads, maintaining genomic integrity of germ cells and ensuring proper gametogenesis. An the piRNA-pathway factor, Qin, has been reported to participate in piRNA biogenesis in the lepidopteran model insect, Bombyx mori. Nevertheless, the physiological functions of Qin remain to be characterized. Here we demonstrated that Qin plays important roles in silkworm gonad development of both sexes. BmQin was predominantly expressed in gonads. Immunofluorescent staining revealed that BmQin is localized in the cytoplasm of both germ cells and somatic cells in gonads. Depletion of BmQin via CRISPR/Cas9 system induceed complete sterile in males, and partial sterile in females. Notably, mutants displayed severe defects in gonad development and gametogenesis. RNA-seq analysis revealed that the piRNA pathway was dysregulated in mutant gonads. In addition, apoptosis was significantly enhanced in mutant gonads. Our study revealed the physiological functions of BmQin in silkworm fertility and its auxiliary roles in the piRNA pathway in both male and female gonads.
Collapse
Affiliation(s)
- Kai Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Ling Ye
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Peilin Guo
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
2
|
Iwasaki YW, Shoji K, Nakagwa S, Miyoshi T, Tomari Y. Transposon-host arms race: a saga of genome evolution. Trends Genet 2025; 41:369-389. [PMID: 39979178 DOI: 10.1016/j.tig.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/22/2025]
Abstract
Once considered 'junk DNA,' transposons or transposable elements (TEs) are now recognized as key drivers of genome evolution, contributing to genetic diversity, gene regulation, and species diversification. However, their ability to move within the genome poses a potential threat to genome integrity, promoting the evolution of robust host defense systems such as Krüppel-associated box (KRAB) domain-containing zinc finger proteins (KRAB-ZFPs), the human silencing hub (HUSH) complex, 4.5SH RNAs, and PIWI-interacting RNAs (piRNAs). This ongoing evolutionary arms race between TEs and host defenses continuously reshapes genome architecture and function. This review outlines various host defense mechanisms and explores the dynamic coevolution of TEs and host defenses in animals, highlighting how the defense mechanisms not only safeguard the host genomes but also drive genetic innovation through the arms race.
Collapse
Affiliation(s)
- Yuka W Iwasaki
- Laboratory for Functional Non-coding Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Keisuke Shoji
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan; Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shinichi Nakagwa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
3
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Lee J, Fujimoto T, Sahara K, Toyoda A, Shimada T. Comprehensive genome annotation of Bombyx mori p50ma strain, a newly developed standard strain. Sci Data 2025; 12:359. [PMID: 40021698 PMCID: PMC11871332 DOI: 10.1038/s41597-025-04679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
B. mori is a model species of lepidopteran insects. The genome assembly has been successively updated since the whole genome sequences were first determined in 2004. In addition, chromosome-scale genome assemblies of not only standard strains but also practical strains have been reported. We successfully constructed a chromosome-scale female genome assembly of p50ma, a standard strain developed by Kyushu University. This assembly is now certified as a 'reference' in the NCBI datasets. To improve the usability of this strain, here we report the achievement of gene model construction based on the transcriptome information, followed by functional annotation. The assembly harbours 16,295 protein-coding genes. In addition, to improve gene knockout efficiency, we performed ATAC-seq in early embryos and comprehensively identified open chromatin regions. Finally, small RNA-seq (sRNA-seq) targeting PIWI-interacting RNA (piRNA) was performed in testes, ovaries, and early embryos to identify piRNA clusters comprehensively. These data will increase the usability of p50ma as a standard strain and facilitate NBRP users to exploit this strain.
Collapse
Affiliation(s)
- Jung Lee
- Gakushuin University, Faculty of Science, Department of Life Science, Mejiro 1-5-1, Toshima-ku, Tokyo, 171-8588, Japan.
| | - Toshiaki Fujimoto
- Laboratory of Applied Entomology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan
- Laboratory of Silkworm Genetic Resources, Institute of Genetic Resources, Kyushu University Graduate School of BioResources and Bioenvironmental Science, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken Sahara
- Laboratory of Applied Entomology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, Comparative Genomics Laboratory, Advanced Genomics Center, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Toru Shimada
- Gakushuin University, Faculty of Science, Department of Life Science, Mejiro 1-5-1, Toshima-ku, Tokyo, 171-8588, Japan
| |
Collapse
|
5
|
Verdonckt TW, Swevers L, Santos D. A model that integrates the different piRNA biogenesis pathways based on studies in silkworm BmN4 cells. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100108. [PMID: 40083348 PMCID: PMC11904557 DOI: 10.1016/j.cris.2025.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/16/2025]
Abstract
PIWI-interacting (pi) RNAs play an essential role in protecting the genomic integrity of germ cells from the disruptive transpositions of selfish genetic elements. One of the most important model systems for studying piRNA biogenesis is the ovary derived BmN4 cell line of the silkworm Bombyx mori. In recent years, many steps and components of the pathways involved in this process have been unraveled. However, a holistic description of piRNA biogenesis in BmN4 cells is still unavailable. In this paper, we review the state of the art and propose a novel model for piRNA biogenesis in BmN4 cells. This model was built considering the latest published data and will empower researchers to plan future experiments and interpret experimental results.
Collapse
Affiliation(s)
- Thomas-Wolf Verdonckt
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Guha P, Chini A, Rishi A, Mandal SS. Long noncoding RNAs in ubiquitination, protein degradation, and human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195061. [PMID: 39341591 DOI: 10.1016/j.bbagrm.2024.195061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Protein stability and turnover is critical in normal cellular and physiological process and their misregulation may contribute to accumulation of unwanted proteins causing cellular malfunction, neurodegeneration, mitochondrial malfunction, and disrupted metabolism. Signaling mechanism associated with protein degradation is complex and is extensively studied. Many protein and enzyme machineries have been implicated in regulation of protein degradation. Despite these insights, our understanding of protein degradation mechanisms remains limited. Emerging studies suggest that long non-coding RNAs (lncRNAs) play critical roles in various cellular and physiological processes including metabolism, cellular homeostasis, and protein turnover. LncRNAs, being large nucleic acids (>200 nt long) can interact with various proteins and other nucleic acids and modulate protein structure and function leading to regulation of cell signaling processes. LncRNAs are widely distributed across cell types and may exhibit tissue specific expression. They are detected in body fluids including blood and urine. Their expressions are also altered in various human diseases including cancer, neurological disorders, immune disorder, and others. LncRNAs are being recognized as novel biomarkers and therapeutic targets. This review article focuses on the emerging role of noncoding RNAs (ncRNAs), particularly long noncoding RNAs (lncRNAs), in the regulation of protein polyubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America.
| |
Collapse
|
7
|
Kaneko S, Miyoshi K, Tomuro K, Terauchi M, Tanaka R, Kondo S, Tani N, Ishiguro KI, Toyoda A, Kamikouchi A, Noguchi H, Iwasaki S, Saito K. Mettl1-dependent m 7G tRNA modification is essential for maintaining spermatogenesis and fertility in Drosophila melanogaster. Nat Commun 2024; 15:8147. [PMID: 39317727 PMCID: PMC11422498 DOI: 10.1038/s41467-024-52389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Modification of guanosine to N7-methylguanosine (m7G) in the variable loop region of tRNA is catalyzed by the METTL1/WDR4 heterodimer and stabilizes target tRNA. Here, we reveal essential functions of Mettl1 in Drosophila fertility. Knockout of Mettl1 (Mettl1-KO) causes no major effect on the development of non-gonadal tissues, but abolishes the production of elongated spermatids and mature sperm, which is fully rescued by expression of a Mettl1-transgene, but not a catalytic-dead Mettl1 transgene. This demonstrates that Mettl1-dependent m7G is required for spermatogenesis. Mettl1-KO results in a loss of m7G modification on a subset of tRNAs and decreased tRNA abundance. Ribosome profiling shows that Mettl1-KO led to ribosomes stalling at codons decoded by tRNAs that were reduced in abundance. Mettl1-KO also significantly reduces the translation efficiency of genes involved in elongated spermatid formation and sperm stability. Germ cell-specific expression of Mettl1 rescues disrupted m7G tRNA modification and tRNA abundance in Mettl1-KO testes but not in non-gonadal tissues. Ribosome stalling is much less detectable in non-gonadal tissues than in Mettl1-KO testes. These findings reveal a developmental role for m7G tRNA modification and indicate that m7G modification-dependent tRNA abundance differs among tissues.
Collapse
Affiliation(s)
- Shunya Kaneko
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Keita Miyoshi
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan
| | - Kotaro Tomuro
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Makoto Terauchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kuniaki Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Shizuoka, Japan.
| |
Collapse
|
8
|
Izumi N, Shoji K, Negishi L, Tomari Y. The dual role of Spn-E in supporting heterotypic ping-pong piRNA amplification in silkworms. EMBO Rep 2024; 25:2239-2257. [PMID: 38632376 PMCID: PMC11094040 DOI: 10.1038/s44319-024-00137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
The PIWI-interacting RNA (piRNA) pathway plays a crucial role in silencing transposons in the germline. piRNA-guided target cleavage by PIWI proteins triggers the biogenesis of new piRNAs from the cleaved RNA fragments. This process, known as the ping-pong cycle, is mediated by the two PIWI proteins, Siwi and BmAgo3, in silkworms. However, the detailed molecular mechanism of the ping-pong cycle remains largely unclear. Here, we show that Spindle-E (Spn-E), a putative ATP-dependent RNA helicase, is essential for BmAgo3-dependent production of Siwi-bound piRNAs in the ping-pong cycle and that this function of Spn-E requires its ATPase activity. Moreover, Spn-E acts to suppress homotypic Siwi-Siwi ping-pong, but this function of Spn-E is independent of its ATPase activity. These results highlight the dual role of Spn-E in facilitating proper heterotypic ping-pong in silkworms.
Collapse
Affiliation(s)
- Natsuko Izumi
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Keisuke Shoji
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, 184-8588, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
9
|
Bronkhorst AW, Lee CY, Möckel MM, Ruegenberg S, de Jesus Domingues AM, Sadouki S, Piccinno R, Sumiyoshi T, Siomi MC, Stelzl L, Luck K, Ketting RF. An extended Tudor domain within Vreteno interconnects Gtsf1L and Ago3 for piRNA biogenesis in Bombyx mori. EMBO J 2023; 42:e114072. [PMID: 37984437 PMCID: PMC10711660 DOI: 10.15252/embj.2023114072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Piwi-interacting RNAs (piRNAs) direct PIWI proteins to transposons to silence them, thereby preserving genome integrity and fertility. The piRNA population can be expanded in the ping-pong amplification loop. Within this process, piRNA-associated PIWI proteins (piRISC) enter a membraneless organelle called nuage to cleave their target RNA, which is stimulated by Gtsf proteins. The resulting cleavage product gets loaded into an empty PIWI protein to form a new piRISC complex. However, for piRNA amplification to occur, the new RNA substrates, Gtsf-piRISC, and empty PIWI proteins have to be in physical proximity. In this study, we show that in silkworm cells, the Gtsf1 homolog BmGtsf1L binds to piRNA-loaded BmAgo3 and localizes to granules positive for BmAgo3 and BmVreteno. Biochemical assays further revealed that conserved residues within the unstructured tail of BmGtsf1L directly interact with BmVreteno. Using a combination of AlphaFold modeling, atomistic molecular dynamics simulations, and in vitro assays, we identified a novel binding interface on the BmVreteno-eTudor domain, which is required for BmGtsf1L binding. Our study reveals that a single eTudor domain within BmVreteno provides two binding interfaces and thereby interconnects piRNA-loaded BmAgo3 and BmGtsf1L.
Collapse
Affiliation(s)
| | - Chop Y Lee
- International PhD Programme on Gene Regulation, Epigenetics & Genome StabilityMainzGermany
- Integrative Systems Biology GroupInstitute of Molecular BiologyMainzGermany
| | - Martin M Möckel
- Protein Production Core FacilityInstitute of Molecular BiologyMainzGermany
| | - Sabine Ruegenberg
- Protein Production Core FacilityInstitute of Molecular BiologyMainzGermany
| | - Antonio M de Jesus Domingues
- Biology of Non‐coding RNA GroupInstitute of Molecular BiologyMainzGermany
- Present address:
Dewpoint Therapeutics GmbHDresdenGermany
| | - Shéraz Sadouki
- Biology of Non‐coding RNA GroupInstitute of Molecular BiologyMainzGermany
| | - Rossana Piccinno
- Microscopy Core FacilityInstitute of Molecular BiologyMainzGermany
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
- Present address:
Department of Medical Innovations, Osaka Research Center for Drug DiscoveryOtsuka Pharmaceutical Co., Ltd.OsakaJapan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Lukas Stelzl
- Faculty of BiologyJohannes Gutenberg University MainzMainzGermany
- KOMET 1, Institute of PhysicsJohannes Gutenberg University MainzMainzGermany
| | - Katja Luck
- Integrative Systems Biology GroupInstitute of Molecular BiologyMainzGermany
| | - René F Ketting
- Biology of Non‐coding RNA GroupInstitute of Molecular BiologyMainzGermany
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
10
|
Lin Y, Suyama R, Kawaguchi S, Iki T, Kai T. Tejas functions as a core component in nuage assembly and precursor processing in Drosophila piRNA biogenesis. J Cell Biol 2023; 222:e202303125. [PMID: 37555815 PMCID: PMC10412688 DOI: 10.1083/jcb.202303125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/11/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs), which protect genome from the attack by transposons, are produced and amplified in membraneless granules called nuage. In Drosophila, PIWI family proteins, Tudor-domain-containing (Tdrd) proteins, and RNA helicases are assembled and form nuage to ensure piRNA production. However, the molecular functions of the Tdrd protein Tejas (Tej) in piRNA biogenesis remain unknown. Here, we conduct a detailed analysis of the subcellular localization of fluorescently tagged nuage proteins and behavior of piRNA precursors. Our results demonstrate that Tej functions as a core component that recruits Vasa (Vas) and Spindle-E (Spn-E) into nuage granules through distinct motifs, thereby assembling nuage and engaging precursors for further processing. Our study also reveals that the low-complexity region of Tej regulates the mobility of Vas. Based on these results, we propose that Tej plays a pivotal role in piRNA precursor processing by assembling Vas and Spn-E into nuage and modulating the mobility of nuage components.
Collapse
Affiliation(s)
- Yuxuan Lin
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ritsuko Suyama
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Taichiro Iki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toshie Kai
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Xia J, Fei S, Wu H, Yang Y, Yu W, Zhang M, Guo Y, Swevers L, Sun J, Feng M. The piRNA pathway is required for nucleopolyhedrovirus replication in Lepidoptera. INSECT SCIENCE 2023; 30:1378-1392. [PMID: 36495071 DOI: 10.1111/1744-7917.13160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The Piwi-interacting RNA (piRNA) pathway has been shown to be involved in the antiviral defense against RNA viruses, especially in mosquitoes, but its universality has been questioned. Here, we used the Bombyx mori nucleopolyhedrovirus (BmNPV) -infected silkworm as a model to explore the effects of the key factors of piRNA pathway, BmAgo3 and Siwi, on replication of a large DNA virus (belonging to the family of Baculoviridae). We demonstrated that BmAgo3 and Siwi could promote the replication of BmNPV through both overexpression and knockdown experiments in BmN cell lines and silkworm larvae. In addition, we also studied the effect of PIWI-class genes on Autographa californica nucleopolyhedrovirus (AcMNPV) replication in the Spodoptera frugiperda cell line Sf9. By knocking down the expression of PIWI-class genes in Sf9, we found that Piwi-like-1 and Piwi-like-2-3 could inhibit AcMNPV replication, while Piwi-like-4-5 promoted virus replication. Our study provides compelling evidence that the piRNA pathway affects host infection by exogenous viruses in Lepidoptera. Also, our results reflect the diversity of the roles of PIWI-class genes in virus infection of the host across species. This study is the first to explore the interaction of PIWI-class proteins with DNA viruses, providing new insights into the functional roles of the piRNA pathway.
Collapse
Affiliation(s)
- Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongyun Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Yang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wensheng Yu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mengmeng Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiyao Guo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Center for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Kiuchi T, Shoji K, Izumi N, Tomari Y, Katsuma S. Non-gonadal somatic piRNA pathways ensure sexual differentiation, larval growth, and wing development in silkworms. PLoS Genet 2023; 19:e1010912. [PMID: 37733654 PMCID: PMC10513339 DOI: 10.1371/journal.pgen.1010912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) guide PIWI proteins to target transposons in germline cells, thereby suppressing transposon activity to preserve genome integrity in metazoans' gonadal tissues. Piwi, one of three Drosophila PIWI proteins, is expressed in the nucleus and suppresses transposon activity by forming heterochromatin in an RNA cleavage-independent manner. Recently, Piwi was reported to control cell metabolism in Drosophila fat body, providing an example of piRNAs acting in non-gonadal somatic tissues. However, mutant flies of the other two PIWI proteins, Aubergine (Aub) and Argonaute3 (Ago3), show no apparent phenotype except for infertility, blurring the importance of the piRNA pathway in non-gonadal somatic tissues. The silkworm, Bombyx mori, possesses two PIWI proteins, Siwi (Aub homolog) and BmAgo3 (Ago3 homolog), whereas B. mori does not have a Piwi homolog. Siwi and BmAgo3 are mainly expressed in gonadal tissues and play a role in repressing transposon activity by cleaving transposon RNA in the cytoplasm. Here, we generated Siwi and BmAgo3 loss-of-function mutants of B. mori and found that they both showed delayed larval growth and failed to become adult moths. They also exhibited defects in wing development and sexual differentiation. Transcriptome analysis revealed that loss of somatic piRNA biogenesis pathways results in abnormal expression of not only transposons but also host genes, presumably causing severe growth defects. Our results highlight the roles of non-gonadal somatic piRNAs in B. mori development.
Collapse
Affiliation(s)
- Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Shoji
- Institute for Quantitative Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Natsuko Izumi
- Institute for Quantitative Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
13
|
van Wolfswinkel JC. Insights in piRNA targeting rules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1811. [PMID: 37632327 PMCID: PMC10895071 DOI: 10.1002/wrna.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023]
Abstract
PIWI-interacting RNAs (piRNAs) play an important role in the defense against transposons in the germline and stem cells of animals. To what extent other transcripts are also regulated by piRNAs is an ongoing topic of debate. The amount of sequence complementarity between piRNA and target that is required for effective downregulation of the targeted transcript is guiding in this discussion. Over the years, various methods have been applied to infer targeting requirements from the collections of piRNAs and potential target transcripts, and recent structural studies of the PIWI proteins have provided an additional perspective. In this review, I summarize the findings from these studies and propose a set of requirements that can be used to predict targets to the best of our current abilities. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA-Based Catalysis > RNA-Mediated Cleavage.
Collapse
Affiliation(s)
- Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Center for Stem Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for RNA Biology and Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
14
|
Ninova M, Holmes H, Lomenick B, Fejes Tóth K, Aravin AA. Pervasive SUMOylation of heterochromatin and piRNA pathway proteins. CELL GENOMICS 2023; 3:100329. [PMID: 37492097 PMCID: PMC10363806 DOI: 10.1016/j.xgen.2023.100329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 07/27/2023]
Abstract
Genome regulation involves complex protein interactions that are often mediated through post-translational modifications (PTMs). SUMOylation-modification by the small ubiquitin-like modifier (SUMO)-has been implicated in numerous essential processes in eukaryotes. In Drosophila, SUMO is required for viability and fertility, with its depletion from ovaries leading to heterochromatin loss and ectopic transposon and gene activation. Here, we developed a proteomics-based strategy to uncover the Drosophila ovarian "SUMOylome," which revealed that SUMOylation is widespread among proteins involved in heterochromatin regulation and different aspects of the Piwi-interacting small RNA (piRNA) pathway that represses transposons. Furthermore, we show that SUMOylation of several piRNA pathway proteins occurs in a Piwi-dependent manner. Together, these data highlight broad implications of protein SUMOylation in epigenetic regulation and indicate novel roles of this modification in the cellular defense against genomic parasites. Finally, this work provides a resource for the study of SUMOylation in other biological contexts in the Drosophila model.
Collapse
Affiliation(s)
- Maria Ninova
- Department of Biochemistry, University of California Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, USA
| | - Hannah Holmes
- Department of Biochemistry, University of California Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Chary S, Hayashi R. The absence of core piRNA biogenesis factors does not impact efficient transposon silencing in Drosophila. PLoS Biol 2023; 21:e3002099. [PMID: 37279192 DOI: 10.1371/journal.pbio.3002099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/30/2023] [Indexed: 06/08/2023] Open
Abstract
Organisms require mechanisms to distinguish self and non-self-RNA. This distinction is crucial to initiate the biogenesis of Piwi-interacting RNAs (piRNAs). In Drosophila ovaries, PIWI-guided slicing and the recognition of piRNA precursor transcripts by the DEAD-box RNA helicase Yb are the 2 known mechanisms to licence an RNA for piRNA biogenesis in the germline and the soma, respectively. Both the PIWI proteins and Yb are highly conserved across most Drosophila species and are thought to be essential to the piRNA pathway and for silencing transposons. However, we find that species closely related to Drosophila melanogaster have lost the yb gene, as well as the PIWI gene Ago3. We show that the precursor RNA is still selected in the absence of Yb to abundantly generate transposon antisense piRNAs in the soma. We further demonstrate that Drosophila eugracilis, which lacks Ago3, is completely devoid of ping-pong piRNAs and exclusively produces phased piRNAs in the absence of slicing. Thus, core piRNA pathway genes can be lost in evolution while still maintaining efficient transposon silencing.
Collapse
Affiliation(s)
- Shashank Chary
- John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Rippei Hayashi
- John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
16
|
Yamazaki H, Namba Y, Kuriyama S, Nishida KM, Kajiya A, Siomi MC. Bombyx Vasa sequesters transposon mRNAs in nuage via phase separation requiring RNA binding and self-association. Nat Commun 2023; 14:1942. [PMID: 37029111 PMCID: PMC10081994 DOI: 10.1038/s41467-023-37634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Bombyx Vasa (BmVasa) assembles non-membranous organelle, nuage or Vasa bodies, in germ cells, known as the center for Siwi-dependent transposon silencing and concomitant Ago3-piRISC biogenesis. However, details of the body assembly remain unclear. Here, we show that the N-terminal intrinsically disordered region (N-IDR) and RNA helicase domain of BmVasa are responsible for self-association and RNA binding, respectively, but N-IDR is also required for full RNA-binding activity. Both domains are essential for Vasa body assembly in vivo and droplet formation in vitro via phase separation. FAST-iCLIP reveals that BmVasa preferentially binds transposon mRNAs. Loss of Siwi function derepresses transposons but has marginal effects on BmVasa-RNA binding. This study shows that BmVasa assembles nuage by phase separation via its ability to self-associate and bind newly exported transposon mRNAs. This unique property of BmVasa allows transposon mRNAs to be sequestered and enriched in nuage, resulting in effective Siwi-dependent transposon repression and Ago3-piRISC biogenesis.
Collapse
Affiliation(s)
- Hiroya Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yurika Namba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Shogo Kuriyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Kazumichi M Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Asako Kajiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
17
|
Chen K, Yang X, Yang D, Huang Y. Spindle-E is essential for gametogenesis in the silkworm, Bombyx mori. INSECT SCIENCE 2023; 30:293-304. [PMID: 35866721 DOI: 10.1111/1744-7917.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/06/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
As a defense mechanism against transposable elements, the PIWI-interacting RNA (piRNA) pathway maintains genomic integrity and ensures proper gametogenesis in gonads. Numerous factors are orchestrated to ensure normal operation of the piRNA pathway. Spindle-E (Spn-E) gene was one of the first genes shown to participate in the piRNA pathway. In this study, we performed functional analysis of Spn-E in the model lepidopteran insect, Bombyx mori. Unlike the germline-specific expression pattern observed in Drosophila and mouse, BmSpn-E was ubiquitously expressed in all tissues tested, and it was highly expressed in gonads. Immunofluorescent staining showed that BmSpn-E was localized in both germ cells and somatic cells in ovary and was expressed in spermatocytes in testis. We used a binary transgenic CRISPR/Cas9 system to construct BmSpn-E mutants. Loss of BmSpn-E expression caused derepression of transposons in gonads. We also found that mutant gonads were much smaller than wild-type gonads and that the number of germ cells was considerably lower in mutant gonads. Quantitative real-time PCR analysis and TUNEL staining revealed that apoptosis was greatly enhanced in mutant gonads. Further, we found that the BmSpn-E mutation impacted gonadal development and gametogenesis at the early larval stage. In summary, our data provided the first evidence that BmSpn-E plays vital roles in gonadal development and gametogenesis in B. mori.
Collapse
Affiliation(s)
- Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
19
|
Wang X, Ramat A, Simonelig M, Liu MF. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol 2023; 24:123-141. [PMID: 36104626 DOI: 10.1038/s41580-022-00528-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 02/02/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that associate with proteins of the PIWI clade of the Argonaute family. First identified in animal germ line cells, piRNAs have essential roles in germ line development. The first function of PIWI-piRNA complexes to be described was the silencing of transposable elements, which is crucial for maintaining the integrity of the germ line genome. Later studies provided new insights into the functions of PIWI-piRNA complexes by demonstrating that they regulate protein-coding genes. Recent studies of piRNA biology, including in new model organisms such as golden hamsters, have deepened our understanding of both piRNA biogenesis and piRNA function. In this Review, we discuss the most recent advances in our understanding of piRNA biogenesis, the molecular mechanisms of piRNA function and the emerging roles of piRNAs in germ line development mainly in flies and mice, and in infertility, cancer and neurological diseases in humans.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Anne Ramat
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France.
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
20
|
Izumi N, Shoji K, Kiuchi T, Katsuma S, Tomari Y. The two Gtsf paralogs in silkworms orthogonally activate their partner PIWI proteins for target cleavage. RNA (NEW YORK, N.Y.) 2022; 29:rna.079380.122. [PMID: 36319089 PMCID: PMC9808576 DOI: 10.1261/rna.079380.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a protection mechanism against transposons in animal germ cells. Most PIWI proteins possess piRNA-guided endonuclease activity, which is critical for silencing transposons and producing new piRNAs. Gametocyte-specific factor 1 (Gtsf1), an evolutionarily conserved zinc finger protein, promotes catalysis by PIWI proteins. Many animals have multiple Gtsf1 paralogs; however, their respective roles in the piRNA pathway are not fully understood. Here, we dissected the roles of Gtsf1 and its paralog Gtsf1-like (Gtsf1L) in the silkworm piRNA pathway. We found that Gtsf1 and Gtsf1L preferentially bind the two silkworm PIWI paralogs, Siwi and BmAgo3, respectively, and facilitate the endonuclease activity of each PIWI protein. This orthogonal activation effect was further supported by specific reduction of BmAgo3-bound Masculinizer piRNA and Siwi-bound Feminizer piRNA, the unique piRNA pair required for silkworm feminization, upon depletion of Gtsf1 and Gtsf1L, respectively. Our results indicate that the two Gtsf paralogs in silkworms activate their respective PIWI partners, thereby facilitating the amplification of piRNAs.
Collapse
|
21
|
Yamamoto‐Matsuda H, Miyoshi K, Moritoh M, Yoshitane H, Fukada Y, Saito K, Yamanaka S, Siomi MC. Lint‐O
cooperates with L(3)mbt in target gene suppression to maintain homeostasis in fly ovary and brain. EMBO Rep 2022; 23:e53813. [PMID: 35993198 PMCID: PMC9535798 DOI: 10.15252/embr.202153813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Loss‐of‐function mutations in Drosophila lethal(3)malignant brain tumor [l(3)mbt] cause ectopic expression of germline genes and brain tumors. Loss of L(3)mbt function in ovarian somatic cells (OSCs) aberrantly activates germ‐specific piRNA amplification and leads to infertility. However, the underlying mechanism remains unclear. Here, ChIP‐seq for L(3)mbt in cultured OSCs and RNA‐seq before and after L(3)mbt depletion shows that L(3)mbt genomic binding is not necessarily linked to gene regulation and that L(3)mbt controls piRNA pathway genes in multiple ways. Lack of known L(3)mbt co‐repressors, such as Lint‐1, has little effect on the levels of piRNA amplifiers. Identification of L(3)mbt interactors in OSCs and subsequent analysis reveals CG2662 as a novel co‐regulator of L(3)mbt, termed “L(3)mbt interactor in OSCs” (Lint‐O). Most of the L(3)mbt‐bound piRNA amplifier genes are also bound by Lint‐O in a similar fashion. Loss of Lint‐O impacts the levels of piRNA amplifiers, similar to the lack of L(3)mbt. The lint‐O‐deficient flies exhibit female sterility and tumorous brains. Thus, L(3)mbt and its novel co‐suppressor Lint‐O cooperate in suppressing target genes to maintain homeostasis in the ovary and brain.
Collapse
Affiliation(s)
- Hitomi Yamamoto‐Matsuda
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Keita Miyoshi
- Department of Chromosome Science National Institute of Genetics, Research Organization of Information and Systems Shizuoka Japan
- Department of Genetics School of Life Science, SOKENDAI Shizuoka Japan
| | - Mai Moritoh
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Kuniaki Saito
- Department of Chromosome Science National Institute of Genetics, Research Organization of Information and Systems Shizuoka Japan
- Department of Genetics School of Life Science, SOKENDAI Shizuoka Japan
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science The University of Tokyo Tokyo Japan
| |
Collapse
|
22
|
Arif A, Bailey S, Izumi N, Anzelon TA, Ozata DM, Andersson C, Gainetdinov I, MacRae IJ, Tomari Y, Zamore PD. GTSF1 accelerates target RNA cleavage by PIWI-clade Argonaute proteins. Nature 2022; 608:618-625. [PMID: 35772669 PMCID: PMC9385479 DOI: 10.1038/s41586-022-05009-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Argonaute proteins use nucleic acid guides to find and bind specific DNA or RNA target sequences. Argonaute proteins have diverse biological functions and many retain their ancestral endoribonuclease activity, cleaving the phosphodiester bond between target nucleotides t10 and t11. In animals, the PIWI proteins-a specialized class of Argonaute proteins-use 21-35 nucleotide PIWI-interacting RNAs (piRNAs) to direct transposon silencing, protect the germline genome, and regulate gene expression during gametogenesis1. The piRNA pathway is required for fertility in one or both sexes of nearly all animals. Both piRNA production and function require RNA cleavage catalysed by PIWI proteins. Spermatogenesis in mice and other placental mammals requires three distinct, developmentally regulated PIWI proteins: MIWI (PIWIL1), MILI (PIWIL2) and MIWI22-4 (PIWIL4). The piRNA-guided endoribonuclease activities of MIWI and MILI are essential for the production of functional sperm5,6. piRNA-directed silencing in mice and insects also requires GTSF1, a PIWI-associated protein of unknown function7-12. Here we report that GTSF1 potentiates the weak, intrinsic, piRNA-directed RNA cleavage activities of PIWI proteins, transforming them into efficient endoribonucleases. GTSF1 is thus an example of an auxiliary protein that potentiates the catalytic activity of an Argonaute protein.
Collapse
Affiliation(s)
- Amena Arif
- Department of Biochemistry and Molecular Biotechnology Graduate Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Beam Therapeutics, Cambridge, MA, USA
| | - Shannon Bailey
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natsuko Izumi
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Todd A Anzelon
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Deniz M Ozata
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Cecilia Andersson
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
23
|
Santos D, Verdonckt TW, Mingels L, Van den Brande S, Geens B, Van Nieuwerburgh F, Kolliopoulou A, Swevers L, Wynant N, Vanden Broeck J. PIWI Proteins Play an Antiviral Role in Lepidopteran Cell Lines. Viruses 2022; 14:1442. [PMID: 35891422 PMCID: PMC9321812 DOI: 10.3390/v14071442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Insect antiviral immunity primarily relies on RNAi mechanisms. While a key role of small interfering (si)RNAs and AGO proteins has been well established in this regard, the situation for PIWI proteins and PIWI-interacting (pi)RNAs is not as clear. In the present study, we investigate whether PIWI proteins and viral piRNAs are involved in the immunity against single-stranded RNA viruses in lepidopteran cells, where two PIWIs are identified (Siwi and Ago3). Via loss- and gain-of-function studies in Bombyx mori BmN4 cells and in Trichoplusia ni High Five cells, we demonstrated an antiviral role of Siwi and Ago3. However, small RNA analysis suggests that viral piRNAs can be absent in these lepidopteran cells. Together with the current literature, our results support a functional diversification of PIWI proteins in insects.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Thomas-Wolf Verdonckt
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Lina Mingels
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Stijn Van den Brande
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Bart Geens
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Gent University, Ottergemsesteenweg 460, 9000 Gent, Belgium;
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 153 10 Athens, Greece; (A.K.); (L.S.)
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 153 10 Athens, Greece; (A.K.); (L.S.)
| | - Niels Wynant
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| |
Collapse
|
24
|
Yamada H, Nishida KM, Iwasaki YW, Isota Y, Negishi L, Siomi MC. Siwi cooperates with Par-1 kinase to resolve the autoinhibitory effect of Papi for Siwi-piRISC biogenesis. Nat Commun 2022; 13:1518. [PMID: 35314687 PMCID: PMC8938449 DOI: 10.1038/s41467-022-29193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Bombyx Papi acts as a scaffold for Siwi-piRISC biogenesis on the mitochondrial surface. Papi binds first to Siwi via the Tudor domain and subsequently to piRNA precursors loaded onto Siwi via the K-homology (KH) domains. This second action depends on phosphorylation of Papi. However, the underlying mechanism remains unknown. Here, we show that Siwi targets Par-1 kinase to Papi to phosphorylate Ser547 in the auxiliary domain. This modification enhances the ability of Papi to bind Siwi-bound piRNA precursors via the KH domains. The Papi S547A mutant bound to Siwi, but evaded phosphorylation by Par-1, abrogating Siwi-piRISC biogenesis. A Papi mutant that lacked the Tudor and auxiliary domains escaped coordinated regulation by Siwi and Par-1 and bound RNAs autonomously. Another Papi mutant that lacked the auxiliary domain bound Siwi but did not bind piRNA precursors. A sophisticated mechanism by which Siwi cooperates with Par-1 kinase to promote Siwi-piRISC biogenesis was uncovered. Siwi-piRISC protects the germline genome from DNA damage caused by selfish movement of transposons by suppressing their expression. Here, the authors show how molecularly Papi, which plays an important role in the production of Siwi-piRISC, cooperates with Par-1 kinase to ensure the accumulation of Siwi-piRISC in germ cells.
Collapse
|
25
|
Shankar Singh R, Bhadra Arna A, Dong H, Yadav M, Aggarwal A, Wu Y. Structure-function analysis of DEAD-box helicase DDX43. Methods 2022; 204:286-299. [DOI: 10.1016/j.ymeth.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 01/21/2023] Open
|
26
|
Arkov AL. Looking at the Pretty "Phase" of Membraneless Organelles: A View From Drosophila Glia. Front Cell Dev Biol 2022; 10:801953. [PMID: 35198559 PMCID: PMC8859445 DOI: 10.3389/fcell.2022.801953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Membraneless granules assemble in different cell types and cellular loci and are the focus of intense research due to their fundamental importance for cellular organization. These dynamic organelles are commonly assembled from RNA and protein components and exhibit soft matter characteristics of molecular condensates currently characterized with biophysical approaches and super-resolution microscopy imaging. In addition, research on the molecular mechanisms of the RNA-protein granules assembly provided insights into the formation of abnormal granules and molecular aggregates, which takes place during many neurodegenerative disorders including Parkinson's diseases (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). While these disorders are associated with formation of abnormal granules, membraneless organelles are normally assembled in neurons and contribute to translational control and affect stability of neuronal RNAs. More recently, a new subtype of membraneless granules was identified in Drosophila glia (glial granules). Interestingly, glial granules were found to contain proteins which are the principal components of the membraneless granules in germ cells (germ granules), indicating some similarity in the functional assembly of these structures in glia and germline. This mini review highlights recent research on glial granules in the context of other membraneless organelles, including their assembly mechanisms and potential functions in the nervous system.
Collapse
Affiliation(s)
- Alexey L. Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
27
|
Namba Y, Iwasaki YW, Nishida KM, Nishihara H, Sumiyoshi T, Siomi MC. Maelstrom functions in the production of Siwi-piRISC capable of regulating transposons in Bombyx germ cells. iScience 2022; 25:103914. [PMID: 35243263 PMCID: PMC8881725 DOI: 10.1016/j.isci.2022.103914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/27/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yurika Namba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuka W. Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama 332-0012, Japan
| | - Kazumichi M. Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Mikiko C. Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
- Corresponding author
| |
Collapse
|
28
|
Kropocheva EV, Lisitskaya LA, Agapov AA, Musabirov AA, Kulbachinskiy AV, Esyunina DM. Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Mol Biol 2022; 56:854-873. [PMID: 36060308 PMCID: PMC9427165 DOI: 10.1134/s0026893322060103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Programmable nucleases are the most important tool for manipulating the genes and genomes of both prokaryotes and eukaryotes. Since the end of the 20th century, many approaches were developed for specific modification of the genome. The review briefly considers the advantages and disadvantages of the main genetic editors known to date. The main attention is paid to programmable nucleases from the family of prokaryotic Argonaute proteins. Argonaute proteins can recognize and cleave DNA sequences using small complementary guide molecules and play an important role in protecting prokaryotic cells from invading DNA. Argonaute proteins have already found applications in biotechnology for targeted cleavage and detection of nucleic acids and can potentially be used for genome editing.
Collapse
Affiliation(s)
- E. V. Kropocheva
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - L. A. Lisitskaya
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Agapov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Musabirov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. V. Kulbachinskiy
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - D. M. Esyunina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
29
|
Kinoshita Y, Murakami R, Muto N, Kubo S, Iizuka R, Uemura S. Heterogeneous dissociation process of truncated RNAs by oligomerized Vasa helicase. Commun Biol 2021; 4:1386. [PMID: 34893756 PMCID: PMC8664846 DOI: 10.1038/s42003-021-02918-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa’s oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency. Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein oligomerization and the dissociation of target RNA from the Siwi-piRISC complex. The authors conclude that oligomerized Vasa guides the timing of the regulation of overall dissociation efficiency.
Collapse
Affiliation(s)
- Yoshimi Kinoshita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryo Murakami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nao Muto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shintaroh Kubo
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Shigematsu M, Kawamura T, Morichika K, Izumi N, Kiuchi T, Honda S, Pliatsika V, Matsubara R, Rigoutsos I, Katsuma S, Tomari Y, Kirino Y. RNase κ promotes robust piRNA production by generating 2',3'-cyclic phosphate-containing precursors. Nat Commun 2021; 12:4498. [PMID: 34301931 PMCID: PMC8302750 DOI: 10.1038/s41467-021-24681-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
In animal germlines, PIWI proteins and the associated PIWI-interacting RNAs (piRNAs) protect genome integrity by silencing transposons. Here we report the extensive sequence and quantitative correlations between 2',3'-cyclic phosphate-containing RNAs (cP-RNAs), identified using cP-RNA-seq, and piRNAs in the Bombyx germ cell line and mouse testes. The cP-RNAs containing 5'-phosphate (P-cP-RNAs) identified by P-cP-RNA-seq harbor highly consistent 5'-end positions as the piRNAs and are loaded onto PIWI protein, suggesting their direct utilization as piRNA precursors. We identified Bombyx RNase Kappa (BmRNase κ) as a mitochondria-associated endoribonuclease which produces cP-RNAs during piRNA biogenesis. BmRNase κ-depletion elevated transposon levels and disrupted a piRNA-mediated sex determination in Bombyx embryos, indicating the crucial roles of BmRNase κ in piRNA biogenesis and embryonic development. Our results reveal a BmRNase κ-engaged piRNA biogenesis pathway, in which the generation of cP-RNAs promotes robust piRNA production.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Keisuke Morichika
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Natsuko Izumi
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Shozo Honda
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Venetia Pliatsika
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryuma Matsubara
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yukihide Tomari
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Kimoto C, Nakagawa H, Hasegawa R, Nodono H, Matsumoto M. Co-localization of DrPiwi-1 and DrPiwi-2 in the oogonial cytoplasm is essential for oocyte differentiation in sexualized planarians. Cells Dev 2021; 167:203710. [PMID: 34171535 DOI: 10.1016/j.cdev.2021.203710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022]
Abstract
P-Element-induced wimpy testis (Piwi) subfamily proteins form complexes that bind to Piwi-interacting RNA. This interaction is crucial for stem cell regulation and formation, maintenance of germline stem cells, and gametogenesis in several metazoans. Planarians are effective models for studying stem cells. In the planarian Dugesia ryukyuensis, DrPiwi-1 is essential for the development of germ cells, but not somatic cells and sexual organs. DrPiwi-2 is indispensable for regeneration. In this study, we aimed to investigate the effects of Piwi on the differentiation of germ cells using monoclonal antibodies against DrPiwi-1 and DrPiwi-2. DrPiwi-1 and DrPiwi-2 co-localized more in immature germ cells than in mature germ cells in the ovary. DrPiwi-1 was found in the cytoplasm of early oogonia as undifferentiated germ cells, whereas DrPiwi-2 was found to localize not only in the nuclei but also in the cytoplasm of early oogonia. In descendant germ cells (oocytes), DrPiwi-2 was not present in the cytoplasm, but was strongly detected in the nucleolus. Moreover, we found that DrPiwi-1 forms a complex with DrPiwi-2. The cause of DrPiwi-1 depletion may be the severe reduction in the DrPiwi-2 level in the cytoplasm of oogonia. These results suggest that the formation of the DrPiwi-1 and DrPiwi-2 complex in the cytoplasm of oogonia is essential for oocyte differentiation. Our findings support the conclusion that DrPiwi-1 forms a complex with DrPiwi-2 in the cytoplasm of undifferentiated germ cells, and it signifies the start of gametogenesis. In contrast, in the testes, Drpiwi-1 was found in undifferentiated germ cells (spermatogonia), whereas DrPiwi-2 was found in descendant germ cells (spermatocytes). The process of germ cell differentiation from adult stem cells in planarians may be regulated in different ways in female and male germ lines by the Piwi family.
Collapse
Affiliation(s)
- Chiaki Kimoto
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Haruka Nakagawa
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Reiko Hasegawa
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Hanae Nodono
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Midori Matsumoto
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
32
|
Feng M, Kolliopoulou A, Zhou YH, Fei SG, Xia JM, Swevers L, Sun JC. The piRNA response to BmNPV infection in the silkworm fat body and midgut. INSECT SCIENCE 2021; 28:662-679. [PMID: 32367653 DOI: 10.1111/1744-7917.12796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a DNA virus that causes huge losses to the silkworm industry but the piRNA responses during BmNPV infection in the silkworm remain uninvestigated. Here, silkworm piRNA profiles of uninfected and BmNPV-infected fat body and midgut were determined by high-through sequencing in the early stages of BmNPV infection. A total of 2675 and 3396 genome-derived piRNAs were identified from fat body and midgut, respectively. These genome-derived piRNAs mainly originated from unannotated instead of transposon regions in the silkworm genome. In total, 572 piRNAs were associated with 280 putative target genes in fat body and 805 piRNAs with 380 target genes in midgut. Compared to uninfected tissues, 322 and 129 piRNAs were significantly upregulated in BmNPV-infected fat body and midgut, respectively. In addition, 276 and 117 piRNAs were significantly downregulated. Moreover, differentially expressed (DE) piRNAs during BmNPV infection differed significantly between fat body and midgut. Putative DE piRNA-targeted genes were associated with "response to stimulus" and "environmental information processing" in fat body after infection with BmNPV, which may indicate an active piRNA response to BmNPV infection in fat body. This study may lay the foundation for future research of the potential roles of the piRNA pathway and specific piRNAs in BmNPV pathogenesis.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Yao-Hong Zhou
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shi-Gang Fei
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun-Ming Xia
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Centre for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jing-Chen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
33
|
Fontenla S, Rinaldi G, Tort JF. Lost and Found: Piwi and Argonaute Pathways in Flatworms. Front Cell Infect Microbiol 2021; 11:653695. [PMID: 34123869 PMCID: PMC8191739 DOI: 10.3389/fcimb.2021.653695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Platyhelminthes comprise one of the major phyla of invertebrate animals, inhabiting a wide range of ecosystems, and one of the most successful in adapting to parasitic life. Small non-coding RNAs have been implicated in regulating complex developmental transitions in model parasitic species. Notably, parasitic flatworms have lost Piwi RNA pathways but gained a novel Argonaute gene. Herein, we analyzed, contrasted and compared the conservation of small RNA pathways among several free-living species (a paraphyletic group traditionally known as ‘turbellarians’) and parasitic species (organized in the monophyletic clade Neodermata) to disentangle possible adaptations during the transition to parasitism. Our findings showed that complete miRNA and RNAi pathways are present in all analyzed free-living flatworms. Remarkably, whilst all ‘turbellarians’ have Piwi proteins, these were lost in parasitic Neodermantans. Moreover, two clusters of Piwi class Argonaute genes are present in all ‘turbellarians’. Interestingly, we identified a divergent Piwi class Argonaute in free living flatworms exclusively, which we named ‘Fliwi’. In addition, other key proteins of the Piwi pathways were conserved in ‘turbellarians’, while none of them were detected in Neodermatans. Besides Piwi and the canonical Argonaute proteins, a flatworm-specific class of Argonautes (FL-Ago) was identified in the analyzed species confirming its ancestrallity to all Platyhelminthes. Remarkably, this clade was expanded in parasitic Neodermatans, but not in free-living species. These phyla-specific Argonautes showed lower sequence conservation compared to other Argonaute proteins, suggesting that they might have been subjected to high evolutionary rates. However, key residues involved in the interaction with the small RNA and mRNA cleavage in the canonical Argonautes were more conserved in the FL-Agos than in the Piwi Argonautes. Whether this is related to specialized functions and adaptations to parasitism in Neodermatans remains unclear. In conclusion, differences detected in gene conservation, sequence and structure of the Argonaute family suggest tentative biological and evolutionary diversifications that are unique to Platyhelminthes. The remarkable divergencies in the small RNA pathways between free-living and parasitic flatworms indicate that they may have been involved in the adaptation to parasitism of Neodermatans.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | | | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| |
Collapse
|
34
|
Chung PY, Shoji K, Izumi N, Tomari Y. Dynamic subcellular compartmentalization ensures fidelity of piRNA biogenesis in silkworms. EMBO Rep 2021; 22:e51342. [PMID: 33973704 DOI: 10.15252/embr.202051342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) guide PIWI proteins to silence transposable elements and safeguard fertility in germ cells. Many protein factors required for piRNA biogenesis localize to perinuclear ribonucleoprotein (RNP) condensates named nuage, where target silencing and piRNA amplification are thought to occur. In mice, some of the piRNA factors are found in discrete cytoplasmic foci called processing bodies (P-bodies). However, the dynamics and biological significance of such compartmentalization of the piRNA pathway remain unclear. Here, by analyzing the subcellular localization of functional mutants of piRNA factors, we show that piRNA factors are actively compartmentalized into nuage and P-bodies in silkworm cells. Proper demixing of nuage and P-bodies requires target cleavage by the PIWI protein Siwi and ATP hydrolysis by the DEAD-box helicase BmVasa, disruption of which leads to promiscuous overproduction of piRNAs deriving from non-transposable elements. Our study highlights a role of dynamic subcellular compartmentalization in ensuring the fidelity of piRNA biogenesis.
Collapse
Affiliation(s)
- Pui Yuen Chung
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Keisuke Shoji
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Natsuko Izumi
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
35
|
Murakami R, Sumiyoshi T, Negishi L, Siomi MC. DEAD-box polypeptide 43 facilitates piRNA amplification by actively liberating RNA from Ago3-piRISC. EMBO Rep 2021; 22:e51313. [PMID: 33555135 PMCID: PMC8025031 DOI: 10.15252/embr.202051313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
The piRNA amplification pathway in Bombyx is operated by Ago3 and Siwi in their piRISC form. The DEAD‐box protein, Vasa, facilitates Ago3‐piRISC production by liberating cleaved RNAs from Siwi‐piRISC in an ATP hydrolysis‐dependent manner. However, the Vasa‐like factor facilitating Siwi‐piRISC production along this pathway remains unknown. Here, we identify DEAD‐box polypeptide 43 (DDX43) as the Vasa‐like protein functioning in Siwi‐piRISC production. DDX43 belongs to the helicase superfamily II along with Vasa, and it contains a similar helicase core. DDX43 also contains a K‐homology (KH) domain, a prevalent RNA‐binding domain, within its N‐terminal region. Biochemical analyses show that the helicase core is responsible for Ago3‐piRISC interaction and ATP hydrolysis, while the KH domain enhances the ATPase activity of the helicase core. This enhancement is independent of the RNA‐binding activity of the KH domain. For maximal DDX43 RNA‐binding activity, both the KH domain and helicase core are required. This study not only provides new insight into the piRNA amplification mechanism but also reveals unique collaborations between the two domains supporting DDX43 function within the pathway.
Collapse
Affiliation(s)
- Ryo Murakami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Kubíková J, Reinig R, Salgania HK, Jeske M. LOTUS-domain proteins - developmental effectors from a molecular perspective. Biol Chem 2020; 402:7-23. [DOI: 10.1515/hsz-2020-0270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Abstract
The LOTUS domain (also known as OST-HTH) is a highly conserved protein domain found in a variety of bacteria and eukaryotes. In animals, the LOTUS domain is present in the proteins Oskar, TDRD5/Tejas, TDRD7/TRAP/Tapas, and MARF1/Limkain B1, all of which play essential roles in animal development, in particular during oogenesis and/or spermatogenesis. This review summarizes the diverse biological as well as molecular functions of LOTUS-domain proteins and discusses their roles as helicase effectors, post-transcriptional regulators, and critical cofactors of piRNA-mediated transcript silencing.
Collapse
Affiliation(s)
- Jana Kubíková
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Rebecca Reinig
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Harpreet Kaur Salgania
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| |
Collapse
|
37
|
Chen K, Yu Y, Yang D, Yang X, Tang L, Liu Y, Luo X, R. Walter J, Liu Z, Xu J, Huang Y. Gtsf1 is essential for proper female sex determination and transposon silencing in the silkworm, Bombyx mori. PLoS Genet 2020; 16:e1009194. [PMID: 33137136 PMCID: PMC7660909 DOI: 10.1371/journal.pgen.1009194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/12/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023] Open
Abstract
Sex determination pathways are astoundingly diverse in insects. For instance, the silk moth Bombyx mori uniquely use various components of the piRNA pathway to produce the Fem signal for specification of the female fate. In this study, we identified BmGTSF1 as a novel piRNA factor which participates in B. mori sex determination. We found that BmGtsf1 has a distinct expression pattern compared to Drosophila and mouse. CRISPR/Cas9 induced mutation in BmGtsf1 resulted in partial sex reversal in genotypically female animals by shifting expression of the downstream targets BmMasc and Bmdsx to the male pattern. As levels of Fem piRNAs were substantially reduced in female mutants, we concluded that BmGtsf1 plays a critical role in the biogenesis of the feminizing signal. We also demonstrated that BmGTSF1 physically interacted with BmSIWI, a protein previously reported to be involved in female sex determination, indicating BmGTSF1 function as the cofactor of BmSIWI. BmGtsf1 mutation resulted in piRNA pathway dysregulation, including piRNA biogenesis defects and transposon derepression, suggesting BmGtsf1 is also a piRNA factor in the silkworm. Furthermore, we found that BmGtsf1 mutation leads to gametogenesis defects in both male and female. Our data suggested that BmGtsf1 is a new component involved in the sex determination pathway in B. mori. Sex determination is a fundamentally important process in most sexually reproducing metazoan. Nevertheless, the underlying mechanisms of sex determination are highly diverse. In B. mori, piRNAs derived from the W-chromosome-linked Fem precursor serve as the primary female determining signal. However, we still know little about the initiation of B. mori sex determination and its relationship with piRNA pathway. Here, we provided evidence that BmGTSF1 is a novel piRNA factor which is indispensable for B.mori female sex determination. Mutations in BmGtsf1 resulted in dysregulation of the piRNA pathway and caused partial female-male sex reversal. We also detected dramatic diminution of Fem piRNA in female mutant, indicating BmGTSF1 regulates B. mori sex determination via piRNA pathway. More importantly, we showed that BmGTSF1 interacted with BmSIWI, which protein had been reported to be involved in piRNA pathway and sex determination in B. mori, supporting the conclusion that BmGTSF1 is a novel factor for piRNA pathway and sex determination.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Linmeng Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yujia Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - James R. Walter
- Department of Ecology and Evolutionary Biology, University of Kansas, NV, United States of America
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JX); (YH)
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (JX); (YH)
| |
Collapse
|
38
|
Nishida KM, Sakakibara K, Sumiyoshi T, Yamazaki H, Mannen T, Kawamura T, Kodama T, Siomi MC. Siwi levels reversibly regulate secondary piRISC biogenesis by affecting Ago3 body morphology in Bombyx mori. EMBO J 2020; 39:e105130. [PMID: 32914505 PMCID: PMC7560202 DOI: 10.15252/embj.2020105130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 01/13/2023] Open
Abstract
Silkworm ovarian germ cells produce the Siwi‐piRNA‐induced silencing complex (piRISC) through two consecutive mechanisms, the primary pathway and the secondary ping‐pong cycle. Primary Siwi‐piRISC production occurs on the outer mitochondrial membrane in an Ago3‐independent manner, where Tudor domain‐containing Papi binds unloaded Siwi via its symmetrical dimethylarginines (sDMAs). Here, we now show that secondary Siwi‐piRISC production occurs at the Ago3‐positive nuage Ago3 bodies, in an Ago3‐dependent manner, where Vreteno (Vret), another Tudor protein, interconnects unloaded Siwi and Ago3‐piRISC through their sDMAs. Upon Siwi depletion, Ago3 is phosphorylated and insolubilized in its piRISC form with cleaved RNAs and Vret, suggesting that the complex is stalled in the intermediate state. The Ago3 bodies are also enlarged. The aberrant morphology is restored upon Siwi re‐expression without Ago3‐piRISC supply. Thus, Siwi depletion aggregates the Ago3 bodies to protect the piRNA intermediates from degradation until the normal cellular environment returns to re‐initiate the ping‐pong cycle. Overall, these findings reveal a unique regulatory mechanism controlling piRNA biogenesis.
Collapse
Affiliation(s)
- Kazumichi M Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Sakakibara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tetsutaro Sumiyoshi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroya Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Taro Mannen
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Ishizu H, Kinoshita T, Hirakata S, Komatsuzaki C, Siomi MC. Distinct and Collaborative Functions of Yb and Armitage in Transposon-Targeting piRNA Biogenesis. Cell Rep 2020; 27:1822-1835.e8. [PMID: 31067466 DOI: 10.1016/j.celrep.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 11/27/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) repress transposons to maintain germline genome integrity. Previous studies showed that artificial tethering of Armitage (Armi) to reporter RNAs induced piRNA biogenesis. However, the lack of female sterile (1) Yb (Yb) in Drosophila ovarian somatic cells (OSCs) impaired the production of transposon-targeting piRNAs, even in the presence of Armi. Here, we show that the specific interaction of Armi with RNA transcripts of the flamenco piRNA cluster, the primary source of transposon-targeting piRNAs in OSCs, is strictly regulated by Yb. The lack of Yb allowed Armi to bind RNAs promiscuously, leading to the production of piRNAs unrelated to transposon silencing. The ATP hydrolysis-defective mutants of Armi failed to unwind RNAs and were retained on them, abolishing piRNA production. These findings shed light on distinct and collaborative requirements of Yb and Armi in transposon-targeting piRNA biogenesis. We also provide evidence supporting the direct involvement of Armi but not Yb in Zucchini-dependent piRNA phasing.
Collapse
Affiliation(s)
- Hirotsugu Ishizu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tatsuki Kinoshita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Shigeki Hirakata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Chihiro Komatsuzaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
40
|
Venkei ZG, Choi CP, Feng S, Chen C, Jacobsen SE, Kim JK, Yamashita YM. A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage. PLoS Genet 2020; 16:e1008648. [PMID: 32168327 PMCID: PMC7094869 DOI: 10.1371/journal.pgen.1008648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/25/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
The piRNA pathway protects germline genomes from selfish genetic elements (e.g. transposons) through their transcript cleavage in the cytoplasm and/or their transcriptional silencing in the nucleus. Here, we describe a mechanism by which the nuclear and cytoplasmic arms of the piRNA pathway are linked. We find that during mitosis of Drosophila spermatogonia, nuclear Piwi interacts with nuage, the compartment that mediates the cytoplasmic arm of the piRNA pathway. At the end of mitosis, Piwi leaves nuage to return to the nucleus. Dissociation of Piwi from nuage occurs at the depolymerizing microtubules of the central spindle, mediated by a microtubule-depolymerizing kinesin, Klp10A. Depletion of klp10A delays the return of Piwi to the nucleus and affects piRNA production, suggesting the role of nuclear-cytoplasmic communication in piRNA biogenesis. We propose that cell cycle-dependent communication between the nuclear and cytoplasmic arms of the piRNA pathway may play a previously unappreciated role in piRNA regulation. The piRNA pathway that defends germline from selfish elements operates in two subpathways, one mediated by Piwi in Drosophila to silence transcription of targets in the nucleus and the other mediated by Aub and Ago3 to cleave transcripts of targets in the cytoplasm. How these two subpathways might coordinate with each other, particularly at the cell biological level, remains elusive. This study shows that Piwi interacts with Aub/Ago3 specifically in mitosis in nuage, the organelle that serves as the platform for piRNA cytoplasmic subpathway. Piwi returns to the nucleus at the end of mitosis, and our study suggests that dissociation of Piwi from nuage is facilitated by microtubule depolymerization by a kinesin Klp10A at the central spindle. We propose that cell-cycle-dependent interaction of two piRNA subpathways may play an important role in piRNA production.
Collapse
Affiliation(s)
- Zsolt G. Venkei
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charlotte P. Choi
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
| | - Cuie Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - John K. Kim
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yukiko M. Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
41
|
Yamaguchi S, Oe A, Nishida KM, Yamashita K, Kajiya A, Hirano S, Matsumoto N, Dohmae N, Ishitani R, Saito K, Siomi H, Nishimasu H, Siomi MC, Nureki O. Crystal structure of Drosophila Piwi. Nat Commun 2020; 11:858. [PMID: 32051406 PMCID: PMC7015924 DOI: 10.1038/s41467-020-14687-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
PIWI-clade Argonaute proteins associate with PIWI-interacting RNAs (piRNAs), and silence transposons in animal gonads. Here, we report the crystal structure of the Drosophila PIWI-clade Argonaute Piwi in complex with endogenous piRNAs, at 2.9 Å resolution. A structural comparison of Piwi with other Argonautes highlights the PIWI-specific structural features, such as the overall domain arrangement and metal-dependent piRNA recognition. Our structural and biochemical data reveal that, unlike other Argonautes including silkworm Siwi, Piwi has a non-canonical DVDK tetrad and lacks the RNA-guided RNA cleaving slicer activity. Furthermore, we find that the Piwi mutant with the canonical DEDH catalytic tetrad exhibits the slicer activity and readily dissociates from less complementary RNA targets after the slicer-mediated cleavage, suggesting that the slicer activity could compromise the Piwi-mediated co-transcriptional silencing. We thus propose that Piwi lost the slicer activity during evolution to serve as an RNA-guided RNA-binding platform, thereby ensuring faithful co-transcriptional silencing of transposons.
Collapse
Affiliation(s)
- Sonomi Yamaguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Oe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazumichi M Nishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asako Kajiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoki Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kuniaki Saito
- Invertebrate Genetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Haruhiko Siomi
- Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Nishimasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
42
|
Yamashiro H, Negishi M, Kinoshita T, Ishizu H, Ohtani H, Siomi MC. Armitage determines Piwi-piRISC processing from precursor formation and quality control to inter-organelle translocation. EMBO Rep 2020; 21:e48769. [PMID: 31833223 PMCID: PMC7001504 DOI: 10.15252/embr.201948769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
Piwi and piRNA form the piRNA-induced silencing complex (piRISC) to repress transposons. In the current model, Armitage (Armi) brings the Piwi-piRISC precursor (pre-piRISC) to mitochondria, where Zucchini-dependent piRISC maturation occurs. Here, we show that Armi is necessary for Piwi-pre-piRISC formation at Yb bodies and that Armi triggers the exit of Piwi-pre-piRISC from Yb bodies and the translocation to mitochondria. Piwi-pre-piRISC resist leaving Yb bodies until Armi binds Piwi-pre-piRISC through the piRNA precursors. The lack of the Armi N-terminus also blocks the Piwi-pre-piRISC exit from Yb bodies. Thus, Armi determines Piwi-piRISC processing, in a multilayered manner, from precursor formation and quality control to inter-organelle translocation for maturation.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Mayu Negishi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Tatsuki Kinoshita
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| | - Hirotsugu Ishizu
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
| | - Hitoshi Ohtani
- Department of Molecular BiologyKeio University School of MedicineTokyoJapan
- Present address:
Van Andel Research InstituteGrand RapidsMIUSA
| | - Mikiko C Siomi
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
43
|
SATO K, SIOMI MC. The piRNA pathway in Drosophila ovarian germ and somatic cells. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:32-42. [PMID: 31932527 PMCID: PMC6974405 DOI: 10.2183/pjab.96.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/28/2019] [Indexed: 05/30/2023]
Abstract
RNA silencing refers to gene silencing pathways mediated by small non-coding RNAs, including microRNAs. Piwi-interacting RNAs (piRNAs) constitute the largest class of small non-coding RNAs in animal gonads, which repress transposons to protect the germline genome from the selfish invasion of transposons. Deterioration of the system causes DNA damage, leading to severe defects in gametogenesis and infertility. Studies using Drosophila ovaries show that piRNAs originate from specific genomic loci, termed piRNA clusters, and that in piRNA biogenesis, cluster transcripts are processed into mature piRNAs via three distinct pathways: initiator or responder for ping-pong piRNAs and trailing for phased piRNAs. piRNAs then assemble with PIWI members of the Argonaute family of proteins to form piRNA-induced RNA silencing complexes (piRISCs), the core engine of the piRNA-mediated silencing pathway. Upon piRISC assembly, the PIWI member, Piwi, is translocated to the nucleus and represses transposons co-transcriptionally by inducing local heterochromatin formation at target transposon loci.
Collapse
Affiliation(s)
- Kaoru SATO
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Mikiko C. SIOMI
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Ninova M, Chen YCA, Godneeva B, Rogers AK, Luo Y, Fejes Tóth K, Aravin AA. Su(var)2-10 and the SUMO Pathway Link piRNA-Guided Target Recognition to Chromatin Silencing. Mol Cell 2019; 77:556-570.e6. [PMID: 31901446 DOI: 10.1016/j.molcel.2019.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 11/08/2019] [Indexed: 01/14/2023]
Abstract
Regulation of transcription is the main mechanism responsible for precise control of gene expression. Whereas the majority of transcriptional regulation is mediated by DNA-binding transcription factors that bind to regulatory gene regions, an elegant alternative strategy employs small RNA guides, Piwi-interacting RNAs (piRNAs) to identify targets of transcriptional repression. Here, we show that in Drosophila the small ubiquitin-like protein SUMO and the SUMO E3 ligase Su(var)2-10 are required for piRNA-guided deposition of repressive chromatin marks and transcriptional silencing of piRNA targets. Su(var)2-10 links the piRNA-guided target recognition complex to the silencing effector by binding the piRNA/Piwi complex and inducing SUMO-dependent recruitment of the SetDB1/Wde histone methyltransferase effector. We propose that in Drosophila, the nuclear piRNA pathway has co-opted a conserved mechanism of SUMO-dependent recruitment of the SetDB1/Wde chromatin modifier to confer repression of genomic parasites.
Collapse
Affiliation(s)
- Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA
| | - Yung-Chia Ariel Chen
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA
| | - Baira Godneeva
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Alicia K Rogers
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA
| | - Yicheng Luo
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA.
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, Pasadena, CA 91125, USA.
| |
Collapse
|
45
|
Assembly and Function of Gonad-Specific Non-Membranous Organelles in Drosophila piRNA Biogenesis. Noncoding RNA 2019; 5:ncrna5040052. [PMID: 31698692 PMCID: PMC6958439 DOI: 10.3390/ncrna5040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that repress transposons in animal germlines. This protects the genome from the invasive DNA elements. piRNA pathway failures lead to DNA damage, gonadal development defects, and infertility. Thus, the piRNA pathway is indispensable for the continuation of animal life. piRNA-mediated transposon silencing occurs in both the nucleus and cytoplasm while piRNA biogenesis is a solely cytoplasmic event. piRNA production requires a number of proteins, the majority of which localize to non-membranous organelles that specifically appear in the gonads. Other piRNA factors are localized on outer mitochondrial membranes. In situ RNA hybridization experiments show that piRNA precursors are compartmentalized into other non-membranous organelles. In this review, we summarize recent findings about the function of these organelles in the Drosophila piRNA pathway by focusing on their assembly and function.
Collapse
|
46
|
Durdevic Z, Ephrussi A. Germ Cell Lineage Homeostasis in Drosophila Requires the Vasa RNA Helicase. Genetics 2019; 213:911-922. [PMID: 31484689 PMCID: PMC6827371 DOI: 10.1534/genetics.119.302558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 11/18/2022] Open
Abstract
The conserved RNA helicase Vasa is required for germ cell development in many organisms. In Drosophila melanogaster loss of PIWI-interacting RNA pathway components, including Vasa, causes Chk2-dependent oogenesis arrest. However, whether the arrest is due to Chk2 signaling at a specific stage and whether continuous Chk2 signaling is required for the arrest is unknown. Here, we show that absence of Vasa during the germarial stages causes Chk2-dependent oogenesis arrest. Additionally, we report the age-dependent decline of the ovariole number both in flies lacking Vasa expression only in the germarium and in loss-of-function vasa mutant flies. We show that Chk2 activation exclusively in the germarium is sufficient to interrupt oogenesis and to reduce ovariole number in aging flies. Once induced in the germarium, Chk2-mediated arrest of germ cell development cannot be overcome by restoration of Vasa or by downregulation of Chk2 in the arrested egg chambers. These findings, together with the identity of Vasa-associated proteins identified in this study, demonstrate an essential role of the helicase in the germ cell lineage maintenance and indicate a function of Vasa in germline stem cell homeostasis.
Collapse
Affiliation(s)
- Zeljko Durdevic
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany
| |
Collapse
|
47
|
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019; 20:89-108. [PMID: 30446728 DOI: 10.1038/s41576-018-0073-3] [Citation(s) in RCA: 733] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) of 21-35 nucleotides in length silence transposable elements, regulate gene expression and fight viral infection. piRNAs guide PIWI proteins to cleave target RNA, promote heterochromatin assembly and methylate DNA. The architecture of the piRNA pathway allows it both to provide adaptive, sequence-based immunity to rapidly evolving viruses and transposons and to regulate conserved host genes. piRNAs silence transposons in the germ line of most animals, whereas somatic piRNA functions have been lost, gained and lost again across evolution. Moreover, most piRNA pathway proteins are deeply conserved, but different animals employ remarkably divergent strategies to produce piRNA precursor transcripts. Here, we discuss how a common piRNA pathway allows animals to recognize diverse targets, ranging from selfish genetic elements to genes essential for gametogenesis.
Collapse
Affiliation(s)
- Deniz M Ozata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ansgar Zoch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dónal O'Carroll
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
48
|
Kolliopoulou A, Santos D, Taning CNT, Wynant N, Vanden Broeck J, Smagghe G, Swevers L. PIWI pathway against viruses in insects. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1555. [PMID: 31183996 DOI: 10.1002/wrna.1555] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are an animal-specific class of small non-coding RNAs that are generated via a biogenesis pathway distinct from small interfering RNAs (siRNAs) and microRNAs (miRNAs). There are variations in piRNA biogenesis that depend on several factors, such as the cell type (germline or soma), the organism, and the purpose for which they are being produced, such as transposon-targeting, viral-targeting, or gene-derived piRNAs. Interestingly, the genes involved in the PIWI/piRNA pathway are more rapidly evolving compared with other RNA interference (RNAi) genes. In this review, the role of the piRNA pathway in the antiviral response is reviewed based on recent findings in insect models such as Drosophila, mosquitoes, midges and the silkworm, Bombyx mori. We extensively discuss the special features that characterize host-virus piRNA responses with respect to the proteins and the genes involved, the viral piRNAs' sequence characteristics, the target strand orientation biases as well as the viral piRNA target hotspots across the viral genomes. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niels Wynant
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
49
|
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet 2018; 52:131-157. [PMID: 30476449 PMCID: PMC10784713 DOI: 10.1146/annurev-genet-120417-031441] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.
Collapse
Affiliation(s)
- Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Martin H Fabry
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| |
Collapse
|
50
|
Krishnakumar P, Riemer S, Perera R, Lingner T, Goloborodko A, Khalifa H, Bontems F, Kaufholz F, El-Brolosy MA, Dosch R. Functional equivalence of germ plasm organizers. PLoS Genet 2018; 14:e1007696. [PMID: 30399145 PMCID: PMC6219760 DOI: 10.1371/journal.pgen.1007696] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022] Open
Abstract
The proteins Oskar (Osk) in Drosophila and Bucky ball (Buc) in zebrafish act as germ plasm organizers. Both proteins recapitulate germ plasm activities but seem to be unique to their animal groups. Here, we discover that Osk and Buc show similar activities during germ cell specification. Drosophila Osk induces additional PGCs in zebrafish. Surprisingly, Osk and Buc do not show homologous protein motifs that would explain their related function. Nonetheless, we detect that both proteins contain stretches of intrinsically disordered regions (IDRs), which seem to be involved in protein aggregation. IDRs are known to rapidly change their sequence during evolution, which might obscure biochemical interaction motifs. Indeed, we show that Buc binds to the known Oskar interactors Vasa protein and nanos mRNA indicating conserved biochemical activities. These data provide a molecular framework for two proteins with unrelated sequence but with equivalent function to assemble a conserved core-complex nucleating germ plasm. Multicellular organisms use gametes for their propagation. Gametes are formed from germ cells, which are specified during embryogenesis in some animals by the inheritance of RNP granules known as germ plasm. Transplantation of germ plasm induces extra germ cells, whereas germ plasm ablation leads to the loss of gametes and sterility. Therefore, germ plasm is key for germ cell formation and reproduction. However, the molecular mechanisms of germ cell specification by germ plasm in the vertebrate embryo remain an unsolved question. Proteins, which assemble the germ plasm, are known as germ plasm organizers. Here, we show that the two germ plasm organizers Oskar from the fly and Bucky ball from the fish show similar functions by using a cross species approach. Both are intrinsically disordered proteins, which rapidly changed their sequence during evolution. Moreover, both proteins still interact with conserved components of the germ cell specification pathway. These data might provide a first example of two proteins with the same biological role, but distinct sequence.
Collapse
Affiliation(s)
- Pritesh Krishnakumar
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Stephan Riemer
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Roshan Perera
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Thomas Lingner
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Alexander Goloborodko
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Hazem Khalifa
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Franck Bontems
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Switzerland
| | - Felix Kaufholz
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Mohamed A. El-Brolosy
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Roland Dosch
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
- * E-mail:
| |
Collapse
|