1
|
Nakamura M, Akada R. Blending of selected yeast extract and peptone for inducible and constitutive protein production in Escherichia coli using the pET system. J Biosci Bioeng 2024; 138:548-556. [PMID: 39251381 DOI: 10.1016/j.jbiosc.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
pET vectors allow inducible expression of recombinant proteins in Escherichia coli. In this system, isopropyl β-d-1-thiogalactopyranoside (IPTG) drives lacUV5 promoter to produce T7 RNA polymerase, simultaneously releasing the suppression of T7lac promoter. T7 RNA polymerase then strongly transcribes the target gene. A lac repressor encoded by lacI in the vector represses the promoters. Despite stringent repression and inducible expression achieved with the pET system, unexpected leaky expression can occur without IPTG induction. Here, by evaluating leaky expression in recombinant cells cultured in various Luria-Bertani (LB) media, prepared using yeast extract and peptone from different suppliers, as well as in five commercial premix-LB media, we confirmed the presence of unknown lac inducers in LB. To explore these inducers, we examined E. coli growth in media comprising yeast extract or peptone. At 4% concentration, five commercial yeast extract and six peptone samples individually allowed E. coli growth equivalent to that in LB medium. We determined the luciferase activity of the luxCDABE operon in the pET vector under these conditions. The presence of different concentrations of inducers was detected in both the yeast extract and peptone. Furthermore, we blended yeast extract and peptone with low or high concentrations of lac inducers. The low-expression blend, used as a basal medium before IPTG addition, allowed leak-free, tightly controlled expression. The high-expression blend was used for constitutive high-expression and pET induction with the basal medium, in lieu of IPTG. These blended media can be used for well-controlled inducible and constitutive expression using the pET system.
Collapse
Affiliation(s)
- Mikiko Nakamura
- Department of Instrumental Analysis, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto 390-8621, Japan; Renaissance Center for Applied Microbiology, Shinshu University, Nagano 380-8553, Japan.
| | - Rinji Akada
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
2
|
Sania A, Muhammad MA, Sajed M, Ahmad N, Aslam M, Tang XF, Rashid N. Engineering Tk1656, a highly active l-asparaginase from Thermococcus kodakarensis, for enhanced activity and stability. Int J Biol Macromol 2024; 281:136442. [PMID: 39389482 DOI: 10.1016/j.ijbiomac.2024.136442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
l-Asparaginases catalyze the hydrolysis of l-asparagine to l-aspartic acid and ammonia. These enzymes have potential applications in therapeutics and food industry. Tk1656, a highly active and thermostable l-asparaginase from Thermococcus kodakarensis, has been proved effective in selective killing of acute lymphocytic leukemia cells and in reducing acrylamide formation in baked and fried foods. However, it displayed <5 % activity under physiological conditions compared to the optimal activity at 85 °C and pH 9.5. We have attempted engineering of this valuable enzyme to improve the characteristics required for therapeutic and industrial applications. Based on the literature and crystal structure of Tk1656, nine specific mutant variants were designed, produced in Escherichia coli, and the purified mutant enzymes were compared with the wild-type. One of the mutants, K299L, displayed >20 % increase in activity at 85 °C. H158S substitution resulted in >5 °C increase in the optimal temperature. Similarly, a mesophilic-like mutation L56D, resulted in >5-fold increase in activity at pH 7.0 and 37 °C compared to that of the wild-type enzyme. The substrate specificity of the mutant variants remained unchanged. These results demonstrate that L56D and K299L variants of Tk1656 are the potent enzymes for therapeutics and acrylamide mitigation applications, respectively.
Collapse
Affiliation(s)
- Ayesha Sania
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Sajed
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Xiao-Feng Tang
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
3
|
Salas-Bruggink D, Guzmán H, Espina G, Blamey JM. Recombinant Expression and Characterization of a Novel Thermo-Alkaline Lipase with Increased Solvent Stability from the Antarctic Thermophilic Bacterium Geobacillus sp. ID17. Int J Mol Sci 2024; 25:7928. [PMID: 39063171 PMCID: PMC11277018 DOI: 10.3390/ijms25147928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Lipases are enzymes that hydrolyze long-chain carboxylic esters, and in the presence of organic solvents, they catalyze organic synthesis reactions. However, the use of solvents in these processes often results in enzyme denaturation, leading to a reduction in enzymatic activity. Consequently, there is significant interest in identifying new lipases that are resistant to denaturing conditions, with extremozymes emerging as promising candidates for this purpose. Lip7, a lipase from Geobacillus sp. ID17, a thermophilic microorganism isolated from Deception Island, Antarctica, was recombinantly expressed in E. coli C41 (DE3) in functional soluble form. Its purification was achieved with 96% purity and 23% yield. Enzymatic characterization revealed Lip7 to be a thermo-alkaline enzyme, reaching a maximum rate of 3350 U mg-1 at 50 °C and pH 11.0, using p-nitrophenyl laurate substrate. Notably, its kinetics displayed a sigmoidal behavior, with a higher kinetic efficiency (kcat/Km) for substrates of 12-carbon atom chain. In terms of thermal stability, Lip7 demonstrates stability up to 60 °C at pH 8.0 and up to 50 °C at pH 11.0. Remarkably, it showed high stability in the presence of organic solvents, and under certain conditions even exhibited enzymatic activation, reaching up to 2.5-fold and 1.35-fold after incubation in 50% v/v ethanol and 70% v/v isopropanol, respectively. Lip7 represents one of the first lipases from the bacterial subfamily I.5 and genus Geobacillus with activity and stability at pH 11.0. Its compatibility with organic solvents makes it a compelling candidate for future research in biocatalysis and various biotechnological applications.
Collapse
Affiliation(s)
| | - Hardy Guzmán
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago 9170022, Chile;
| | - Giannina Espina
- Fundación Biociencia, José Domingo Cañas 2280, Santiago 7750132, Chile;
| | - Jenny M. Blamey
- Fundación Biociencia, José Domingo Cañas 2280, Santiago 7750132, Chile;
- Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago 9170022, Chile;
| |
Collapse
|
4
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Vasilopoulou E, Chroumpi T, Skretas G. Escherichia coli strains with precise domain deletions in the ribonuclease RNase E can achieve greatly enhanced levels of membrane protein production. Protein Sci 2024; 33:e4864. [PMID: 38073126 PMCID: PMC10804669 DOI: 10.1002/pro.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Abstract
Escherichia coli is one of the most widely utilized hosts for production of recombinant membrane proteins (MPs). Bacterial MP production, however, is usually accompanied by severe toxicity and low-level volumetric accumulation. In previous work, we had discovered that co-expression of RraA, an inhibitor of the RNA-degrading activity of RNase E, can efficiently suppress the cytotoxicity associated with the MP overexpression process and, simultaneously, enhance significantly the cellular accumulation of membrane-incorporated recombinant MPs in bacteria. Based on this, we constructed the specialized MP-producing E. coli strain SuptoxR, which can achieve dramatically enhanced volumetric yields of well-folded recombinant MPs. Ιn the present work, we have investigated whether domain deletions in the E. coli RNase E, which exhibit reduced ribonucleolytic activity, can result in suppressed MP-induced toxicity and enhanced recombinant MP production, in a manner resembling the conditions of rraA overexpression in E. coli SuptoxR. We have found that some strains encoding specific RNase E truncation variants can achieve significantly enhanced levels of recombinant MP production. Among these, we have found a single RNase E variant strain, which can efficiently suppress MP-induced toxicity and achieve greatly enhanced levels of recombinant MP production for proteins of both prokaryotic and eukaryotic origin. Based on its properties, and in analogy to the original SuptoxR strain, we have termed this strain SuptoxRNE22. E. coli SuptoxRNE22 can perform better than commercially available bacterial strains, which are frequently utilized for recombinant MP production. We anticipate that SuptoxRNE22 will become a widely utilized host for recombinant MP production in bacteria.
Collapse
Affiliation(s)
- Eleni Vasilopoulou
- Institute for Bio‐innovationBiomedical Sciences Research Center “Alexander Fleming”VariGreece
- Institute of Chemical Biology, National Hellenic Research FoundationAthensGreece
- Department of Biochemistry and BiotechnologyUniversity of ThessalyLarisaGreece
| | - Tania Chroumpi
- Institute of Chemical Biology, National Hellenic Research FoundationAthensGreece
| | - Georgios Skretas
- Institute for Bio‐innovationBiomedical Sciences Research Center “Alexander Fleming”VariGreece
- Institute of Chemical Biology, National Hellenic Research FoundationAthensGreece
| |
Collapse
|
6
|
Khananisho D, Cumming AJ, Kulakova D, Shilling PJ, Daley DO. Tips for efficiently maintaining pET expression plasmids. Curr Genet 2023; 69:277-287. [PMID: 37938343 PMCID: PMC10716060 DOI: 10.1007/s00294-023-01276-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
pET expression plasmids are widely used for producing recombinant proteins in Escherichia coli. Selection and maintenance of cells harboring a pET plasmid are possible using either a Tn3.1-type genetic fragment (which encodes a ß-lactamase and confers resistance to ß-lactam antibiotics) or a Tn903.1-type genetic fragment (which encodes an aminoglycoside-3'-phosphotransferase and confers resistance aminoglycoside antibiotics). Herein we have investigated how efficiently pET plasmids are maintained using these two fragments. The study reveals that pET plasmids are efficiently maintained with both Tn3.1 and Tn903.1 genetic fragments prior to the induction of recombinant protein production, and over short induction times (i.e., 2 h). However, over longer induction times (i.e., 20 h), the efficiency of plasmid maintenance depends on the host strain used, and the type of antibiotic selection cassette used. Based on our collective observations, we have 2 general tips for efficiently maintaining pET plasmids during recombinant production experiments. Tip #1: Use a strain with lowered levels of the T7 RNA polymerase, such as C41(DE3). pET plasmids will be efficiently maintained over long induction times with both the Tn3.1 and Tn903.1 genetic fragments, regardless of whether antibiotics are present during cultivation. Tip #2: If a strain with higher levels of T7 RNA polymerase strain is necessary, such as BL21(DE3)), keep induction times short or use a plasmid containing a Tn903.1-type fragment and select with kanamycin.
Collapse
Affiliation(s)
- Diana Khananisho
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Alister J Cumming
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daria Kulakova
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Patrick J Shilling
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
7
|
Prasad SV, Fiedoruk K, Zakrzewska M, Savage PB, Bucki R. Glyoxylate Shunt and Pyruvate-to-Acetoin Shift Are Specific Stress Responses Induced by Colistin and Ceragenin CSA-13 in Enterobacter hormaechei ST89. Microbiol Spectr 2023; 11:e0121523. [PMID: 37338344 PMCID: PMC10434160 DOI: 10.1128/spectrum.01215-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Ceragenins, including CSA-13, are cationic antimicrobials that target the bacterial cell envelope differently than colistin. However, the molecular basis of their action is not fully understood. Here, we examined the genomic and transcriptome responses by Enterobacter hormaechei after prolonged exposure to either CSA-13 or colistin. Resistance of the E. hormaechei 4236 strain (sequence type 89 [ST89]) to colistin and CSA-13 was induced in vitro during serial passages with sublethal doses of tested agents. The genomic and metabolic profiles of the tested isolates were characterized using a combination of whole-genome sequencing (WGS) and transcriptome sequencing (RNA-seq), followed by metabolic mapping of differentially expressed genes using Pathway Tools software. The exposure of E. hormaechei to colistin resulted in the deletion of the mgrB gene, whereas CSA-13 disrupted the genes encoding an outer membrane protein C and transcriptional regulator SmvR. Both compounds upregulated several colistin-resistant genes, such as the arnABCDEF operon and pagE, including genes coding for DedA proteins. The latter proteins, along with beta-barrel protein YfaZ and VirK/YbjX family proteins, were the top overexpressed cell envelope proteins. Furthermore, the l-arginine biosynthesis pathway and putrescine-ornithine antiporter PotE were downregulated in both transcriptomes. In contrast, the expression of two pyruvate transporters (YhjX and YjiY) and genes involved in pyruvate metabolism, as well as genes involved in generating proton motive force (PMF), was antimicrobial specific. Despite the similarity of the cell envelope transcriptomes, distinctly remodeled carbon metabolism (i.e., toward fermentation of pyruvate to acetoin [colistin] and to the glyoxylate pathway [CSA-13]) distinguished both antimicrobials, which possibly reflects the intensity of the stress exerted by both agents. IMPORTANCE Colistin and ceragenins, like CSA-13, are cationic antimicrobials that disrupt the bacterial cell envelope through different mechanisms. Here, we examined the genomic and transcriptome changes in Enterobacter hormaechei ST89, an emerging hospital pathogen, after prolonged exposure to these agents to identify potential resistance mechanisms. Interestingly, we observed downregulation of genes associated with acid stress response as well as distinct dysregulation of genes involved in carbon metabolism, resulting in a switch from pyruvate fermentation to acetoin (colistin) and the glyoxylate pathway (CSA-13). Therefore, we hypothesize that repression of the acid stress response, which alkalinizes cytoplasmic pH and, in turn, suppresses resistance to cationic antimicrobials, could be interpreted as an adaptation that prevents alkalinization of cytoplasmic pH in emergencies induced by colistin and CSA-13. Consequently, this alteration critical for cell physiology must be compensated via remodeling carbon and/or amino acid metabolism to limit acidic by-product production.
Collapse
Affiliation(s)
- Suhanya V. Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Pouresmaeil M, Azizi-Dargahlou S. Factors involved in heterologous expression of proteins in E. coli host. Arch Microbiol 2023; 205:212. [PMID: 37120438 PMCID: PMC10148705 DOI: 10.1007/s00203-023-03541-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
The production of recombinant proteins is one of the most significant achievements of biotechnology in the last century. These proteins are produced in the eukaryotic or prokaryotic heterologous hosts. By increasing the omics data especially related to different heterologous hosts as well as the presence of new amenable genetic engineering tools, we can artificially engineer heterologous hosts to produce recombinant proteins in sufficient quantities. Numerous recombinant proteins have been produced and applied in various industries, and the global recombinant proteins market size is expected to be cast to reach USD 2.4 billion by 2027. Therefore, identifying the weakness and strengths of heterologous hosts is critical to optimize the large-scale biosynthesis of recombinant proteins. E. coli is one of the popular hosts to produce recombinant proteins. Scientists reported some bottlenecks in this host, and due to the increasing demand for the production of recombinant proteins, there is an urgent need to improve this host. In this review, we first provide general information about the E. coli host and compare it with other hosts. In the next step, we describe the factors involved in the expression of the recombinant proteins in E. coli. Successful expression of recombinant proteins in E. coli requires a complete elucidation of these factors. Here, the characteristics of each factor will be fully described, and this information can help to improve the heterologous expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Shahnam Azizi-Dargahlou
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
9
|
Malik T, Klenow L, Karyolaimos A, Gier JWD, Daniels R. Silencing Transcription from an Influenza Reverse Genetics Plasmid in E. coli Enhances Gene Stability. ACS Synth Biol 2023; 12:432-445. [PMID: 36716395 PMCID: PMC9942234 DOI: 10.1021/acssynbio.2c00358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Reverse genetics (RG) systems have been instrumental for determining the molecular aspects of viral replication, pathogenesis, and for the development of therapeutics. Here, we demonstrate that genes encoding the influenza surface antigens hemagglutinin and neuraminidase have varying stability when cloned into a common RG plasmid and transformed into Escherichia coli. Using GFP as a reporter, we demonstrate that E. coli expresses the target genes in the RG plasmid at low levels. Incorporating lac operators or a transcriptional terminator into the plasmid reduced expression and stabilized the viral genes to varying degrees. Sandwiching the viral gene between two lac operators provided the largest contribution to stability and we confirmed the stabilization is Lac repressor-dependent and crucial for subsequent plasmid propagations in E. coli. Viruses rescued from the lac operator-stabilized plasmid displayed similar kinetics and titers to the original plasmid in two different viral backbones. Together, these results indicate that silencing transcription from the plasmid in E. coli helps to maintain the correct influenza gene sequence and that the lac operator addition does not impair virus production. It is envisaged that sandwiching DNA segments between lac operators can be used for reducing DNA segment instability in any plasmid that is propagated in E. coli which express the Lac repressor.
Collapse
Affiliation(s)
- Tahir Malik
- Division
of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Laura Klenow
- Division
of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Alexandros Karyolaimos
- Department
of Biochemistry and Biophysics, Stockholm
University, 10691 Stockholm, Sweden
| | - Jan-Willem de Gier
- Department
of Biochemistry and Biophysics, Stockholm
University, 10691 Stockholm, Sweden
| | - Robert Daniels
- Division
of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States,
| |
Collapse
|
10
|
Chen PY, Yi YC, Wang HC, Ng IS. Heterologous Expression of Toxic White Spot Syndrome Virus (WSSV) Protein in Eengineered Escherichia coli Strains. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04369-1. [PMID: 36701096 DOI: 10.1007/s12010-023-04369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
Aquacultural shrimps suffer economic lost due to the white spot syndrome virus (WSSV) that is the most notorious virus for its fatality and contagion, leading to a 100% death rate on infected shrimps within 7 days. However, the infection of mechanism remains a mystery and crucial problem. To elucidate the pathogenesis of WSSV, a high abundance of protein is required to identify and characterize its functions. Therefore, the optimal WSSV355 overexpression was explored in engineered Escherichia coli strains, in particular C43(DE3) as a toxic tolerance strain remedied 40% of cell growth from BL21(DE3). Meanwhile, a trace amount of WSSV355 was observed in both strains. To optimize the codon of WSSV355 using codon adaption index (CAI), an overexpression was observed with 1.32 mg/mL in C43(DE3), while the biomass was decreased by 35%. Subsequently, the co-expression with pRARE boosted the target protein up to 1.93 mg/mL. Finally, by scaling up production of WSSV355 in the fermenter with sufficient oxygen supplied, the biomass and total and soluble protein were enhanced 67.6%, 44.9%, and 7.8% compared with that in flask condition. Herein, the current approach provides efficacious solutions to produce toxic proteins via codon usage, strain selection, and processing optimization by alleviating the burden and boosting protein production in E. coli.
Collapse
Affiliation(s)
- Po-Yen Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
11
|
Ferdous S, Dasgupta T, Annamalai T, Tan K, Tse-Dinh YC. The interaction between transport-segment DNA and topoisomerase IA-crystal structure of MtbTOP1 in complex with both G- and T-segments. Nucleic Acids Res 2022; 51:349-364. [PMID: 36583363 PMCID: PMC9841409 DOI: 10.1093/nar/gkac1205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Each catalytic cycle of type IA topoisomerases has been proposed to comprise multistep reactions. The capture of the transport-segment DNA (T-segment) into the central cavity of the N-terminal toroidal structure is an important action, which is preceded by transient gate-segment (G-segment) cleavage and succeeded by G-segment religation for the relaxation of negatively supercoiled DNA and decatenation of DNA. The T-segment passage in and out of the central cavity requires significant domain-domain rearrangements, including the movement of D3 relative to D1 and D4 for the opening and closing of the gate towards the central cavity. Here we report a direct observation of the interaction of a duplex DNA in the central cavity of a type IA topoisomerase and its associated domain-domain conformational changes in a crystal structure of a Mycobacterium tuberculosis topoisomerase I complex that also has a bound G-segment. The duplex DNA within the central cavity illustrates the non-sequence-specific interplay between the T-segment DNA and the enzyme. The rich structural information revealed from the novel topoisomerase-DNA complex, in combination with targeted mutagenesis studies, provides new insights into the mechanism of the topoisomerase IA catalytic cycle.
Collapse
Affiliation(s)
| | | | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA,Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA
| | - Kemin Tan
- Correspondence may also be addressed to Kemin Tan. Tel: +1 630 252 3948;
| | | |
Collapse
|
12
|
Plasmids for Controlled and Tunable High-Level Expression in E. coli. Appl Environ Microbiol 2022; 88:e0093922. [PMID: 36342148 PMCID: PMC9680613 DOI: 10.1128/aem.00939-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic systems for protein overexpression are required tools in microbiological and biochemical research. Ideally, these systems include standardized genetic parts with predictable behavior, enabling the construction of stable expression systems in the host organism.
Collapse
|
13
|
Sri Wahyu Effendi S, Lin JY, Ng IS. Simultaneous carbon dioxide sequestration and utilization for cadaverine production using dual promoters in engineered Escherichia coli strains. BIORESOURCE TECHNOLOGY 2022; 363:127980. [PMID: 36137445 DOI: 10.1016/j.biortech.2022.127980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Human carbonic anhydrase II (hCAII) is a rapid-acting zinc-metalloenzyme that catalyzes CO2 hydration reversibly, with encouraging applications in carbon capture, sequestration, and utilization (CCSU). However, biocatalyst durability is a major challenge. Herein, hCAII is emphasized in 4 different Escherichia coli strains and designated under dual promoters from sigma factor 70 (σ70) and heat shock protein (HSP70A) to suppress the usage of inducer and stimulate activity in heat environments. As a result, hCAII under high-efficient dual promoters regulation retained high residual activity in CO2 biomineralization of 68.8 % after 4 cycles at 40 °C. Moreover, co-expression of CAC9 with lysine decarboxylase (CadA) simultaneously sequestered CO2 release up to 95.7 % and increased cadaverine titer from 18.0 to 36.7 g/L by using E. coli MG1655. The remnant biomass from cadaverine synthesis sustained converting CO2 to 57.9 mg-CaCO3. Thus, the dual promoters design demonstrated the promising potential for CCSU through simultaneous CO2 utilization and cadaverine synthesis.
Collapse
Affiliation(s)
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
14
|
McElwain L, Phair K, Kealey C, Brady D. Current trends in biopharmaceuticals production in Escherichia coli. Biotechnol Lett 2022; 44:917-931. [PMID: 35796852 DOI: 10.1007/s10529-022-03276-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
Since the manufacture of the first biotech product for a fledgling biopharmaceutical industry in 1982, Escherichia coli, has played an important role in the industrial production of recombinant proteins. It is now 40 years since the introduction of Humulin® for the treatment of diabetes. E. coli remains an important production host, its use as a cell factory is well established and it has become the most popular expression platform particularly for non-glycosylated therapeutic proteins. A number of significant inherent obstacles in the use of prokaryotic expression systems to produce biologics has always restricted production. These include codon usage, the absence of post-translational modifications and proteolytic processing at the cell envelope. In this review, we reflect on the contribution that this model organism has made in the production of new biotech products for human medicine. This will include new advancements in the E. coli expression system to meet the biotechnology industry requirements, such as novel engineered strains to glycosylate heterologous proteins, add disulphide bonds and express complex proteins. The biopharmaceutical market is growing rapidly, with two production systems competing for market dominance: mammalian cells and microorganisms. In the past 10 years, with increased growth of antibody-based therapies, mammalian hosts particularly CHO cells have dominated. However, with new antibody like scaffolds and mimetics emerging as future proteins of interest, E. coli has again the opportunity to be the selected as the production system of choice.
Collapse
Affiliation(s)
- L McElwain
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland
| | - K Phair
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland
| | - C Kealey
- Department of Pharmaceutical Sciences and Biotechnology, Technical University of the Shannon: Midlands Midwest, Athlone Campus, Dublin Road, Kilmacuagh, Athlone, N37 HD68, County Westmeath, Ireland
| | - D Brady
- EnviroCORE, Department of Applied Science, South East Technological University, SETU Carlow, Kilkenny Road, Carlow, R93V960, Ireland.
| |
Collapse
|
15
|
Galluccio M, Console L, Pochini L, Scalise M, Giangregorio N, Indiveri C. Strategies for Successful Over-Expression of Human Membrane Transport Systems Using Bacterial Hosts: Future Perspectives. Int J Mol Sci 2022; 23:ijms23073823. [PMID: 35409183 PMCID: PMC8998559 DOI: 10.3390/ijms23073823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Ten percent of human genes encode for membrane transport systems, which are key components in maintaining cell homeostasis. They are involved in the transport of nutrients, catabolites, vitamins, and ions, allowing the absorption and distribution of these compounds to the various body regions. In addition, roughly 60% of FDA-approved drugs interact with membrane proteins, among which are transporters, often responsible for pharmacokinetics and side effects. Defects of membrane transport systems can cause diseases; however, knowledge of the structure/function relationships of transporters is still limited. Among the expression of hosts that produce human membrane transport systems, E. coli is one of the most favorable for its low cultivation costs, fast growth, handiness, and extensive knowledge of its genetics and molecular mechanisms. However, the expression in E. coli of human membrane proteins is often toxic due to the hydrophobicity of these proteins and the diversity in structure with respect to their bacterial counterparts. Moreover, differences in codon usage between humans and bacteria hamper translation. This review summarizes the many strategies exploited to achieve the expression of human transport systems in bacteria, providing a guide to help people who want to deal with this topic.
Collapse
Affiliation(s)
- Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy;
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, Arcavacata di Rende, 87036 Cosenza, Italy; (M.G.); (L.C.); (L.P.); (M.S.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy;
- Correspondence:
| |
Collapse
|
16
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Li ZJ, Zhang ZX, Xu Y, Shi TQ, Ye C, Sun XM, Huang H. CRISPR-Based Construction of a BL21 (DE3)-Derived Variant Strain Library to Rapidly Improve Recombinant Protein Production. ACS Synth Biol 2022; 11:343-352. [PMID: 34919397 DOI: 10.1021/acssynbio.1c00463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli BL21 (DE3) is the most widely used host for recombinant protein expression. However, not every protein can be highly expressed in BL21 (DE3), so individual optimization strategies are often required for different proteins, which is time-consuming and difficult to apply rapidly for industrial production. Constructing more hosts is a good choice to enrich protein expression selection. The expression level of T7 RNAP is the core control node of the pET expression system, so regulating its expression level is an effective way of improving the production of difficult-to-express proteins. Various BL21 (DE3)-derived variant hosts with different translation levels of T7 RNAP could be obtained by changing the ribosomal binding site (RBS) sequences of T7 RNAP in a genome. Here, a BL21 (DE3)-derived variant strain library with different RBS sequences of T7 RNAP was constructed using a base editor and CRISPR-Cas9. Notably, the CRISPR-Cas9 system combined with degenerate primers enabled the construction of an RBS library with 87.5% of the theoretical coverage in single editing, which is more convenient and efficient than the use of a base editor. The expression level of a target gene in the variant strain library ranged from 28 to 220% of the parental strain. Furthermore, a high-throughput host-screening platform for recombinant protein production was constructed, which enabled us to obtain the best expression host for certain target proteins in only 3 days. As a proof of concept, the production of all eight difficult-to-express proteins was greatly improved, including autolytic protein, membrane proteins, antimicrobial peptides, and hardly soluble proteins. Among them, the expression of glucose dehydrogenase in the best host exhibited a 298-fold increase compared to the parental strain. This strategy is simple and effective, requires no advanced equipment, and can be carried out in any laboratory.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Yan Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
18
|
Genetic and Biochemical Characterizations of aLhr1 Helicase in the Thermophilic Crenarchaeon Sulfolobus acidocaldarius. Catalysts 2021. [DOI: 10.3390/catal12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination (HR) refers to the process of information exchange between homologous DNA duplexes and is composed of four main steps: end resection, strand invasion and formation of a Holliday junction (HJ), branch migration, and resolution of the HJ. Within each step of HR in Archaea, the helicase-promoting branch migration is not fully understood. Previous biochemical studies identified three candidates for archaeal helicase promoting branch migration in vitro: Hjm/Hel308, PINA, and archaeal long helicase related (aLhr) 2. However, there is no direct evidence of their involvement in HR in vivo. Here, we identified a novel helicase encoded by Saci_0814, isolated from the thermophilic crenarchaeon Sulfolobus acidocaldarius; the helicase dissociated a synthetic HJ. Notably, HR frequency in the Saci_0814-deleted strain was lower than that of the parent strain (5-fold decrease), indicating that Saci_0814 may be involved in HR in vivo. Saci_0814 is classified as an aLhr1 under superfamily 2 helicases; its homologs are conserved among Archaea. Purified protein produced in Escherichia coli showed branch migration activity in vitro. Based on both genetic and biochemical evidence, we suggest that aLhr1 is involved in HR and may function as a branch migration helicase in S. acidocaldarius.
Collapse
|
19
|
Plasmid Curing and Exchange Using a Novel Counter-Selectable Marker Based on Unnatural Amino Acid Incorporation at a Sense Codon. Int J Mol Sci 2021; 22:ijms222111482. [PMID: 34768910 PMCID: PMC8583848 DOI: 10.3390/ijms222111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
A protocol was designed for plasmid curing using a novel counter-selectable marker, named pylSZK-pylT, in Escherichia coli. The pylSZK-pylT marker consists of the archaeal pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNApyl) with modification, and incorporates an unnatural amino acid (Uaa), Nε-benzyloxycarbonyl-l-lysine (ZK), at a sense codon in ribosomally synthesized proteins, resulting in bacterial growth inhibition or killing. Plasmid curing is performed by exerting toxicity on pylSZK-pylT located on the target plasmid, and selecting only proliferative bacteria. All tested bacteria obtained using this protocol had lost the target plasmid (64/64), suggesting that plasmid curing was successful. Next, we attempted to exchange plasmids with the identical replication origin and an antibiotic resistance gene without plasmid curing using a modified protocol, assuming substitution of plasmids complementing genomic essential genes. All randomly selected bacteria after screening had only the substitute plasmid and no target plasmid (25/25), suggesting that plasmid exchange was also accomplished. Counter-selectable markers based on PylRS-tRNApyl, such as pylSZK-pylT, may be scalable in application due to their independence from the host genotype, applicability to a wide range of species, and high tunability due to the freedom of choice of target codons and Uaa’s to be incorporated.
Collapse
|
20
|
Maggi S, Ferrari A, Yabre K, Bonini AA, Rivetti C, Folli C. Strategies to Investigate Membrane Damage, Nucleoid Condensation, and RNase Activity of Bacterial Toxin-Antitoxin Systems. Methods Protoc 2021; 4:mps4040071. [PMID: 34698227 PMCID: PMC8544347 DOI: 10.3390/mps4040071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022] Open
Abstract
A large number of bacterial toxin–antitoxin (TA) systems have been identified so far and different experimental approaches have been explored to investigate their activity and regulation both in vivo and in vitro. Nonetheless, a common feature of these methods is represented by the difficulty in cell transformation, culturing, and stability of the transformants, due to the expression of highly toxic proteins. Recently, in dealing with the type I Lpt/RNAII and the type II YafQ/DinJ TA systems, we encountered several of these problems that urged us to optimize methodological strategies to study the phenotype of recombinant Escherichia coli host cells. In particular, we have found conditions to tightly repress toxin expression by combining the pET expression system with the E. coli C41(DE3) pLysS strain. To monitor the RNase activity of the YafQ toxin, we developed a fluorescence approach based on Thioflavin-T which fluoresces brightly when complexed with bacterial RNA. Fluorescence microscopy was also applied to reveal loss of membrane integrity associated with the activity of the type I toxin Lpt, by using DAPI and ethidium bromide to selectively stain cells with impaired membrane permeability. We further found that atomic force microscopy can readily be employed to characterize toxin-induced membrane damages.
Collapse
Affiliation(s)
- Stefano Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.M.); (A.A.B.)
| | - Alberto Ferrari
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (A.F.); (K.Y.)
| | - Korotoum Yabre
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (A.F.); (K.Y.)
| | - Aleksandra Anna Bonini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.M.); (A.A.B.)
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.M.); (A.A.B.)
- Correspondence: (C.R.); (C.F.)
| | - Claudia Folli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (A.F.); (K.Y.)
- Correspondence: (C.R.); (C.F.)
| |
Collapse
|
21
|
Aguilar Lucero D, Cantoia A, Ceccarelli EA, Rosano GL. Starting a new recombinant protein production project in Escherichia coli. Methods Enzymol 2021; 659:3-18. [PMID: 34752291 DOI: 10.1016/bs.mie.2021.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the goals in recombinant protein production in Escherichia coli is to maximize productivity. High volumetric and specific yields can be reached after careful selection of expression strains and optimization of cultivation parameters. In this chapter, we review the many tools available to make the most out of this versatile microbial cell factory. Useful guidelines and options for troubleshooting production are presented.
Collapse
Affiliation(s)
- Dianela Aguilar Lucero
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejo Cantoia
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
22
|
Tailoring the evolution of BL21(DE3) uncovers a key role for RNA stability in gene expression toxicity. Commun Biol 2021; 4:963. [PMID: 34385596 PMCID: PMC8361080 DOI: 10.1038/s42003-021-02493-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Gene expression toxicity is an important biological phenomenon and a major bottleneck in biotechnology. Escherichia coli BL21(DE3) is the most popular choice for recombinant protein production, and various derivatives have been evolved or engineered to facilitate improved yield and tolerance to toxic genes. However, previous efforts to evolve BL21, such as the Walker strains C41 and C43, resulted only in decreased expression strength of the T7 system. This reveals little about the mechanisms at play and constitutes only marginal progress towards a generally higher producing cell factory. Here, we restrict the solution space for BL21(DE3) to evolve tolerance and isolate a mutant strain Evo21(DE3) with a truncation in the essential RNase E. This suggests that RNA stability plays a central role in gene expression toxicity. The evolved rne truncation is similar to a mutation previously engineered into the commercially available BL21Star(DE3), which challenges the existing assumption that this strain is unsuitable for expressing toxic proteins. We isolated another dominant mutation in a presumed substrate binding site of RNase E that improves protein production further when provided as an auxiliary plasmid. This makes it easy to improve other BL21 variants and points to RNases as prime targets for cell factory optimisation.
Collapse
|
23
|
Gennari A, Simon R, de Andrade BC, Saraiva Macedo Timmers LF, Milani Martins VL, Renard G, Chies JM, Volpato G, Volken de Souza CF. Production of beta-galactosidase fused to a cellulose-binding domain for application in sustainable industrial processes. BIORESOURCE TECHNOLOGY 2021; 326:124747. [PMID: 33517047 DOI: 10.1016/j.biortech.2021.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to produce and characterize a recombinant Kluyveromyces sp. β-galactosidase fused to a cellulose-binding domain (CBD) for industrial application. In expression assays, the highest enzymatic activities occurred after 48 h induction on Escherichia coli C41(DE3) strain at 20 °C in Terrific Broth (TB) culture medium, using isopropyl β-d-1-thiogalactopyranoside (IPTG) 0.5 mM (108.77 U/mL) or lactose 5 g/L (93.10 U/mL) as inducers. Cultures at bioreactor scale indicated that higher product yield values in relation to biomass (2000 U/g) and productivity (0.72 U/mL.h) were obtained in culture media containing higher protein concentration. The recombinant enzyme showed high binding affinity to nanocellulose, reaching both immobilization yield and efficiency values of approximately 70% at pH 7.0 after 10 min reaction. The results of the present study pointed out a strategy for recombinant β-galactosidase-CBD production and immobilization, aiming toward the application in sustainable industrial processes using low-cost inputs.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Bruna Coelho de Andrade
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Vera Lúcia Milani Martins
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Centro de Pesquisa em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
24
|
James J, Yarnall B, Koranteng A, Gibson J, Rahman T, Doyle DA. Protein over-expression in Escherichia coli triggers adaptation analogous to antimicrobial resistance. Microb Cell Fact 2021; 20:13. [PMID: 33430875 PMCID: PMC7798265 DOI: 10.1186/s12934-020-01462-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The E. coli pET system is the most widely used protein over-expression system worldwide. It relies on the assumption that all cells produce target protein and it is generally believed that integral membrane protein (IMP) over-expression is more toxic than their soluble counterparts. RESULTS Using GFP-tagged proteins, high level over-expression of either soluble or IMP targets results in > 99.9% cell loss with survival rate of only < 0.03%. Selective pressure generates three phenotypes: large green, large white and small colony variants. As a result, in overnight cultures, ~ 50% of the overall cell mass produces no protein. Genome sequencing of the phenotypes revealed genomic mutations that causes either the loss of T7 RNAP activity or its transcriptional downregulation. The over-expression process is bactericidal and is observed for both soluble and membrane proteins. CONCLUSIONS We demonstrate that it is the act of high-level over-expression of exogenous proteins in E. coli that sets in motion a chain of events leading to > 99.9% cell death. These results redefine our understanding of protein over-production and link it to the adaptive survival response seen in the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Jack James
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Benjamin Yarnall
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Andy Koranteng
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Tahmina Rahman
- Queen Alexandra Hospital, Portsmouth Hospital University NHS Trust, Cosham, Portsmouth, PO6 3LY, UK
| | - Declan A Doyle
- School of Biological Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK.
| |
Collapse
|
25
|
Schuller A, Cserjan-Puschmann M, Köppl C, Grabherr R, Wagenknecht M, Schiavinato M, Dohm JC, Himmelbauer H, Striedner G. Adaptive Evolution in Producing Microtiter Cultivations Generates Genetically Stable Escherichia coli Production Hosts for Continuous Bioprocessing. Biotechnol J 2020; 16:e2000376. [PMID: 33084246 DOI: 10.1002/biot.202000376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Indexed: 01/01/2023]
Abstract
The production of recombinant proteins usually reduces cell fitness and the growth rate of producing cells. The growth disadvantage favors faster-growing non-producer mutants. Therefore, continuous bioprocessing is hardly feasible in Escherichia coli due to the high escape rate. The stability of E. coli expression systems under long-term production conditions and how metabolic load triggered by recombinant gene expression influences the characteristics of mutations are investigated. Iterated fed-batch-like microbioreactor cultivations are conducted under production conditions. The easy-to-produce green fluorescent protein (GFP) and a challenging antigen-binding fragment (Fab) are used as model proteins, and BL21(DE3) and BL21Q strains as expression hosts. In comparative whole-genome sequencing analyses, mutations that allowed cells to grow unhindered despite recombinant protein production are identified. A T7 RNA polymerase expression system is only conditionally suitable for long-term cultivation under production conditions. Mutations leading to non-producers occur in either the T7 RNA polymerase gene or the T7 promoter. The host RNA polymerase-based BL21Q expression system remains stable in the production of GFP in long-term cultivations. For the production of Fab, mutations in lacI of the BL21Q derivatives have positive effects on long-term stability. The results indicate that adaptive evolution carried out with genome-integrated E. coli expression systems in microtiter cultivations under industrial-relevant production conditions is an efficient strain development tool for production hosts.
Collapse
Affiliation(s)
- Artur Schuller
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Christoph Köppl
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Reingard Grabherr
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, A-1120, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, A-1190, Austria
| |
Collapse
|
26
|
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020; 49:7602-7626. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.
| | | |
Collapse
|
27
|
Sun XM, Zhang ZX, Wang LR, Wang JG, Liang Y, Yang HF, Tao RS, Jiang Y, Yang JJ, Yang S. Downregulation of T7 RNA polymerase transcription enhances pET-based recombinant protein production in Escherichia coli BL21 (DE3) by suppressing autolysis. Biotechnol Bioeng 2020; 118:153-163. [PMID: 32897579 DOI: 10.1002/bit.27558] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022]
Abstract
Escherichia coli BL21 (DE3) is an excellent and widely used host for recombinant protein production. Many variant hosts were developed from BL21 (DE3), but improving the expression of specific proteins remains a major challenge in biotechnology. In this study, we found that when BL21 (DE3) overexpressed glucose dehydrogenase (GDH), a significant industrial enzyme, severe cell autolysis was induced. Subsequently, we observed this phenomenon in the expression of 10 other recombinant proteins. This precludes a further increase of the produced enzyme activity by extending the fermentation time, which is not conducive to the reduction of industrial enzyme production costs. Analysis of membrane structure and messenger RNA expression analysis showed that cells could underwent a form of programmed cell death (PCD) during the autolysis period. However, blocking three known PCD pathways in BL21 (DE3) did not completely alleviate autolysis completely. Consequently, we attempted to develop a strong expression host resistant to autolysis by controlling the speed of recombinant protein expression. To find a more suitable protein expression rate, the high- and low-strength promoter lacUV5 and lac were shuffled and recombined to yield the promoter variants lacUV5-1A and lac-1G. The results showed that only one base in lac promoter needs to be changed, and the A at the +1 position was changed to a G, resulting in the improved host BL21 (DE3-lac1G), which resistant to autolysis. As a consequence, the GDH activity at 43 h was greatly increased from 37.5 to 452.0 U/ml. In scale-up fermentation, the new host was able to produce the model enzyme with a high rate of 89.55 U/ml/h at 43 h, compared to only 3 U/ml/h achieved using BL21 (DE3). Importantly, BL21 (DE3-lac1G) also successfully improved the production of 10 other enzymes. The engineered E. coli strain constructed in this study conveniently optimizes recombinant protein overexpression by suppressing cell autolysis, and shows great potential for industrial applications.
Collapse
Affiliation(s)
- Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | | | - Yan Liang
- HuaRui Biotechnology Company, Huzhou, Zhejiang, China
| | - Hai-Feng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong-Sheng Tao
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, Zhejiang, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, Zhejiang, China
| | - Jun-Jie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, Zhejiang, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, Zhejiang, China
| |
Collapse
|
28
|
Li Z, Rinas U. Recombinant protein production associated growth inhibition results mainly from transcription and not from translation. Microb Cell Fact 2020; 19:83. [PMID: 32252765 PMCID: PMC7137236 DOI: 10.1186/s12934-020-01343-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recombinant protein production can be stressful to the host organism. The extent of stress is determined by the specific properties of the recombinant transcript and protein, by the rates of transcription and translation, and by the environmental conditions encountered during the production process. RESULTS The impact of the transcription of the T7-promoter controlled genes encoding human basic fibroblast growth factor (hFGF-2) and green fluorescent protein (GFP) as well as the translation into the recombinant protein on the growth properties of the production host E. coli BL21(DE3) were investigated. This was done by using expression vectors where the promoter region or the ribosome binding site(s) or both were removed. It is shown that already transcription without protein translation imposes a metabolic burden on the host cell. Translation of the transcript into large amounts of a properly folded protein does not show any effect on cell growth in the best case, e.g. high-level production of GFP in Luria-Bertani medium. However, translation appears to contribute to the metabolic burden if it is connected to protein folding associated problems, e.g. inclusion body formation. CONCLUSION The so-called metabolic burden of recombinant protein production is mainly attributed to transcription but can be enhanced through translation and those processes following translation (e.g. protein folding and degradation, heat-shock responses).
Collapse
Affiliation(s)
- Zhaopeng Li
- Leibniz University of Hannover, Technical Chemistry-Life Science, Callinstr. 5, 30167 Hannover, Germany
| | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry-Life Science, Callinstr. 5, 30167 Hannover, Germany
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
| |
Collapse
|
29
|
Engineering Biology to Construct Microbial Chassis for the Production of Difficult-to-Express Proteins. Int J Mol Sci 2020; 21:ijms21030990. [PMID: 32024292 PMCID: PMC7037952 DOI: 10.3390/ijms21030990] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
A large proportion of the recombinant proteins manufactured today rely on microbe-based expression systems owing to their relatively simple and cost-effective production schemes. However, several issues in microbial protein expression, including formation of insoluble aggregates, low protein yield, and cell death are still highly recursive and tricky to optimize. These obstacles are usually rooted in the metabolic capacity of the expression host, limitation of cellular translational machineries, or genetic instability. To this end, several microbial strains having precisely designed genomes have been suggested as a way around the recurrent problems in recombinant protein expression. Already, a growing number of prokaryotic chassis strains have been genome-streamlined to attain superior cellular fitness, recombinant protein yield, and stability of the exogenous expression pathways. In this review, we outline challenges associated with heterologous protein expression, some examples of microbial chassis engineered for the production of recombinant proteins, and emerging tools to optimize the expression of heterologous proteins. In particular, we discuss the synthetic biology approaches to design and build and test genome-reduced microbial chassis that carry desirable characteristics for heterologous protein expression.
Collapse
|
30
|
Karyolaimos A, Dolata KM, Antelo-Varela M, Mestre Borras A, Elfageih R, Sievers S, Becher D, Riedel K, de Gier JW. Escherichia coli Can Adapt Its Protein Translocation Machinery for Enhanced Periplasmic Recombinant Protein Production. Front Bioeng Biotechnol 2020; 7:465. [PMID: 32064253 PMCID: PMC7000420 DOI: 10.3389/fbioe.2019.00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, we engineered a tunable rhamnose promoter-based setup for the production of recombinant proteins in E. coli. This setup enabled us to show that being able to precisely set the production rate of a secretory recombinant protein is critical to enhance protein production yields in the periplasm. It is assumed that precisely setting the production rate of a secretory recombinant protein is required to harmonize its production rate with the protein translocation capacity of the cell. Here, using proteome analysis we show that enhancing periplasmic production of human Growth Hormone (hGH) using the tunable rhamnose promoter-based setup is accompanied by increased accumulation levels of at least three key players in protein translocation; the peripheral motor of the Sec-translocon (SecA), leader peptidase (LepB), and the cytoplasmic membrane protein integrase/chaperone (YidC). Thus, enhancing periplasmic hGH production leads to increased Sec-translocon capacity, increased capacity to cleave signal peptides from secretory proteins and an increased capacity of an alternative membrane protein biogenesis pathway, which frees up Sec-translocon capacity for protein secretion. When cells with enhanced periplasmic hGH production yields were harvested and subsequently cultured in the absence of inducer, SecA, LepB, and YidC levels went down again. This indicates that when using the tunable rhamnose-promoter system to enhance the production of a protein in the periplasm, E. coli can adapt its protein translocation machinery for enhanced recombinant protein production in the periplasm.
Collapse
Affiliation(s)
- Alexandros Karyolaimos
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | | | | | - Anna Mestre Borras
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Rageia Elfageih
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Susanne Sievers
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
31
|
Gasperotti A, Brameyer S, Fabiani F, Jung K. Phenotypic heterogeneity of microbial populations under nutrient limitation. Curr Opin Biotechnol 2019; 62:160-167. [PMID: 31698311 DOI: 10.1016/j.copbio.2019.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022]
Abstract
Phenotypic heterogeneity is a phenomenon in which genetically identical individuals have different characteristics. This behavior can also be found in bacteria, even if they grow as monospecies in well-mixed environments such as bioreactors. Here it is discussed how phenotypic heterogeneity is generated by internal factors and how it is promoted under nutrient-limited growth conditions. A better understanding of the molecular levels that control phenotypic heterogeneity could improve biotechnological production processes.
Collapse
Affiliation(s)
- Ana Gasperotti
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Florian Fabiani
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Kirsten Jung
- Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
32
|
Rosano GL, Morales ES, Ceccarelli EA. New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Sci 2019; 28:1412-1422. [PMID: 31219641 PMCID: PMC6635841 DOI: 10.1002/pro.3668] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
The production of proteins in sufficient amounts is key for their study or use as biotherapeutic agents. Escherichia coli is the host of choice for recombinant protein production given its fast growth, easy manipulation, and cost-effectiveness. As such, its protein production capabilities are continuously being improved. Also, the associated tools (such as plasmids and cultivation conditions) are subject of ongoing research to optimize product yield. In this work, we review the latest advances in recombinant protein production in E. coli.
Collapse
Affiliation(s)
- Germán L. Rosano
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| | - Enrique S. Morales
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| | - Eduardo A. Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET. Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
| |
Collapse
|
33
|
Claassens NJ, Finger-Bou M, Scholten B, Muis F, de Groot JJ, de Gier JW, de Vos WM, van der Oost J. Bicistronic Design-Based Continuous and High-Level Membrane Protein Production in Escherichia coli. ACS Synth Biol 2019; 8:1685-1690. [PMID: 31264406 PMCID: PMC6646956 DOI: 10.1021/acssynbio.9b00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Escherichia coli has been widely used as a platform microorganism for both membrane protein production and cell factory engineering. The current methods to produce membrane proteins in this organism require the induction of target gene expression and often result in unstable, low yields. Here, we present a method combining a constitutive promoter with a library of bicistronic design (BCD) elements, which enables inducer-free, tuned translation initiation for optimal protein production. Our system mediates stable, constitutive production of bacterial membrane proteins at yields that outperform those obtained with E. coli Lemo21(DE3), the current gold standard for bacterial membrane protein production. We envisage that the continuous, fine-tunable, and high-level production of membrane proteins by our method will greatly facilitate their study and their utilization in engineering cell factories.
Collapse
Affiliation(s)
- Nico J. Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Max Finger-Bou
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Bart Scholten
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Frederieke Muis
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jonas J. de Groot
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, FI-00014, Helsinki, Finland
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
34
|
Rugbjerg P, Sommer MOA. Overcoming genetic heterogeneity in industrial fermentations. Nat Biotechnol 2019; 37:869-876. [DOI: 10.1038/s41587-019-0171-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
|
35
|
Mutations in sigma 70 transcription factor improves expression of functional eukaryotic membrane proteins in Escherichia coli. Sci Rep 2019; 9:2483. [PMID: 30792443 PMCID: PMC6384906 DOI: 10.1038/s41598-019-39492-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic integral membrane proteins (IMPs) are difficult to study due to low functional expression levels. To investigate factors for efficient biogenesis of eukaryotic IMPs in the prokaryotic model organism Escherichia coli, important, e.g., for isotope-labeling for NMR, we selected for E. coli cells expressing high levels of functional G protein-coupled receptors (GPCRs) by FACS. Utilizing an E. coli strain library with all non-essential genes systematically deleted, we unexpectedly discovered upon whole-genome sequencing that the improved phenotype was not conferred by the deleted genes but by various subtle alterations in the “housekeeping” sigma 70 factor (RpoD). When analyzing effects of the rpoD mutations at the transcriptome level we found that toxic effects incurred on wild-type E. coli during receptor expression were diminished by two independent and synergistic effects: a slower but longer-lasting GPCR biosynthesis and an optimized transcriptional pattern, augmenting growth and expression at low temperature, setting the basis for further bacterial strain engineering.
Collapse
|
36
|
Dong Y, Ng E, Lu J, Fenwick T, Tao Y, Bertain S, Sandoval M, Bermudez E, Hou Z, Patten P, Lassner M, Siehl D. Desensitizing plant EPSP synthase to glyphosate: Optimized global sequence context accommodates a glycine-to-alanine change in the active site. J Biol Chem 2019; 294:716-725. [PMID: 30425098 PMCID: PMC6333898 DOI: 10.1074/jbc.ra118.006134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/08/2018] [Indexed: 12/25/2022] Open
Abstract
5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the transfer of a carboxyvinyl group from phosphoenolpyruvate (PEP) to shikimate-3-phosphate and in plants is the target of the herbicide glyphosate. EPSPSs with high catalytic efficiency and insensitivity to glyphosate are of microbial origin, including the enzyme from Agrobacterium strain CP4, in which insensitivity is conferred by an active site alanine. In the sequence context of plant EPSPSs, alanine in place of glycine at the equivalent position interferes with the binding of both glyphosate and PEP. We show here that iterative optimization of maize EPSPS containing the G101A substitution yielded variants on par with CP4 in terms of catalytic activity in the presence of glyphosate. The improvement relative to G101A alone was entirely due to reduction in Km for PEP from 333 to 18 μm, versus 9.5 μm for native maize EPSPS. A large portion of the reduction in Km was conferred by two down-sizing substitutions (L97C and V332A) within 8 Å of glyphosate, which together reduced Km for PEP to 43 μm Although the original optimization was conducted with maize EPSPS, contextually homologous substitutions conferred similar properties to the EPSPSs of other crops. We also discovered a variant having the known glyphosate-desensitizing substitution P106L plus three additional ones that reduced the Km for PEP from 47 μm, observed with P106L alone, to 10.3 μm The improvements obtained with both Ala101 and Leu106 have implications regarding glyphosate-tolerant crops and weeds.
Collapse
Affiliation(s)
- Yuxia Dong
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Emily Ng
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Jian Lu
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Tamara Fenwick
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Yumin Tao
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Sean Bertain
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Marian Sandoval
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Ericka Bermudez
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Zhenglin Hou
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Phil Patten
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Michael Lassner
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| | - Daniel Siehl
- From Corteva Agriscience, Agriculture Division of DowDuPont, Hayward, California 94545
| |
Collapse
|
37
|
Kang MK, Tullman-Ercek D. Engineering expression and function of membrane proteins. Methods 2018; 147:66-72. [DOI: 10.1016/j.ymeth.2018.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 01/18/2023] Open
|
38
|
Mittal P, Brindle J, Stephen J, Plotkin JB, Kudla G. Codon usage influences fitness through RNA toxicity. Proc Natl Acad Sci U S A 2018; 115:8639-8644. [PMID: 30082392 PMCID: PMC6112741 DOI: 10.1073/pnas.1810022115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Many organisms are subject to selective pressure that gives rise to unequal usage of synonymous codons, known as codon bias. To experimentally dissect the mechanisms of selection on synonymous sites, we expressed several hundred synonymous variants of the GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was toxic to E. coli Unlike previously studied effects of synonymous mutations, the effect that we discovered is independent of translation, but it depends on the production of toxic mRNA molecules. We identified RNA sequence determinants of toxicity and evolved suppressor strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these suppressor strains revealed a cluster of promoter mutations that prevented toxicity by reducing mRNA levels. We conclude that translation-independent RNA toxicity is a previously unrecognized obstacle in bacterial gene expression.
Collapse
Affiliation(s)
- Pragya Mittal
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
| | - James Brindle
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
| | - Julie Stephen
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom
| | - Joshua B Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Grzegorz Kudla
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU Edinburgh, United Kingdom;
| |
Collapse
|
39
|
Karyolaimos A, Ampah-Korsah H, Zhang Z, de Gier JW. Shaping Escherichia coli for recombinant membrane protein production. FEMS Microbiol Lett 2018; 365:5040224. [DOI: 10.1093/femsle/fny152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/18/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Alexandros Karyolaimos
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Sv. Arrheniusväg 16C, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Henry Ampah-Korsah
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Sv. Arrheniusväg 16C, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Zhe Zhang
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Sv. Arrheniusväg 16C, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Sv. Arrheniusväg 16C, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
40
|
Angius F, Ilioaia O, Amrani A, Suisse A, Rosset L, Legrand A, Abou-Hamdan A, Uzan M, Zito F, Miroux B. A novel regulation mechanism of the T7 RNA polymerase based expression system improves overproduction and folding of membrane proteins. Sci Rep 2018; 8:8572. [PMID: 29872064 PMCID: PMC5988807 DOI: 10.1038/s41598-018-26668-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/04/2018] [Indexed: 02/03/2023] Open
Abstract
Membrane protein (MP) overproduction is one of the major bottlenecks in structural genomics and biotechnology. Despite the emergence of eukaryotic expression systems, bacteria remain a cost effective and powerful tool for protein production. The T7 RNA polymerase (T7RNAP)-based expression system is a successful and efficient expression system, which achieves high-level production of proteins. However some foreign MPs require a fine-tuning of their expression to minimize the toxicity associated with their production. Here we report a novel regulation mechanism for the T7 expression system. We have isolated two bacterial hosts, namely C44(DE3) and C45(DE3), harboring a stop codon in the T7RNAP gene, whose translation is under the control of the basal nonsense suppressive activity of the BL21(DE3) host. Evaluation of hosts with superfolder green fluorescent protein (sfGFP) revealed an unprecedented tighter control of transgene expression with a marked accumulation of the recombinant protein during stationary phase. Analysis of a collection of twenty MP fused to GFP showed an improved production yield and quality of several bacterial MPs and of one human monotopic MP. These mutant hosts are complementary to the other existing T7 hosts and will increase the versatility of the T7 expression system.
Collapse
Affiliation(s)
- Federica Angius
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Oana Ilioaia
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Amira Amrani
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Annabelle Suisse
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France.,Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, USA
| | - Lindsay Rosset
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Amélie Legrand
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Abbas Abou-Hamdan
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France.,Institut de Biologie Intégrative de la Cellule, CNRS, Gif sur Yvette, France
| | - Marc Uzan
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Francesca Zito
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
41
|
Optimizing Recombinant Protein Production in the Escherichia coli Periplasm Alleviates Stress. Appl Environ Microbiol 2018; 84:AEM.00270-18. [PMID: 29654183 DOI: 10.1128/aem.00270-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/08/2018] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, many recombinant proteins are produced in the periplasm. To direct these proteins to this compartment, they are equipped with an N-terminal signal sequence so that they can traverse the cytoplasmic membrane via the protein-conducting Sec translocon. Recently, using the single-chain variable antibody fragment BL1, we have shown that harmonizing the target gene expression intensity with the Sec translocon capacity can be used to improve the production yields of a recombinant protein in the periplasm. Here, we have studied the consequences of improving the production of BL1 in the periplasm by using a proteomics approach. When the target gene expression intensity is not harmonized with the Sec translocon capacity, the impaired translocation of secretory proteins, protein misfolding/aggregation in the cytoplasm, and an inefficient energy metabolism result in poor growth and low protein production yields. The harmonization of the target gene expression intensity with the Sec translocon capacity results in normal growth, enhanced protein production yields, and, surprisingly, a composition of the proteome that is-besides the produced target-the same as that of cells with an empty expression vector. Thus, the single-chain variable antibody fragment BL1 can be efficiently produced in the periplasm without causing any notable detrimental effects to the production host. Finally, we show that under the optimized conditions, a small fraction of the target protein is released into the extracellular milieu via outer membrane vesicles. We envisage that our observations can be used to design strategies to further improve the production of secretory recombinant proteins in E. coliIMPORTANCE The bacterium Escherichia coli is widely used to produce recombinant proteins. Usually, trial-and-error-based screening approaches are used to identify conditions that lead to high recombinant protein production yields. Here, for the production of an antibody fragment in the periplasm of E. coli, we show that an optimization of its production is accompanied by the alleviation of stress. This indicates that the monitoring of stress responses could be used to facilitate enhanced recombinant protein production yields.
Collapse
|
42
|
Abstract
Plasmids are highly useful tools for studying living cells and for heterologous expression of genes and pathways in cell factories. Standardized tools and operating procedures for handling such DNA vectors are core principles in synthetic biology. Here, we describe protocols for molecular cloning and exchange of genetic parts in the Standard European Vectors Architecture (SEVA) vector system. Additionally, to facilitate rapid testing and iterative bioengineering using different vector designs, we provide a one-step protocol for a universal CRISPR-Cas9-based plasmid curing system (pFREE) and demonstrate the application of this system to cure SEVA constructs (all vectors are available at SEVA/Addgene).
Collapse
Affiliation(s)
- Ida Lauritsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Se Hyeuk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Porse
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Morten H H Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
43
|
A Single-Cell View of the BtsSR/YpdAB Pyruvate Sensing Network in Escherichia coli and Its Biological Relevance. J Bacteriol 2017; 200:JB.00536-17. [PMID: 29038258 DOI: 10.1128/jb.00536-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
Fluctuating environments and individual physiological diversity force bacteria to constantly adapt and optimize the uptake of substrates. We focus here on two very similar two-component systems (TCSs) of Escherichia coli belonging to the LytS/LytTR family: BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB. Both TCSs respond to extracellular pyruvate, albeit with different affinities, typically during postexponential growth, and each system regulates expression of a single transporter gene, yjiY and yhjX, respectively. To obtain insights into the biological significance of these TCSs, we analyzed the activation of the target promoters at the single-cell level. We found unimodal cell-to-cell variability; however, the degree of variance was strongly influenced by the available nutrients and differed between the two TCSs. We hypothesized that activation of either of the TCSs helps individual cells to replenish carbon resources. To test this hypothesis, we compared wild-type cells with the btsSR ypdAB mutant under two metabolically modulated conditions: protein overproduction and persister formation. Although all wild-type cells were able to overproduce green fluorescent protein (GFP), about half of the btsSR ypdAB population was unable to overexpress GFP. Moreover, the percentage of persister cells, which tolerate antibiotic stress, was significantly lower in the wild-type cells than in the btsSR ypdAB population. Hence, we suggest that the BtsS/BtsR and YpdA/YpdB network contributes to a balancing of the physiological state of all cells within a population.IMPORTANCE Histidine kinase/response regulator (HK/RR) systems enable bacteria to respond to environmental and physiological fluctuations. Escherichia coli and other members of the Enterobacteriaceae possess two similar LytS/LytTR-type HK/RRs, BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB, which form a functional network. Both systems are activated in response to external pyruvate, typically when cells face overflow metabolism during post-exponential growth. Single-cell analysis of the activation of their respective target genes yjiY and yhjX revealed cell-to-cell variability, and the range of variation was strongly influenced by externally available nutrients. Based on the phenotypic characterization of a btsSR ypdAB mutant compared to the parental strain, we suggest that this TCS network supports an optimization of the physiological state of the individuals within the population.
Collapse
|
44
|
Improving membrane protein expression and function using genomic edits. Sci Rep 2017; 7:13030. [PMID: 29026162 PMCID: PMC5638813 DOI: 10.1038/s41598-017-12901-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022] Open
Abstract
Expression of membrane proteins often leads to growth inhibition and perturbs central metabolism and this burden varies with the protein being overexpressed. There are also known strain backgrounds that allow greater expression of membrane proteins but that differ in efficacy across proteins. We hypothesized that for any membrane protein, it may be possible to identify a modified strain background where its expression can be accommodated with less burden. To directly test this hypothesis, we used a bar-coded transposon insertion library in tandem with cell sorting to assess genome-wide impact of gene deletions on membrane protein expression. The expression of five membrane proteins (CyoB, CydB, MdlB, YidC, and LepI) and one soluble protein (GST), each fused to GFP, was examined. We identified Escherichia coli mutants that demonstrated increased membrane protein expression relative to that in wild type. For two of the proteins (CyoB and CydB), we conducted functional assays to confirm that the increase in protein expression also led to phenotypic improvement in function. This study represents a systematic approach to broadly identify genetic loci that can be used to improve membrane protein expression, and our method can be used to improve expression of any protein that poses a cellular burden.
Collapse
|
45
|
Lin CH, Pan YC, Liu FW, Chen CY. Prokaryotic expression and action mechanism of antimicrobial LsGRP1 C recombinant protein containing a fusion partner of small ubiquitin-like modifier. Appl Microbiol Biotechnol 2017; 101:8129-8138. [PMID: 28965249 DOI: 10.1007/s00253-017-8530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) are peptides exhibiting broad-spectrum antimicrobial activities and considered as potential therapeutic agents. LsGRP1C, a novel AMP derived from defense-related LsGRP1 protein of Lilium, was proven to inhibit kinds of bacteria and fungi via alteration of microbial membrane permeability and induction of fungal programmed cell death-like phenomena by in vitro assays using synthetic LsGRP1C. In this study, the prokaryotic production of LsGRP1C recombinant protein containing an N-terminal fusion partner of the yeast small ubiquitin-like modifier (SUMO) was achieved by using optimized Escherichia coli host and purification buffer system, which lead to a high yield of soluble SUMO-LsGRP1C fusion protein. In vitro assay revealed that E. coli-expressed SUMO-LsGRP1C exhibited even better antifungal activity as compared to synthetic LsGRP1C. Meanwhile, the ability of SUMO-LsGRP1C in conducting fungal membrane permeabilization and programmed cell death was verified by SYTOX Green staining and 4',6-diamidino-2-phenylindole staining/terminal deoxynucleotidyl transferase dUTP nick-end labeling assays, respectively, indicating that E. coli-expressed SUMO-LsGRP1C shares identical modes of action with synthetic LsGRP1C. Herein, this E. coli expression system enables the effective and convenient production of antimicrobial LsGRP1C in a form of SUMO-fused recombinant protein.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China
| | - Ying-Chieh Pan
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China
| | - Fang-Wei Liu
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, Republic of China.
| |
Collapse
|
46
|
Claassens NJ, Siliakus MF, Spaans SK, Creutzburg SCA, Nijsse B, Schaap PJ, Quax TEF, van der Oost J. Improving heterologous membrane protein production in Escherichia coli by combining transcriptional tuning and codon usage algorithms. PLoS One 2017; 12:e0184355. [PMID: 28902855 PMCID: PMC5597330 DOI: 10.1371/journal.pone.0184355] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/22/2017] [Indexed: 12/27/2022] Open
Abstract
High-level, recombinant production of membrane-integrated proteins in Escherichia coli is extremely relevant for many purposes, but has also been proven challenging. Here we study a combination of transcriptional fine-tuning in E. coli LEMO21(DE3) with different codon usage algorithms for heterologous production of membrane proteins. The overexpression of 6 different membrane proteins is compared for the wild-type gene codon usage variant, a commercially codon-optimized variant, and a codon-harmonized variant. We show that transcriptional fine-tuning plays a major role in improving the production of all tested proteins. Moreover, different codon usage variants significantly improved production of some of the tested proteins. However, not a single algorithm performed consistently best for the membrane-integrated production of the 6 tested proteins. In conclusion, for improving heterologous membrane protein production in E. coli, the major effect is accomplished by transcriptional tuning. In addition, further improvements may be realized by attempting different codon usage variants, such as codon harmonized variants, which can now be easily generated through our online Codon Harmonizer tool.
Collapse
Affiliation(s)
- Nico J. Claassens
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Melvin F. Siliakus
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sebastiaan K. Spaans
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Tessa E. F. Quax
- Institut für Biologie II, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
47
|
Lauritsen I, Porse A, Sommer MOA, Nørholm MHH. A versatile one-step CRISPR-Cas9 based approach to plasmid-curing. Microb Cell Fact 2017; 16:135. [PMID: 28764701 PMCID: PMC5540278 DOI: 10.1186/s12934-017-0748-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/22/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Plasmids are widely used and essential tools in molecular biology. However, plasmids often impose a metabolic burden and are only temporarily useful for genetic engineering, bio-sensing and characterization purposes. While numerous techniques for genetic manipulation exist, a universal tool enabling rapid removal of plasmids from bacterial cells is lacking. RESULTS Based on replicon abundance and sequence conservation analysis, we show that the vast majority of bacterial cloning and expression vectors share sequence similarities that allow for broad CRISPR-Cas9 targeting. We have constructed a universal plasmid-curing system (pFREE) and developed a one-step protocol and PCR procedure that allow for identification of plasmid-free clones within 24 h. While the context of the targeted replicons affects efficiency, we obtained curing efficiencies between 40 and 100% for the plasmids most widely used for expression and engineering purposes. By virtue of the CRISPR-Cas9 targeting, our platform is highly expandable and can be applied in a broad host context. We exemplify the wide applicability of our system in Gram-negative bacteria by demonstrating the successful application in both Escherichia coli and the promising cell factory chassis Pseudomonas putida. CONCLUSION As a fast and freely available plasmid-curing system, targeting virtually all vectors used for cloning and expression purposes, we believe that pFREE has the potential to eliminate the need for individualized vector suicide solutions in molecular biology. We envision the application of pFREE to be especially useful in methodologies involving multiple plasmids, used sequentially or simultaneously, which are becoming increasingly popular for genome editing or combinatorial pathway engineering.
Collapse
Affiliation(s)
- Ida Lauritsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andreas Porse
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Morten O. A. Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Morten H. H. Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
48
|
Brixius-Anderko S, Hannemann F, Ringle M, Khatri Y, Bernhardt R. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications. Biotechnol Appl Biochem 2017; 64:315-326. [PMID: 26913738 DOI: 10.1002/bab.1488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/18/2016] [Indexed: 11/09/2022]
Abstract
Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium.
Collapse
Affiliation(s)
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Michael Ringle
- Department of Biochemistry, Saarland University, Saarbrücken, Germany.,Lonza AG, Visp, Switzerland
| | - Yogan Khatri
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
49
|
Baumgarten T, Schlegel S, Wagner S, Löw M, Eriksson J, Bonde I, Herrgård MJ, Heipieper HJ, Nørholm MHH, Slotboom DJ, de Gier JW. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3). Sci Rep 2017; 7:45089. [PMID: 28338018 PMCID: PMC5364489 DOI: 10.1038/srep45089] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/20/2017] [Indexed: 11/09/2022] Open
Abstract
Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived from the T7 RNA polymerase (P)-based BL21(DE3) protein production strain. In C41(DE3) and C43(DE3) mutations lowering t7rnap expression levels result in strongly reduced T7 RNAP accumulation levels. As a consequence membrane protein production stress is alleviated in the C41(DE3) and C43(DE3) strains, thereby increasing membrane protein yields. Here, we isolated Mutant56(DE3) from BL21(DE3) using a genetic screen designed to isolate BL21(DE3)-derived strains with mutations alleviating membrane protein production stress other than the ones in C41(DE3) and C43(DE3). The defining mutation of Mutant56(DE3) changes one amino acid in its T7 RNAP, which weakens the binding of the T7 RNAP to the T7 promoter governing target gene expression rather than lowering T7 RNAP levels. For most membrane proteins tested yields in Mutant56(DE3) were considerably higher than in C41(DE3) and C43(DE3). Thus, the isolation of Mutant56(DE3) shows that the evolution of BL21(DE3) can be promoted towards further enhanced membrane protein production.
Collapse
Affiliation(s)
- Thomas Baumgarten
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Susan Schlegel
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Samuel Wagner
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Mirjam Löw
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Jonas Eriksson
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Ida Bonde
- Technical University of Denmark, Novo Nordisk Foundation Center for Biosustainability, Kogle Alle 6, Hørsholm, 2970, Denmark
| | - Markus J Herrgård
- Technical University of Denmark, Novo Nordisk Foundation Center for Biosustainability, Kogle Alle 6, Hørsholm, 2970, Denmark
| | - Hermann J Heipieper
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Biotechnology, Permoserstrasse 15, Leipzig, 04318, Germany
| | - Morten H H Nørholm
- Technical University of Denmark, Novo Nordisk Foundation Center for Biosustainability, Kogle Alle 6, Hørsholm, 2970, Denmark
| | - Dirk Jan Slotboom
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, AG, 9747, The Netherlands
| | - Jan-Willem de Gier
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
50
|
Gialama D, Kostelidou K, Michou M, Delivoria DC, Kolisis FN, Skretas G. Development of Escherichia coli Strains That Withstand Membrane Protein-Induced Toxicity and Achieve High-Level Recombinant Membrane Protein Production. ACS Synth Biol 2017; 6:284-300. [PMID: 27797488 DOI: 10.1021/acssynbio.6b00174] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane proteins perform critical cellular functions in all living organisms and constitute major targets for drug discovery. Escherichia coli has been the most popular overexpression host for membrane protein biochemical/structural studies. Bacterial production of recombinant membrane proteins, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low final biomass and minute volumetric yields. In this work, we aimed to rewire the E. coli protein-producing machinery to withstand the toxicity caused by membrane protein overexpression in order to generate engineered bacterial strains with the ability to achieve high-level membrane protein production. To achieve this, we searched for bacterial genes whose coexpression can suppress membrane protein-induced toxicity and identified two highly potent effectors: the membrane-bound DnaK cochaperone DjlA, and the inhibitor of the mRNA-degrading activity of the E. coli RNase E, RraA. E. coli strains coexpressing either djlA or rraA, termed SuptoxD and SuptoxR, respectively, accumulated markedly higher levels of final biomass and produced dramatically enhanced yields for a variety of prokaryotic and eukaryotic recombinant membrane proteins. In all tested cases, either SuptoxD, or SuptoxR, or both, outperformed the capabilities of commercial strains frequently utilized for recombinant membrane protein production purposes.
Collapse
Affiliation(s)
- Dimitra Gialama
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens 11635, Greece
- Laboratory
of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Kalliopi Kostelidou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Myrsini Michou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens 11635, Greece
| | - Dafni Chrysanthi Delivoria
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens 11635, Greece
- Laboratory
of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Fragiskos N. Kolisis
- Laboratory
of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens 15780, Greece
| | - Georgios Skretas
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens 11635, Greece
| |
Collapse
|