1
|
Sassi FDMC, Garrido-Ramos MA, Utsunomia R, Dos Santos RZ, Ezaz T, Deon GA, Porto-Foresti F, Liehr T, Cioffi MDB. Independent evolution of satellite DNA sequences in homologous sex chromosomes of Neotropical armored catfish (Harttia). Commun Biol 2025; 8:524. [PMID: 40159539 PMCID: PMC11955569 DOI: 10.1038/s42003-025-07891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
The Neotropical armored catfish Harttia is a valuable model for studying sex chromosome evolution, featuring two independently evolved male-heterogametic systems. This study examined satellitomes-sets of satellite DNAs-from four Amazonian species: H. duriventris (X1X2Y), H. rondoni (XY), H. punctata (X1X2Y), and H. villasboas (X1X2Y). These species share homologous sex chromosomes, with their satellitomes showing a high number of homologous satellite DNAs (satDNAs), primarily located on centromeres or telomeres, and varying by species. Each species revealed a distinct satDNA profile, with independent amplification and homogenization events occurring, suggesting an important role of these repetitive sequences in sex chromosome differentiation in a short evolutionary time, especially in recently originated sex chromosomes. Whole chromosome painting and bioinformatics revealed that in Harttia species without heteromorphic sex chromosomes, a specific satDNA (HviSat08-4011) is amplified in the same linkage group associated with sex chromosomes, suggesting an ancestral system. Such sequence (HviSat08-4011) has partial homology with the ZP4 gene responsible for the formation of the egg envelope, in which its role is discussed. This study indicates that these homologous sex chromosomes have diverged rapidly, recently, and independently in their satDNA content, with transposable elements playing a minor role when compared their roles on autosomal chromosome evolution.
Collapse
Affiliation(s)
- Francisco de M C Sassi
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| | - Geize A Deon
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | - Thomas Liehr
- Universitätsklinikum Jena, Friedrich-Schiller Universität, Institut für Humangenetik, Jena, Thüringen, 07747, Germany.
| | - Marcelo de B Cioffi
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
2
|
Bista B, González-Rodelas L, Álvarez-González L, Wu ZQ, Montiel EE, Lee LS, Badenhorst DB, Radhakrishnan S, Literman R, Navarro-Dominguez B, Iverson JB, Orozco-Arias S, González J, Ruiz-Herrera A, Valenzuela N. De novo genome assemblies of two cryptodiran turtles with ZZ/ZW and XX/XY sex chromosomes provide insights into patterns of genome reshuffling and uncover novel 3D genome folding in amniotes. Genome Res 2024; 34:1553-1569. [PMID: 39414368 PMCID: PMC11529993 DOI: 10.1101/gr.279443.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Understanding the evolution of chromatin conformation among species is fundamental to elucidate the architecture and plasticity of genomes. Nonrandom interactions of linearly distant loci regulate gene function in species-specific patterns, affecting genome function, evolution, and, ultimately, speciation. Yet, data from nonmodel organisms are scarce. To capture the macroevolutionary diversity of vertebrate chromatin conformation, here we generate de novo genome assemblies for two cryptodiran (hidden-neck) turtles via Illumina sequencing, chromosome conformation capture, and RNA-seq: Apalone spinifera (ZZ/ZW, 2n = 66) and Staurotypus triporcatus (XX/XY, 2n = 54). We detected differences in the three-dimensional (3D) chromatin structure in turtles compared to other amniotes beyond the fusion/fission events detected in the linear genomes. Namely, whole-genome comparisons revealed distinct trends of chromosome rearrangements in turtles: (1) a low rate of genome reshuffling in Apalone (Trionychidae) whose karyotype is highly conserved when compared to chicken (likely ancestral for turtles), and (2) a moderate rate of fusions/fissions in Staurotypus (Kinosternidae) and Trachemys scripta (Emydidae). Furthermore, we identified a chromosome folding pattern that enables "centromere-telomere interactions" previously undetected in turtles. The combined turtle pattern of "centromere-telomere interactions" (discovered here) plus "centromere clustering" (previously reported in sauropsids) is novel for amniotes and it counters previous hypotheses about amniote 3D chromatin structure. We hypothesize that the divergent pattern found in turtles originated from an amniote ancestral state defined by a nuclear configuration with extensive associations among microchromosomes that were preserved upon the reshuffling of the linear genome.
Collapse
Affiliation(s)
- Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Zhi-Qiang Wu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Eugenia E Montiel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ling Sze Lee
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Daleen B Badenhorst
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Srihari Radhakrishnan
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Robert Literman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Beatriz Navarro-Dominguez
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, Indiana 47374, USA
| | | | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, 080003 Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain;
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA;
| |
Collapse
|
3
|
Kuzmin E, Baker TM, Van Loo P, Glass L. Dynamics of karyotype evolution. CHAOS (WOODBURY, N.Y.) 2024; 34:051502. [PMID: 38717409 PMCID: PMC11068413 DOI: 10.1063/5.0206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
In the evolution of species, the karyotype changes with a timescale of tens to hundreds of thousand years. In the development of cancer, the karyotype often is modified in cancerous cells over the lifetime of an individual. Characterizing these changes and understanding the mechanisms leading to them has been of interest in a broad range of disciplines including evolution, cytogenetics, and cancer genetics. A central issue relates to the relative roles of random vs deterministic mechanisms in shaping the changes. Although it is possible that all changes result from random events followed by selection, many results point to other non-random factors that play a role in karyotype evolution. In cancer, chromosomal instability leads to characteristic changes in the karyotype, in which different individuals with a specific type of cancer display similar changes in karyotype structure over time. Statistical analyses of chromosome lengths in different species indicate that the length distribution of chromosomes is not consistent with models in which the lengths of chromosomes are random or evolve solely by simple random processes. A better understanding of the mechanisms underlying karyotype evolution should enable the development of quantitative theoretical models that combine the random and deterministic processes that can be compared to experimental determinations of the karyotype in diverse settings.
Collapse
Affiliation(s)
| | - Toby M. Baker
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | - Leon Glass
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
4
|
Mañes-García J, Marco-Ferreres R, Beccari L. Shaping gene expression and its evolution by chromatin architecture and enhancer activity. Curr Top Dev Biol 2024; 159:406-437. [PMID: 38729683 DOI: 10.1016/bs.ctdb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Transcriptional regulation plays a pivotal role in orchestrating the intricate genetic programs governing embryonic development. The expression of developmental genes relies on the combined activity of several cis-regulatory elements (CREs), such as enhancers and silencers, which can be located at long linear distances from the genes that they regulate and that interact with them through establishment of chromatin loops. Mutations affecting their activity or interaction with their target genes can lead to developmental disorders and are thought to have importantly contributed to the evolution of the animal body plan. The income of next-generation-sequencing approaches has allowed identifying over a million of sequences with putative regulatory potential in the human genome. Characterizing their function and establishing gene-CREs maps is essential to decode the logic governing developmental gene expression and is one of the major challenges of the post-genomic era. Chromatin 3D organization plays an essential role in determining how CREs specifically contact their target genes while avoiding deleterious off-target interactions. Our understanding of these aspects has greatly advanced with the income of chromatin conformation capture techniques and fluorescence microscopy approaches to visualize the organization of DNA elements in the nucleus. Here we will summarize relevant aspects of how the interplay between CRE activity and chromatin 3D organization regulates developmental gene expression and how it relates to pathological conditions and the evolution of animal body plan.
Collapse
Affiliation(s)
| | | | - Leonardo Beccari
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
5
|
Junaid A, Singh B, Bhatia S. Evolutionary insights into 3D genome organization and epigenetic landscape of Vigna mungo. Life Sci Alliance 2024; 7:e202302074. [PMID: 37923361 PMCID: PMC10624639 DOI: 10.26508/lsa.202302074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
Eukaryotic genomes show an intricate three-dimensional (3D) organization within the nucleus that regulates multiple biological processes including gene expression. Contrary to animals, understanding of 3D genome organization in plants remains at a nascent stage. Here, we investigate the evolution of 3D chromatin architecture in legumes. By using cutting-edge PacBio, Illumina, and Hi-C contact reads, we report a gap-free, chromosome-scale reference genome assembly of Vigna mungo, an important minor legume cultivated in Southeast Asia. We spatially resolved V. mungo chromosomes into euchromatic, transcriptionally active A compartment and heterochromatic, transcriptionally-dormant B compartment. We report the presence of TAD-like-regions throughout the diagonal of the HiC matrix that resembled transcriptional quiescent centers based on their genomic and epigenomic features. We observed high syntenic breakpoints but also high coverage of syntenic sequences and conserved blocks in boundary regions than in the TAD-like region domains. Our findings present unprecedented evolutionary insights into spatial 3D genome organization and epigenetic patterns and their interaction within the V. mungo genome. This will aid future genomics and epigenomics research and breeding programs of V. mungo.
Collapse
Affiliation(s)
- Alim Junaid
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
6
|
Okhovat M, VanCampen J, Nevonen KA, Harshman L, Li W, Layman CE, Ward S, Herrera J, Wells J, Sheng RR, Mao Y, Ndjamen B, Lima AC, Vigh-Conrad KA, Stendahl AM, Yang R, Fedorov L, Matthews IR, Easow SA, Chan DK, Jan TA, Eichler EE, Rugonyi S, Conrad DF, Ahituv N, Carbone L. TAD evolutionary and functional characterization reveals diversity in mammalian TAD boundary properties and function. Nat Commun 2023; 14:8111. [PMID: 38062027 PMCID: PMC10703881 DOI: 10.1038/s41467-023-43841-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Topological associating domains (TADs) are self-interacting genomic units crucial for shaping gene regulation patterns. Despite their importance, the extent of their evolutionary conservation and its functional implications remain largely unknown. In this study, we generate Hi-C and ChIP-seq data and compare TAD organization across four primate and four rodent species and characterize the genetic and epigenetic properties of TAD boundaries in correspondence to their evolutionary conservation. We find 14% of all human TAD boundaries to be shared among all eight species (ultraconserved), while 15% are human-specific. Ultraconserved TAD boundaries have stronger insulation strength, CTCF binding, and enrichment of older retrotransposons compared to species-specific boundaries. CRISPR-Cas9 knockouts of an ultraconserved boundary in a mouse model lead to tissue-specific gene expression changes and morphological phenotypes. Deletion of a human-specific boundary near the autism-related AUTS2 gene results in the upregulation of this gene in neurons. Overall, our study provides pertinent TAD boundary evolutionary conservation annotations and showcases the functional importance of TAD evolution.
Collapse
Affiliation(s)
- Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Jake VanCampen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Lana Harshman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Weiyu Li
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Samantha Ward
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jarod Herrera
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yafei Mao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Blaise Ndjamen
- Histology and Light Microscopy Core Facility, Gladstone Institutes, San Francisco, CA, USA
| | - Ana C Lima
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | - Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Ran Yang
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Lev Fedorov
- OHSU Transgenic Mouse Models Core Lab, Oregon Health and Science University, Portland, OR, USA
| | - Ian R Matthews
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Sarah A Easow
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA.
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA.
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
7
|
Marlétaz F, de la Calle-Mustienes E, Acemel RD, Paliou C, Naranjo S, Martínez-García PM, Cases I, Sleight VA, Hirschberger C, Marcet-Houben M, Navon D, Andrescavage A, Skvortsova K, Duckett PE, González-Rajal Á, Bogdanovic O, Gibcus JH, Yang L, Gallardo-Fuentes L, Sospedra I, Lopez-Rios J, Darbellay F, Visel A, Dekker J, Shubin N, Gabaldón T, Nakamura T, Tena JJ, Lupiáñez DG, Rokhsar DS, Gómez-Skarmeta JL. The little skate genome and the evolutionary emergence of wing-like fins. Nature 2023; 616:495-503. [PMID: 37046085 PMCID: PMC10115646 DOI: 10.1038/s41586-023-05868-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/21/2023] [Indexed: 04/14/2023]
Abstract
Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Elisa de la Calle-Mustienes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
- Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Victoria A Sleight
- Department of Zoology, University of Cambridge, Cambridge, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Dina Navon
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Ali Andrescavage
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Edward Duckett
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Álvaro González-Rajal
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Johan H Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Ismael Sospedra
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Neil Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain.
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| |
Collapse
|
8
|
Li X, Wang J, Yu Y, Li G, Wang J, Li C, Zeng Z, Li N, Zhang Z, Dong Q, Yu Y, Wang X, Wang T, Grover CE, Wang B, Liu B, Wendel JF, Gong L. Genomic rearrangements and evolutionary changes in 3D chromatin topologies in the cotton tribe (Gossypieae). BMC Biol 2023; 21:56. [PMID: 36941615 PMCID: PMC10029228 DOI: 10.1186/s12915-023-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Analysis of the relationship between chromosomal structural variation (synteny breaks) and 3D-chromatin architectural changes among closely related species has the potential to reveal causes and correlates between chromosomal change and chromatin remodeling. Of note, contrary to extensive studies in animal species, the pace and pattern of chromatin architectural changes following the speciation of plants remain unexplored; moreover, there is little exploration of the occurrence of synteny breaks in the context of multiple genome topological hierarchies within the same model species. RESULTS Here we used Hi-C and epigenomic analyses to characterize and compare the profiles of hierarchical chromatin architectural features in representative species of the cotton tribe (Gossypieae), including Gossypium arboreum, Gossypium raimondii, and Gossypioides kirkii, which differ with respect to chromosome rearrangements. We found that (i) overall chromatin architectural territories were preserved in Gossypioides and Gossypium, which was reflected in their similar intra-chromosomal contact patterns and spatial chromosomal distributions; (ii) the non-random preferential occurrence of synteny breaks in A compartment significantly associate with the B-to-A compartment switch in syntenic blocks flanking synteny breaks; (iii) synteny changes co-localize with open-chromatin boundaries of topologically associating domains, while TAD stabilization has a greater influence on regulating orthologous expression divergence than do rearrangements; and (iv) rearranged chromosome segments largely maintain ancestral in-cis interactions. CONCLUSIONS Our findings provide insights into the non-random occurrence of epigenomic remodeling relative to the genomic landscape and its evolutionary and functional connections to alterations of hierarchical chromatin architecture, on a known evolutionary timescale.
Collapse
Affiliation(s)
- Xiaochong Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Guo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinpeng Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zixian Zeng
- Department of Biological Science, College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yiyang Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572025, Hainan, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
9
|
Okhovat M, VanCampen J, Lima AC, Nevonen KA, Layman CE, Ward S, Herrera J, Stendahl AM, Yang R, Harshman L, Li W, Sheng RR, Mao Y, Fedorov L, Ndjamen B, Vigh-Conrad KA, Matthews IR, Easow SA, Chan DK, Jan TA, Eichler EE, Rugonyi S, Conrad DF, Ahituv N, Carbone L. TAD Evolutionary and functional characterization reveals diversity in mammalian TAD boundary properties and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531534. [PMID: 36945527 PMCID: PMC10028908 DOI: 10.1101/2023.03.07.531534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Topological associating domains (TADs) are self-interacting genomic units crucial for shaping gene regulation patterns. Despite their importance, the extent of their evolutionary conservation and its functional implications remain largely unknown. In this study, we generate Hi-C and ChIP-seq data and compare TAD organization across four primate and four rodent species, and characterize the genetic and epigenetic properties of TAD boundaries in correspondence to their evolutionary conservation. We find that only 14% of all human TAD boundaries are shared among all eight species (ultraconserved), while 15% are human-specific. Ultraconserved TAD boundaries have stronger insulation strength, CTCF binding, and enrichment of older retrotransposons, compared to species-specific boundaries. CRISPR-Cas9 knockouts of two ultraconserved boundaries in mouse models leads to tissue-specific gene expression changes and morphological phenotypes. Deletion of a human-specific boundary near the autism-related AUTS2 gene results in upregulation of this gene in neurons. Overall, our study provides pertinent TAD boundary evolutionary conservation annotations, and showcase the functional importance of TAD evolution.
Collapse
|
10
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Damas J, Corbo M, Kim J, Turner-Maier J, Farré M, Larkin DM, Ryder OA, Steiner C, Houck ML, Hall S, Shiue L, Thomas S, Swale T, Daly M, Korlach J, Uliano-Silva M, Mazzoni CJ, Birren BW, Genereux DP, Johnson J, Lindblad-Toh K, Karlsson EK, Nweeia MT, Johnson RN, Zoonomia Consortium 1, Lewin HA. Evolution of the ancestral mammalian karyotype and syntenic regions. Proc Natl Acad Sci U S A 2022; 119:e2209139119. [PMID: 36161960 PMCID: PMC9550189 DOI: 10.1073/pnas.2209139119] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for ∼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.
Collapse
Affiliation(s)
- Joana Damas
- The Genome Center, University of California, Davis, CA 95616
| | - Marco Corbo
- The Genome Center, University of California, Davis, CA 95616
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
| | - Jason Turner-Maier
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Marta Farré
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Denis M. Larkin
- The Royal Veterinary College, University of London, London NW1 0TU, United Kingdom
| | - Oliver A. Ryder
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Department of Evolution, Behavior, and Ecology, Division of Biology, University of California San Diego, La Jolla, CA 92093
| | - Cynthia Steiner
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA 92027
| | - Marlys L. Houck
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027
| | - Shaune Hall
- Dovetail Genomics, LLC, Scotts Valley, CA 95066
| | - Lily Shiue
- Dovetail Genomics, LLC, Scotts Valley, CA 95066
| | | | | | - Mark Daly
- Dovetail Genomics, LLC, Scotts Valley, CA 95066
| | | | - Marcela Uliano-Silva
- Wellcome Sanger Institute, Cambridgeshire CB10 1SA, United Kingdom
- Berlin Center for Genomics in Biodiversity Research, D-14195 Berlin, Germany
- Evolutionary Genetics Department, Leibniz Institut für Zoo- und Wildtierforschung, 10315 Berlin, Germany
| | - Camila J. Mazzoni
- Berlin Center for Genomics in Biodiversity Research, D-14195 Berlin, Germany
- Evolutionary Genetics Department, Leibniz Institut für Zoo- und Wildtierforschung, 10315 Berlin, Germany
| | - Bruce W. Birren
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Diane P. Genereux
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Jeremy Johnson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
| | - Kerstin Lindblad-Toh
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden
| | - Elinor K. Karlsson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Martin T. Nweeia
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115
- Department of Comprehensive Care, Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106
- Marine Mammal Program, Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002
| | - Rebecca N. Johnson
- Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Zoonomia Consortium1
- The Genome Center, University of California, Davis, CA 95616
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- The Royal Veterinary College, University of London, London NW1 0TU, United Kingdom
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Department of Evolution, Behavior, and Ecology, Division of Biology, University of California San Diego, La Jolla, CA 92093
- Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Dovetail Genomics, LLC, Scotts Valley, CA 95066
- Pacific Biosciences, Menlo Park, CA 94025
- Wellcome Sanger Institute, Cambridgeshire CB10 1SA, United Kingdom
- Berlin Center for Genomics in Biodiversity Research, D-14195 Berlin, Germany
- Evolutionary Genetics Department, Leibniz Institut für Zoo- und Wildtierforschung, 10315 Berlin, Germany
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115
- Department of Comprehensive Care, Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106
- Marine Mammal Program, Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002
- Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
- Department of Evolution and Ecology, University of California, Davis, CA 95616
- John Muir Institute for the Environment, University of California, Davis, CA 95616
| | - Harris A. Lewin
- The Genome Center, University of California, Davis, CA 95616
- Department of Evolution and Ecology, University of California, Davis, CA 95616
- John Muir Institute for the Environment, University of California, Davis, CA 95616
| |
Collapse
|
12
|
Telomere-to-Telomere Genome Sequences across a Single Genus Reveal Highly Variable Chromosome Rearrangement Rates but Absolute Stasis of Chromosome Number. J Fungi (Basel) 2022; 8:jof8070670. [PMID: 35887427 PMCID: PMC9318876 DOI: 10.3390/jof8070670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Genome rearrangements in filamentous fungi are prevalent but little is known about the modalities of their evolution, in part because few complete genomes are available within a single genus. To address this, we have generated and compared 15 complete telomere-to-telomere genomes across the phylogeny of a single genus of filamentous fungi, Epichloë. We find that the striking distinction between gene-rich and repeat-rich regions previously reported for isolated species is ubiquitous across the Epichloë genus. We built a species phylogeny from single-copy gene orthologs to provide a comparative framing to study chromosome composition and structural change through evolutionary time. All Epichloë genomes have exactly seven nuclear chromosomes, but despite this conserved ploidy, analyses reveal low synteny and substantial rearrangement of gene content across the genus. These rearrangements are highly lineage-dependent, with most occurring over short evolutionary distances, with long periods of structural stasis. Quantification of chromosomal rearrangements shows they are uncorrelated with numbers of substitutions and evolutionary distances, suggesting that different modes of evolution are acting to create nucleotide and chromosome-scale changes.
Collapse
|
13
|
Liao Y, Wang J, Zhu Z, Liu Y, Chen J, Zhou Y, Liu F, Lei J, Gaut BS, Cao B, Emerson JJ, Chen C. The 3D architecture of the pepper genome and its relationship to function and evolution. Nat Commun 2022; 13:3479. [PMID: 35710823 PMCID: PMC9203530 DOI: 10.1038/s41467-022-31112-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/03/2022] [Indexed: 12/21/2022] Open
Abstract
The organization of chromatin into self-interacting domains is universal among eukaryotic genomes, though how and why they form varies considerably. Here we report a chromosome-scale reference genome assembly of pepper (Capsicum annuum) and explore its 3D organization through integrating high-resolution Hi-C maps with epigenomic, transcriptomic, and genetic variation data. Chromatin folding domains in pepper are as prominent as TADs in mammals but exhibit unique characteristics. They tend to coincide with heterochromatic regions enriched with retrotransposons and are frequently embedded in loops, which may correlate with transcription factories. Their boundaries are hotspots for chromosome rearrangements but are otherwise depleted for genetic variation. While chromatin conformation broadly affects transcription variance, it does not predict differential gene expression between tissues. Our results suggest that pepper genome organization is explained by a model of heterochromatin-driven folding promoted by transcription factories and that such spatial architecture is under structural and functional constraints.
Collapse
Affiliation(s)
- Yi Liao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Juntao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Zhangsheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Yuanlong Liu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jianjun Lei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
| | - Changming Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Chromosome organization affects genome evolution in Sulfolobus archaea. Nat Microbiol 2022; 7:820-830. [PMID: 35618771 DOI: 10.1038/s41564-022-01127-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
In all organisms, the DNA sequence and the structural organization of chromosomes affect gene expression. The extremely thermophilic crenarchaeon Sulfolobus has one circular chromosome with three origins of replication. We previously revealed that this chromosome has defined A and B compartments that have high and low gene expression, respectively. As well as higher levels of gene expression, the A compartment contains the origins of replication. To evaluate the impact of three-dimensional organization on genome evolution, we characterized the effect of replication origins and compartmentalization on primary sequence evolution in eleven Sulfolobus species. Using single-nucleotide polymorphism analyses, we found that distance from an origin of replication was associated with increased mutation rates in the B but not in the A compartment. The enhanced polymorphisms distal to replication origins suggest that replication termination may have a causal role in their generation. Further mutational analyses revealed that the sequences in the A compartment are less likely to be mutated, and that there is stronger purifying selection than in the B compartment. Finally, we applied the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) to show that the B compartment is less accessible than the A compartment. Taken together, our data suggest that compartmentalization of chromosomal DNA can influence chromosome evolution in Sulfolobus. We propose that the A compartment serves as a haven for stable maintenance of gene sequences, while sequences in the B compartment can be diversified.
Collapse
|
15
|
Chua EHZ, Yasar S, Harmston N. The importance of considering regulatory domains in genome-wide analyses - the nearest gene is often wrong! Biol Open 2022; 11:274931. [PMID: 35377406 PMCID: PMC9002814 DOI: 10.1242/bio.059091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The expression of a large number of genes is regulated by regulatory elements that are located far away from their promoters. Identifying which gene is the target of a specific regulatory element or is affected by a non-coding mutation is often accomplished by assigning these regions to the nearest gene in the genome. However, this heuristic ignores key features of genome organisation and gene regulation; in that the genome is partitioned into regulatory domains, which at some loci directly coincide with the span of topologically associated domains (TADs), and that genes are regulated by enhancers located throughout these regions, even across intervening genes. In this review, we examine the results from genome-wide studies using chromosome conformation capture technologies and from those dissecting individual gene regulatory domains, to highlight that the phenomenon of enhancer skipping is pervasive and affects multiple types of genes. We discuss how simply assigning a genomic region of interest to its nearest gene is problematic and often leads to incorrect predictions and highlight that where possible information on both the conservation and topological organisation of the genome should be used to generate better hypotheses. The article has an associated Future Leader to Watch interview. Summary: Identifying which gene is the target of an enhancer is often accomplished by assigning it to the nearest gene, here we discuss how this heuristic can lead to incorrect predictions.
Collapse
Affiliation(s)
| | - Samen Yasar
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Nathan Harmston
- Science Division, Yale-NUS College, Singapore 138527, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
16
|
Lukyanchikova V, Nuriddinov M, Belokopytova P, Taskina A, Liang J, Reijnders MJMF, Ruzzante L, Feron R, Waterhouse RM, Wu Y, Mao C, Tu Z, Sharakhov IV, Fishman V. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat Commun 2022; 13:1960. [PMID: 35413948 PMCID: PMC9005712 DOI: 10.1038/s41467-022-29599-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.
Collapse
Affiliation(s)
- Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Miroslav Nuriddinov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alena Taskina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Yang Wu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Pathogen Biology, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Chunhong Mao
- Biocomplexity Institute & Initiative, University of Virginia, Charlottesville, VA, 22911, USA
| | - Zhijian Tu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia.
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
- AIRI, Moscow, Russia.
| |
Collapse
|
17
|
Abstract
We found the three-dimensional (3D) structure of chromatin at the chromosome level to be highly conserved for more than 50 million y of carnivore evolution. Intrachromosomal contacts were maintained even after chromosome rearrangements within carnivore lineages, demonstrating that the maintenance of 3D chromatin architecture is essential for conserved genome functions. These discoveries enabled the identification of orthologous chromosomal DNA segments among related species, a method we call 3D comparative scaffotyping. The method has application for putative chromosome assignment of chromosome-scale DNA sequence scaffolds produced by de novo genome sequencing. Broadly applied to biodiversity genome sequencing efforts, the approach can reduce costs associated with karyotyping and the physical mapping of DNA segments to chromosomes. High throughput chromatin conformation capture (Hi-C) of leukocyte DNA was used to investigate the evolutionary stability of chromatin conformation at the chromosomal level in 11 species from three carnivore families: Felidae, Canidae, and Ursidae. Chromosome-scale scaffolds (C-scaffolds) of each species were initially used for whole-genome alignment to a reference genome within each family. This approach established putative orthologous relationships between C-scaffolds among the different species. Hi-C contact maps for all C-scaffolds were then visually compared and found to be distinct for a given reference chromosome or C-scaffold within a species and indistinguishable for orthologous C-scaffolds having a 1:1 relationship within a family. The visual patterns within families were strongly supported by eigenvectors from the Hi-C contact maps. Analysis of Hi-C contact maps and eigenvectors across the three carnivore families revealed that most cross-family orthologous subchromosomal fragments have a conserved three-dimensional (3D) chromatin structure and thus have been under strong evolutionary constraint for ∼54 My of carnivore evolution. The most pronounced differences in chromatin conformation were observed for the X chromosome and the red fox genome, whose chromosomes have undergone extensive rearrangements relative to other canids. We also demonstrate that Hi-C contact map pattern analysis can be used to accurately identify orthologous relationships between C-scaffolds and chromosomes, a method we termed “3D comparative scaffotyping.” This method provides a powerful means for estimating karyotypes in de novo sequenced species that have unknown karyotype and no physical mapping information.
Collapse
|
18
|
Adding New Pieces to the Puzzle of Karyotype Evolution in Harttia (Siluriformes, Loricariidae): Investigation of Amazonian Species. BIOLOGY 2021; 10:biology10090922. [PMID: 34571799 PMCID: PMC8472603 DOI: 10.3390/biology10090922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
A remarkable morphological diversity and karyotype variability can be observed in the Neotropical armored catfish genus Harttia. These fishes offer a useful model to explore both the evolution of karyotypes and sex chromosomes, since many species possess male-heterogametic sex chromosome systems and a high rate of karyotype repatterning. Based on the karyotype organization, the chromosomal distribution of several repetitive DNA classes, and the rough estimates of genomic divergences at the intraspecific and interspecific levels via Comparative Genomic Hybridization, we identified shared diploid chromosome numbers (2n = 54) but different karyotype compositions in H. dissidens (20m + 26sm + 8a) and Harttia sp. 3 (16m + 18sm + 14st + 6a), and different 2n in H. guianensis (2n = 58; 20m + 26sm + 2st + 10a). All species further displayed similar patterns of chromosomal distribution concerning constitutive heterochromatin, 18S ribosomal DNA (rDNA) sites, and most of the surveyed microsatellite motifs. Furthermore, differences in the distribution of 5S rDNA sites and a subset of microsatellite sequences were identified. Heteromorphic sex chromosomes were lacking in H. dissidens and H. guianensis at the scale of our analysis. However, one single chromosome pair in Harttia sp. 3 males presented a remarkable accumulation of male genome-derived probe after CGH, pointing to a tentative region of early sex chromosome differentiation. Thus, our data support already previously outlined evidence that Harttia is a vital model for the investigation of teleost karyotype and sex chromosome dynamics.
Collapse
|
19
|
Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat Commun 2021; 12:4489. [PMID: 34301952 PMCID: PMC8302630 DOI: 10.1038/s41467-021-24573-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Ancient polyploidization events have had a lasting impact on vertebrate genome structure, organization and function. Some key questions regarding the number of ancient polyploidization events and their timing in relation to the cyclostome-gnathostome divergence have remained contentious. Here we generate de novo long-read-based chromosome-scale genome assemblies for the Japanese lamprey and elephant shark. Using these and other representative genomes and developing algorithms for the probabilistic macrosynteny model, we reconstruct high-resolution proto-vertebrate, proto-cyclostome and proto-gnathostome genomes. Our reconstructions resolve key questions regarding the early evolutionary history of vertebrates. First, cyclostomes diverged from the lineage leading to gnathostomes after a shared tetraploidization (1R) but before a gnathostome-specific tetraploidization (2R). Second, the cyclostome lineage experienced an additional hexaploidization. Third, 2R in the gnathostome lineage was an allotetraploidization event, and biased gene loss from one of the subgenomes shaped the gnathostome genome by giving rise to remarkably conserved microchromosomes. Thus, our reconstructions reveal the major evolutionary events and offer new insights into the origin and evolution of vertebrate genomes.
Collapse
|
20
|
Validation of Automated Chromosome Recovery in the Reconstruction of Ancestral Gene Order. ALGORITHMS 2021. [DOI: 10.3390/a14060160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RACCROCHE pipeline reconstructs ancestral gene orders and chromosomal contents of the ancestral genomes at all internal vertices of a phylogenetic tree. The strategy is to accumulate a very large number of generalized adjacencies, phylogenetically justified for each ancestor, to produce long ancestral contigs through maximum weight matching. It constructs chromosomes by counting the frequencies of ancestral contig co-occurrences on the extant genomes, clustering these for each ancestor and ordering them. The main objective of this paper is to closely simulate the evolutionary process giving rise to the gene content and order of a set of extant genomes (six distantly related monocots), and to assess to what extent an updated version of RACCROCHE can recover the artificial ancestral genome at the root of the phylogenetic tree relating to the simulated genomes.
Collapse
|
21
|
Eres IE, Gilad Y. A TAD Skeptic: Is 3D Genome Topology Conserved? Trends Genet 2021; 37:216-223. [PMID: 33203573 PMCID: PMC8120795 DOI: 10.1016/j.tig.2020.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
The notion that topologically associating domains (TADs) are highly conserved across species is prevalent in the field of 3D genomics. However, what exactly is meant by 'highly conserved' and what are the actual comparative data that support this notion? To address these questions, we performed a historical review of the relevant literature and retraced numerous citation chains to reveal the primary data that were used as the basis for the widely accepted conclusion that TADs are highly conserved across evolution. A thorough review of the available evidence suggests the answer may be more complex than what is commonly presented.
Collapse
Affiliation(s)
- Ittai E Eres
- Department of Human Genetics, University of Chicago, Cummings Life Science Center, 928 E. 58th St., Chicago, IL 60637, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Cummings Life Science Center, 928 E. 58th St., Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., N417, MC6091, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Liao Y, Zhang X, Chakraborty M, Emerson JJ. Topologically associating domains and their role in the evolution of genome structure and function in Drosophila. Genome Res 2021; 31:397-410. [PMID: 33563719 PMCID: PMC7919452 DOI: 10.1101/gr.266130.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
Topologically associating domains (TADs) were recently identified as fundamental units of three-dimensional eukaryotic genomic organization, although our knowledge of the influence of TADs on genome evolution remains preliminary. To study the molecular evolution of TADs in Drosophila species, we constructed a new reference-grade genome assembly and accompanying high-resolution TAD map for D. pseudoobscura Comparison of D. pseudoobscura and D. melanogaster, which are separated by ∼49 million years of divergence, showed that ∼30%-40% of their genomes retain conserved TADs. Comparative genomic analysis of 17 Drosophila species revealed that chromosomal rearrangement breakpoints are enriched at TAD boundaries but depleted within TADs. Additionally, genes within conserved TADs show lower expression divergence than those located in nonconserved TADs. Furthermore, we found that a substantial proportion of long genes (>50 kbp) in D. melanogaster (42%) and D. pseudoobscura (26%) constitute their own TADs, implying transcript structure may be one of the deterministic factors for TAD formation. By using structural variants (SVs) identified from 14 D. melanogaster strains, its three closest sibling species from the D. simulans species complex, and two obscura clade species, we uncovered evidence of selection acting on SVs at TAD boundaries, but with the nature of selection differing between SV types. Deletions are depleted at TAD boundaries in both divergent and polymorphic SVs, suggesting purifying selection, whereas divergent tandem duplications are enriched at TAD boundaries relative to polymorphism, suggesting they are adaptive. Our findings highlight how important TADs are in shaping the acquisition and retention of structural mutations that fundamentally alter genome organization.
Collapse
Affiliation(s)
- Yi Liao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Xinwen Zhang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, California 92697, USA
| |
Collapse
|
23
|
Eisfeldt J, Pettersson M, Petri A, Nilsson D, Feuk L, Lindstrand A. Hybrid sequencing resolves two germline ultra-complex chromosomal rearrangements consisting of 137 breakpoint junctions in a single carrier. Hum Genet 2020; 140:775-790. [PMID: 33315133 PMCID: PMC8052244 DOI: 10.1007/s00439-020-02242-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Chromoanagenesis is a genomic event responsible for the formation of complex structural chromosomal rearrangements (CCRs). Germline chromoanagenesis is rare and the majority of reported cases are associated with an affected phenotype. Here, we report a healthy female carrying two de novo CCRs involving chromosomes 4, 19, 21 and X and chromosomes 7 and 11, respectively, with a total of 137 breakpoint junctions (BPJs). We characterized the CCRs using a hybrid-sequencing approach, combining short-read sequencing, nanopore sequencing, and optical mapping. The results were validated using multiple cytogenetic methods, including fluorescence in situ hybridization, spectral karyotyping, and Sanger sequencing. We identified 137 BPJs, which to our knowledge is the highest number of reported breakpoint junctions in germline chromoanagenesis. We also performed a statistical assessment of the positioning of the breakpoints, revealing a significant enrichment of BPJ-affecting genes (96 intragenic BPJs, 26 genes, p < 0.0001), indicating that the CCRs formed during active transcription of these genes. In addition, we find that the DNA fragments are unevenly and non-randomly distributed across the derivative chromosomes indicating a multistep process of scattering and re-joining of DNA fragments. In summary, we report a new maximum number of BPJs (137) in germline chromoanagenesis. We also show that a hybrid sequencing approach is necessary for the correct characterization of complex CCRs. Through in-depth statistical assessment, it was found that the CCRs most likely was formed through an event resembling chromoplexy—a catastrophic event caused by erroneous transcription factor binding.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Petri
- Science for Life Laboratory Uppsala, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Lars Feuk
- Science for Life Laboratory Uppsala, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden. .,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
24
|
Abstract
The study of chromosome evolution is undergoing a resurgence of interest owing to advances in DNA sequencing technology that facilitate the production of chromosome-scale whole-genome assemblies de novo. This review focuses on the history, methods, discoveries, and current challenges facing the field, with an emphasis on vertebrate genomes. A detailed examination of the literature on the biology of chromosome rearrangements is presented, specifically the relationship between chromosome rearrangements and phenotypic evolution, adaptation, and speciation. A critical review of the methods for identifying, characterizing, and visualizing chromosome rearrangements and computationally reconstructing ancestral karyotypes is presented. We conclude by looking to the future, identifying the enormous technical and scientific challenges presented by the accumulation of hundreds and eventually thousands of chromosome-scale assemblies.
Collapse
Affiliation(s)
- Joana Damas
- The Genome Center, University of California, Davis, California 95616, USA; , ,
| | - Marco Corbo
- The Genome Center, University of California, Davis, California 95616, USA; , ,
| | - Harris A Lewin
- The Genome Center, University of California, Davis, California 95616, USA; , , .,Department of Evolution and Ecology, College of Biological Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|
25
|
Ling C, Dai Y, Fang L, Yao F, Liu Z, Qiu Z, Cui L, Xia F, Zhao C, Zhang S, Wang K, Zhang X. Exonic rearrangements in DMD in Chinese Han individuals affected with Duchenne and Becker muscular dystrophies. Hum Mutat 2019; 41:668-677. [PMID: 31705731 PMCID: PMC7028077 DOI: 10.1002/humu.23953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 01/12/2023]
Abstract
Exonic deletions and duplications within DMD are the main pathogenic variants in Duchenne and Becker muscular dystrophies (DMD/BMD). However, few studies have profiled the flanking sequences of breakpoints and the potential mechanism underlying the breakpoints in different fragile regions of DMD. In this study, 896 Chinese male probands afflicted with DMD/BMD were selected from unrelated families and analyzed using multiplex ligation‐dependent probe amplification of the DMD gene, in which we identified exon deletions in 784 subjects and duplications in 112 subjects. Deletions occurred most frequently in the genomic region encompassing exons 45–55, accounting for 73% of all deletion patterns. Furthermore, to unravel the potential mechanism that induced breaks, DMD gene capture and sequencing were performed to identify the breakpoints in 37 subjects with deletions encompassing exons 45–55 of DMD; we found that DMD instability did not arise from a single cause; instead, long‐sequence motifs, nonconsensus microhomologies, low‐copy repeats, and microindels were embedded around the breakpoints, which may predispose DMD to instability. In summary, this study highlights the heterogeneous characteristics of the flanking sequences around the breakpoints and helps us to understand the mechanism underlying DMD gene instability.
Collapse
Affiliation(s)
- Chao Ling
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Fang
- Department of Pathology & Laboratory Medicine, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Fengxia Yao
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhe Liu
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhengqing Qiu
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Chen Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kai Wang
- Department of Pathology & Laboratory Medicine, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xue Zhang
- The Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, McKusick-Zhang Center for GeneticMedicine, School of Basic Medicine Peking, Union Medical College, Beijing, China
| |
Collapse
|
26
|
Ghavi-Helm Y. Functional Consequences of Chromosomal Rearrangements on Gene Expression: Not So Deleterious After All? J Mol Biol 2019; 432:665-675. [PMID: 31626801 DOI: 10.1016/j.jmb.2019.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Chromosomes are folded and organized into topologically associating domains (TADs) which provide a framework for the interaction of enhancers with the promoter of their target gene(s). Structural rearrangements observed during evolution or in disease contexts suggest that changes in genome organization strongly affect gene expression and can have drastic phenotypic effects. In this review, I will discuss how recent genomic engineering experiments reveal a more contrasted picture, suggesting that TADs are important but not always essential for gene expression regulation.
Collapse
Affiliation(s)
- Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée D'Italie, F-69364 Lyon, France.
| |
Collapse
|
27
|
Fishman V, Battulin N, Nuriddinov M, Maslova A, Zlotina A, Strunov A, Chervyakova D, Korablev A, Serov O, Krasikova A. 3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes' chromatin. Nucleic Acids Res 2019; 47:648-665. [PMID: 30418618 PMCID: PMC6344868 DOI: 10.1093/nar/gky1103] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/24/2018] [Indexed: 12/25/2022] Open
Abstract
How chromosomes are folded, spatially organized and regulated in three dimensions inside the cell nucleus are among the longest standing questions in cell biology. Genome-wide chromosome conformation capture (Hi-C) technique allowed identifying and characterizing spatial chromatin compartments in several mammalian species. Here, we present the first genome-wide analysis of chromatin interactions in chicken embryonic fibroblasts (CEF) and adult erythrocytes. We showed that genome of CEF is partitioned into topologically associated domains (TADs), distributed in accordance with gene density, transcriptional activity and CTCF-binding sites. In contrast to mammals, where all examined somatic cell types display relatively similar spatial organization of genome, chicken erythrocytes strongly differ from fibroblasts, showing pronounced A- and B- compartments, absence of typical TADs and formation of long-range chromatin interactions previously observed on mitotic chromosomes. Comparing mammalian and chicken genome architectures, we provide evidence highlighting evolutionary role of chicken TADs and their significance in genome activity and regulation.
Collapse
Affiliation(s)
- Veniamin Fishman
- Department of molecular mechanisms of ontogenesis, Institute of Cytology and Genetics, Novosibirsk 630099, Russia.,Department of Natural Science, Novosibirsk State University, Novosibirsk 630099, Russia
| | - Nariman Battulin
- Department of molecular mechanisms of ontogenesis, Institute of Cytology and Genetics, Novosibirsk 630099, Russia.,Department of Natural Science, Novosibirsk State University, Novosibirsk 630099, Russia
| | - Miroslav Nuriddinov
- Department of molecular mechanisms of ontogenesis, Institute of Cytology and Genetics, Novosibirsk 630099, Russia
| | - Antonina Maslova
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Anna Zlotina
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Anton Strunov
- Department of cell biology, Institute of Cytology and Genetics, Novosibirsk 630099, Russia
| | | | - Alexey Korablev
- Department of molecular mechanisms of ontogenesis, Institute of Cytology and Genetics, Novosibirsk 630099, Russia
| | - Oleg Serov
- Department of molecular mechanisms of ontogenesis, Institute of Cytology and Genetics, Novosibirsk 630099, Russia.,Department of Natural Science, Novosibirsk State University, Novosibirsk 630099, Russia
| | - Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| |
Collapse
|
28
|
Swenson KM, Blanchette M. Large-scale mammalian genome rearrangements coincide with chromatin interactions. Bioinformatics 2019; 35:i117-i126. [PMID: 31510664 PMCID: PMC6612848 DOI: 10.1093/bioinformatics/btz343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Motivation Genome rearrangements drastically change gene order along great stretches of a chromosome. There has been initial evidence that these apparently non-local events in the 1D sense may have breakpoints that are close in the 3D sense. We harness the power of the Double Cut and Join model of genome rearrangement, along with Hi-C chromosome conformation capture data to test this hypothesis between human and mouse. Results We devise novel statistical tests that show that indeed, rearrangement scenarios that transform the human into the mouse gene order are enriched for pairs of breakpoints that have frequent chromosome interactions. This is observed for both intra-chromosomal breakpoint pairs, as well as for inter-chromosomal pairs. For intra-chromosomal rearrangements, the enrichment exists from close (<20 Mb) to very distant (100 Mb) pairs. Further, the pattern exists across multiple cell lines in Hi-C data produced by different laboratories and at different stages of the cell cycle. We show that similarities in the contact frequencies between these many experiments contribute to the enrichment. We conclude that either (i) rearrangements usually involve breakpoints that are spatially close or (ii) there is selection against rearrangements that act on spatially distant breakpoints. Availability and implementation Our pipeline is freely available at https://bitbucket.org/thekswenson/locality. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Krister M Swenson
- Laboratoire d'Informatique, de Robotique, et de Microelectronique de Montpellier (LIRMM), Université Montpellier, Montpellier, France.,Centre Nationale de la Recherche Scientifique (CNRS), France
| | | |
Collapse
|
29
|
Farré M, Kim J, Proskuryakova AA, Zhang Y, Kulemzina AI, Li Q, Zhou Y, Xiong Y, Johnson JL, Perelman PL, Johnson WE, Warren WC, Kukekova AV, Zhang G, O'Brien SJ, Ryder OA, Graphodatsky AS, Ma J, Lewin HA, Larkin DM. Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Res 2019; 29:576-589. [PMID: 30760546 PMCID: PMC6442394 DOI: 10.1101/gr.239863.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/08/2019] [Indexed: 02/02/2023]
Abstract
The role of chromosome rearrangements in driving evolution has been a long-standing question of evolutionary biology. Here we focused on ruminants as a model to assess how rearrangements may have contributed to the evolution of gene regulation. Using reconstructed ancestral karyotypes of Cetartiodactyls, Ruminants, Pecorans, and Bovids, we traced patterns of gross chromosome changes. We found that the lineage leading to the ruminant ancestor after the split from other cetartiodactyls was characterized by mostly intrachromosomal changes, whereas the lineage leading to the pecoran ancestor (including all livestock ruminants) included multiple interchromosomal changes. We observed that the liver cell putative enhancers in the ruminant evolutionary breakpoint regions are highly enriched for DNA sequences under selective constraint acting on lineage-specific transposable elements (TEs) and a set of 25 specific transcription factor (TF) binding motifs associated with recently active TEs. Coupled with gene expression data, we found that genes near ruminant breakpoint regions exhibit more divergent expression profiles among species, particularly in cattle, which is consistent with the phylogenetic origin of these breakpoint regions. This divergence was significantly greater in genes with enhancers that contain at least one of the 25 specific TF binding motifs and located near bovidae-to-cattle lineage breakpoint regions. Taken together, by combining ancestral karyotype reconstructions with analysis of cis regulatory element and gene expression evolution, our work demonstrated that lineage-specific regulatory elements colocalized with gross chromosome rearrangements may have provided valuable functional modifications that helped to shape ruminant evolution.
Collapse
Affiliation(s)
- Marta Farré
- Royal Veterinary College, University of London, London NW1 0TU, United Kingdom
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Anastasia A Proskuryakova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia.,Synthetic Biology Unit, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | - Qiye Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yang Zhou
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yingqi Xiong
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Jennifer L Johnson
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia.,Synthetic Biology Unit, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia 22630, USA.,Walter Reed Biosystematics Unit, Museum Support Center, Smithsonian Institution, Suitland, Maryland 20746, USA
| | - Wesley C Warren
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 63201, USA
| | - Anna V Kukekova
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Centre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg 199004, Russia.,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33004, USA
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo, Escondido, California 92027, USA
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk 630090, Russia.,Synthetic Biology Unit, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Harris A Lewin
- Department of Evolution and Ecology and the UC Davis Genome Center, University of California, Davis, California 95616, USA
| | - Denis M Larkin
- Royal Veterinary College, University of London, London NW1 0TU, United Kingdom.,The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
30
|
Holland LZ, Ocampo Daza D. A new look at an old question: when did the second whole genome duplication occur in vertebrate evolution? Genome Biol 2018; 19:209. [PMID: 30486862 PMCID: PMC6260733 DOI: 10.1186/s13059-018-1592-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A recent study used 61 extant animal genomes to reconstruct the chromosomes of the hypothetical amniote ancestor. Comparison of this karyotype to the 17 chordate linkage groups previously inferred in the ancestral chordate indicated that two whole genome duplications probably occurred in the lineage preceding the ancestral vertebrate.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.
| | - Daniel Ocampo Daza
- Department of Organismal Biology, Uppsala University, 75236, Uppsala, Sweden.,School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| |
Collapse
|
31
|
Sacerdot C, Louis A, Bon C, Berthelot C, Roest Crollius H. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol 2018; 19:166. [PMID: 30333059 PMCID: PMC6193309 DOI: 10.1186/s13059-018-1559-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND It has been proposed that more than 450 million years ago, two successive whole genome duplications took place in a marine chordate lineage before leading to the common ancestor of vertebrates. A precise reconstruction of these founding events would provide a framework to better understand the impact of these early whole genome duplications on extant vertebrates. RESULTS We reconstruct the evolution of chromosomes at the beginning of vertebrate evolution. We first compare 61 extant animal genomes to reconstruct the highly contiguous order of genes in a 326-million-year-old ancestral Amniota genome. In this genome, we establish a well-supported list of duplicated genes originating from the two whole genome duplications to identify tetrads of duplicated chromosomes. From this, we reconstruct a chronology in which a pre-vertebrate genome composed of 17 chromosomes duplicated to 34 chromosomes and was subject to seven chromosome fusions before duplicating again into 54 chromosomes. After the separation of the lineage of Gnathostomata (jawed vertebrates) from Cyclostomata (extant jawless fish), four more fusions took place to form the ancestral Euteleostomi (bony vertebrates) genome of 50 chromosomes. CONCLUSIONS These results firmly establish the occurrence of two whole genome duplications in the lineage that precedes the ancestor of vertebrates, resolving in particular the ambiguity raised by the analysis of the lamprey genome. This work provides a foundation for studying the evolution of vertebrate chromosomes from the standpoint of a common ancestor and particularly the pattern of duplicate gene retention and loss that resulted in the gene composition of extant vertebrate genomes.
Collapse
Affiliation(s)
- Christine Sacerdot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Alexandra Louis
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Céline Bon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
- Present Address: Laboratoire Éco-Anthropologie et Ethnobiologie, UMR 7206 CNRS - Muséum National d'Histoire Naturelle, Université Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | | | - Hugues Roest Crollius
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| |
Collapse
|
32
|
Franke M, Gómez-Skarmeta JL. An evolutionary perspective of regulatory landscape dynamics in development and disease. Curr Opin Cell Biol 2018; 55:24-29. [PMID: 30006052 DOI: 10.1016/j.ceb.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The organization of animal genomes into topologically associating domains (TADs) provides a structural scaffold in which cis-regulatory elements (CREs) operate on their target genes. Determining the position of CREs and genes relative to TADs has become instrumental to trace gene expression changes during evolution and in diseases. Here we will review recent studies and discuss TADs as structural units with respect to their conservation and stability during genome reorganization. Furthermore, we describe how TAD restructuring contributed to morphological novelties during evolution but also their deleterious effects associated with disease. Despite considering TADs as structural units, the nested and dynamic scaffold within TADs contributes to tissue-specific gene expression, implying that such changes can also account for gene expression differences during evolution.
Collapse
Affiliation(s)
- Martin Franke
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Sevilla, Spain.
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Sevilla, Spain.
| |
Collapse
|
33
|
Lazar NH, Nevonen KA, O'Connell B, McCann C, O'Neill RJ, Green RE, Meyer TJ, Okhovat M, Carbone L. Epigenetic maintenance of topological domains in the highly rearranged gibbon genome. Genome Res 2018; 28:983-997. [PMID: 29914971 PMCID: PMC6028127 DOI: 10.1101/gr.233874.117] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/01/2018] [Indexed: 12/27/2022]
Abstract
The relationship between evolutionary genome remodeling and the three-dimensional structure of the genome remain largely unexplored. Here, we use the heavily rearranged gibbon genome to examine how evolutionary chromosomal rearrangements impact genome-wide chromatin interactions, topologically associating domains (TADs), and their epigenetic landscape. We use high-resolution maps of gibbon-human breaks of synteny (BOS), apply Hi-C in gibbon, measure an array of epigenetic features, and perform cross-species comparisons. We find that gibbon rearrangements occur at TAD boundaries, independent of the parameters used to identify TADs. This overlap is supported by a remarkable genetic and epigenetic similarity between BOS and TAD boundaries, namely presence of CpG islands and SINE elements, and enrichment in CTCF and H3K4me3 binding. Cross-species comparisons reveal that regions orthologous to BOS also correspond with boundaries of large (400-600 kb) TADs in human and other mammalian species. The colocalization of rearrangement breakpoints and TAD boundaries may be due to higher chromatin fragility at these locations and/or increased selective pressure against rearrangements that disrupt TAD integrity. We also examine the small portion of BOS that did not overlap with TAD boundaries and gave rise to novel TADs in the gibbon genome. We postulate that these new TADs generally lack deleterious consequences. Last, we show that limited epigenetic homogenization occurs across breakpoints, irrespective of their time of occurrence in the gibbon lineage. Overall, our findings demonstrate remarkable conservation of chromatin interactions and epigenetic landscape in gibbons, in spite of extensive genomic shuffling.
Collapse
Affiliation(s)
- Nathan H Lazar
- Bioinformatics and Computational Biology Division, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Brendan O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Christine McCann
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Thomas J Meyer
- Bioinformatics and Computational Biology Division, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Lucia Carbone
- Bioinformatics and Computational Biology Division, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| |
Collapse
|
34
|
Buckley RM, Kortschak RD, Adelson DL. Divergent genome evolution caused by regional variation in DNA gain and loss between human and mouse. PLoS Comput Biol 2018; 14:e1006091. [PMID: 29677183 PMCID: PMC5931693 DOI: 10.1371/journal.pcbi.1006091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/02/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
The forces driving the accumulation and removal of non-coding DNA and ultimately the evolution of genome size in complex organisms are intimately linked to genome structure and organisation. Our analysis provides a novel method for capturing the regional variation of lineage-specific DNA gain and loss events in their respective genomic contexts. To further understand this connection we used comparative genomics to identify genome-wide individual DNA gain and loss events in the human and mouse genomes. Focusing on the distribution of DNA gains and losses, relationships to important structural features and potential impact on biological processes, we found that in autosomes, DNA gains and losses both followed separate lineage-specific accumulation patterns. However, in both species chromosome X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon content required for X inactivation. We found that DNA loss was associated with gene-rich open chromatin regions and DNA gain events with gene-poor closed chromatin regions. Additionally, we found that DNA loss events tended to be smaller than DNA gain events suggesting that they were able to accumulate in gene-rich open chromatin regions due to their reduced capacity to interrupt gene regulatory architecture. GO term enrichment showed that mouse loss hotspots were strongly enriched for terms related to developmental processes. However, these genes were also located in regions with a high density of conserved elements, suggesting that despite high levels of DNA loss, gene regulatory architecture remained conserved. This is consistent with a model in which DNA gain and loss results in turnover or "churning" in regulatory element dense regions of open chromatin, where interruption of regulatory elements is selected against.
Collapse
Affiliation(s)
- Reuben M. Buckley
- Department of Genetics and Evolution, The University of Adelaide, North Tce, Adelaide, Australia
| | - R. Daniel Kortschak
- Department of Genetics and Evolution, The University of Adelaide, North Tce, Adelaide, Australia
| | - David L. Adelson
- Department of Genetics and Evolution, The University of Adelaide, North Tce, Adelaide, Australia
- * E-mail:
| |
Collapse
|
35
|
Abstract
Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over ∼105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first ∼60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases.
Collapse
|
36
|
|
37
|
Tao JF, Zhou JZ, Xie T, Wang XT, Yang QY, Zhang HY. Influence of Chromatin 3D Organization on Structural Variations of the Arabidopsis thaliana Genome. MOLECULAR PLANT 2017; 10:340-344. [PMID: 27742489 DOI: 10.1016/j.molp.2016.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 07/27/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Jing-Fen Tao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin-Zhi Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ting Xie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiao-Tao Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
38
|
Rajaraman A, Ma J. Reconstructing ancestral gene orders with duplications guided by synteny level genome reconstruction. BMC Bioinformatics 2016; 17:414. [PMID: 28185565 PMCID: PMC5123302 DOI: 10.1186/s12859-016-1262-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Reconstructing ancestral gene orders in the presence of duplications is important for a better understanding of genome evolution. Current methods for ancestral reconstruction are limited by either computational constraints or the availability of reliable gene trees, and often ignore duplications altogether. Recently, methods that consider duplications in ancestral reconstructions have been developed, but the quality of reconstruction, counted as the number of contiguous ancestral regions found, decreases rapidly with the number of duplicated genes, complicating the application of such approaches to mammalian genomes. However, such high fragmentation is not encountered when reconstructing mammalian genomes at the synteny-block level, although the relative positions of genes in such reconstruction cannot be recovered. Results We propose a new heuristic method, MultiRes, to reconstruct ancestral gene orders with duplications guided by homologous synteny blocks for a set of related descendant genomes. The method uses a synteny-level reconstruction to break the gene-order problem into several subproblems, which are then combined in order to disambiguate duplicated genes. We applied this method to both simulated and real data. Our results showed that MultiRes outperforms other methods in terms of gene content, gene adjacency, and common interval recovery. Conclusions This work demonstrates that the inclusion of synteny-level information can help us obtain better gene-level reconstructions. Our algorithm provides a basic toolbox for reconstructing ancestral gene orders with duplications. The source code of MultiRes is available on https://github.com/ma-compbio/MultiRes. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1262-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashok Rajaraman
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, USA.
| |
Collapse
|
39
|
Seidl MF, Cook DE, Thomma BPHJ. Chromatin Biology Impacts Adaptive Evolution of Filamentous Plant Pathogens. PLoS Pathog 2016; 12:e1005920. [PMID: 27812218 PMCID: PMC5094656 DOI: 10.1371/journal.ppat.1005920] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - David E. Cook
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | | |
Collapse
|
40
|
Assis R. Transcriptional Interference Promotes Rapid Expression Divergence of Drosophila Nested Genes. Genome Biol Evol 2016; 8:3149-3158. [PMID: 27664180 PMCID: PMC5174743 DOI: 10.1093/gbe/evw237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nested genes are the most common form of protein-coding overlap in eukaryotic genomes. Previous studies have shown that nested genes accumulate rapidly over evolutionary time, typically via the insertion of short young duplicate genes into long introns. However, the evolutionary relationship between nested genes remains unclear. Here, I compare RNA-seq expression profiles of nested, proximal intra-chromosomal, intermediate intra-chromosomal, distant intra-chromosomal, and inter-chromosomal gene pairs in two Drosophila species. I find that expression profiles of nested genes are more divergent than those of any other class of genes, supporting the hypothesis that concurrent expression of nested genes is deleterious due to transcriptional interference. Further analysis reveals that expression profiles of derived nested genes are more divergent than those of their ancestral un-nested orthologs, which are more divergent than those of un-nested genes with similar genomic features. Thus, gene expression divergence between nested genes is likely caused by selection against nesting of genes with insufficiently divergent expression profiles, as well as by continued expression divergence after nesting. Moreover, expression divergence and sequence evolutionary rates are elevated in young nested genes and reduced in old nested genes, indicating that a burst of rapid evolution occurs after nesting. Together, these findings suggest that similarity between expression profiles of nested genes is deleterious due to transcriptional interference, and that natural selection addresses this problem both by eradicating highly deleterious nestings and by enabling rapid expression divergence of surviving nested genes, thereby quickly limiting or abolishing transcriptional interference.
Collapse
Affiliation(s)
- Raquel Assis
- Department of Biology, Pennsylvania State University, University Park
| |
Collapse
|
41
|
|
42
|
Vakirlis N, Sarilar V, Drillon G, Fleiss A, Agier N, Meyniel JP, Blanpain L, Carbone A, Devillers H, Dubois K, Gillet-Markowska A, Graziani S, Huu-Vang N, Poirel M, Reisser C, Schott J, Schacherer J, Lafontaine I, Llorente B, Neuvéglise C, Fischer G. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus. Genome Res 2016; 26:918-32. [PMID: 27247244 PMCID: PMC4937564 DOI: 10.1101/gr.204420.116] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/28/2016] [Indexed: 12/22/2022]
Abstract
Reconstructing genome history is complex but necessary to reveal quantitative principles governing genome evolution. Such reconstruction requires recapitulating into a single evolutionary framework the evolution of genome architecture and gene repertoire. Here, we reconstructed the genome history of the genus Lachancea that appeared to cover a continuous evolutionary range from closely related to more diverged yeast species. Our approach integrated the generation of a high-quality genome data set; the development of AnChro, a new algorithm for reconstructing ancestral genome architecture; and a comprehensive analysis of gene repertoire evolution. We found that the ancestral genome of the genus Lachancea contained eight chromosomes and about 5173 protein-coding genes. Moreover, we characterized 24 horizontal gene transfers and 159 putative gene creation events that punctuated species diversification. We retraced all chromosomal rearrangements, including gene losses, gene duplications, chromosomal inversions and translocations at single gene resolution. Gene duplications outnumbered losses and balanced rearrangements with 1503, 929, and 423 events, respectively. Gene content variations between extant species are mainly driven by differential gene losses, while gene duplications remained globally constant in all lineages. Remarkably, we discovered that balanced chromosomal rearrangements could be responsible for up to 14% of all gene losses by disrupting genes at their breakpoints. Finally, we found that nonsynonymous substitutions reached fixation at a coordinated pace with chromosomal inversions, translocations, and duplications, but not deletions. Overall, we provide a granular view of genome evolution within an entire eukaryotic genus, linking gene content, chromosome rearrangements, and protein divergence into a single evolutionary framework.
Collapse
Affiliation(s)
- Nikolaos Vakirlis
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Véronique Sarilar
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Guénola Drillon
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Aubin Fleiss
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Nicolas Agier
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Jean-Philippe Meyniel
- ISoft, Route de l'Orme, Parc "Les Algorithmes" Bâtiment Euclide, 91190 Saint-Aubin, France
| | - Lou Blanpain
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Alessandra Carbone
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Kenny Dubois
- CRCM, CNRS, UMR7258, Inserm, U1068; Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, F-13009, Marseille, France
| | - Alexandre Gillet-Markowska
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Stéphane Graziani
- ISoft, Route de l'Orme, Parc "Les Algorithmes" Bâtiment Euclide, 91190 Saint-Aubin, France
| | - Nguyen Huu-Vang
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Marion Poirel
- ISoft, Route de l'Orme, Parc "Les Algorithmes" Bâtiment Euclide, 91190 Saint-Aubin, France
| | - Cyrielle Reisser
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR 7156, 67083 Strasbourg, France
| | - Jonathan Schott
- CRCM, CNRS, UMR7258, Inserm, U1068; Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, F-13009, Marseille, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR 7156, 67083 Strasbourg, France
| | - Ingrid Lafontaine
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Bertrand Llorente
- CRCM, CNRS, UMR7258, Inserm, U1068; Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, F-13009, Marseille, France
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gilles Fischer
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
43
|
Biller P, Guéguen L, Knibbe C, Tannier E. Breaking Good: Accounting for Fragility of Genomic Regions in Rearrangement Distance Estimation. Genome Biol Evol 2016; 8:1427-39. [PMID: 27190002 PMCID: PMC4898800 DOI: 10.1093/gbe/evw083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Models of evolution by genome rearrangements are prone to two types of flaws: One is to ignore the diversity of susceptibility to breakage across genomic regions, and the other is to suppose that susceptibility values are given. Without necessarily supposing their precise localization, we call "solid" the regions that are improbably broken by rearrangements and "fragile" the regions outside solid ones. We propose a model of evolution by inversions where breakage probabilities vary across fragile regions and over time. It contains as a particular case the uniform breakage model on the nucleotidic sequence, where breakage probabilities are proportional to fragile region lengths. This is very different from the frequently used pseudouniform model where all fragile regions have the same probability to break. Estimations of rearrangement distances based on the pseudouniform model completely fail on simulations with the truly uniform model. On pairs of amniote genomes, we show that identifying coding genes with solid regions yields incoherent distance estimations, especially with the pseudouniform model, and to a lesser extent with the truly uniform model. This incoherence is solved when we coestimate the number of fragile regions with the rearrangement distance. The estimated number of fragile regions is surprisingly small, suggesting that a minority of regions are recurrently used by rearrangements. Estimations for several pairs of genomes at different divergence times are in agreement with a slowly evolvable colocalization of active genomic regions in the cell.
Collapse
Affiliation(s)
- Priscila Biller
- INRIA Grenoble Rhône-Alpes, Montbonnot, France University of Campinas, São Paulo, Brazil
| | | | - Carole Knibbe
- INRIA Grenoble Rhône-Alpes, Montbonnot, France Université Lyon 1, LIRIS, UMR5205, Villeurbanne, France
| | - Eric Tannier
- INRIA Grenoble Rhône-Alpes, Montbonnot, France Université Lyon 1, LBBE, UMR5558, Villeurbanne, France
| |
Collapse
|
44
|
Sharakhov IV, Artemov GN, Sharakhova MV. Chromosome evolution in malaria mosquitoes inferred from physically mapped genome assemblies. J Bioinform Comput Biol 2016; 14:1630003. [PMID: 27021248 DOI: 10.1142/s0219720016300033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polymorphic inversions in mosquitoes are distributed nonrandomly among chromosomes and are associated with ecological, behavioral, and physiological adaptations related to pathogen transmission. Despite their significance, the patterns and mechanism of genome rearrangements are not well understood. Recent sequencing and physical mapping of the genomes for 16 Anopheles mosquito species provided an opportunity to study chromosome evolution at the highest resolution. New studies revealed that fixed rearrangement accumulated [Formula: see text]3 times faster on the X chromosome than on autosomes. The highest densities of transposable elements (TEs) and satellites of different sizes have also been found on the X chromosome, suggesting a mechanism for the inversion generation. The high rate of X chromosome rearrangements is in sharp contrast with the paucity of polymorphic inversions on the X in the majority of anopheline species. This paper highlights the advances in understanding chromosome evolution in malaria vectors and discusses possible future directions in studying mechanisms and biological roles of genome rearrangements.
Collapse
Affiliation(s)
- Igor V Sharakhov
- 1 Department of Entomology, Virginia Tech, Blacksburg, Virginia 24061, USA.,2 Tomsk State University, Tomsk 634050, Russia
| | | | - Maria V Sharakhova
- 1 Department of Entomology, Virginia Tech, Blacksburg, Virginia 24061, USA.,2 Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
45
|
Bernardi G. Genome Organization and Chromosome Architecture. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:83-91. [PMID: 26801160 DOI: 10.1101/sqb.2015.80.027318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
How the same DNA sequences can function in the three-dimensional architecture of interphase nucleus, fold in the very compact structure of metaphase chromosomes, and go precisely back to the original interphase architecture in the following cell cycle remains an unresolved question to this day. The solution to this question presented here rests on the correlations that were found to hold between the isochore organization of the genome and the architecture of chromosomes from interphase to metaphase. The key points are the following: (1) The transition from the looped domains and subdomains of interphase chromatin to the 30-nm fiber loops of early prophase chromosomes goes through their unfolding into an extended chromatin structure (probably a 10-nm "beads-on-a-string" structure); (2) the architectural proteins of interphase chromatin, such as CTCF and cohesin subunits, are retained in mitosis and are part of the discontinuous protein scaffold of mitotic chromosomes; and (3) the conservation of the link between architectural proteins and their binding sites on DNA through the cell cycle explains the reversibility of the interphase to mitosis process and the "mitotic memory" of interphase architecture.
Collapse
Affiliation(s)
- Giorgio Bernardi
- Science Department, Roma Tre University, 00146 Rome, Italy Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
46
|
|
47
|
Abstract
How the same DNA sequences can function in the three-dimensional architecture of interphase nucleus, fold in the very compact structure of metaphase chromosomes and go precisely back to the original interphase architecture in the following cell cycle remains an unresolved question to this day. The strategy used to address this issue was to analyze the correlations between chromosome architecture and the compositional patterns of DNA sequences spanning a size range from a few hundreds to a few thousands Kilobases. This is a critical range that encompasses isochores, interphase chromatin domains and boundaries, and chromosomal bands. The solution rests on the following key points: 1) the transition from the looped domains and sub-domains of interphase chromatin to the 30-nm fiber loops of early prophase chromosomes goes through the unfolding into an extended chromatin structure (probably a 10-nm "beads-on-a-string" structure); 2) the architectural proteins of interphase chromatin, such as CTCF and cohesin sub-units, are retained in mitosis and are part of the discontinuous protein scaffold of mitotic chromosomes; 3) the conservation of the link between architectural proteins and their binding sites on DNA through the cell cycle explains the "mitotic memory" of interphase architecture and the reversibility of the interphase to mitosis process. The results presented here also lead to a general conclusion which concerns the existence of correlations between the isochore organization of the genome and the architecture of chromosomes from interphase to metaphase.
Collapse
Affiliation(s)
- Giorgio Bernardi
- Science Department, Roma Tre University, Marconi, Rome, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|
48
|
Semeria M, Tannier E, Guéguen L. Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies. BMC Bioinformatics 2015; 16 Suppl 14:S5. [PMID: 26452018 PMCID: PMC4603630 DOI: 10.1186/1471-2105-16-s14-s5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Most models of genome evolution concern either genetic sequences, gene content or gene order. They sometimes integrate two of the three levels, but rarely the three of them. Probabilistic models of gene order evolution usually have to assume constant gene content or adopt a presence/absence coding of gene neighborhoods which is blind to complex events modifying gene content. RESULTS We propose a probabilistic evolutionary model for gene neighborhoods, allowing genes to be inserted, duplicated or lost. It uses reconciled phylogenies, which integrate sequence and gene content evolution. We are then able to optimize parameters such as phylogeny branch lengths, or probabilistic laws depicting the diversity of susceptibility of syntenic regions to rearrangements. We reconstruct a structure for ancestral genomes by optimizing a likelihood, keeping track of all evolutionary events at the level of gene content and gene synteny. Ancestral syntenies are associated with a probability of presence.
Collapse
Affiliation(s)
- Magali Semeria
- Laboratoire de Biométrie et Biologie Évolutive UMR CNRS 5558, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
| | - Eric Tannier
- Laboratoire de Biométrie et Biologie Évolutive UMR CNRS 5558, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
- INRIA Grenoble Rhône-Alpes, 655 avenue de l'Europe, 38330 Montbonnot, France
| | - Laurent Guéguen
- Laboratoire de Biométrie et Biologie Évolutive UMR CNRS 5558, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
| |
Collapse
|