1
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
2
|
Gao SJ, Li XL, Gao R, Tan WH, Li W, Liu L. Danggui Buxue decoction alleviates primary dysmenorrhea in rats by regulating the MEK1/2/ERK1/2/NF-κB pathway. Fitoterapia 2025; 180:106315. [PMID: 39615702 DOI: 10.1016/j.fitote.2024.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
The study aimed to investigate the efficacy of Danggui Buxue Decoction (DBD) in treating primary dysmenorrhea (PD) and uncover its mechanisms, thereby validating its traditional use. Using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), 38 compounds in DBD were identified. PD model rats were established via cold stimulation, estradiol benzoate, and oxytocin injections. DBD treatment improved behavioral parameters, reduced writhing response, and alleviated histopathological changes in uterus and ovary. Biochemical markers (PGE2, SOD and MDA, among others) were assessed using ELISA, and Western blot was employed to analyze protein levels in rat uteri. Results showed that DBD modulated these proteins, indicating its protective effects. The study provides scientific evidence for DBD's role in nourishing "qi" or enriching "blood" during PD treatment by affecting the MEK1/2/ERK1/2/NF-κB signaling pathway, thus reducing oxidative stress and proinflammatory factors in PD rats.
Collapse
Affiliation(s)
- Shi-Jia Gao
- College of Tiaditional Chinese Medicine, Ynnan University of Chinese Medicine, Kunming 650500, China
| | - Xiao-Li Li
- College of Tiaditional Chinese Medicine, Ynnan University of Chinese Medicine, Kunming 650500, China
| | - Rui Gao
- College of Tiaditional Chinese Medicine, Ynnan University of Chinese Medicine, Kunming 650500, China
| | - Wen-Hong Tan
- College of Tiaditional Chinese Medicine, Ynnan University of Chinese Medicine, Kunming 650500, China
| | - Wen Li
- The Second Afiliated Hospital of Kunming Medical University, China.
| | - Lu Liu
- College of Tiaditional Chinese Medicine, Ynnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
3
|
Li M, Ni QY, Yu SY. Integration of single-cell transcriptomics and epigenetic analysis reveals enhancer-controlled TIMP1 as a regulator of ferroptosis in colorectal cancer. Genes Genomics 2024; 46:121-133. [PMID: 38032469 DOI: 10.1007/s13258-023-01474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Ferroptosis is an iron-dependent non-apoptotic programmed cell death. However, the regulatory mechanism of ferroptosis in colorectal cancer (CRC) is still unclear. OBJECTIVE The aim of this study was to investigate the role and mechanism of enhancer-controlled genes in ferroptosis in CRC. METHODS Dimensionality reduction and differentially expressed genes (DEGs) identification were conducted using Seurat algorithm based on single-cell RNA sequencing (scRNA-seq) data from the GSE200997 dataset. Ferroptosis-related pathway enrichment analysis was performed using the FerrDb V2 database. Enhancers were identified using HOMER algorithm based on H3K27ac ChIP-seq data from the GSE166254 dataset. Kaplan-Meier Plotter online tool was used to analyze prognosis and gene expression correlation. Transcription factors were predicted using the transcription factor affinity prediction web tool. The binding of enhancer to transcription factor and H3K27ac enrichment were detected by ChIP-qPCR. RSL3 was used to induce ferroptosis in CRC cells. Gene transcription was detected by qRT-PCR. Cell proliferation was detected by CCK8 assay. RESULTS Nine cell clusters including T cells, natural killer cells, macrophages, mast cells, epithelial cells, fibroblasts, goblet cells, B cells and dendritic cells were identified in CRC and normal colonic tissue samples. Compared to normal colonic tissue-derived epithelial cells, 1075 DEGs were screened in CRC tissue-derived epithelial cells. Ferroptosis-related pathway enrichment suggested that DEGs were associated with the regulation of ferroptosis. DPEP1, ETV4, CEBPG, TIMP1, DUOX2 and LCN2 were identified as the significantly upregulated genes enriched in the "ferroptosis regulator" term, and their H3K27ac signals were significantly higher in CRC tissues than in normal colonic tissues. Of these, only the expression of TIMP1 predicted a poor prognosis of CRC patients. Transcription factor SPI1 drove TIMP1 transcription by binding to its enhancer. Overexpression of TIMP1 significantly promoted the resistance to ferroptosis induced by RSL3 in CRC cells, which was partially restored by SPI1 knockdown. CONCLUSION Transcription of TIMP1 was driven by transcription factor SPI1 in combination with its enhancer, consequently promoting CRC cells against ferroptosis. The SPI1/TIMP1 axis confers ferroptosis resistance in CRC, and thus has the potential to be the molecular targets for CRC treatment.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastrointestinal Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Qian-Yang Ni
- Department of Gastrointestinal Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China
| | - Su-Yang Yu
- Department of Gastrointestinal Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, 050051, China.
| |
Collapse
|
4
|
Tan SYX, Zhang J, Tee WW. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front Cell Dev Biol 2022; 10:931493. [PMID: 35757000 PMCID: PMC9213816 DOI: 10.3389/fcell.2022.931493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Epigenetics comprise a diverse array of reversible and dynamic modifications to the cell’s genome without implicating any DNA sequence alterations. Both the external environment surrounding the organism, as well as the internal microenvironment of cells and tissues, contribute to these epigenetic processes that play critical roles in cell fate specification and organismal development. On the other hand, dysregulation of epigenetic activities can initiate and sustain carcinogenesis, which is often augmented by inflammation. Chronic inflammation, one of the major hallmarks of cancer, stems from proinflammatory cytokines that are secreted by tumor and tumor-associated cells in the tumor microenvironment. At the same time, inflammatory signaling can establish positive and negative feedback circuits with chromatin to modulate changes in the global epigenetic landscape. In this review, we provide an in-depth discussion of the interconnected crosstalk between epigenetics and inflammation, specifically how epigenetic mechanisms at different hierarchical levels of the genome control inflammatory gene transcription, which in turn enact changes within the cell’s epigenomic profile, especially in the context of inflammation-induced cancer.
Collapse
Affiliation(s)
- Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Wan P, Zhang S, Ruan Z, Liu X, Yang G, Jia Y, Li Y, Pan P, Wang W, Li G, Chen X, Liu Z, Zhang Q, Luo Z, Wu J. AP-1 signaling pathway promotes pro-IL-1β transcription to facilitate NLRP3 inflammasome activation upon influenza A virus infection. Virulence 2022; 13:502-513. [PMID: 35300578 PMCID: PMC8942419 DOI: 10.1080/21505594.2022.2040188] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
NLRP3 inflammasome mainly controls interleukin-1β (IL-1β) secretion, leading to cell death called pyroptosis constituting a major antiviral host defense and inflammatory diseases upon viral infection. The RAF-MEK1/2-ERK1/2 cascade and downstream c-Jun/Fos and Activator protein-1 (AP1) signaling pathway control the degree of inflammatory response. Influenza A virus (IAV) infection is known to stimulate NLRP3 inflammasome activation and inflammatory responses. Nevertheless, the detailed mechanism by which IAV induces NLRP3 inflammasome activation involved in transcription of pro-IL-1β mRNA remains elusive. In our study, we found that IAV infection promotes pro-IL-1β mRNA transcription and activates NLRP3 inflammasome. Detailed studies reveal that type I interferon (IFN-α/IFN-β) as well as U0126 (a selective inhibitor of MEK-1 and MEK-2) typically inhibit IAV-mediated NLRP3 inflammasome activation via downregulating pro-IL-1β mRNA. Moreover, knock-down of c-Jun decreases pro-IL-1β mRNA and inhibits NLRP3 inflammasome activation upon IAV infection. Overall, the findings uncover that AP-1 signaling pathway promotes NLRP3 inflammasome activation upon IAV infection, which provides a new idea for the therapy of NLRP3 inflammasome-associated inflammatory diseases.
Collapse
Affiliation(s)
- Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Simeng Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhihui Ruan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Xueli Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Yaling Jia
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan, China.,Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Geng Li
- Foshan Institute of Medical Microbiology, Foshan, China.,Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xulin Chen
- Foshan Institute of Medical Microbiology, Foshan, China.,Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhixin Liu
- Department of Infectious Diseases, Department of Respiratory, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qiwei Zhang
- Foshan Institute of Medical Microbiology, Foshan, China.,Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhen Luo
- Foshan Institute of Medical Microbiology, Foshan, China.,Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- Foshan Institute of Medical Microbiology, Foshan, China.,Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
An oncogenic enhancer encodes selective selenium dependency in AML. Cell Stem Cell 2022; 29:386-399.e7. [PMID: 35108519 PMCID: PMC8903199 DOI: 10.1016/j.stem.2022.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 11/29/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Deregulation of transcription is a hallmark of acute myeloid leukemia (AML) that drives oncogenic expression programs and presents opportunities for therapeutic targeting. By integrating comprehensive pan-cancer enhancer landscapes with genetic dependency mapping, we find that AML-enriched enhancers encode for more selective tumor dependencies. We hypothesized that this approach could identify actionable dependencies downstream of oncogenic driver events and discovered a MYB-regulated AML-enriched enhancer regulating SEPHS2, a key component of the selenoprotein production pathway. Using a combination of patient samples and mouse models, we show that this enhancer upregulates SEPHS2, promoting selenoprotein production and antioxidant function required for AML survival. SEPHS2 and other selenoprotein pathway genes are required for AML growth in vitro. SEPHS2 knockout and selenium dietary restriction significantly delay leukemogenesis in vivo with little effect on normal hematopoiesis. These data validate the utility of enhancer mapping in target identification and suggest that selenoprotein production is an actionable target in AML.
Collapse
|
7
|
Man CH, Mercier FE, Liu N, Dong W, Stephanopoulos G, Jiang L, Jung Y, Lin CP, Leung AYH, Scadden DT. Proton export alkalinizes intracellular pH and reprograms carbon metabolism to drive normal and malignant cell growth. Blood 2022; 139:502-522. [PMID: 34610101 PMCID: PMC8796654 DOI: 10.1182/blood.2021011563] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/20/2021] [Indexed: 01/29/2023] Open
Abstract
Proton export is often considered a detoxifying process in animal cells, with monocarboxylate symporters coexporting excessive lactate and protons during glycolysis or the Warburg effect. We report a novel mechanism by which lactate/H+ export is sufficient to induce cell growth. Increased intracellular pH selectively activates catalysis by key metabolic gatekeeper enzymes HK1/PKM2/G6PDH, thereby enhancing glycolytic and pentose phosphate pathway carbon flux. The result is increased nucleotide levels, NADPH/NADP+ ratio, and cell proliferation. Simply increasing the lactate/proton symporter monocarboxylate transporter 4 (MCT4) or the sodium-proton antiporter NHE1 was sufficient to increase intracellular pH and give normal hematopoietic cells a significant competitive growth advantage in vivo. This process does not require additional cytokine triggers and is exploited in malignancy, where leukemogenic mutations epigenetically increase MCT4. Inhibiting MCT4 decreased intracellular pH and carbon flux and eliminated acute myeloid leukemia-initiating cells in mice without cytotoxic chemotherapy. Intracellular alkalization is a primitive mechanism by which proton partitioning can directly reprogram carbon metabolism for cell growth.
Collapse
Affiliation(s)
- Cheuk Him Man
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Ludwig Center, Harvard Medical School, Boston, MA
| | - Francois E Mercier
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Ludwig Center, Harvard Medical School, Boston, MA
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Li Jiang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Yookyung Jung
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and
| | - Anskar Y H Leung
- Division of Haematology, Department of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Ludwig Center, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
White SM, Snyder MP, Yi C. Master lineage transcription factors anchor trans mega transcriptional complexes at highly accessible enhancer sites to promote long-range chromatin clustering and transcription of distal target genes. Nucleic Acids Res 2021; 49:12196-12210. [PMID: 34850122 PMCID: PMC8643643 DOI: 10.1093/nar/gkab1105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
The term 'super enhancers' (SE) has been widely used to describe stretches of closely localized enhancers that are occupied collectively by large numbers of transcription factors (TFs) and co-factors, and control the transcription of highly-expressed genes. Through integrated analysis of >600 DNase-seq, ChIP-seq, GRO-seq, STARR-seq, RNA-seq, Hi-C and ChIA-PET data in five human cancer cell lines, we identified a new class of autonomous SEs (aSEs) that are excluded from classic SE calls by the widely used Rank Ordering of Super-Enhancers (ROSE) method. TF footprint analysis revealed that compared to classic SEs and regular enhancers, aSEs are tightly bound by a dense array of master lineage TFs, which serve as anchors to recruit additional TFs and co-factors in trans. In addition, aSEs are preferentially enriched for Cohesins, which likely involve in stabilizing long-distance interactions between aSEs and their distal target genes. Finally, we showed that aSEs can be reliably predicted using a single DNase-seq data or combined with Mediator and/or P300 ChIP-seq. Overall, our study demonstrates that aSEs represent a unique class of functionally important enhancer elements that distally regulate the transcription of highly expressed genes.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
9
|
Lee WK, Cheng SY. Targeting transcriptional regulators for treatment of anaplastic thyroid cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 34761120 PMCID: PMC8577520 DOI: 10.20517/2394-4722.2021.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysregulation of genes perpetuates cancer progression. During carcinogenesis, cancer cells acquire dependency of aberrant transcriptional programs (known as “transcription addiction”) to meet the high demands for uncontrolled proliferation. The needs for particular transcription programs for cancer growth could be cancer-type-selective. The dependencies of certain transcription regulators could be exploited for therapeutic benefits. Anaplastic thyroid cancer (ATC) is an extremely aggressive human cancer for which new treatment modalities are urgently needed. Its resistance to conventional treatments and the lack of therapeutic options for improving survival might have been attributed to extensive genetic heterogeneity due to subsequent evolving genetic alterations and clonal selections during carcinogenesis. Despite this genetic complexity, mounting evidence has revealed a characteristic transcriptional addiction of ATC cells resulting in evolving diverse oncogenic signaling for cancer cell survival. The transcriptional addiction has presented a huge challenge for effective targeting as shown by the failure of previous targeted therapies. However, an emerging notion is that many different oncogenic signaling pathways activated by multiple upstream driver mutations might ultimately converge on the transcriptional responses, which would provide an opportunity to target transcriptional regulators for treatment of ATC. Here, we review the current understanding of how genetic alterations in cancer distorted the transcription program, leading to acquisition of transcriptional addiction. We also highlight recent findings from studies aiming to exploit the opportunity for targeting transcription regulators as potential therapeutics for ATC.
Collapse
Affiliation(s)
- Woo Kyung Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Zboril E, Yoo H, Chen L, Liu Z. Dynamic Interactions of Transcription Factors and Enhancer Reprogramming in Cancer Progression. Front Oncol 2021; 11:753051. [PMID: 34616687 PMCID: PMC8488287 DOI: 10.3389/fonc.2021.753051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
While improved tumor treatment has significantly reduced the overall mortality rates, invasive progression including recurrence, therapy resistance and metastasis contributes to the majority of deaths caused by cancer. Enhancers are essential distal DNA regulatory elements that control temporal- or spatial-specific gene expression patterns during development and other biological processes. Genome-wide sequencing has revealed frequent alterations of enhancers in cancers and reprogramming of distal enhancers has emerged as one of the important features for tumors. In this review, we will discuss tumor progression-associated enhancer dynamics, its transcription factor (TF) drivers and how enhancer reprogramming modulates gene expression during cancer invasive progression. Additionally, we will explore recent advancements in contemporary technology including single-cell sequencing, spatial transcriptomics and CUT&RUN, which have permitted integrated studies of enhancer reprogramming in vivo. Given the essential roles of enhancer dynamics and its drivers in controlling cancer progression and treatment outcome, understanding these changes will be paramount in mitigating invasive events and discovering novel therapeutic targets.
Collapse
Affiliation(s)
- Emily Zboril
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hannah Yoo
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lizhen Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cell Systems and Anatomy, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Enhancer rewiring in tumors: an opportunity for therapeutic intervention. Oncogene 2021; 40:3475-3491. [PMID: 33934105 DOI: 10.1038/s41388-021-01793-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Enhancers are cis-regulatory sequences that fine-tune expression of their target genes in a spatiotemporal manner. They are recognized by sequence-specific transcription factors, which in turn recruit transcriptional coactivators that facilitate transcription by promoting assembly and activation of the basal transcriptional machinery. Their functional importance is underscored by the fact that they are often the target of genetic and nongenetic events in human disease that disrupt their sequence, interactome, activation potential, and/or chromatin environment. Dysregulation of transcription and addiction to transcriptional effectors that interact with and modulate enhancer activity are common features of cancer cells and are amenable to therapeutic intervention. Here, we discuss the current knowledge on enhancer biology, the broad spectrum of mechanisms that lead to their malfunction in tumor cells, and recent progress in developing drugs that efficaciously target their dependencies.
Collapse
|
12
|
Schwartz M, Portugez AS, Attia BZ, Tannenbaum M, Cohen L, Loza O, Chase E, Turman Y, Kaplan T, Salah Z, Hakim O. Genomic retargeting of p53 and CTCF is associated with transcriptional changes during oncogenic HRas-induced transformation. Commun Biol 2020; 3:696. [PMID: 33239721 PMCID: PMC7809021 DOI: 10.1038/s42003-020-01398-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Gene transcription is regulated by distant regulatory elements via combinatorial binding of transcription factors. It is increasingly recognized that alterations in chromatin state and transcription factor binding in these distant regulatory elements may have key roles in cancer development. Here we focused on the first stages of oncogene-induced carcinogenic transformation, and characterized the regulatory network underlying transcriptional changes associated with this process. Using Hi-C data, we observe spatial coupling between differentially expressed genes and their differentially accessible regulatory elements and reveal two candidate transcription factors, p53 and CTCF, as determinants of transcriptional alterations at the early stages of oncogenic HRas-induced transformation in human mammary epithelial cells. Strikingly, the malignant transcriptional reprograming is promoted by redistribution of chromatin binding of these factors without major variation in their expression level. Our results demonstrate that alterations in the regulatory landscape have a major role in driving oncogene-induced transcriptional reprogramming.
Collapse
Affiliation(s)
- Michal Schwartz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Avital Sarusi Portugez
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Bracha Zukerman Attia
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Miriam Tannenbaum
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Leslie Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Olga Loza
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Emily Chase
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yousef Turman
- Al-Quds-Bard College for Arts and Sciences, Al-Quds University, Abu Dis, Palestinian Terretories, Palestine
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zaidoun Salah
- Al-Quds-Bard College for Arts and Sciences, Al-Quds University, Abu Dis, Palestinian Terretories, Palestine
| | - Ofir Hakim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
13
|
Zhang X, Meyerson M. Illuminating the noncoding genome in cancer. ACTA ACUST UNITED AC 2020; 1:864-872. [DOI: 10.1038/s43018-020-00114-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
|
14
|
Jia Q, Chen S, Tan Y, Li Y, Tang F. Oncogenic super-enhancer formation in tumorigenesis and its molecular mechanisms. Exp Mol Med 2020; 52:713-723. [PMID: 32382065 PMCID: PMC7272638 DOI: 10.1038/s12276-020-0428-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Super-enhancers (SEs) consist of a cluster of many enhancers bound to a great number of transcription factors. They are critical cis-regulatory elements that determine the identity of various human cell types. During tumorigenesis, DNA mutations and indels, chromosomal rearrangements, three-dimensional chromatin structural changes, and viral infections mediate oncogenic SE activation, and activated SEs have been found to regulate the expression of oncogenic genes. Inhibition specifically targeted to oncogenic SE assembly and activation provides a novel powerful therapeutic strategy for various cancers. In this paper, we first introduce the current understanding of oncogenic SE assembly and activation and then summarize the pathogenic factors and mechanism of oncogenic SE activation. Next, we elaborate on the oncogenic functions of SEs in cancers and the application of SEs as therapeutic targets. Finally, we turn our focus to the use of SEs in basic research and clinical trials. Drugs that block the assembly and activation of large DNA segments involved in enhancing gene expression could help in the treatment of cancer. Faqing Tang of Hunan Cancer Hospital in Changsha, China, and colleagues review the ways in which cancer cells hijack clusters of gene-regulating sequences known as super-enhancers, regulatory gene regions that normally help determine a cell’s unique identity, to drive the aberrant gene activity that fuels tumor growth. The researchers describe how numerous factors, ranging from internal DNA alterations, both large and small, to viral infections and other external assaults, can spur the formation of cancer-causing super-enhancers, leading to out-of-control gene expression. Therapies that selectively target these super-enhancers are now in early clinical testing. However, more studies of super-enhancers and their role in cancer development are needed to inform future drug development.
Collapse
Affiliation(s)
- Qunying Jia
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Shuhua Chen
- Department of Otolaryngology, The Second People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yuan Tan
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yuejin Li
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
15
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
16
|
Fan L, Wang Y, Wang W, Wei X. Carcinogenic role of K-Ras-ERK1/2 signaling in bladder cancer via inhibition of H1.2 phosphorylation at T146. J Cell Physiol 2019; 234:21135-21144. [PMID: 31032946 DOI: 10.1002/jcp.28716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
It has been reported that Ras-ERK signaling regulated tumor suppressive genes via epigenetic mechanisms. Herein, we set out to investigate the correlation between K-Ras-ERK1/2 signaling and H1.2 phosphorylation, to provide a better understanding of K-Ras-ERK signaling in cancer. A plasmid for expression of mutated K-Ras was transfected into human bladder carcinoma HT1197 cells. Western blot was carried out for testing the expression changes of ERK1/2 and H1.2. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, soft-agar colony formation assay, and transwell assay were used to test the effects of H1.2 phosphorylation at T146 (H1.2 T146ph ) on HT1197 cells growth and migration. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and chromatin immunoprecipitation (ChIP) were performed to test whether H1.2 T146ph regulated K-Ras-ERK1/2 downstream genes. Furthermore, how K-Ras-ERK1/2 regulated H1.2 T146ph expression was studied. We found that the ERK1/2 was activated when K-Ras was mutated, and H1.2 T146ph expression was significantly downregulated by K-Ras mutation. H1.2 T146E for mimicking H1.2 T146ph significantly attenuated K-Ras mutation induced increases in HT1197 cells viability, colony formation, and relative migration. Besides, H1.2 T146ph regulated the transcription of K-Ras-ERK1/2 downstream genes, including NT5E, GDF15, CARD16, CYR61, IGFBP3, and WNT16B. Furthermore, K-Ras-ERK1/2 signaling inhibited H1.2 phosphorylation at T146 through degradation of DNA-PK, and the degraded DNA-PK by K-Ras-ERK1/2 possibly via modulation of MDM2. In conclusion, the activation of K-Ras-ERK1/2 signaling will repress the phosphorylation of H1.2 at T146, and thereby, promoted the growth and migration of bladder cancer cells. K-Ras-ERK1/2 signaling repressed H1.2 phosphorylation possibly by MDM2-mediated degradation of DNA-PK.
Collapse
Affiliation(s)
- Li Fan
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Weihua Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Wei
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019; 79:994-1009. [PMID: 30630822 PMCID: PMC6397693 DOI: 10.1158/0008-5472.can-18-1888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
18
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, et alHemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Show More Authors] [Citation(s) in RCA: 748] [Impact Index Per Article: 124.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang P, He F, Bai J, Yamamoto S, Chen S, Zhang L, Sheng M, Zhang L, Guo Y, Man N, Yang H, Wang S, Cheng T, Nimer SD, Zhou Y, Xu M, Wang QF, Yang FC. Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy. J Clin Invest 2018; 128:5383-5398. [PMID: 30226831 DOI: 10.1172/jci121366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022] Open
Abstract
ASXL1 is frequently mutated in myeloid malignancies and is known to co-occur with other gene mutations. However, the molecular mechanisms underlying the leukemogenesis associated with ASXL1 and cooperating mutations remain to be elucidated. Here, we report that Asxl1 loss cooperated with haploinsufficiency of Nf1, a negative regulator of the RAS signaling pathway, to accelerate the development of myeloid leukemia in mice. Loss of Asxl1 and Nf1 in hematopoietic stem and progenitor cells resulted in a gain-of-function transcriptional activation of multiple pathways such as MYC, NRAS, and BRD4 that are critical for leukemogenesis. The hyperactive MYC and BRD9 transcription programs were correlated with elevated H3K4 trimethylation at the promoter regions of genes involving these pathways. Furthermore, pharmacological inhibition of both the MAPK pathway and BET bromodomain prevented leukemia initiation and inhibited disease progression in Asxl1Δ/Δ Nf1Δ/Δ mice. Concomitant mutations of ASXL1 and RAS pathway genes were associated with aggressive progression of myeloid malignancies in patients. This study sheds light on the effect of cooperation between epigenetic alterations and signaling pathways on accelerating the progression of myeloid malignancies and provides a rational therapeutic strategy for the treatment of myeloid malignancies with ASXL1 and RAS pathway gene mutations.
Collapse
Affiliation(s)
- Peng Zhang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Fuhong He
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jie Bai
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Hematology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shohei Yamamoto
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lin Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mengyao Sheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ying Guo
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hui Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Suyun Wang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital and Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
20
|
Arechederra M, Daian F, Yim A, Bazai SK, Richelme S, Dono R, Saurin AJ, Habermann BH, Maina F. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat Commun 2018; 9:3164. [PMID: 30089774 PMCID: PMC6082886 DOI: 10.1038/s41467-018-05550-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/10/2018] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications such as aberrant DNA methylation reshape the gene expression repertoire in cancer. Here, we used a clinically relevant hepatocellular carcinoma (HCC) mouse model (Alb-R26Met) to explore the impact of DNA methylation on transcriptional switches associated with tumorigenesis. We identified a striking enrichment in genes simultaneously hypermethylated in CpG islands (CGIs) and overexpressed. These hypermethylated CGIs are located either in the 5′-UTR or in the gene body region. Remarkably, such CGI hypermethylation accompanied by gene upregulation also occurs in 56% of HCC patients, which belong to the “HCC proliferative-progenitor” subclass. Most of the genes upregulated and with hypermethylated CGIs in the Alb-R26Met HCC model undergo the same change in a large proportion of HCC patients. Among reprogrammed genes, several are well-known oncogenes. For others not previously linked to cancer, we demonstrate here their action together as an “oncogene module”. Thus, hypermethylation of gene body CGIs is predictive of elevated oncogene levels in cancer, offering a novel stratification strategy and perspectives to normalise cancer gene dosages. Changes in the DNA methylation status are commonly observed in cancer but their impact on cancer development is unclear. Here, combining DNA methylation and expression profiles from a murine model of hepatocellular carcinoma with those from human samples, the authors report an epigenetic reprogramming process ensuring increased dosage of an “oncogene module”.
Collapse
Affiliation(s)
- Maria Arechederra
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Aix Marseille Univ, 13009, Marseille, France
| | - Fabrice Daian
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Aix Marseille Univ, 13009, Marseille, France
| | - Annie Yim
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Sehrish K Bazai
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Aix Marseille Univ, 13009, Marseille, France
| | - Sylvie Richelme
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Aix Marseille Univ, 13009, Marseille, France
| | - Rosanna Dono
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Aix Marseille Univ, 13009, Marseille, France
| | - Andrew J Saurin
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Aix Marseille Univ, 13009, Marseille, France
| | - Bianca H Habermann
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Aix Marseille Univ, 13009, Marseille, France
| | - Flavio Maina
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Aix Marseille Univ, 13009, Marseille, France.
| |
Collapse
|
21
|
Yohe ME, Gryder BE, Shern JF, Song YK, Chou HC, Sindiri S, Mendoza A, Patidar R, Zhang X, Guha R, Butcher D, Isanogle KA, Robinson CM, Luo X, Chen JQ, Walton A, Awasthi P, Edmondson EF, Difilippantonio S, Wei JS, Zhao K, Ferrer M, Thomas CJ, Khan J. MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma. Sci Transl Med 2018; 10:eaan4470. [PMID: 29973406 PMCID: PMC8054766 DOI: 10.1126/scitranslmed.aan4470] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
The RAS isoforms are frequently mutated in many types of human cancers, including PAX3/PAX7 fusion-negative rhabdomyosarcoma. Pediatric RMS arises from skeletal muscle progenitor cells that have failed to differentiate normally. The role of mutant RAS in this differentiation blockade is incompletely understood. We demonstrate that oncogenic RAS, acting through the RAF-MEK [mitogen-activated protein kinase (MAPK) kinase]-ERK (extracellular signal-regulated kinase) MAPK effector pathway, inhibits myogenic differentiation in rhabdomyosarcoma by repressing the expression of the prodifferentiation myogenic transcription factor, MYOG. This repression is mediated by ERK2-dependent promoter-proximal stalling of RNA polymerase II at the MYOG locus. Small-molecule screening with a library of mechanistically defined inhibitors showed that RAS-driven RMS is vulnerable to MEK inhibition. MEK inhibition with trametinib leads to the loss of ERK2 at the MYOG promoter and releases the transcriptional stalling of MYOG expression. MYOG subsequently opens chromatin and establishes super-enhancers at genes required for late myogenic differentiation. Furthermore, trametinib, in combination with an inhibitor of IGF1R, potently decreases rhabdomyosarcoma cell viability and slows tumor growth in xenograft models. Therefore, this combination represents a potential therapeutic for RAS-mutated rhabdomyosarcoma.
Collapse
Affiliation(s)
- Marielle E Yohe
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Berkley E Gryder
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jack F Shern
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Young K Song
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hsien-Chao Chou
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sivasish Sindiri
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rajesh Patidar
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Rajarashi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Kristine A Isanogle
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Christina M Robinson
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ashley Walton
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Elijah F Edmondson
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther 2018; 187:45-60. [PMID: 29454854 DOI: 10.1016/j.pharmthera.2018.02.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is de-regulated in a variety of cancers due to mutations in receptor tyrosine kinases (RTKs), negative regulators of RAS (such as NF1) and core pathway components themselves (RAS, BRAF, CRAF, MEK1 or MEK2). This has driven the development of a variety of pharmaceutical agents to inhibit RAF-MEK1/2-ERK1/2 signalling in cancer and both RAF and MEK inhibitors are now approved and used in the clinic. There is now much interest in targeting at the level of ERK1/2 for a variety of reasons. First, since the pathway is linear from RAF-to-MEK-to-ERK then ERK1/2 are validated as targets per se. Second, innate resistance to RAF or MEK inhibitors involves relief of negative feedback and pathway re-activation with all signalling going through ERK1/2, validating the use of ERK inhibitors with RAF or MEK inhibitors as an up-front combination. Third, long-term acquired resistance to RAF or MEK inhibitors involves a variety of mechanisms (KRAS or BRAF amplification, MEK mutation, etc.) which re-instate ERK activity, validating the use of ERK inhibitors to forestall acquired resistance to RAF or MEK inhibitors. The first potent highly selective ERK1/2 inhibitors have now been developed and are entering clinical trials. They have one of three discrete mechanisms of action - catalytic, "dual mechanism" or covalent - which could have profound consequences for how cells respond and adapt. In this review we describe the validation of ERK1/2 as anti-cancer drug targets, consider the mechanism of action of new ERK1/2 inhibitors and how this may impact on their efficacy, anticipate factors that will determine how tumour cells respond and adapt to ERK1/2 inhibitors and consider ERK1/2 inhibitor drug combinations.
Collapse
Affiliation(s)
- Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom.
| | - James Sipthorp
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom
| | - Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom.
| |
Collapse
|
23
|
Fagnocchi L, Poli V, Zippo A. Enhancer reprogramming in tumor progression: a new route towards cancer cell plasticity. Cell Mol Life Sci 2018; 75:2537-2555. [PMID: 29691590 PMCID: PMC11105402 DOI: 10.1007/s00018-018-2820-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity arises during tumor progression as a consequence of genetic insults, environmental cues, and reversible changes in the epigenetic state, favoring tumor cell plasticity. The role of enhancer reprogramming is emerging as a relevant field in cancer biology as it supports adaptation of cancer cells to those environmental changes encountered during tumor progression and metastasis seeding. In this review, we describe the cancer-related alterations that drive oncogenic enhancer activity, leading to dysregulated transcriptional programs. We discuss the molecular mechanisms of both cis- and trans-factors in overriding the regulatory circuits that maintain cell-type specificity and imposing an alternative, de-regulated enhancer activity in cancer cells. We further comment on the increasing evidence which implicates stress response and aging-signaling pathways in the enhancer landscape reprogramming during tumorigenesis. Finally, we focus on the potential therapeutic implications of these enhancer-mediated subverted transcriptional programs, putting particular emphasis on the lack of information regarding tumor progression and the metastatic outgrowth, which still remain the major cause of mortality related to cancer.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Vittoria Poli
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessio Zippo
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, 20122, Milan, Italy.
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
24
|
Li GY, Wang W, Sun JY, Xin B, Zhang X, Wang T, Zhang QF, Yao LB, Han H, Fan DM, Yang AG, Jia LT, Wang L. Long non-coding RNAs AC026904.1 and UCA1: a "one-two punch" for TGF-β-induced SNAI2 activation and epithelial-mesenchymal transition in breast cancer. Theranostics 2018; 8:2846-2861. [PMID: 29774079 PMCID: PMC5957013 DOI: 10.7150/thno.23463] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor-β (TGF-β) has received much attention as a major inducer of epithelial-mesenchymal transition (EMT) during cancer progression, mainly by activating a set of pleiotropic transcription factors including SNAI2/Slug. However, the involvement of long non-coding RNAs (lncRNAs) in TGF-β-induced Slug activation and EMT remains largely unknown. Methods: In this study, we used microarray analysis to compare lncRNA expression profiles between TGF-β treated and untreated breast cancer cells. Then, the clinical significance of lncRNAs in breast cancer was investigated by qPCR and Kaplan-Meier survival analysis. The molecular mechanisms and EMT-promoting effects in vitro were analyzed by confocal laser microscopy, Western blotting, chromosome conformation capture (3C), chromatin isolation by RNA purification (ChIRP), ChIP, luciferase reporter assay and transwell migration assay. Lastly, the pro-metastatic effects in vivo were evaluated by bioluminescent imaging and hematoxylin and eosin (H&E) staining. Results: We observed that TGF-β induced genome-wide changes in lncRNA levels in breast cancer cells, among which AC026904.1 and UCA1 were highly expressed in metastatic breast cancer and closely associated with poor prognosis. Mechanistic study revealed that AC026904.1 and UCA1 were upregulated by non-canonical and canonical TGF-β pathways, respectively. Further analysis showed that AC026904.1 functions as an enhancer RNA in the nucleus, whereas UCA1 exerts a competitive endogenous RNA (ceRNA) activity in the cytoplasm. In addition, the biological functions of these two lncRNAs converged on the activation and maintenance of Slug, constituting a one-two punch in promoting EMT and tumor metastasis. Conclusion: These findings uncover for the first time that AC026904.1 and UCA1 could cooperatively upregulate Slug expression at both transcriptional and post-transcriptional levels, exerting critical roles in TGF-β-induced EMT. The present work provides new evidence that lncRNAs function as key regulators of EMT and hold great promise to be used as novel biomarkers and therapeutic targets for metastatic breast cancer.
Collapse
Affiliation(s)
- Guo-Yin Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Wei Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Jian-Yong Sun
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Xin
- Department of Oncology, No. 88 Hospital of PLA, Tai'an, China
| | - Xiang Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Ting Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Qian-Feng Zhang
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Li-Bo Yao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Dai-Ming Fan
- Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - An-Gang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lin-Tao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol 2018; 14:431-441. [PMID: 29581585 DOI: 10.1038/s41589-018-0021-8] [Citation(s) in RCA: 686] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 02/02/2018] [Indexed: 01/19/2023]
Abstract
Dissection of complex biological systems requires target-specific control of the function or abundance of proteins. Genetic perturbations are limited by off-target effects, multicomponent complexity, and irreversibility. Most limiting is the requisite delay between modulation to experimental measurement. To enable the immediate and selective control of single protein abundance, we created a chemical biology system that leverages the potency of cell-permeable heterobifunctional degraders. The dTAG system pairs a novel degrader of FKBP12F36V with expression of FKBP12F36V in-frame with a protein of interest. By transgene expression or CRISPR-mediated locus-specific knock-in, we exemplify a generalizable strategy to study the immediate consequence of protein loss. Using dTAG, we observe an unexpected superior antiproliferative effect of pan-BET bromodomain degradation over selective BRD4 degradation, characterize immediate effects of KRASG12V loss on proteomic signaling, and demonstrate rapid degradation in vivo. This technology platform will confer kinetic resolution to biological investigation and provide target validation in the context of drug discovery.
Collapse
|
26
|
Oncogenic N-Ras Stimulates SRF-Mediated Transactivation via H3 Acetylation at Lysine 9. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473725. [PMID: 29511684 PMCID: PMC5817314 DOI: 10.1155/2018/5473725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/18/2017] [Accepted: 11/21/2017] [Indexed: 01/10/2023]
Abstract
Signal transduction pathways regulate the gene expression by altering chromatin dynamics in response to mitogens. Ras proteins are key regulators linking extracellular stimuli to a diverse range of biological responses associated with gene regulation. In mammals, the three ras genes encode four Ras protein isoforms: H-Ras, K-Ras4A, K-Ras4B, and N-Ras. Although emerging evidence suggests that Ras isoforms differentially regulate gene expressions and are functionally nonredundant, the mechanisms underlying Ras specificity and Ras signaling effects on gene expression remain unclear. Here, we show that oncogenic N-Ras acts as the most potent regulator of SRF-, NF-κB-, and AP-1-dependent transcription. N-Ras-RGL2 axis is a distinct signaling pathway for SRF target gene expression such as Egr1 and JunB, as RGL2 Ras binding domain (RBD) significantly impaired oncogenic N-Ras-induced SRE activation. By monitoring the effect of Ras isoforms upon the change of global histone modifications in oncogenic Ras-overexpressed cells, we discovered that oncogenic N-Ras elevates H3K9ac/H3K23ac levels globally in the chromatin context. Importantly, chromatin immunoprecipitation (ChIP) assays revealed that H3K9ac is significantly enriched at the promoter and coding regions of Egr1 and JunB. Collectively, our findings define an undocumented role of N-Ras in modulating of H3 acetylation and in gene regulation.
Collapse
|
27
|
|
28
|
Super enhancer associated RAI14 is a new potential biomarker in lung adenocarcinoma. Oncotarget 2017; 8:105251-105261. [PMID: 29285248 PMCID: PMC5739635 DOI: 10.18632/oncotarget.22165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 09/23/2017] [Indexed: 12/28/2022] Open
Abstract
Purpose Tyrosine kinase inhibitors (TKIs) are widely used to treat lung adenocarcinoma patients with EGFR mutations or ALK-fusions. However, patients with wild-type genes or TKIs-resistant mutations lack effective therapeutic targets. Extensive studies reveal that super enhancer (SE), a large cis-regulatory element, is associated with key oncogenes in a variety of cancers. By comparing the effect of SE on lung adenocarcinoma cell lines with normal cell line, this work attempts to find new biomarkers and potential therapeutic targets for lung adenocarcinoma. Experimental Design Chromatin Immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) of H3K27ac (acetylation on lysine 27 of histone 3) was performed in lung adenocarcinoma cell lines SPC-A1 and SCH-1153. The differences in SE distribution were then analyzed among SPC-A1, SCH-1153, A549 and normal human lung fibroblasts (NHLF) to identify SE-associated oncogenes. The expression of SE-associated oncogenes was then detected by RNA-seq and further verified in 71 patients by real-time PCR. Results SE associated with many new oncogenes in lung adenocarcinoma, among which, RAI14 was up-regulated in A549 and 31 of 71 patients. High expression of RAI14 could inhibit cell proliferation, indicating its potential as a new biomarker for lung adenocarcinoma.
Collapse
|
29
|
Tanaka M, Yoshimoto T, Nakamura T. A double-edged sword: The world according to Capicua in cancer. Cancer Sci 2017; 108:2319-2325. [PMID: 28985030 PMCID: PMC5715262 DOI: 10.1111/cas.13413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
CIC/Capicua is an HMG‐box transcription factor that is well conserved during evolution. CIC recognizes the T(G/C)AATG(A/G)A sequence and represses its target genes, such as PEA3 family genes. The receptor tyrosine kinase/RAS/MAPK signals downregulate CIC and relieves CIC's target genes from the transrepressional activity; CIC thus acts as an important downstream molecule of the pathway and as a tumor suppressor. CIC loss‐of‐function mutations are frequently observed in several human neoplasms such as oligodendroglioma, and lung and gastric carcinoma. CIC is also involved in chromosomal translocation‐associated gene fusions in highly aggressive small round cell sarcoma that is biologically and clinically distinct from Ewing sarcoma. In these mutations, PEA3 family genes and other important target genes are upregulated, inducing malignant phenotypes. Downregulation of CIC abrogates the effect of MAPK inhibitors, suggesting its potential role as an important modifier of molecular target therapies for cancer. These data reveal the importance of CIC as a key molecule in signal transduction, carcinogenesis, and developing novel therapies.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toyoki Yoshimoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
30
|
Tauc HM, Tasdogan A, Meyer P, Pandur P. Nipped-A regulates intestinal stem cell proliferation in Drosophila. Development 2017; 144:612-623. [PMID: 28196804 DOI: 10.1242/dev.142703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Adult stem cells uphold a delicate balance between quiescent and active states, a deregulation of which can lead to age-associated diseases such as cancer. In Drosophila, intestinal stem cell (ISC) proliferation is tightly regulated and mis-regulation is detrimental to intestinal homeostasis. Various factors are known to govern ISC behavior; however, transcriptional changes in ISCs during aging are still unclear. RNA sequencing of young and old ISCs newly identified Nipped-A, a subunit of histone acetyltransferase complexes, as a regulator of ISC proliferation that is upregulated in old ISCs. We show that Nipped-A is required for maintaining the proliferative capacity of ISCs during aging and in response to tissue-damaging or tumorigenic stimuli. Interestingly, Drosophila Myc cannot compensate for the effect of the loss of Nipped-A on ISC proliferation. Nipped-A seems to be a superordinate regulator of ISC proliferation, possibly by coordinating different processes including modifying the chromatin landscape of ISCs and progenitors.
Collapse
Affiliation(s)
- Helen Marie Tauc
- Institut für Biochemie und Molekulare Biologie, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Alpaslan Tasdogan
- Institut für Immunologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Patrick Meyer
- Institut für Dermatologie, Universität Ulm, Life Science Building N27, James Franck-Ring/Meyerhofstrasse 11c, Ulm 89081, Germany
| | - Petra Pandur
- Institut für Biochemie und Molekulare Biologie, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
31
|
Angus SP, Zawistowski JS, Johnson GL. Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer. Annu Rev Pharmacol Toxicol 2017; 58:209-229. [PMID: 28934561 DOI: 10.1146/annurev-pharmtox-010617-052954] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although targeted inhibition of oncogenic kinase drivers has achieved remarkable patient responses in many cancers, the development of resistance has remained a significant challenge. Numerous mechanisms have been identified, including the acquisition of gatekeeper mutations, activating pathway mutations, and copy number loss or gain of the driver or alternate nodes. These changes have prompted the development of kinase inhibitors with increased selectivity, use of second-line therapeutics to overcome primary resistance, and combination treatment to forestall resistance. In addition to genomic resistance mechanisms, adaptive transcriptional and signaling responses seen in tumors are gaining appreciation as alterations that lead to a phenotypic state change-often observed as an epithelial-to-mesenchymal shift or reversion to a cancer stem cell-like phenotype underpinned by remodeling of the epigenetic landscape. This epigenomic modulation driving cell state change is multifaceted and includes modulation of repressive and activating histone modifications, DNA methylation, enhancer remodeling, and noncoding RNA species. Consequently, the combination of kinase inhibitors with drugs targeting components of the transcriptional machinery and histone-modifying enzymes has shown promise in preclinical and clinical studies. Here, we review mechanisms of resistance to kinase inhibition in cancer, with special emphasis on the rewired kinome and transcriptional signaling networks and the potential vulnerabilities that may be exploited to overcome these adaptive signaling changes.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA; , ,
| | - Jon S Zawistowski
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA; , ,
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA; , ,
| |
Collapse
|
32
|
Bradner JE, Hnisz D, Young RA. Transcriptional Addiction in Cancer. Cell 2017; 168:629-643. [PMID: 28187285 DOI: 10.1016/j.cell.2016.12.013] [Citation(s) in RCA: 833] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022]
Abstract
Cancer arises from genetic alterations that invariably lead to dysregulated transcriptional programs. These dysregulated programs can cause cancer cells to become highly dependent on certain regulators of gene expression. Here, we discuss how transcriptional control is disrupted by genetic alterations in cancer cells, why transcriptional dependencies can develop as a consequence of dysregulated programs, and how these dependencies provide opportunities for novel therapeutic interventions in cancer.
Collapse
Affiliation(s)
- James E Bradner
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Zawistowski JS, Goulet DR, Johnson GL. Landscaping a chromatin response to MEK inhibition. Cell Cycle 2017; 16:731-732. [PMID: 28287892 DOI: 10.1080/15384101.2017.1302232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Jon S Zawistowski
- a Department of Pharmacology , Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine , Chapel Hill , NC , USA
| | - Daniel R Goulet
- a Department of Pharmacology , Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine , Chapel Hill , NC , USA
| | - Gary L Johnson
- a Department of Pharmacology , Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine , Chapel Hill , NC , USA
| |
Collapse
|
34
|
Sengupta S, George RE. Super-Enhancer-Driven Transcriptional Dependencies in Cancer. Trends Cancer 2017; 3:269-281. [PMID: 28718439 DOI: 10.1016/j.trecan.2017.03.006] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022]
Abstract
Transcriptional deregulation is one of the core tenets of cancer biology and is underpinned by alterations in both protein-coding genes and noncoding regulatory elements. Large regulatory elements, so-called super-enhancers (SEs), are central to the maintenance of cancer cell identity and promote oncogenic transcription to which cancer cells become highly addicted. Such dependence on SE-driven transcription for proliferation and survival offers an Achilles heel for the therapeutic targeting of cancer cells. Indeed, inhibition of the cellular machinery required for the assembly and maintenance of SEs dampens oncogenic transcription and inhibits tumor growth. In this article, we review the organization, function, and regulation of oncogenic SEs and their contribution to the cancer cell state.
Collapse
Affiliation(s)
- Satyaki Sengupta
- Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Rani E George
- Department of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Zawistowski JS, Bevill SM, Goulet DR, Stuhlmiller TJ, Beltran AS, Olivares-Quintero JF, Singh D, Sciaky N, Parker JS, Rashid NU, Chen X, Duncan JS, Whittle MC, Angus SP, Velarde SH, Golitz BT, He X, Santos C, Darr DB, Gallagher K, Graves LM, Perou CM, Carey LA, Earp HS, Johnson GL. Enhancer Remodeling during Adaptive Bypass to MEK Inhibition Is Attenuated by Pharmacologic Targeting of the P-TEFb Complex. Cancer Discov 2017; 7:302-321. [PMID: 28108460 DOI: 10.1158/2159-8290.cd-16-0653] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 11/16/2022]
Abstract
Targeting the dysregulated BRAF-MEK-ERK pathway in cancer has increasingly emerged in clinical trial design. Despite clinical responses in specific cancers using inhibitors targeting BRAF and MEK, resistance develops often involving nongenomic adaptive bypass mechanisms. Inhibition of MEK1/2 by trametinib in patients with triple-negative breast cancer (TNBC) induced dramatic transcriptional responses, including upregulation of receptor tyrosine kinases (RTK) comparing tumor samples before and after one week of treatment. In preclinical models, MEK inhibition induced genome-wide enhancer formation involving the seeding of BRD4, MED1, H3K27 acetylation, and p300 that drives transcriptional adaptation. Inhibition of the P-TEFb-associated proteins BRD4 and CBP/p300 arrested enhancer seeding and RTK upregulation. BRD4 bromodomain inhibitors overcame trametinib resistance, producing sustained growth inhibition in cells, xenografts, and syngeneic mouse TNBC models. Pharmacologic targeting of P-TEFb members in conjunction with MEK inhibition by trametinib is an effective strategy to durably inhibit epigenomic remodeling required for adaptive resistance.Significance: Widespread transcriptional adaptation to pharmacologic MEK inhibition was observed in TNBC patient tumors. In preclinical models, MEK inhibition induces dramatic genome-wide modulation of chromatin, in the form of de novo enhancer formation and enhancer remodeling. Pharmacologic targeting of P-TEFb complex members at enhancers is an effective strategy to durably inhibit such adaptation. Cancer Discov; 7(3); 302-21. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.
Collapse
Affiliation(s)
- Jon S Zawistowski
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Samantha M Bevill
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Daniel R Goulet
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Timothy J Stuhlmiller
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Adriana S Beltran
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jose F Olivares-Quintero
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Darshan Singh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Noah Sciaky
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Joel S Parker
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Naim U Rashid
- Department of Biostatistics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Xin Chen
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - James S Duncan
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Martin C Whittle
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Sara Hanna Velarde
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Brian T Golitz
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Xiaping He
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Charlene Santos
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - David B Darr
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kristalyn Gallagher
- Department of Surgery, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Lee M Graves
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Lisa A Carey
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - H Shelton Earp
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
36
|
Abstract
Chromatin immunoprecipitation (ChIP) is a technique used to determine the association of proteins or histone modifications with chromatin regions in living cells or tissues, and is used extensively in the chromatin biology field to study transcriptional and epigenetic mechanisms. Increasing evidence points to an epigenetic coordination of signaling cascades, such as ERK, that regulate key processes in development and disease, revealing novel principles of gene regulation. Here we describe a detailed protocol for performing chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) for probing histone modifications regulated by ERK signaling in mouse ESCs.
Collapse
Affiliation(s)
- Ozgur Oksuz
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Wee-Wei Tee
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|