1
|
Marquardt AE, Basu M, VanRyzin JW, Ament SA, McCarthy MM. The transcriptome of playfulness is sex biased in the juvenile rat medial amygdala: A role for inhibitory neurons. Cell Rep 2025; 44:115782. [PMID: 40478737 DOI: 10.1016/j.celrep.2025.115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/28/2025] [Accepted: 05/13/2025] [Indexed: 06/11/2025] Open
Abstract
Social play is a well-conserved, dynamic behavior known to be sexually differentiated. In most species, males play more than females, a sex difference largely driven by the medial amygdala (MeA), yet the full mechanism establishing this bias is unknown. Here, we explore "the transcriptome of playfulness" in both sexes, demonstrating that the transcriptomic profile in the juvenile rat MeA associated with playfulness is markedly distinct in males and females. Parallel single-cell RNA sequencing experiments from newborn rats suggest that inhibitory neurons drive this sex difference. Furthermore, we show that inhibitory neurons comprise the majority of play-active cells in the juvenile MeA, with males having more play-active cells than females, of which a greater proportion are GABAergic. Through integrative bioinformatic analyses, we further explore the expression, function, and cell-type specificity of key play-associated gene modules, providing valuable insight into the sex-biased mechanisms underlying this fundamental social behavior.
Collapse
Affiliation(s)
- Ashley E Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mahashweta Basu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan W VanRyzin
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Seth A Ament
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Margaret M McCarthy
- University of Maryland - Medicine Institute for Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Zha X, Liu XY, Wang L, Li SS, Sun YZ, Lin JK, Yan JJ, Gao MT, Zhang YL, Yang RR, Xu C, Xu XH. Estrogen signaling in the ventromedial hypothalamus is required for the development of aggression circuitry in male mice. Curr Biol 2025:S0960-9822(25)00573-1. [PMID: 40403719 DOI: 10.1016/j.cub.2025.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 03/05/2025] [Accepted: 04/30/2025] [Indexed: 05/24/2025]
Abstract
Aggression in male mice depends on developmental estrogen exposure, yet the neural mechanisms underlying this phenomenon remain poorly understood. Although estrogen receptor α (Esr1) has served as a genetic marker to identify aggression-regulating neurons in the ventrolateral division of ventromedial hypothalamus (VMHvl), its functional role in organizing male-aggression circuits remains poorly understood. Here, we developed a genetic strategy to knock out Esr1 in VMHvl neurons while simultaneous tracing and manipulating Esr1-deleted cells. Developmental Esr1 knockout selectively altered synaptic inputs from aggression-regulating regions onto VMHvl neurons, with a stronger effect observed in males, revealing the posterior intralaminar thalamic nucleus (PIL) as a critical upstream region involved in male aggression. Additionally, VMHvl Esr1+ neurons in knockout males showed reduced excitability and failed to initiate attacks upon chemogenetic activation. These findings underscore the essential role of Esr1 in establishing male-specific aggression circuits, providing new insights into male-specific neural circuit development and function.
Collapse
Affiliation(s)
- Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiao-Yao Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Peking University, Tsinghua University, National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing 100871, China
| | - Shuai-Shuai Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Zhuo Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Jing Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng-Tong Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Li Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong-Rong Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
3
|
Mañas-Ojeda A, Hidalgo-Cortés J, García-Mompó C, Zahran MA, Gil-Miravet I, Olucha-Bordonau FE, Guirado R, Castillo-Gómez E. Activation of somatostatin neurons in the medial amygdala reverses long-term aggression and social deficits associated to early-life stress in male mice. Mol Psychiatry 2025; 30:2168-2182. [PMID: 39580603 PMCID: PMC12014500 DOI: 10.1038/s41380-024-02829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
Early postnatal development is a critical period for the configuration of neural networks that support social and affective-like behaviors. In this sense, children raised in stressful environments are at high risk to develop maladaptive behaviors immediately or later in life, including anti-social and aggressive behaviors. However, the neurobiological bases of such phenomena remain poorly understood. Here we showed that, at long-term, maternal separation with early weaning (MSEW) decreased the density of somatostatin-expressing (SST+) neurons in the basolateral amygdala (BLA) of females and males, while their activity was only reduced in the medial amygdala (MeA) of males. Interestingly, only MSEW males exhibited long-term behavioral effects, including reduced sociability and social novelty preference in the 3-chamber test (3CH), decreased social interest in the resident-intruder test (RI), and increased aggressivity in both the RI and the tube dominance test (TT). To test whether the manipulation of MeASST+ neurons was sufficient to reverse these negative behavioral outcomes, we expressed the chemogenetic excitatory receptor hM3Dq in MSEW adult males. We found that the activation of MeASST+ neurons ameliorated social interest in the RI test and reduced aggression traits in the TT and RI assays. Altogether, our results highlight a role for MeASST+ neurons in the regulation of aggressivity and social interest and point to the loss of activity of these neurons as a plausible etiological mechanism linking early life stress to these maladaptive behaviors in later life.
Collapse
Affiliation(s)
- Aroa Mañas-Ojeda
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - José Hidalgo-Cortés
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Clara García-Mompó
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
- Department of Psicobiology, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Mohamed Aly Zahran
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Isis Gil-Miravet
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Francisco E Olucha-Bordonau
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Guirado
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain.
| | - Esther Castillo-Gómez
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castelló de la Plana, Spain.
- Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Dotto GP. Beyond good and evil : The pursuit of philosophical and scientific truth in a time of moral ambiguity. EMBO Rep 2025; 26:2489-2493. [PMID: 40312561 PMCID: PMC12116944 DOI: 10.1038/s44319-025-00465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
The contributions of philosophy from antiquity to the 20th century and modern neuroscience to understanding human’s capability to commit deeds of great good and great evil.
Collapse
Affiliation(s)
- G Paolo Dotto
- Professor of Dermatology, Harvard Medical School, President, International Cancer Prevention Institute (iCPI), Boston, MA, USA.
| |
Collapse
|
5
|
An X, Yu P, Chang G. Dopamine type II receptors in amygdala along with oxytocin in hypothalamus regulate social behavior in male mandarin voles. Pharmacol Biochem Behav 2025; 250:174002. [PMID: 40139325 DOI: 10.1016/j.pbb.2025.174002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The amygdala dopamine (DA) system and hypothalamic oxytocin (OT) play important roles in emotion regulation, and emotions are important in regulating social behavior. However, it is unclear whether DA in the amygdala is involved in the regulation of social behavior, and whether OT in the hypothalamus is also involved in this process. In this study, we examined the release of DA in the medial amygdala (MeA) during different social interactions and the effect of injecting the dopamine II receptor (D2R) agonist quinpirole and the D2R antagonist raclopride into the MeA on social behavior and OT in the paraventricular nucleus (PVN) and supraoptic nucleus (SON), as well as in the blood of male mandarin voles (Microtus mandarinus). The results showed that the DA in the MeA increased in the process of social behavior, and the DA in the face of strangers was higher than that in the face of familiars. In addition, the injection of D2R antagonists in the MeA reduced attacking and escaping behaviors but increased physical contact and investigating behaviors, increased the number of OT-IR neurons in the PVN and SON, and increased OT levels in the blood. While injection of D2R agonists in the MeA increased attacking and escaping behaviors but reduced physical contact and investigating behaviors, it also reduced OT-IR neurons in the SON. In conclusion, D2R in the medial amygdala and oxytocin in the hypothalamus regulate social behavior.
Collapse
Affiliation(s)
- Xiaolei An
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Peng Yu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Gang Chang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China.
| |
Collapse
|
6
|
Li H, Zhao Z, Jiang S, Wu H. Brain circuits that regulate social behavior. Mol Psychiatry 2025:10.1038/s41380-025-03037-6. [PMID: 40287553 DOI: 10.1038/s41380-025-03037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Social interactions are essential for the survival of individuals and the reproduction of populations. Social stressors, such as social defeat and isolation, can lead to emotional disorders and cognitive impairments. Furthermore, dysfunctional social behaviors are hallmark symptoms of various neuropsychiatric disorders, including autism spectrum disorder (ASD) and post-traumatic stress disorder (PTSD). Consequently, understanding the neural circuit mechanisms underlying social behaviors has become a major focus in neuroscience. Social behaviors, which encompass a wide range of expressions and phases, are regulated by complex neural networks. In this review, we summarize recent progress in identifying the circuits involved in different types of social behaviors, including general social investigation, social preference, mating, aggression, parenting, prosocial behaviors, and dominance behaviors. We also outline the circuit mechanisms associated with social deficits in neuropsychiatric disorders, such as ASD, schizophrenia, and PTSD. Given the pivotal role of rodents in social behavior research, our review primarily focuses on neural circuits in these animals. Finally, we propose future research directions, including the development of specific behavioral paradigms, the identification of circuits involved in motor output, the integration of activity, transcriptome, and connectome data, the multifunctional roles of neurons with multiple targets, and the interactions among multiple brain regions.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
7
|
Trives E, Porte C, Nakahara TS, Keller M, Vacher H, Chamero P. Social experience is associated with a differential role of aromatase neurons in sexual behavior and territorial aggression in male mice. Horm Behav 2025; 170:105723. [PMID: 40106849 DOI: 10.1016/j.yhbeh.2025.105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Aromatase (Aro+) neurons located in the Bed Nucleus of the Stria Terminalis (BNST) are crucial for the display of both sexual behavior and territorial aggression in naive male mice. The postero-dorsal part of the Medial Amygdala (MeApd) also contains Aro + neurons that are required for territorial aggression, but these neurons seem dispensable for the display of sexual behavior in naive animals. However, little is known about how Aro + neuron circuitry is influenced by social experience. Using a combination of chemogenetics, activity mapping and retrograde viral tracing, we show that social experience modulates Aro + neurons during sexual behavior and territorial aggression. Chemogenetic inhibition of BNST Aro + neurons in socially experienced male mice revealed that these neurons are required for territorial aggression, but not for sexual behavior. Behavior testing in experienced animals showed a specific increase in activation in the vomeronasal organ (VNO) and the Medial Amygdala (MeA) after sexual behavior but not territorial aggression, assessed by Egr1 expression. We also observed an increase of Egr1 cells in the medial Preoptic Area (mPOA), a brain region implicated in the display of sexual behavior. Combined retrograde viral tracing and Egr1 immunodetection showed that a subset of the activated cells in the MeA are Aro + neurons projecting to the mPOA. These results highlight that social experience induces a differential neural activity in the circuitry controlling sexual behavior and aggression, which include MeA Aro + neurons projecting to the mPOA.
Collapse
Affiliation(s)
- Elliott Trives
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Chantal Porte
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Thiago Seike Nakahara
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Hélène Vacher
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Pablo Chamero
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France.
| |
Collapse
|
8
|
Ignacio B, Baeza J, Ruiz B, Romero JP, Yañez P, Ramírez C, Caprile T, Farkas C, Recabal-Beyer A. The medial amygdala's neural circuitry: Insights into social processing and sex differences. Front Neuroendocrinol 2025; 77:101190. [PMID: 40294707 DOI: 10.1016/j.yfrne.2025.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The amygdala, a critical part of the limbic system, is essential for processing social stimuli and regulating stress responses. Among its various neuronal nuclei, the medial amygdala (MeA) remains one of the least studied in humans. The MeA plays a key role in receiving inputs from the olfactory system through pheromones, as well as from crucial areas such as the hypothalamus, hippocampus, and reward system. This allows the MeA to integrate external stimuli with the organism's internal state, finetuning social interactions, endocrine responses, and innate behaviors. Recent advances in neuroscience have highlighted the sex differences of the MeA and how they influence behavior and environmental perception. Understanding these sexspecific variations in brain structures, like the MeA in rodents, is vital for applying this knowledge to humans and could help bridge gaps in our understanding and treatment of mental health disorders, which often differ between sexes in both prevalence and presentation.
Collapse
Affiliation(s)
| | - Janina Baeza
- Faculty of Medicine, Universidad de Concepción, Chile
| | - Bastián Ruiz
- Faculty of Medicine, Universidad de Concepción, Chile
| | | | - Paulina Yañez
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Camila Ramírez
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Teresa Caprile
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - Carlos Farkas
- Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Chile
| | - Antonia Recabal-Beyer
- Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Chile.
| |
Collapse
|
9
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The Role of Androgens and Estrogens in Social Interactions and Social Cognition. Neuroscience 2025; 568:476-502. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, Canada; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Canada.
| |
Collapse
|
10
|
Zelco A, Joshi A. Single-Cell Analysis of Sex and Gender Differences in the Human Brain During Development and Disease. Cell Mol Neurobiol 2025; 45:20. [PMID: 40016536 PMCID: PMC11868228 DOI: 10.1007/s10571-025-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Sex and gender (SG) differences in the human brain are of interest to society and science as numerous processes are impacted by them, including brain development, behavior, and diseases. By collecting publicly available single-cell data from the in-utero to elderly age in healthy, Alzheimer's disease and multiple sclerosis samples, we identified and characterized SG-biased genes in ten brain cell types across 9 age and disease groups. Sex and gender differences in the transcriptome were present throughout the lifespan and across all cell types. Although there was limited overlap among SG-biased genes across different age and disease groups, we observed significant functional overlap. Female-biased genes are consistently enriched for brain-related processes, while male-biased genes are enriched for metabolic pathways. Additionally, mitochondrial genes showed a consistent female bias across cell types. We also found that androgen response elements (not estrogen) were significantly enriched in both male- and female-biased genes, and thymosin hormone targets being consistently enriched only in male-biased genes. We systematically characterised SG differences in brain development and brain-related disorders at a single-cell level, by analysing a total of publicly available 419,885 single nuclei from 161 human brain samples (72 females, 89 males). The significant enrichment of androgen (not estrogen) response elements in both male- and female-biased genes suggests that androgens are important regulators likely establishing these SG differences. Finally, we provide full characterization of SG-biased genes at different thresholds for the scientific community as a web resource.
Collapse
Affiliation(s)
- Aura Zelco
- Department of Clinical Science, Computational Biology Unit, University of Bergen, Bergen, Norway.
| | - Anagha Joshi
- Department of Clinical Science, Computational Biology Unit, University of Bergen, Bergen, Norway.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| |
Collapse
|
11
|
Sun F, Wu YE, Hong W. A neural basis for prosocial behavior toward unresponsive individuals. Science 2025; 387:eadq2679. [PMID: 39977513 PMCID: PMC11956844 DOI: 10.1126/science.adq2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/11/2024] [Indexed: 02/22/2025]
Abstract
Humans often take actions to assist others experiencing unresponsiveness, such as transient loss of consciousness. How other animals react to unresponsive conspecifics-and the neural mechanisms driving such behaviors-remain largely unexplored. In this study, we demonstrated that mice exhibit rescue-like social behaviors toward unresponsive conspecifics, characterized by intense physical contact and grooming directed at the recipient's facial and mouth areas, which expedite their recovery from unresponsiveness. We identified the medial amygdala (MeA) as a key region that encodes the unresponsive state of others and drives this head-directed physical contact. Notably, the behavioral responses toward unresponsive conspecifics differed from those directed at awake, stressed individuals, and these responses were differentially represented in the MeA. These findings shed light on the neural mechanisms underlying prosocial responses toward unresponsive individuals.
Collapse
Affiliation(s)
- Fangmiao Sun
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ye Emily Wu
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Weizhe Hong
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Duarte-Guterman P, Skandalis DA, Merkl A, Geissler DB, Ehret G. Brain aromatase and its relationship with parental experience and behavior in male mice. Front Neurosci 2025; 19:1502764. [PMID: 40035063 PMCID: PMC11872740 DOI: 10.3389/fnins.2025.1502764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction In most mammals, paternal care is not mandatory for raising offspring. In house mice, experience with pups governs the extent and quality of paternal care. First-time fathers undergo a dramatic transition from ignoring or killing pups to caring for pups. The behavioral shift occurs together with changes in brain estrogen signaling as indicated by changes in estrogen receptor presence and distribution in multiple areas regulating olfaction, emotion, and motivation. Methods We measured changes in the expression of aromatase, the enzyme converting testosterone into estrogen, as an indirect measure of estrogen synthesis, in various areas of the limbic system in mice with increasing paternal experience. Results The amount of paternal experience (5 or 27 days) was associated with increased numbers of immunocytochemically-identified aromatase expressing cells in the medial and cortical amygdala, posterior piriform cortex, and ventromedial hypothalamus. Functionally, these changes can be related to the disappearance of aggression or neglect towards pups when first-time fathers or, even more, well-experienced fathers are handling their own pups. In the lateral septum, the anterior piriform cortex and to some extent in the medial preoptic area, parental experience increased the number of aromatase-positive cells only in fathers with 27 days of experience, and only in the right hemisphere. This represents a novel case of brain-functional lateralization triggered by experience. Nuclei/areas associated with maternal care (medial preoptic area, bed nucleus of stria terminalis, nucleus accumbens) exhibited a left-hemisphere advantage in aromatase expressing cells, both in pup-naïve and pup-experienced males. This newly found lateralization may contribute to the left-hemisphere dominant processing and perception of pup calls to release parental behavior. Conclusion In general, the experience-dependent changes in aromatase expression we observed in most brain areas did not mirror the previously reported changes in estrogen receptors (ERα) when pup-naïve males became pup-caring fathers. Hence, paternal behavior may depend, in a brain area-specific way, on the differential action of estrogen through its receptors and/or direct local modulation of neural processing.
Collapse
Affiliation(s)
| | | | - Ariane Merkl
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | | | - Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| |
Collapse
|
13
|
Núñez-Murrieta MA, Rendón-Candanedo E, Angeles-Torres D, Noguez P, Coria-Avila GA, Bolado-García VE, Corona-Morales AA. Maternal Sensitization in Virgin Female Rats: Behavioral Effects of Enriched Environment. Dev Psychobiol 2025; 67:e70010. [PMID: 39648287 DOI: 10.1002/dev.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
In virgin female rats, the continuous presence of pups causes them to express typical maternal behaviors, a process known as maternal sensitization. Previous experience with pups accelerates maternal sensitization. It is also known that in primiparous rats, enriched environment (EE) increases the expression of maternal behaviors. Here, we investigated whether experience, other than pup exposure, affects the process of maternal sensitization and hypothesized that EE increases the expression of maternal behaviors and maternal motivation in virgin rats. Virgin adult females were housed in standard conditions or physical and social EE for 21 days. Then, females were exposed daily to pups until they expressed full maternal behaviors. Thereafter, females performed pup preference, pup motivation in a novel context, and resident-intruder tests. We found that initial pup rejection was higher in EE rats, but eventually, both groups became maternally sensitized simultaneously. The frequency and duration of pup licking were higher in EE rats. In the other tests, EE rats exhibited more entries to the open arms, retrieved more pups toward the closed arms, and were more aggressive towards an intruder. We conclude that housing in a social EE modulates aspects of the pup-induced maternal sensitization, particularly increasing pup licking and motivation in both familiar and novel circumstances.
Collapse
Affiliation(s)
- Mauricio A Núñez-Murrieta
- Maestría en Neuroetología y Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| | | | - Diana Angeles-Torres
- Doctorado en Ciencias Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Paula Noguez
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Xalapa, Xalapa, Veracruz, México
| | - Genaro A Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Victoria E Bolado-García
- Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Aleph A Corona-Morales
- Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
14
|
Rosenkranz JA. Developmental Shifts in Amygdala Function. Curr Top Behav Neurosci 2024. [PMID: 39546164 DOI: 10.1007/7854_2024_538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Mammals have evolved with strategies to optimize survival and thrive in their native environment. This includes both physical and behavioral adaptations, and extends to their social environment. However, within a social context, the roles of an animal change across development, and their behavior and biology must update to match these changes. The amygdala has a key role in social and emotional processing and expression, and displays developmental changes in early juvenile, adolescent, and adult transitions. Furthermore, the amygdala is highly sensitive to the social environment. This chapter will describe the primary amygdala developmental changes, how this maps onto major changes in social and emotional domains, and propose a framework where developmental stage of intra-amygdala circuits and its regulation by cortical inputs biases the animal toward developmentally appropriate social and emotional behavior. This developmental plasticity also presents an opportunity for retuning the developmental trajectory in the presence of ongoing challenges during maturation, such as constant threat or resource scarcity, so there can be realignment of behavior to match environmental demands.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Brain Science Institute, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
15
|
Wang WQ, Zhao HX, Shen XL, Zeng LZ, Geng HY. Estrogen Receptor Alpha-Expressing Neurons in Bed Nucleus of the Stria Terminalis and Hypothalamus Encoding Aggression and Mating. eNeuro 2024; 11:ENEURO.0218-24.2024. [PMID: 39592221 PMCID: PMC11596284 DOI: 10.1523/eneuro.0218-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Aggression and mating of male mice are strongly associated with Esr1-expressing neurons in the bed nucleus of the stria terminalis (BNSTpr) and hypothalamus in the vomeronasal pathway. By projecting to the downstream hypothalamus, the upstream BNSTprEsr1 gates mating and aggression of male mice and maternal behavior of female mice. The medial preoptic area (MPOA) and ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) are two subdivisions of the hypothalamus downstream. In addition to receiving projections from upstream BNSTpr, there is also a mutual projection between MPOA and VMHvl. In the process of transforming sex information into mating and aggression, Esr1-expressing neurons in BNSTpr, MPOA, and VMHvl act as messengers of information, finally producing inhibitory or excitatory projection. These projections are different in direction, but they all work together to control the behavior selection that is most conducive to defense and reproduction when male mice encounter female or male mice. Here, we summarized the property and the function of connections between these Esr1-expressing neurons in BNSTpr, MPOA, and VMHvl that encode mating and aggression and highlight the importance and benefits of inhibitory projection of Esr1-expressing cells in mating and aggression.
Collapse
Affiliation(s)
- Wen-Qiu Wang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - He-Xin Zhao
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Xiao-Lin Shen
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Li-Zhang Zeng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Hong-Yan Geng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
16
|
Harter AM, Kim C, Yamazaki A, Lee L, Ji MT, Nemesh M, Redei EE. Stress enhances aggression in male rats with genetic stress hyper-reactivity. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70005. [PMID: 39422001 PMCID: PMC11487273 DOI: 10.1111/gbb.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The current study investigated stress-induced aggressive behavior in the resident-intruder test in males of the genetically stress hyper-reactive Wistar Kyoto More Immobile (WMI), and the nearly isogenic, control Wistar Kyoto Less Immobile (WLI) strains. Tests were carried out against same-age intruders during adolescence, and same-age and juvenile intruders in adulthood. In adolescence and adulthood, prior acute restraint stress decreased social interactions and decreased aggressive behaviors of adolescents and adult WLIs. However, prior stress precipitated aggression in the adult WMI males toward both same-age, and juvenile intruders compared with control WMIs and WLIs. Trunk blood levels of testosterone and androstenedione increased in stressed WLIs, but not in WMIs, suggesting no direct role of androgens in the increased aggression of WMIs. Expressions of aggression-relevant genes showed patterns commensurate with being causative in aggressive behavior. The methyl-CpG binding protein 2 was lower in the frontal cortex of control WMIs, and in the amygdala of stressed WMIs compared with their respective WLIs. Frontal cortex expression of vasopressin receptor 1a and serotonin transporter increased, solely in WMI males after stress. As behaviors were the same toward same-age and non-threatening juvenile intruders, the stress-induced increase in confrontational behavior of the adult WMI male was not because of enhanced fear or anxiety. These results suggest that genetic stress hyper-reactivity is a risk factor for stress-induced increases in aggression in males. Additionally, as known aggression-related genes showed expression patterns paralleling aggressive behavior, this model system could identify novel molecular pathways leading to stress-enhanced aggression.
Collapse
Affiliation(s)
- Aspen M. Harter
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Chris Kim
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Anna Yamazaki
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Luca Lee
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Michelle T. Ji
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mariya Nemesh
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
17
|
He ZX, Yue MH, Liu KJ, Wang Y, Qiao JY, Lv XY, Xi K, Zhang YX, Fan JN, Yu HL, He XX, Zhu XJ. Substance P in the medial amygdala regulates aggressive behaviors in male mice. Neuropsychopharmacology 2024; 49:1689-1699. [PMID: 38649427 PMCID: PMC11399394 DOI: 10.1038/s41386-024-01863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Behavioral and clinical studies have revealed a critical role of substance P (SP) in aggression; however, the neural circuit mechanisms underlying SP and aggression remain elusive. Here, we show that tachykinin-expressing neurons in the medial amygdala (MeATac1 neurons) are activated during aggressive behaviors in male mice. We identified MeATac1 neurons as a key mediator of aggression and found that MeATac1→ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl) projections are critical to the regulation of aggression. Moreover, SP/neurokinin-1 receptor (NK-1R) signaling in the VMHvl modulates aggressive behaviors in male mice. SP/NK-1R signaling regulates aggression by influencing glutamate transmission in neurons in the VMHvl. In summary, these findings place SP as a key node in aggression circuits.
Collapse
Affiliation(s)
- Zi-Xuan He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Mei-Hui Yue
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Kai-Jie Liu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Yao Wang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jiu-Ye Qiao
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xin-Yue Lv
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ke Xi
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Ya-Xin Zhang
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Jia-Ni Fan
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130021, China.
| |
Collapse
|
18
|
Zhu Z, Miao L, Li K, Ma Q, Pan L, Shen C, Ge Q, Du Y, Yin L, Yang H, Xu X, Zeng LH, Liu Y, Xu H, Li XM, Sun L, Yu YQ, Duan S. A hypothalamic-amygdala circuit underlying sexually dimorphic aggression. Neuron 2024; 112:3176-3191.e7. [PMID: 39019042 DOI: 10.1016/j.neuron.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Male animals often display higher levels of aggression than females. However, the neural circuitry mechanisms underlying this sexually dimorphic aggression remain elusive. Here, we identify a hypothalamic-amygdala circuit that mediates male-biased aggression in mice. Specifically, the ventrolateral part of the ventromedial hypothalamus (VMHvl), a sexually dimorphic region associated with eliciting male-biased aggression, projects densely to the posterior substantia innominata (pSI), an area that promotes similar levels of attack in both sexes of mice. Although the VMHvl innervates the pSI unidirectionally through both excitatory and inhibitory connections, it is the excitatory VMHvl-pSI projections that are strengthened in males to promote aggression, whereas the inhibitory connections that reduce aggressive behavior are strengthened in females. Consequently, the convergent hypothalamic input onto the pSI leads to heightened pSI activity in males, resulting in male-biased aggression. Our findings reveal a sexually distinct excitation-inhibition balance of a hypothalamic-amygdala circuit that underlies sexually dimorphic aggression.
Collapse
Affiliation(s)
- Zhenggang Zhu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Lu Miao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Kaiyuan Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Ma
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Lina Pan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chenjie Shen
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qianqian Ge
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yonglan Du
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Luping Yin
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Hongbin Yang
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xiaohong Xu
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Han Xu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
| |
Collapse
|
19
|
Marquardt AE, Basu M, VanRyzin JW, Ament SA, McCarthy MM. The transcriptome of playfulness is sex-biased in the juvenile rat medial amygdala: a role for inhibitory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612456. [PMID: 39314276 PMCID: PMC11419002 DOI: 10.1101/2024.09.11.612456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Social play is a dynamic behavior known to be sexually differentiated; in most species, males play more than females, a sex difference driven in large part by the medial amygdala (MeA). Despite the well-conserved nature of this sex difference and the importance of social play for appropriate maturation of brain and behavior, the full mechanism establishing the sex bias in play is unknown. Here, we explore "the transcriptome of playfulness" in the juvenile rat MeA, assessing differences in gene expression between high- and low-playing animals of both sexes via bulk RNA-sequencing. Using weighted gene co-expression network analysis (WGCNA) to identify gene modules combined with analysis of differentially expressed genes (DEGs), we demonstrate that the transcriptomic profile in the juvenile rat MeA associated with playfulness is largely distinct in males compared to females. Of the 13 play-associated WGCNA networks identified, only two were associated with play in both sexes, and very few DEGs associated with playfulness were shared between males and females. Data from our parallel single-cell RNA-sequencing experiments using amygdala samples from newborn male and female rats suggests that inhibitory neurons drive this sex difference, as the majority of sex-biased DEGs in the neonatal amygdala are enriched within this population. Supporting this notion, we demonstrate that inhibitory neurons comprise the majority of play-active cells in the juvenile MeA, with males having a greater number of play-active cells than females, of which a larger proportion are GABAergic. Through integrative bioinformatic analyses, we further explore the expression, function, and cell-type specificity of key play-associated modules and the regulator "hub genes" predicted to drive them, providing valuable insight into the sex-biased mechanisms underlying this fundamental social behavior.
Collapse
|
20
|
VanRyzin JW, Marquardt AE, McCarthy MM. Feminization of social play behavior depends on microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608675. [PMID: 39229086 PMCID: PMC11370478 DOI: 10.1101/2024.08.19.608675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Many sex differences in brain and behavior are established developmentally by the opposing processes of feminization and masculinization, which manifest following differential steroid hormone exposure in early life. The cellular mechanisms underlying masculinization are well-documented, a result of the fact that it is steroid-mediated and can be easily induced in newborn female rodents via exogenous steroid treatment. However, the study of feminization of particular brain regions has largely been relegated to being "not masculinization" given the absence of an identified initiating trigger. As a result, the mechanisms of this key developmental process remain elusive. Here we describe a novel role for microglia, the brain's innate immune cell, in the feminization of the medial amygdala and a complex social behavior, juvenile play. In the developing amygdala, microglia promote proliferation of astrocytes equally in both sexes, with no apparent effect on rates of cell division, but support cell survival selectively in females through the trophic actions of Tumor Necrosis Factor α (TNFα). We demonstrate that disrupting TNFα signaling, either by depleting microglia or inhibiting the associated signaling pathways, prevents the feminization of astrocyte density and increases juvenile play levels to that seen in males. This data, combined with our previous finding that male-like patterns of astrocyte density are sculpted by developmental microglial phagocytosis, reveals that sexual differentiation of the medial amygdala involves opposing tensions between active masculinization and active feminization, both of which require microglia but are achieved via distinct processes.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ashley E Marquardt
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| | - Margaret M McCarthy
- Department of Pharmacology, Physiology and Drug Development and University of Maryland Medicine – Institute for Neuroscience Discovery (UM-MIND), University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
21
|
Symeonides C, Vacy K, Thomson S, Tanner S, Chua HK, Dixit S, Mansell T, O'Hely M, Novakovic B, Herbstman JB, Wang S, Guo J, Chia J, Tran NT, Hwang SE, Britt K, Chen F, Kim TH, Reid CA, El-Bitar A, Bernasochi GB, Delbridge LMD, Harley VR, Yap YW, Dewey D, Love CJ, Burgner D, Tang MLK, Sly PD, Saffery R, Mueller JF, Rinehart N, Tonge B, Vuillermin P, Ponsonby AL, Boon WC. Male autism spectrum disorder is linked to brain aromatase disruption by prenatal BPA in multimodal investigations and 10HDA ameliorates the related mouse phenotype. Nat Commun 2024; 15:6367. [PMID: 39112449 PMCID: PMC11306638 DOI: 10.1038/s41467-024-48897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/16/2024] [Indexed: 08/10/2024] Open
Abstract
Male sex, early life chemical exposure and the brain aromatase enzyme have been implicated in autism spectrum disorder (ASD). In the Barwon Infant Study birth cohort (n = 1074), higher prenatal maternal bisphenol A (BPA) levels are associated with higher ASD symptoms at age 2 and diagnosis at age 9 only in males with low aromatase genetic pathway activity scores. Higher prenatal BPA levels are predictive of higher cord blood methylation across the CYP19A1 brain promoter I.f region (P = 0.009) and aromatase gene methylation mediates (P = 0.01) the link between higher prenatal BPA and brain-derived neurotrophic factor methylation, with independent cohort replication. BPA suppressed aromatase expression in vitro and in vivo. Male mice exposed to mid-gestation BPA or with aromatase knockout have ASD-like behaviors with structural and functional brain changes. 10-hydroxy-2-decenoic acid (10HDA), an estrogenic fatty acid alleviated these features and reversed detrimental neurodevelopmental gene expression. Here we demonstrate that prenatal BPA exposure is associated with impaired brain aromatase function and ASD-related behaviors and brain abnormalities in males that may be reversible through postnatal 10HDA intervention.
Collapse
Grants
- This multimodal project was supported by funding from the Minderoo Foundation. Funding was also provided by the National Health and Medical Research Council of Australia (NHMRC), the NHMRC-EU partnership grant for the ENDpoiNT consortium, the Australian Research Council, the Jack Brockhoff Foundation, the Shane O’Brien Memorial Asthma Foundation, the Our Women’s Our Children’s Fund Raising Committee Barwon Health, The Shepherd Foundation, the Rotary Club of Geelong, the Ilhan Food Allergy Foundation, GMHBA Limited, Vanguard Investments Australia Ltd, and the Percy Baxter Charitable Trust, Perpetual Trustees, Fred P Archer Fellowship; the Scobie Trust; Philip Bushell Foundation; Pierce Armstrong Foundation; The Canadian Institutes of Health Research; BioAutism, William and Vera Ellen Houston Memorial Trust Fund, Homer Hack Research Small Grants Scheme and the Medical Research Commercialisation Fund. This work was also supported by Ms. Loh Kia Hui. This project received funding from a NHMRC-EU partner grant with the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement number: 825759 (ENDpoiNTs project). This work was also supported by NHMRC Investigator Fellowships (GTN1175744 to D.B, APP1197234 to A-L.P, and GRT1193840 to P.S). The study sponsors were not involved in the collection, analysis, and interpretation of data; writing of the report; or the decision to submit the report for publication.
Collapse
Affiliation(s)
- Christos Symeonides
- Minderoo Foundation, Perth, Australia
- Murdoch Children's Research Institute, Parkville, Australia
- Centre for Community Child Health, Royal Children's Hospital, Parkville, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Sarah Thomson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Sam Tanner
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Hui Kheng Chua
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The Hudson Institute of Medical Research, Clayton, Australia
| | - Shilpi Dixit
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Shuang Wang
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Jia Guo
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Jessalynn Chia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Nhi Thao Tran
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Australia
| | - Sang Eun Hwang
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Kara Britt
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Feng Chen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Tae Hwan Kim
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Anthony El-Bitar
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Gabriel B Bernasochi
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Lea M Durham Delbridge
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Vincent R Harley
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Clayton, Australia
| | - Yann W Yap
- The Hudson Institute of Medical Research, Clayton, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Clayton, Australia
| | - Deborah Dewey
- Departments of Paediatrics and Community Health Sciences, The University of Calgary, Calgary, Canada
| | - Chloe J Love
- School of Medicine, Deakin University, Geelong, Australia
- Barwon Health, Geelong, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, Australia
- Department of General Medicine, Royal Children's Hospital, Parkville, Australia
- Department of Pediatrics, Monash University, Clayton, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Parkville, Australia
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Peter D Sly
- School of Medicine, Deakin University, Geelong, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
- WHO Collaborating Centre for Children's Health and Environment, Brisbane, Australia
| | | | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
| | - Nicole Rinehart
- Monash Krongold Clinic, Faculty of Education, Monash University, Clayton, Australia
| | - Bruce Tonge
- Centre for Developmental Psychiatry and Psychology, Monash University, Clayton, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
- Barwon Health, Geelong, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, Australia
- Centre for Community Child Health, Royal Children's Hospital, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
22
|
Whitten CJ, King JE, Rodriguez RM, Hennon LM, Scarborough MC, Hooker MK, Jenkins MS, Katigbak IM, Cooper MA. Activation of androgen receptor-expressing neurons in the posterior medial amygdala is associated with stress resistance in dominant male hamsters. Horm Behav 2024; 164:105577. [PMID: 38878493 PMCID: PMC11330741 DOI: 10.1016/j.yhbeh.2024.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 08/20/2024]
Abstract
Social stress is a negative emotional experience that can increase fear and anxiety. Dominance status can alter the way individuals react to and cope with stressful events. The underlying neurobiology of how social dominance produces stress resistance remains elusive, although experience-dependent changes in androgen receptor (AR) expression is thought to play an essential role. Using a Syrian hamster (Mesocricetus auratus) model, we investigated whether dominant individuals activate more AR-expressing neurons in the posterior dorsal and posterior ventral regions of the medial amygdala (MePD, MePV), and display less social anxiety-like behavior following social defeat stress compared to subordinate counterparts. We allowed male hamsters to form and maintain a dyadic dominance relationship for 12 days, exposed them to social defeat stress, and then tested their approach-avoidance behavior using a social avoidance test. During social defeat stress, dominant subjects showed a longer latency to submit and greater c-Fos expression in AR+ cells in the MePD/MePV compared to subordinates. We found that social defeat exposure reduced the amount of time animals spent interacting with a novel conspecific 24 h later, although there was no effect of dominance status. The amount of social vigilance shown by dominants during social avoidance testing was positively correlated with c-Fos expression in AR+ cells in the MePV. These findings indicate that dominant hamsters show greater neural activity in AR+ cells in the MePV during social defeat compared to their subordinate counterparts, and this pattern of neural activity correlates with their proactive coping response. Consistent with the central role of androgens in experience-dependent changes in aggression, activation of AR+ cells in the MePD/MePV contributes to experience-dependent changes in stress-related behavior.
Collapse
Affiliation(s)
- C J Whitten
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - J E King
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - R M Rodriguez
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - L M Hennon
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M C Scarborough
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M K Hooker
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M S Jenkins
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - I M Katigbak
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M A Cooper
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States.
| |
Collapse
|
23
|
Sofer Y, Zilkha N, Gimpel E, Wagner S, Chuartzman SG, Kimchi T. Sexually dimorphic oxytocin circuits drive intragroup social conflict and aggression in wild house mice. Nat Neurosci 2024; 27:1565-1573. [PMID: 38969756 DOI: 10.1038/s41593-024-01685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/16/2024] [Indexed: 07/07/2024]
Abstract
In nature, both males and females engage in competitive aggressive interactions to resolve social conflicts, yet the behavioral principles guiding such interactions and their underlying neural mechanisms remain poorly understood. Through circuit manipulations in wild mice, we unveil oxytocin-expressing (OT+) neurons in the hypothalamic paraventricular nucleus (PVN) as a neural hub governing behavior in dyadic and intragroup social conflicts, influencing the degree of behavioral sexual dimorphism. We demonstrate that OT+ PVN neurons are essential and sufficient in promoting aggression and dominance hierarchies, predominantly in females. Furthermore, pharmacogenetic activation of these neurons induces a change in the 'personality' traits of the mice within groups, in a sex-dependent manner. Finally, we identify an innervation from these OT neurons to the ventral tegmental area that drives dyadic aggression, in a sex-specific manner. Our data suggest that competitive aggression in naturalistic settings is mediated by a sexually dimorphic OT network connected with reward-related circuitry.
Collapse
Affiliation(s)
- Yizhak Sofer
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Gimpel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | | | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
24
|
Mojahed N, Adjei M, Qasem E, Aaflaq S, Adu T, Jacobs JT, Richardson BD, Nordman JC. Acute social defeat during adolescence promotes long-lasting aggression through activation of the medial amygdala. Front Neurosci 2024; 18:1433993. [PMID: 39050664 PMCID: PMC11266103 DOI: 10.3389/fnins.2024.1433993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Traumatic stress, particularly during critical developmental periods such as adolescence, has been strongly linked to an increased propensity and severity of aggression. Existing literature underscores that being a victim of abuse can exacerbate aggressive behaviors, with the amygdala playing a pivotal role in mediating these effects. Historically, animal models have demonstrated that traumatic stressors can increase attack behavior, implicating various amygdala nuclei. Building on this foundation, our previous work has highlighted how traumatic stress invokes long-lasting aggression via an excitatory pathway within the posterior ventral medial amygdala (MeApv). In the current study, we sought to further delineate this mechanism by examining the effects of acute social defeat during adolescence on aggressive behaviors and neural activation in mice. Using a common social defeat paradigm, we first established that acute social defeat during late adolescence indeed promotes long-lasting aggression, measured as attack behavior 7 days after the defeat session. Immunolabeling with c-Fos demonstrated that acute social defeat activates the MeApv and ventrolateral aspect of the ventromedial hypothalamus (VmHvl), consistent with our previous studies that used foot shock as an acute stressor. Finally, chemogenetically inhibiting excitatory MeApv neurons during social defeat significantly mitigated the aggression increase without affecting non-aggressive social behavior. These results strongly suggest that the MeApv plays a critical role in the onset of aggression following traumatic social experience, and offer the MeA as a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Nooshin Mojahed
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Magdalene Adjei
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Elana Qasem
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Sophia Aaflaq
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Temitope Adu
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Jessica T. Jacobs
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Ben D. Richardson
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Jacob C. Nordman
- Department of Biomedical Sciences, Southern Illinois University School of Medicine, Carbondale, IL, United States
| |
Collapse
|
25
|
Oliveira VEDM, Evrard F, Faure MC, Bakker J. Social isolation and aggression training lead to escalated aggression and hypothalamus-pituitary-gonad axis hyperfunction in mice. Neuropsychopharmacology 2024; 49:1266-1275. [PMID: 38337026 PMCID: PMC11224373 DOI: 10.1038/s41386-024-01808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Although the participation of sex hormones and sex hormone-responsive neurons in aggressive behavior has been extensively studied, the role of other systems within the hypothalamus-pituitary-gonadal (HPG) axis remains elusive. Here we assessed how the gonadotropin-releasing hormone (GnRH) and kisspeptin systems are impacted by escalated aggression in male mice. We used a combination of social isolation and aggression training (IST) to exacerbate mice's aggressive behavior. Next, low-aggressive (group-housed, GH) and highly aggressive (IST) mice were compared regarding neuronal activity in the target populations and hormonal levels, using immunohistochemistry and ELISA, respectively. Finally, we used pharmacological and viral approaches to manipulate neuropeptide signaling and expression, subsequently evaluating its effects on behavior. IST mice exhibited enhanced aggressive behavior compared to GH controls, which was accompanied by elevated neuronal activity in GnRH neurons and arcuate nucleus kisspeptin neurons. Remarkably, IST mice presented an increased number of kisspeptin neurons in the anteroventral periventricular nucleus (AVPV). In addition, IST mice exhibited elevated levels of luteinizing hormone (LH) in serum. Accordingly, activation and blockade of GnRH receptors (GnRHR) exacerbated and reduced aggression, respectively. Surprisingly, kisspeptin had intricate effects on aggression, i.e., viral ablation of AVPV-kisspeptin neurons impaired the training-induced rise in aggressive behavior whereas kisspeptin itself strongly reduced aggression in IST mice. Our results indicate that IST enhances aggressive behavior in male mice by exacerbating HPG-axis activity. Particularly, increased GnRH neuron activity and GnRHR signaling were found to underlie aggression whereas the relationship with kisspeptin remains puzzling.
Collapse
Affiliation(s)
- Vinícius Elias de Moura Oliveira
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium.
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Florence Evrard
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium
| | - Melanie C Faure
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium
| | - Julie Bakker
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium.
| |
Collapse
|
26
|
Velazquez-Hernandez G, Miller NW, Curtis VR, Rivera-Pacheco CM, Lowe SM, Moy SS, Zannas AS, Pégard NC, Burgos-Robles A, Rodriguez-Romaguera J. Social threat alters the behavioral structure of social motivation and reshapes functional brain connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599379. [PMID: 38948883 PMCID: PMC11212885 DOI: 10.1101/2024.06.17.599379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Traumatic social experiences redefine socially motivated behaviors to enhance safety and survival. Although many brain regions have been implicated in signaling a social threat, the mechanisms by which global neural networks regulate such motivated behaviors remain unclear. To address this issue, we first combined traditional and modern behavioral tracking techniques in mice to assess both approach and avoidance, as well as sub-second behavioral changes, during a social threat learning task. We were able to identify previously undescribed body and tail movements during social threat learning and recognition that demonstrate unique alterations into the behavioral structure of social motivation. We then utilized inter-regional correlation analysis of brain activity after a mouse recognizes a social threat to explore functional communication amongst brain regions implicated in social motivation. Broad brain activity changes were observed within the nucleus accumbens, the paraventricular thalamus, the ventromedial hypothalamus, and the nucleus of reuniens. Inter-regional correlation analysis revealed a reshaping of the functional connectivity across the brain when mice recognize a social threat. Altogether, these findings suggest that reshaping of functional brain connectivity may be necessary to alter the behavioral structure of social motivation when a social threat is encountered.
Collapse
|
27
|
Takahashi A. Toward understanding the neural mechanisms involved in early life stress-induced aggression: A Highlight for "Maternal separation early in life induces excessive activity of the central amygdala related to abnormal aggression". J Neurochem 2024; 168:957-960. [PMID: 38413201 DOI: 10.1111/jnc.16050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 12/25/2023] [Accepted: 01/01/2024] [Indexed: 02/29/2024]
Abstract
Early life stress, such as childhood abuse and neglect, is one of the major risk factors for the development of antisocial behavior. In rat models, repeated maternal separation (MS) stress, in which the pups are separated from the dams for a few hours each day during the first 2-3 weeks of life, increases aggressive behavior in adult males. This Editorial highlights an article in the current issue of the Journal of Neurochemistry that demonstrates the involvement of the central nucleus of the amygdala (CeA) in the escalation of aggressive behavior in the MS model. The authors show that MS rats exhibit higher c-Fos expression in the CeA during an aggressive encounter compared to non-isolated control rats. Unexpectedly, other amygdala subnuclei did not show differential activation between MS and control groups. Using optogenetics, they provide direct evidence that activation of CeA neurons increases intermale aggressive behavior and that bilateral CeA activation shifts behavioral patterns toward more qualitatively intense aggressive behavior than unilateral CeA activation. These findings highlight the important role of the CeA in the development of abnormal aggression and indicate that this region may be an important therapeutic target for human aggression induced by early life stress.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Institute of Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
28
|
Aspesi D, Cornil CA. Role of neuroestrogens in the regulation of social behaviors - From social recognition to mating. Neurosci Biobehav Rev 2024; 161:105679. [PMID: 38642866 DOI: 10.1016/j.neubiorev.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
In this mini-review, we summarize the brain distribution of aromatase, the enzyme catalyzing the synthesis of estrogens from androgens, and the mechanisms responsible for regulating estrogen production within the brain. Understanding this local synthesis of estrogens by neurons is pivotal as it profoundly influences various facets of social behavior. Neuroestrogen action spans from the initial processing of socially pertinent sensory cues to integrating this information with an individual's internal state, ultimately resulting in the manifestation of either pro-affiliative or - aggressive behaviors. We focus here in particular on aggressive and sexual behavior as the result of correct individual recognition of intruders and potential mates. The data summarized in this review clearly point out the crucial role of locally synthesized estrogens in facilitating rapid adaptation to the social environment in rodents and birds of both sexes. These observations not only shed light on the evolutionary significance but also indicate the potential implications of these findings in the realm of human health, suggesting a compelling avenue for further investigation.
Collapse
Affiliation(s)
- Dario Aspesi
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
29
|
Stagkourakis S, Williams P, Spigolon G, Khanal S, Ziegler K, Heikkinen L, Fisone G, Broberger C. Maternal Aggression Driven by the Transient Mobilisation of a Dormant Hormone-Sensitive Circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.02.526862. [PMID: 38585740 PMCID: PMC10996482 DOI: 10.1101/2023.02.02.526862] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aggression, a sexually dimorphic behaviour, is prevalent in males and typically absent in virgin females. Following parturition, however, the transient expression of aggression in adult female mice protects pups from predators and infanticide by male conspecifics. While maternal hormones are known to elicit nursing, their potential role in maternal aggression remains elusive. Here, we show in mice that a molecularly defined subset of ventral premammillary (PMvDAT) neurons, instrumental for intermale aggression, switch from quiescence to a hyperexcitable state during lactation. We identify that the maternal hormones prolactin and oxytocin excite these cells through actions that include T-type Ca2+ channels. Optogenetic manipulation or genetic ablation of PMvDAT neurons profoundly affects maternal aggression, while activation of these neurons impairs the expression of non-aggression-related maternal behaviours. This work identifies a monomorphic neural substrate that can incorporate hormonal cues to enable the transient expression of a dormant behavioural program in lactating females.
Collapse
Affiliation(s)
- Stefanos Stagkourakis
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Paul Williams
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 104 05 Stockholm, Sweden
| | - Giada Spigolon
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Shreya Khanal
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Katharina Ziegler
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Laura Heikkinen
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 104 05 Stockholm, Sweden
| | - Gilberto Fisone
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
| | - Christian Broberger
- Department of Neuroscience, Biomedicum B:4, Karolinska Institutet, Solnavägen 9, 171 65 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 104 05 Stockholm, Sweden
| |
Collapse
|
30
|
Huang J, Zhang YY, Qiu YY, Yao S, Qiu WT, Peng JL, Li YQ, You QL, Wu CH, Wu EJ, Wang J, Zhou YL, Ning YP, Wang HS, Chen WB, Hu BJ, Liu Y, Sun XD. NRG1-ErbB4 signaling in the medial amygdala controls mating motivation in adult male mice. Cell Rep 2024; 43:113905. [PMID: 38446660 DOI: 10.1016/j.celrep.2024.113905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Motivation-driven mating is a basic affair for the maintenance of species. However, the underlying molecular mechanisms that control mating motivation are not fully understood. Here, we report that NRG1-ErbB4 signaling in the medial amygdala (MeA) is pivotal in regulating mating motivation. NRG1 expression in the MeA negatively correlates with the mating motivation levels in adult male mice. Local injection and knockdown of MeA NRG1 reduce and promote mating motivation, respectively. Consistently, knockdown of MeA ErbB4, a major receptor for NRG1, and genetic inactivation of its kinase both promote mating motivation. ErbB4 deletion decreases neuronal excitability, whereas chemogenetic manipulations of ErbB4-positive neuronal activities bidirectionally modulate mating motivation. We also identify that the effects of NRG1-ErbB4 signaling on neuronal excitability and mating motivation rely on hyperpolarization-activated cyclic nucleotide-gated channel 3. This study reveals a critical molecular mechanism for regulating mating motivation in adult male mice.
Collapse
Affiliation(s)
- Jie Huang
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yan-Yan Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yu-Yang Qiu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Shan Yao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wan-Ting Qiu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jin-Lin Peng
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan-Quan Li
- Department of Neurology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Qiang-Long You
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Cui-Hong Wu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Er-Jian Wu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jin Wang
- Department of Physiology, Guangxi University of Science and Technology, Liuzhou, China
| | - Yan-Ling Zhou
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu-Ping Ning
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-Sheng Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Bing Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Bing-Jie Hu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, and Emergency Department of the Second Affiliated Hospital, School of Basic Medicine, Guangzhou Medical University, Guangzhou, China.
| | - Youtan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Xiang-Dong Sun
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Lopez MS, Alward BA. Androgen receptor deficiency is associated with reduced aromatase expression in the ventromedial hypothalamus of male cichlids. Ann N Y Acad Sci 2024; 1532:73-82. [PMID: 38240562 PMCID: PMC10922992 DOI: 10.1111/nyas.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Social behaviors are regulated by sex steroid hormones, such as androgens and estrogens. However, the specific molecular and neural processes modulated by steroid hormones to generate social behaviors remain to be elucidated. We investigated whether some actions of androgen signaling in the control of social behavior may occur through the regulation of estradiol synthesis in the highly social cichlid fish, Astatotilapia burtoni. Specifically, we examined the expression of cyp19a1, a brain-specific aromatase, in the brains of male A. burtoni lacking a functional ARα gene (ar1), which was recently found to be necessary for aggression in this species. We found that cyp19a1 expression is higher in wild-type males compared to ar1 mutant males in the anterior tuberal nucleus (ATn), the putative fish homolog of the mammalian ventromedial hypothalamus, a brain region that is critical for aggression across taxa. Using in situ hybridization chain reaction, we determined that cyp19a1+ cells coexpress ar1 throughout the brain, including in the ATn. We speculate that ARα may modulate cyp19a1 expression in the ATn to govern aggression in A. burtoni. These studies provide novel insights into the hormonal mechanisms of social behavior in teleosts and lay a foundation for future functional studies.
Collapse
Affiliation(s)
- Mariana S. Lopez
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Beau A. Alward
- Department of Psychology, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry. University of Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Weese-Myers ME, Ross AE. Subsecond Codetection of Dopamine and Estradiol at a Modified Sharkfin Waveform. Anal Chem 2024; 96:76-84. [PMID: 38103188 DOI: 10.1021/acs.analchem.3c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
17β-Estradiol (E2) is a ubiquitously expressed hormone that is active in a wide range of neuroprotective and regenerative roles throughout the brain. In particular, it is a well-known dopamine (DA) regulator and is responsible for modulating the expression of dopaminergic receptors and transporters. Recent studies point to E2 release occurring on a rapid time scale and having impacts on DA activity within seconds to minutes. As such, tools capable of monitoring the release of both E2 and DA in real time are essential for developing an accurate understanding of their interactive roles in neurotransmission and regulation. Currently, no analytical techniques capable of codetection of both analytes with high sensitivity, spatiotemporal resolution, extended monitoring, and minimal tissue damage exist. We describe a modified waveform using fast-scan cyclic voltammetry that is capable of low nanomolar detection of both DA and E2 on a subsecond time scale. Both analytes have limits of detection at or below 30 nM and high sensitivity: 11.31 ± 0.55 nA/μM for DA and 9.47 ± 0.36 nA/μM for E2. The waveform is validated in a tissue matrix, confirming its viability for measurement in a biologically relevant setting. This is the first method capable of codetection of fluctuations in DA and E2 with the temporal, spatial, and sensitivity requirements necessary for studying real-time neurochemical signaling.
Collapse
Affiliation(s)
- Moriah E Weese-Myers
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
33
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. Nat Neurosci 2023; 26:2131-2146. [PMID: 37946049 PMCID: PMC10689240 DOI: 10.1038/s41593-023-01475-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but the molecular identities of these circuits and how they are established developmentally and shaped by experience remain unclear. Here we show that medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages have distinct response patterns and functions in social behavior in male mice. MeA cells expressing the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues and are essential for adult inter-male aggression. By contrast, MeA cells derived from the Dbx1 lineage (MeADbx1) respond broadly to social cues, respond strongly during ejaculation and are not essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results suggest a developmentally hardwired aggression circuit at the MeA level and a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavioral relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Bartsch CJ, Jacobs JT, Mojahed N, Qasem E, Smith M, Caldwell O, Aaflaq S, Nordman JC. Visualizing traumatic stress-induced structural plasticity in a medial amygdala pathway using mGRASP. Front Mol Neurosci 2023; 16:1313635. [PMID: 38098941 PMCID: PMC10720331 DOI: 10.3389/fnmol.2023.1313635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Traumatic stress has been shown to contribute to persistent behavioral changes, yet the underlying neural pathways are not fully explored. Structural plasticity, a form of long-lasting neural adaptability, offers a plausible mechanism. To scrutinize this, we used the mGRASP imaging technique to visualize synaptic modifications in a pathway formed between neurons of the posterior ventral segment of the medial amygdala and ventrolateral segment of the ventromedial hypothalamus (MeApv-VmHvl), areas we previously showed to be involved in stress-induced excessive aggression. We subjected mice (7-8 weeks of age) to acute stress through foot shocks, a reliable and reproducible form of traumatic stress, and compared synaptic changes to control animals. Our data revealed an increase in synapse formation within the MeApv-VmHvl pathway post-stress as evidenced by an increase in mGRASP puncta and area. Chemogenetic inhibition of CaMKIIα-expressing neurons in the MeApv during the stressor led to reduced synapse formation, suggesting that the structural changes were driven by excitatory activity. To elucidate the molecular mechanisms, we administered the NMDAR antagonist MK-801, which effectively blocked the stress-induced synaptic changes. These findings suggest a strong link between traumatic stress and enduring structural changes in an MeApv-VmHvl neural pathway. Furthermore, our data point to NMDAR-dependent mechanisms as key contributors to these synaptic changes. This structural plasticity could offer insights into persistent behavioral consequences of traumatic stress, such as symptoms of PTSD and social deficits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jacob C. Nordman
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| |
Collapse
|
35
|
Guo Z, Yin L, Diaz V, Dai B, Osakada T, Lischinsky JE, Chien J, Yamaguchi T, Urtecho A, Tong X, Chen ZS, Lin D. Neural dynamics in the limbic system during male social behaviors. Neuron 2023; 111:3288-3306.e4. [PMID: 37586365 PMCID: PMC10592239 DOI: 10.1016/j.neuron.2023.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/18/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Sexual and aggressive behaviors are vital for species survival and individual reproductive success. Although many limbic regions have been found relevant to these behaviors, how social cues are represented across regions and how the network activity generates each behavior remains elusive. To answer these questions, we utilize multi-fiber photometry (MFP) to simultaneously record Ca2+ signals of estrogen receptor alpha (Esr1)-expressing cells from 13 limbic regions in male mice during mating and fighting. We find that conspecific sensory information and social action signals are widely distributed in the limbic system and can be decoded from the network activity. Cross-region correlation analysis reveals striking increases in the network functional connectivity during the social action initiation phase, whereas late copulation is accompanied by a "dissociated" network state. Based on the response patterns, we propose a mating-biased network (MBN) and an aggression-biased network (ABN) for mediating male sexual and aggressive behaviors, respectively.
Collapse
Affiliation(s)
- Zhichao Guo
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; School of Life Sciences, Peking University, Beijing 100871, China
| | - Luping Yin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Veronica Diaz
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bing Dai
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Julieta E Lischinsky
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan Chien
- Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ashley Urtecho
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Xiaoyu Tong
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zhe S Chen
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, NY 11201, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
36
|
Takenawa S, Nagasawa Y, Go K, Chérasse Y, Mizuno S, Sano K, Ogawa S. Activity of estrogen receptor β expressing neurons in the medial amygdala regulates preference toward receptive females in male mice. Proc Natl Acad Sci U S A 2023; 120:e2305950120. [PMID: 37819977 PMCID: PMC10589649 DOI: 10.1073/pnas.2305950120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
The processing of information regarding the sex and reproductive state of conspecific individuals is critical for successful reproduction and survival in males. Generally, male mice exhibit a preference toward the odor of sexually receptive (RF) over nonreceptive females (XF) or gonadally intact males (IM). Previous studies suggested the involvement of estrogen receptor beta (ERβ) expressed in the medial amygdala (MeA) in male preference toward RF. To further delineate the role played by ERβ in the MeA in the neuronal network regulating male preference, we developed a new ERβ-iCre mouse line using the CRISPR-Cas9 system. Fiber photometry Ca2+ imaging revealed that ERβ-expressing neurons in the postero-dorsal part of the MeA (MeApd-ERβ+ neurons) were more active during social investigation toward RF compared to copresented XF or IM mice in a preference test. Chemogenetic inhibition of MeApd-ERβ+ neuronal activity abolished a preference to RF in "RF vs. XF," but not "RF vs. IM," tests. Analysis with cre-dependent retrograde tracing viral vectors identified the principal part of the bed nucleus of stria terminalis (BNSTp) as a primary projection site of MeApd-ERβ+ neurons. Fiber photometry recording in the BNSTp during a preference test revealed that chemogenetic inhibition of MeApd-ERβ+ neurons abolished differential neuronal activity of BNSTp cells as well as a preference to RF against XF but not against IM mice. Collectively, these findings demonstrate for the first time that MeApd-ERβ+ neuronal activity is required for expression of receptivity-based preference (i.e., RF vs. XF) but not sex-based preference (i.e., RF vs. IM) in male mice.
Collapse
Affiliation(s)
- Satoshi Takenawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Yutaro Nagasawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Kim Go
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Yoan Chérasse
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Kazuhiro Sano
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| |
Collapse
|
37
|
Cooper MA, Hooker MK, Whitten CJ, Kelly JR, Jenkins MS, Mahometano SC, Scarbrough MC. Dominance status modulates activity in medial amygdala cells with projections to the bed nucleus of the stria terminalis. Behav Brain Res 2023; 453:114628. [PMID: 37579818 PMCID: PMC10496856 DOI: 10.1016/j.bbr.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
The medial amygdala (MeA) controls several types of social behavior via its projections to other limbic regions. Cells in the posterior dorsal and posterior ventral medial amygdala (MePD and MePV, respectively) project to the bed nucleus of the stria terminalis (BNST) and these pathways respond to chemosensory cues and regulate aggressive and defensive behavior. Because the BNST is also essential for the display of stress-induced anxiety, a MePD/MePV-BNST pathway may modulate both aggression and responses to stress. In this study we tested the hypothesis that dominant animals would show greater neural activity than subordinates in BNST-projecting MePD and MePV cells after winning a dominance encounter as well as after losing a social defeat encounter. We created dominance relationships in male and female Syrian hamsters (Mesocricetus auratus), used cholera toxin b (CTB) as a retrograde tracer to label BNST-projecting cells, and collected brains for c-Fos staining in the MePD and MePV. We found that c-Fos immunoreactivity in the MePD and MePV was positively associated with aggression in males, but not in females. Also, dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells compared to their same-sex subordinate counterparts. Another set of animals received social defeat stress after acquiring a dominant or subordinate social status and we stained for stress-induced c-Fos expression in the MePD and MePV. We found that dominant males showed a greater proportion of c-Fos+ /CTB+ double-labeled cells in the MePD after social defeat stress compared to subordinates. Also, dominants showed a longer latency to submit during social defeat than subordinates. Further, in males, latency to submit was positively associated with the proportion of c-Fos+ /CTB+ double-labeled cells in the MePD and MePV. These findings indicate that social dominance increases neural activity in BNST-projecting MePD and MePV cells and activity in this pathway is also associated with proactive responses during social defeat stress. In sum, activity in a MePD/MePV-BNST pathway contributes to status-dependent differences in stress coping responses and may underlie experience-dependent changes in stress resilience.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, USA.
| | | | - Conner J Whitten
- Department of Psychology, University of Tennessee Knoxville, USA
| | - Jeff R Kelly
- Department of Psychology, University of Tennessee Knoxville, USA
| | | | | | | |
Collapse
|
38
|
Immenschuh J, Thalhammer SB, Sundström-Poromaa I, Biegon A, Dumas S, Comasco E. Sex differences in distribution and identity of aromatase gene expressing cells in the young adult rat brain. Biol Sex Differ 2023; 14:54. [PMID: 37658400 PMCID: PMC10474706 DOI: 10.1186/s13293-023-00541-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Aromatase catalyzes the synthesis of estrogens from androgens. Knowledge on its regional expression in the brain is of relevance to the behavioral implications of these hormones that might be linked to sex differences in mental health. The present study investigated the distribution of cells expressing the aromatase coding gene (Cyp19a1) in limbic regions of young adult rats of both sexes, and characterized the cell types expressing this gene. METHODS Cyp19a1 mRNA was mapped using fluorescent in situ hybridization (FISH). Co-expression with specific cell markers was assessed with double FISH; glutamatergic, gamma-aminobutyric acid (GABA)-ergic, glial, monoaminergic, as well as interneuron markers were tested. Automated quantification of the cells expressing the different genes was performed using CellProfiler. Sex differences in the number of cells expressing Cyp19a1 was tested non-parametrically, with the effect size indicated by the rank-biserial correlation. FDR correction for multiple testing was applied. RESULTS In the male brain, the highest percentage of Cyp19a1+ cells was found in the medial amygdaloid nucleus and the bed nucleus of stria terminalis, followed by the medial preoptic area, the CA2/3 fields of the hippocampus, the cortical amygdaloid nucleus and the amygdalo-hippocampal area. A lower percentage was detected in the caudate putamen, the nucleus accumbens, and the ventromedial hypothalamus. In females, the distribution of Cyp19a1+ cells was similar but at a lower percentage. In most regions, the majority of Cyp19a1+ cells were GABAergic, except for in the cortical-like regions of the amygdala where most were glutamatergic. A smaller fraction of cells co-expressed Slc1a3, suggesting expression of Cyp19a1 in astrocytes; monoaminergic markers were not co-expressed. Moreover, sex differences were detected regarding the identity of Cyp19a1+ cells. CONCLUSIONS Females show overall a lower number of cells expressing Cyp19a1 in the limbic brain. In both sexes, aromatase is expressed in a region-specific manner in GABAergic and glutamatergic neurons. These findings call for investigations of the relevance of sex-specific and region-dependent expression of Cyp19a1 in the limbic brain to sex differences in behavior and mental health.
Collapse
Affiliation(s)
- Jana Immenschuh
- Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Bernhard Thalhammer
- Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Anat Biegon
- Department of Radiology and Neurology, Stony Brook University School of Medicine, Stony Brook, NY USA
| | | | - Erika Comasco
- Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Bayless DW, Davis CHO, Yang R, Wei Y, de Andrade Carvalho VM, Knoedler JR, Yang T, Livingston O, Lomvardas A, Martins GJ, Vicente AM, Ding JB, Luo L, Shah NM. A neural circuit for male sexual behavior and reward. Cell 2023; 186:3862-3881.e28. [PMID: 37572660 PMCID: PMC10615179 DOI: 10.1016/j.cell.2023.07.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Male sexual behavior is innate and rewarding. Despite its centrality to reproduction, a molecularly specified neural circuit governing innate male sexual behavior and reward remains to be characterized. We have discovered a developmentally wired neural circuit necessary and sufficient for male mating. This circuit connects chemosensory input to BNSTprTac1 neurons, which innervate POATacr1 neurons that project to centers regulating motor output and reward. Epistasis studies demonstrate that BNSTprTac1 neurons are upstream of POATacr1 neurons, and BNSTprTac1-released substance P following mate recognition potentiates activation of POATacr1 neurons through Tacr1 to initiate mating. Experimental activation of POATacr1 neurons triggers mating, even in sexually satiated males, and it is rewarding, eliciting dopamine release and self-stimulation of these cells. Together, we have uncovered a neural circuit that governs the key aspects of innate male sexual behavior: motor displays, drive, and reward.
Collapse
Affiliation(s)
- Daniel W Bayless
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Chung-Ha O Davis
- Stanford Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Renzhi Yang
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Yichao Wei
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Joseph R Knoedler
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Oscar Livingston
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Akira Lomvardas
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Ana Mafalda Vicente
- Allen Institute for Neural Dynamics, Seattle, WA 98109; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Departments of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Departments of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Malone CL, Rieger NS, Spool JA, Payette A, Riters LV, Marler CA. Behavioral convergence in defense behaviors in pair bonded individuals correlates with neuroendocrine receptors in the medial amygdala. Behav Brain Res 2023; 452:114556. [PMID: 37356669 PMCID: PMC10644349 DOI: 10.1016/j.bbr.2023.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Monogamous, pair-bonded animals coordinate intra-pair behavior for spatially separated challenges including territorial defense and nest attendance. Paired California mice, a monogamous, territorial and biparental species, approach intruders together or separately, but often express behavioral convergence across intruder challenges. To gain a more systems-wide perspective of potential mechanisms contributing to behavioral convergence across two conspecific intruder challenges, we conducted an exploratory study correlating behavior and receptor mRNA (Days 10 and 17 post-pairing). We examined associations between convergence variability in pair time for intruder-oriented behaviors with a pair mRNA index for oxytocin (OXTR), androgen (AR), and estrogen alpha (ERα) receptors within the medial amygdala (MeA) and the anterior olfactory nucleus (AON), brain regions associated with social behavior. An intruder behavior index revealed a bimodal distribution of intruder-related behaviors in Challenge 1 and a unimodal distribution in Challenge 2, suggesting population behavioral convergence, but no significant correlations with neuroendocrine measures. However, OXTR, AR, and ERα mRNA in the MeA were positively associated with convergence in individual intruder-related behaviors, suggesting multiple mechanisms may influence convergence. Mice could also occupy the nest during intruder challenges and convergence in nest attendance was positively correlated with MeA OXTR. At an individual level, nest attendance was positively associated with MeA ERα. Vocalizations were positively associated with AR and ERα mRNA. No positive associations were found in the AON. Overall, neuroendocrine receptors were implicated in convergence of a monogamous pair's defense behavior, highlighting the potential importance of the MeA as part of a circuit underlying convergence.
Collapse
Affiliation(s)
- Candice L Malone
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| | - Nathaniel S Rieger
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA; University of Washington-Seattle, Department of Psychiatry and Behavioral Sciences, Seattle, WA, USA
| | - Jeremy A Spool
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA; University of Massachusetts-Amherst, Department of Psychological and Brain Sciences, Amherst, MA, USA
| | - Alexis Payette
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA
| | - Lauren V Riters
- University of Wisconsin-Madison, Department of Integrative Biology, Madison, WI, USA
| | - Catherine A Marler
- University of Wisconsin-Madison, Department of Psychology, Madison, WI, USA.
| |
Collapse
|
41
|
Jackson LR, Lopez MS, Alward B. Breaking Through the Bottleneck: Krogh's Principle in Behavioral Neuroendocrinology and the Potential of Gene Editing. Integr Comp Biol 2023; 63:428-443. [PMID: 37312279 PMCID: PMC10445420 DOI: 10.1093/icb/icad068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
In 1929, August Krogh wrote that for every question in biology, there is a species or collection of species in which pursuing such questions is the most appropriate for achieving the deepest insights. Referred to as "Krogh's Principle," these words are a guiding force for many biologists. In practice, Krogh's principle might guide a biologist interested in studying bi-parental care to choose not to use lab mice, in which the female does most of the parenting, but instead study species in which bi-parental care is present and clearly observable, such as in certain poison dart frogs. This approach to pursuing biological questions has been fruitful, with more in-depth insights achievable with new technologies. However, up until recently, an important limitation of Krogh's principle for biologists interested in the functions of certain genes, was certain techniques were only available for a few traditional model organisms such as lab mice, fruit flies (Drosophila melanogaster), zebrafish (Danio rerio) and C. elegans (Caenorhabditis elegans), in which testing the functions of molecular systems on biological processes can be achieved using genetic knockout (KO) and transgenic technology. These methods are typically more precise than other approaches (e.g., pharmacology) commonly used in nontraditional model organisms to address similar questions. Therefore, some of the most in-depth insights into our understanding of the molecular control of these mechanisms have come from a small number of genetically tractable species. Recent advances in gene editing technology such as CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)/Cas9 gene editing as a laboratory tool has changed the insights achievable for biologists applying Krogh's principle. In this review, we will provide a brief summary on how some researchers of nontraditional model organisms have been able to achieve different levels of experimental precision with limited genetic tractability in their non-traditional model organism in the field of behavioral neuroendocrinology, a field in which understanding tissue and brain-region specific actions of molecules of interest has been a major goal. Then, we will highlight the exciting potential of Krogh's principle using discoveries made in a popular model species of social behavior, the African cichlid fish Astatotilapia burtoni. Specifically, we will focus on insights gained from studies of the control of social status by sex steroid hormones (androgens and estrogens) in A. burtoni that originated during field observations during the 1970s, and have recently culminated in novel insights from CRISPR/Cas9 gene editing in laboratory studies. Our review highlighting discoveries in A. burtoni may function as a roadmap for others using Krogh's principle aiming to incorporate gene editing into their research program. Gene editing is thus a powerful complimentary laboratory tool researchers can use to yield novel insights into understanding the molecular mechanisms of physiology and behavior in non-traditional model organisms.
Collapse
Affiliation(s)
- Lillian R Jackson
- Department of Psychology, University of Houston, Houston, TX 77204USA
| | - Mariana S Lopez
- Department of Psychology, University of Houston, Houston, TX 77204USA
| | - Beau Alward
- Department of Psychology, University of Houston, Houston, TX 77204USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004USA
| |
Collapse
|
42
|
Yu ZX, Zha X, Xu XH. Estrogen-responsive neural circuits governing male and female mating behavior in mice. Curr Opin Neurobiol 2023; 81:102749. [PMID: 37421660 DOI: 10.1016/j.conb.2023.102749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Decades of knockout analyses have highlighted the crucial involvement of estrogen receptors and downstream genes in controlling mating behaviors. More recently, advancements in neural circuit research have unveiled a distributed subcortical network comprising estrogen-receptor or estrogen-synthesis-enzyme-expressing cells that transforms sensory inputs into sex-specific mating actions. This review provides an overview of the latest discoveries on estrogen-responsive neurons in various brain regions and the associated neural circuits that govern different aspects of male and female mating actions in mice. By contextualizing these findings within previous knockout studies of estrogen receptors, we emphasize the emerging field of "circuit genetics", where identifying mating behavior-related neural circuits may allow for a more precise evaluation of gene functions within these circuits. Such investigations will enable a deeper understanding of how hormone fluctuation, acting through estrogen receptors and downstream genes, influences the connectivity and activity of neural circuits, ultimately impacting the manifestation of innate mating actions.
Collapse
Affiliation(s)
- Zi-Xian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China.
| |
Collapse
|
43
|
Dawson M, Terstege DJ, Jamani N, Tsutsui M, Pavlov D, Bugescu R, Epp JR, Leinninger GM, Sargin D. Hypocretin/orexin neurons encode social discrimination and exhibit a sex-dependent necessity for social interaction. Cell Rep 2023; 42:112815. [PMID: 37459234 DOI: 10.1016/j.celrep.2023.112815] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/20/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
The hypothalamus plays a crucial role in the modulation of social behavior by encoding internal states. The hypothalamic hypocretin/orexin neurons, initially identified as regulators of sleep and appetite, are important for emotional and motivated behaviors. However, their role in social behavior remains unclear. Using fiber photometry and behavioral analysis, we show here that hypocretin neurons differentially encode social discrimination based on the nature of social encounters. The optogenetic inhibition of hypocretin neuron activity or blocking of hcrt-1 receptors reduces the amount of time mice are engaged in social interaction in males but not in females. Reduced hcrt-1 receptor signaling during social interaction is associated with altered activity in the insular cortex and ventral tegmental area in males. Our data implicating hypocretin neurons as sexually dimorphic regulators within social networks have significant implications for the treatment of neuropsychiatric diseases with social dysfunction, particularly considering varying prevalence among sexes.
Collapse
Affiliation(s)
- Matthew Dawson
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Dylan J Terstege
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Naila Jamani
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mio Tsutsui
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Dmitrii Pavlov
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Derya Sargin
- Department of Psychology, University of Calgary, Calgary, AB, Canada; Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
44
|
Abstract
Rapid advances in the neural control of social behavior highlight the role of interconnected nodes engaged in differential information processing to generate behavior. Many innate social behaviors are essential to reproductive fitness and therefore fundamentally different in males and females. Programming these differences occurs early in development in mammals, following gonadal differentiation and copious androgen production by the fetal testis during a critical period. Early-life programming of social behavior and its adult manifestation are separate but yoked processes, yet how they are linked is unknown. This review seeks to highlight that gap by identifying four core mechanisms (epigenetics, cell death, circuit formation, and adult hormonal modulation) that could connect developmental changes to the adult behaviors of mating and aggression. We further propose that a unique social behavior, adolescent play, bridges the preweaning to the postpubertal brain by engaging the same neural networks underpinning adult reproductive and aggressive behaviors.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
45
|
Potegal M, Nordman JC. Non-angry aggressive arousal and angriffsberietschaft: A narrative review of the phenomenology and physiology of proactive/offensive aggression motivation and escalation in people and other animals. Neurosci Biobehav Rev 2023; 147:105110. [PMID: 36822384 DOI: 10.1016/j.neubiorev.2023.105110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Human aggression typologies largely correspond with those for other animals. While there may be no non-human equivalent of angry reactive aggression, we propose that human proactive aggression is similar to offense in other animals' dominance contests for territory or social status. Like predation/hunting, but unlike defense, offense and proactive aggression are positively reinforcing, involving dopamine release in accumbens. The drive these motivational states provide must suffice to overcome fear associated with initiating risky fights. We term the neural activity motivating proactive aggression "non-angry aggressive arousal", but use "angriffsberietschaft" for offense motivation in other animals to acknowledge possible differences. Temporal variation in angriffsberietschaft partitions fights into bouts; engendering reduced anti-predator vigilance, redirected aggression and motivational over-ride. Increased aggressive arousal drives threat-to-attack transitions, as in verbal-to-physical escalation and beyond that, into hyper-aggression. Proactive aggression and offense involve related neural activity states. Cingulate, insular and prefrontal cortices energize/modulate aggression through a subcortical core containing subnuclei for each aggression type. These proposals will deepen understanding of aggression across taxa, guiding prevention/intervention for human violence.
Collapse
Affiliation(s)
| | - Jacob C Nordman
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| |
Collapse
|
46
|
Fritz M, Soravia SM, Dudeck M, Malli L, Fakhoury M. Neurobiology of Aggression-Review of Recent Findings and Relationship with Alcohol and Trauma. BIOLOGY 2023; 12:biology12030469. [PMID: 36979161 PMCID: PMC10044835 DOI: 10.3390/biology12030469] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aggression can be conceptualized as any behavior, physical or verbal, that involves attacking another person or animal with the intent of causing harm, pain or injury. Because of its high prevalence worldwide, aggression has remained a central clinical and public safety issue. Aggression can be caused by several risk factors, including biological and psychological, such as genetics and mental health disorders, and socioeconomic such as education, employment, financial status, and neighborhood. Research over the past few decades has also proposed a link between alcohol consumption and aggressive behaviors. Alcohol consumption can escalate aggressive behavior in humans, often leading to domestic violence or serious crimes. Converging lines of evidence have also shown that trauma and posttraumatic stress disorder (PTSD) could have a tremendous impact on behavior associated with both alcohol use problems and violence. However, although the link between trauma, alcohol, and aggression is well documented, the underlying neurobiological mechanisms and their impact on behavior have not been properly discussed. This article provides an overview of recent advances in understanding the translational neurobiological basis of aggression and its intricate links to alcoholism and trauma, focusing on behavior. It does so by shedding light from several perspectives, including in vivo imaging, genes, receptors, and neurotransmitters and their influence on human and animal behavior.
Collapse
Affiliation(s)
- Michael Fritz
- School of Health and Social Sciences, AKAD University of Applied Sciences, 70191 Stuttgart, Germany
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Sarah-Maria Soravia
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Manuela Dudeck
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Layal Malli
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| |
Collapse
|
47
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Hardwired to attack: Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532692. [PMID: 36993508 PMCID: PMC10055059 DOI: 10.1101/2023.03.16.532692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but it remains unclear whether these circuits are developmentally hardwired or established through social experience. Here, we revealed distinct response patterns and functions in social behavior of medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages. MeA cells in male mice that express the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues even before puberty and are essential for adult inter-male aggression. In contrast, MeA cells derived from the Dbx1-lineage (MeADbx1) respond broadly to social cues and are non-essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results support a developmentally hardwired aggression circuit at the level of the MeA and we propose a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavior relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, United States
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, United States
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
48
|
Lei H, Shu H, Xiong R, He T, Lv J, Liu J, Pi G, Ke D, Wang Q, Yang X, Wang JZ, Yang Y. Poststress social isolation exerts anxiolytic effects by activating the ventral dentate gyrus. Neurobiol Stress 2023; 24:100537. [PMID: 37081927 PMCID: PMC10112178 DOI: 10.1016/j.ynstr.2023.100537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
After aversive stress, people either choose to return to their previously familiar social environment or tend to adopt temporary social withdrawal to buffer negative emotions. However, which behavior intervention is more appropriate and when remain elusive. Here, we unexpectedly found that stressed mice experiencing social isolation exhibited less anxiety than those experiencing social contact. Within the first 24 h after returning to their previous social environment, mice experienced acute restraint stress (ARS) displayed low social interest but simultaneously received excessive social disturbance from their cage mates, indicating a critical time window for social isolation to balance the conflict. To screen brain regions that were differentially activated between the poststress social isolation and poststress social contact groups, we performed ΔFosB immunostaining and found that ΔFosB + signals were remarkably increased in the vDG of poststress social isolation group compared with poststress social contact group. There were no significant differences between the two groups in the other anxiety- and social-related brain regions, such as prelimbic cortex, infralimbic cortex, nucleus accumbens, etc. These data indicate that vDG is closely related to the differential phenotypes between the poststress social isolation and poststress social contact groups. Electrophysiological recording, further, revealed a higher activity of vDG in the poststress social isolation group than the poststress social contact group. Chemogenetically inhibiting vDG excitatory neurons within the first 24 h after ARS completely abolished the anxiolytic effects of poststress social isolation, while stimulating vDG excitatory neurons remarkably reduced anxiety-like behaviors in the poststress social contact group. Together, these data suggest that the activity of vDG excitatory neurons is essential and sufficient to govern the anxiolytic effect of poststress social isolation. To the best of our knowledge, this is the first report to uncover a beneficial role of temporal social isolation in acute stress-induced anxiety. In addition to the critical 24-h time window, activation of vDG is crucial for ameliorating anxiety through poststress social isolation.
Collapse
Affiliation(s)
- Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiale Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guilin Pi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
- Corresponding author. Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Corresponding author.
| |
Collapse
|
49
|
Marquardt AE, VanRyzin JW, Fuquen RW, McCarthy MM. Social play experience in juvenile rats is indispensable for appropriate socio-sexual behavior in adulthood in males but not females. Front Behav Neurosci 2023; 16:1076765. [PMID: 36755666 PMCID: PMC9899815 DOI: 10.3389/fnbeh.2022.1076765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/24/2023] Open
Abstract
Social play is a dynamic and rewarding behavior abundantly expressed by most mammals during the juvenile period. While its exact function is debated, various rodent studies on the effects of juvenile social isolation suggest that participating in play is essential to appropriate behavior and reproductive success in adulthood. However, the vast majority of these studies were conducted in one sex only, a critical concern given the fact that there are known sex differences in play's expression: across nearly all species that play, males play more frequently and intensely than females, and there are qualitative sex differences in play patterns. Further limiting our understanding of the importance of play is the use of total isolation to prevent interactions with other juveniles. Here, we employed a novel cage design to specifically prevent play in rats while allowing for other forms of social interaction. We find that play deprivation during the juvenile period results in enduring sex-specific effects on later-life behavior, primarily in males. Males prevented from playing as juveniles exhibited decreased sexual behavior, hypersociability, and increased aggressiveness in adulthood, with no effects on these measures in females. Importantly, play deprivation had no effect on anxiety-like behavior, object memory, sex preference, or social recognition in either sex, showing the specificity of the identified impairments, though there were overall sex differences in many of these measures. Additionally, acute play deprivation impaired performance on a test of prosocial behavior in both sexes, indicating a difference in the motivation and/or ability to acquire this empathy-driven task. Together, these findings provide novel insight into the importance and function of juvenile social play and how this differs in males and females.
Collapse
Affiliation(s)
- Ashley E. Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rebeca W. Fuquen
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Margaret M. McCarthy
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Margaret M. McCarthy
| |
Collapse
|
50
|
Fukumitsu K, Huang AJ, McHugh TJ, Kuroda KO. Role of Calcr expressing neurons in the medial amygdala in social contact among females. Mol Brain 2023; 16:10. [PMID: 36658598 PMCID: PMC9850531 DOI: 10.1186/s13041-023-00993-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Social animals become stressed upon social isolation, proactively engaging in affiliative contacts among conspecifics after resocialization. We have previously reported that calcitonin receptor (Calcr) expressing neurons in the central part of the medial preoptic area (cMPOA) mediate contact-seeking behaviors in female mice. Calcr neurons in the posterodorsal part of the medial amygdala (MeApd) are also activated by resocialization, however their role in social affiliation is still unclear. Here we first investigated the functional characteristics of MeApd Calcr + cells; these neurons are GABAergic and show female-biased Calcr expression. Next, using an adeno-associated virus vector expressing a short hairpin RNA targeting Calcr we aimed to identify its molecular role in the MeApd. Inhibiting Calcr expression in the MeApd increased social contacts during resocialization without affecting locomotor activity, suggesting that the endogenous Calcr signaling in the MeApd suppresses social contacts. These results demonstrate the distinct roles of Calcr in the cMPOA and MeApd for regulating social affiliation.
Collapse
Affiliation(s)
- Kansai Fukumitsu
- grid.474690.8Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Hirosawa 2-1, Wakoshi, Saitama 351-0198 Japan
| | - Arthur J. Huang
- grid.474690.8Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198 Japan
| | - Thomas J. McHugh
- grid.474690.8Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198 Japan
| | - Kumi O. Kuroda
- grid.474690.8Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Hirosawa 2-1, Wakoshi, Saitama 351-0198 Japan
| |
Collapse
|