1
|
Marty S, Couto A, Dawson EH, Brard N, d'Ettorre P, Montgomery SH, Sandoz JC. Ancestral complexity and constrained diversification of the ant olfactory system. Proc Biol Sci 2025; 292:20250662. [PMID: 40300630 PMCID: PMC12040470 DOI: 10.1098/rspb.2025.0662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 05/01/2025] Open
Abstract
Communication is a cornerstone of social living, allowing the exchange of information to align goals and synchronize behaviour. Ants, a group of highly successful social insects, have heightened olfactory abilities that are integral to their evolutionary success. Essential for colony cohesion and cooperation, a female-specific olfactory subsystem processes information about nestmate recognition cues (cuticular hydrocarbons), including basiconic sensilla on the antenna and a cluster of specific glomeruli in the antennal lobe. While it has often been linked to ants' social lifestyle, the evolutionary origins and phylogenetic distribution of this system remain unknown. We conducted a comparative exploration of the ant olfactory system across eight major subfamilies, integrating neuroanatomical, chemical and behavioural analyses. Our findings reveal that sophistication of the ant olfactory system has deep evolutionary roots. Moreover, antennal lobe investment is not associated with social traits such as colony size, polygyny or foraging strategies, but correlates with cuticular hydrocarbon profile complexity. Despite neuroanatomical differences, different ant species consistently excel in nestmate discrimination, indicating adaptation to chemical diversity while maintaining reliable social recognition. This suggests that cuticular hydrocarbon profile and neuronal investment in olfactory neuropil have co-evolved to sustain discrimination performance.
Collapse
Affiliation(s)
- Simon Marty
- IDEEV, Université Paris-Saclay, CNRS, IRD, Evolution Genomes Behaviour and Ecology, 91190 Gif-sur-Yvette, France
| | - Antoine Couto
- IDEEV, Université Paris-Saclay, CNRS, IRD, Evolution Genomes Behaviour and Ecology, 91190 Gif-sur-Yvette, France
| | - Erika H. Dawson
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Neven Brard
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | | | - Jean-Christophe Sandoz
- IDEEV, Université Paris-Saclay, CNRS, IRD, Evolution Genomes Behaviour and Ecology, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Liebig J, Amsalem E. The Evolution of Queen Pheromone Production and Detection in the Reproductive Division of Labor in Social Insects. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:123-142. [PMID: 39259976 DOI: 10.1146/annurev-ento-022124-124437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Structurally diverse queen pheromones and fertility signals regulate the reproductive division of labor of social insects, such as ants, termites, some bees, and some wasps. The independent evolution of sociality in these taxa allows for the exploration of how natural history differences in sender and receiver properties led to the evolution of these complex communication systems. While describing the different effects and the structural diversity of queen pheromones, we identify two major syndromes that mostly separate ants and wasps from bees and termites in their use of different pheromone classes. We compare olfactory receptor evolution among these groups and review physiological and hormonal links to fecundity and pheromone production. We explore the cases in which queen pheromone evolution is conserved, convergent, or parallel and those in which queen pheromone responses are more likely to be learned or innate. More mechanistic information about the pathways linking fecundity to queen pheromone production and perception could help close major knowledge gaps.
Collapse
Affiliation(s)
- Juergen Liebig
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA;
| | - Etya Amsalem
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
3
|
Martinez LA, Imami A, de Jong E, Romaine IM, Zwiebel LJ. Binary mixtures of Vanderbilt University allosteric agonist thermolysis components act as volatile spatial repellents for malaria vector mosquitoes. PEST MANAGEMENT SCIENCE 2025; 81:185-195. [PMID: 39308016 PMCID: PMC11632212 DOI: 10.1002/ps.8421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND The development of economically viable and environmentally neutral tools to control insects that consume or damage over 20% of global agriculture or vector human and animal disease represents one of the most important challenges of the 21st century. The suite of chemical-based strategies currently employed to control insect populations rely primarily on insecticides, which are subject to rapid resistance and often have harmful off-target environmental and health-related impacts, and, to a lesser degree, repellents, which typically rely on masking attractive odors. The discovery and characterization of Vanderbilt University allosteric agonists (VUAAs), a family of small-molecule agonists that target the highly conserved, insect-specific odorant receptor coreceptor (Orco), raise the potential for the development of a novel repellent paradigm for vector/pest management. VUAAs have the potential to target nearly all insect olfactory sensory neurons, leading to highly aversive behavioral responses, but importantly have limited volatility, thereby reducing their utility as spatial repellents. RESULTS We have characterized VUAA thermolysis components and identified a suite of volatiles (VUAA-based active ingredients, VUAIs) that act specifically in novel binary combinations as robust and long-lasting spatial repellents against Anopheline mosquitoes. In mobility-based behavioral experiments, VUAIs act synergistically as effective spatial repellents and outperform parent VUAA compounds against host-seeking Anopheline mosquitoes. CONCLUSIONS VUAIs are volatile alternatives to Vanderbilt University allosteric agonists (VUAAs) that have the potential for use as spatial repellents in disease vector and agricultural pest control. The repellency observed is odorant receptor coreceptor (Orco)-dependent, supporting the hypothesis that VUAIs and VUAAs similarly target an allosteric Orco recognition site. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Luis A. Martinez
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Ahmed Imami
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Enzo de Jong
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
| | - Ian M. Romaine
- Vanderbilt Institute for Chemical BiologyVanderbilt UniversityNashvilleTNUSA
| | - Laurence J. Zwiebel
- Department of Biological SciencesVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Institute for Chemical BiologyVanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
4
|
Sanchez-Cruz A, Tapia-Maruri D, Villa-Ayala P, Robledo N, Romero-López AA, Rojas JC, Jiménez-Pérez A. Antennal sensilla of Cyclocephala barrerai (Coleoptera: Melolonthidae): morphology, sexual dimorphism, allometric relationships, and function. ENVIRONMENTAL ENTOMOLOGY 2024; 53:981-993. [PMID: 39412171 DOI: 10.1093/ee/nvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 12/18/2024]
Abstract
Scarab beetles use pheromones and volatiles to search for their partners and host plants. The perception of these compounds occurs in the beetle antennae, particularly in the sensilla. Relatively few studies have morphologically and physiologically characterized the sensilla of scarab beetles. Cyclocephala barrerai Martínez is a beetle distributed in Mexico. Male beetles have larger antennal lamellae than females, and in both cases, the size of this structure is related to their weight. Previous studies have reported that both sexes are attracted to bacterial volatiles isolated from the female genital chambers. Female cuticular hydrocarbons may act as a sexual contact pheromone. However, antennal sensilla and their electrophysiological responses to behaviorally relevant compounds remain to be investigated. Here, we describe and report the types, allometric relationships, and functions of sensilla found in the lamellae of both C. barrerai sexes. Sensilla were identified, classified, measured, and counted to identify intra and intersexual relationships. The single sensillum recordings showed that plant volatiles, hydrocarbons, and heat stimulated receptor neurons. We identified 2 new types of sensilla basiconica in the scape. Males have more and larger antennal sensilla placodea IV, which specializes in detecting pheromones, plant volatiles, and heat. Females have a greater diversity of sensilla.
Collapse
Affiliation(s)
- Abraham Sanchez-Cruz
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, CEPROBI # 8, San Isidro, México
| | - Daniel Tapia-Maruri
- Laboratorio de Microscopía Avanzada, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, CEPROBI # 8, San Isidro, México
| | - Patricia Villa-Ayala
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, CEPROBI # 8, San Isidro, México
| | - Norma Robledo
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, CEPROBI # 8, San Isidro, México
| | - Angel A Romero-López
- Laboratorio de Infoquímicos y Otros Productos Bióticos, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Julio C Rojas
- Grupo de Ecología Química, Departamento de Ecología de Artrópodos y Manejo de Plagas, El Colegio de la Frontera Sur, Tapachula, México
| | - Alfredo Jiménez-Pérez
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, CEPROBI # 8, San Isidro, México
| |
Collapse
|
5
|
Dejean A, Orivel J, Cerdá X, Azémar F, Corbara B, Touchard A. Foraging by predatory ants: A review. INSECT SCIENCE 2024. [PMID: 39434405 DOI: 10.1111/1744-7917.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/23/2024]
Abstract
In this review, we show that predatory ants have a wide range of foraging behavior, something expected given their phylogenetic distance and the great variation in their colony size, life histories, and nesting habitats as well as prey diversity. Most ants are central-place foragers that detect prey using vision and olfaction. Ground-dwelling species can forage solitarily, the ancestral form, but generally recruit nestmates to retrieve large prey or a group of prey. Typically, ants are omnivorous, but some species are strict predators preying on detritivorous invertebrates or arthropod eggs, while those specialized on termites or other ants often have scouts that localize their target and then trigger a raid. They can use compounds that ease this task, including chemical insignificance, mimicry, and venoms triggering submissive behavior. Army ants include 8 Dorylinae and some species from other subfamilies, all having wingless queens and forming raids. Dorylinae from the Old World migrate irregularly to new nesting sites. The foraging of most New World species that prey on the brood of other ants is regulated by their biological cycle that alternates between a "nomadic phase" when the colony relocates between different places and a "stationary phase" when the colony stays in a bivouac constituting a central place. Among arboreal ants, dominant species forage in groups, detecting prey visually, but can use vibrations, particularly when associated with myrmecophytes. Some species of the genera Allomerus and Azteca use fungi to build a gallery-shaped trap with small holes under which they hide to ambush prey.
Collapse
Affiliation(s)
- Alain Dejean
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | - Jérôme Orivel
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, France
| | - Xim Cerdá
- Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio, Sevilla, Spain
| | - Frédéric Azémar
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Bruno Corbara
- Université Clermont-Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| | - Axel Touchard
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Gautam S, McKenzie S, Katzke J, Hita Garcia F, Yamamoto S, Economo EP. Evolution of odorant receptor repertoires across Hymenoptera is not linked to the evolution of eusociality. Proc Biol Sci 2024; 291:20241280. [PMID: 39317325 PMCID: PMC11421905 DOI: 10.1098/rspb.2024.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Communication is essential for social organisms. In eusocial insects, olfaction facilitates communication and recognition between nestmates. The study of certain model organisms has led to the hypothesis that odorant receptors are expanded in eusocial Hymenoptera. This has become a widely mentioned idea in the literature, albeit with conflicting reports, and has not been tested with a broad comparative analysis. Here we combined existing genomic and new neuroanatomical data, including from an approximately 100 Myr old fossil ant, across a phylogenetically broad sample of hymenopteran lineages. We find no evidence that variation in the size and evolutionary tempo of odorant receptor repertoires is related to eusociality. Post hoc exploration of our data hinted at loss of flight as a possible factor shaping some of the variation in OR repertoires in Hymenoptera. Nevertheless, our analyses revealed a complex pattern of evolutionary variation, and raise new questions about the ecological, behavioural and social factors that shape olfactory abilities.
Collapse
Affiliation(s)
- Shubham Gautam
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son , Okinawa 904-0495, Japan
| | | | - Julian Katzke
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son , Okinawa 904-0495, Japan
| | - Francisco Hita Garcia
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son , Okinawa 904-0495, Japan
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde Invalidenstraße , Berlin 10115, Germany
| | - Shûhei Yamamoto
- Hokkaido University Museum, Hokkaido University, Kita 10, Nishi 8, Kita-ku , Sapporo 060-0810, Japan
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son , Okinawa 904-0495, Japan
| |
Collapse
|
7
|
Carmona-Aldana F, Yong LW, Reinberg D, Desplan C. Phenomenon of reproductive plasticity in ants. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101197. [PMID: 38583769 PMCID: PMC11139587 DOI: 10.1016/j.cois.2024.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Ant colonies are organized in castes with distinct behaviors that together allow the colony to strive. Reproduction relies on one or a few queens that stay in the nest producing eggs, while females of the worker caste do not reproduce and instead engage in colony maintenance and brood caretaking. Yet, in spite of this clear separation of functions, workers can become reproductive under defined circumstances. Here, we review the context in which workers become reproductive, exhibiting asexual or sexual reproduction depending on the species. Remarkably, the activation of reproduction in these workers can be quite stable, with changes that include behavior and a dramatic extension of lifespan. We compare these changes between species that do or do not have a queen caste. We discuss how the mechanisms underlying reproductive plasticity include changes in hormonal functions and in epigenetic configurations. Further studies are warranted to elucidate not only how reproductive functions have been gradually restricted to the queen caste during evolution but also how reproductive plasticity remains possible in workers of some species.
Collapse
Affiliation(s)
| | - Luok Wen Yong
- Department of Biology, New York University, NY 10003, USA
| | - Danny Reinberg
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Coral Gables, FL 33124, USA.
| | - Claude Desplan
- Department of Biology, New York University, NY 10003, USA; Center for Genomics and Systems Biology, New York University, Abu Dhabi 51133, United Arab Emirates.
| |
Collapse
|
8
|
Xu D, Tong Y, Chen B, Li B, Wang S, Zhang D. The influence of first desaturase subfamily genes on fatty acid synthesis, desiccation tolerance and inter-caste nutrient transfer in the termite Coptotermes formosanus. INSECT MOLECULAR BIOLOGY 2024; 33:55-68. [PMID: 37750189 DOI: 10.1111/imb.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Desaturase enzymes play an essential role in the biosynthesis of unsaturated fatty acids (UFAs). In this study, we identified seven "first desaturase" subfamily genes (Cfor-desatA1, Cfor-desatA2-a, Cfor-desatA2-b, Cfor-desatB-a, Cfor-desatB-b, Cfor-desatD and Cfor-desatE) from the Formosan subterranean termite Coptotermes formosanus. These desaturases were highly expressed in the cuticle and fat body of C. formosanus. Inhibition of either the Cfor-desatA2-a or Cfor-desatA2-b gene resulted in a significant decrease in the contents of fatty acids (C16:0, C18:0, C18:1 and C18:2) in worker castes. Moreover, we observed that inhibition of most of desaturase genes identified in this study had a negative impact on the survival rate and desiccation tolerance of workers. Interestingly, when normal soldiers were reared together with dsCfor-desatA2-b-treated workers, they exhibited higher mortality, suggesting that desaturase had an impact on trophallaxis among C. formosanus castes. Our findings shed light on the novel roles of desaturase family genes in the eusocial termite C. formosanus.
Collapse
Affiliation(s)
- Danni Xu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yuxin Tong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Baoling Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shengyin Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Dayu Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
Couto A, Marty S, Dawson EH, d'Ettorre P, Sandoz JC, Montgomery SH. Evolution of the neuronal substrate for kin recognition in social Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:2226-2242. [PMID: 37528574 DOI: 10.1111/brv.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
In evolutionary terms, life is about reproduction. Yet, in some species, individuals forgo their own reproduction to support the reproductive efforts of others. Social insect colonies for example, can contain up to a million workers that actively cooperate in tasks such as foraging, brood care and nest defence, but do not produce offspring. In such societies the division of labour is pronounced, and reproduction is restricted to just one or a few individuals, most notably the queen(s). This extreme eusocial organisation exists in only a few mammals, crustaceans and insects, but strikingly, it evolved independently up to nine times in the order Hymenoptera (including ants, bees and wasps). Transitions from a solitary lifestyle to an organised society can occur through natural selection when helpers obtain a fitness benefit from cooperating with kin, owing to the indirect transmission of genes through siblings. However, this process, called kin selection, is vulnerable to parasitism and opportunistic behaviours from unrelated individuals. An ability to distinguish kin from non-kin, and to respond accordingly, could therefore critically facilitate the evolution of eusociality and the maintenance of non-reproductive workers. The question of how the hymenopteran brain has adapted to support this function is therefore a fundamental issue in evolutionary neuroethology. Early neuroanatomical investigations proposed that social Hymenoptera have expanded integrative brain areas due to selection for increased cognitive capabilities in the context of processing social information. Later studies challenged this assumption and instead pointed to an intimate link between higher social organisation and the existence of developed sensory structures involved in recognition and communication. In particular, chemical signalling of social identity, known to be mediated through cuticular hydrocarbons (CHCs), may have evolved hand in hand with a specialised chemosensory system in Hymenoptera. Here, we compile the current knowledge on this recognition system, from emitted identity signals, to the molecular and neuronal basis of chemical detection, with particular emphasis on its evolutionary history. Finally, we ask whether the evolution of social behaviour in Hymenoptera could have driven the expansion of their complex olfactory system, or whether the early origin and conservation of an olfactory subsystem dedicated to social recognition could explain the abundance of eusocial species in this insect order. Answering this question will require further comparative studies to provide a comprehensive view on lineage-specific adaptations in the olfactory pathway of Hymenoptera.
Collapse
Affiliation(s)
- Antoine Couto
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Simon Marty
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Erika H Dawson
- Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
- Institut Universitaire de France (IUF), 103 Boulevard Saint-Michel, Paris, 75005, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
10
|
Williams HJ, Sridhar VH, Hurme E, Gall GE, Borrego N, Finerty GE, Couzin ID, Galizia CG, Dominy NJ, Rowland HM, Hauber ME, Higham JP, Strandburg-Peshkin A, Melin AD. Sensory collectives in natural systems. eLife 2023; 12:e88028. [PMID: 38019274 PMCID: PMC10686622 DOI: 10.7554/elife.88028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a 'sensory collective'; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify 'sensescapes'. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.
Collapse
Affiliation(s)
- Hannah J Williams
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Vivek H Sridhar
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Edward Hurme
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Gabriella E Gall
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | | | | | - Iain D Couzin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - C Giovanni Galizia
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | - Nathaniel J Dominy
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, Dartmouth CollegeHanoverUnited States
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical EcologyJenaGermany
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-ChampaignUrbana-ChampaignUnited States
| | - James P Higham
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, New York UniversityNew YorkUnited States
| | - Ariana Strandburg-Peshkin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Amanda D Melin
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology and Archaeology, University of CalgaryCalgaryCanada
- Alberta Children’s Hospital Research Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
11
|
Zaharieva A, Rusanov K, Rusanova M, Paunov M, Yordanova Z, Mantovska D, Tsacheva I, Petrova D, Mishev K, Dobrev PI, Lacek J, Filepová R, Zehirov G, Vassileva V, Mišić D, Motyka V, Chaneva G, Zhiponova M. Uncovering the Interrelation between Metabolite Profiles and Bioactivity of In Vitro- and Wild-Grown Catmint ( Nepeta nuda L.). Metabolites 2023; 13:1099. [PMID: 37887424 PMCID: PMC10609352 DOI: 10.3390/metabo13101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Nepeta nuda L. is a medicinal plant enriched with secondary metabolites serving to attract pollinators and deter herbivores. Phenolics and iridoids of N. nuda have been extensively investigated because of their beneficial impacts on human health. This study explores the chemical profiles of in vitro shoots and wild-grown N. nuda plants (flowers and leaves) through metabolomic analysis utilizing gas chromatography and mass spectrometry (GC-MS). Initially, we examined the differences in the volatiles' composition in in vitro-cultivated shoots comparing them with flowers and leaves from plants growing in natural environment. The characteristic iridoid 4a-α,7-β,7a-α-nepetalactone was highly represented in shoots of in vitro plants and in flowers of plants from nature populations, whereas most of the monoterpenes were abundant in leaves of wild-grown plants. The known in vitro biological activities encompassing antioxidant, antiviral, antibacterial potentials alongside the newly assessed anti-inflammatory effects exhibited consistent associations with the total content of phenolics, reducing sugars, and the identified metabolic profiles in polar (organic acids, amino acids, alcohols, sugars, phenolics) and non-polar (fatty acids, alkanes, sterols) fractions. Phytohormonal levels were also quantified to infer the regulatory pathways governing phytochemical production. The overall dataset highlighted compounds with the potential to contribute to N. nuda bioactivity.
Collapse
Affiliation(s)
- Anna Zaharieva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Krasimir Rusanov
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.)
| | - Mila Rusanova
- Department of Agrobiotechnology, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria; (K.R.)
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Ivanka Tsacheva
- Department of Biochemistry, Faculty of Biology, Sofia University, 1164 Sofia, Bulgaria;
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Roberta Filepová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Grigor Zehirov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (G.Z.); (V.V.)
| | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Praha, Czech Republic; (P.I.D.); (J.L.); (R.F.); (V.M.)
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria; (A.Z.); (Z.Y.); (D.M.); (D.P.); (G.C.)
| |
Collapse
|
12
|
Fladerer JP, Grollitsch S, Bucar F. Three cuticular amides in the tripartite symbiosis of leafcutter ants. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-13. [PMID: 37518892 DOI: 10.1002/arch.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Cuticular hydrocarbons (CHCs) play various roles in insects' chemical ecology. As leafcutter ants live in a specific symbiosis with fungi, they harvest and with different bacteria, some of these CHCs might be associated with a mutualistic function within this symbiosis. To obtain a more precise picture in that respect we compared the CHC profiles of the leafcutter ants, Atta sexdens, Atta cephalotes, and Acromyrmex octospinosus inhabited by mutualistic bacteria with the profiles of Polyrhachis dives and Messor aciculatus by GC-EI-MS analysis and 28 other ant species by data from the literature. We were able to identify three alkyl amides (hexadecanamide, hexadecenamide, and tetradecanamide), occurring only in the CHC profiles of leafcutter ants inhabited by symbiotic bacteria. Our results lead to the conclusion that those alkyl amides could have a function in the tripartite symbiosis of leafcutter ants.
Collapse
Affiliation(s)
| | | | - Franz Bucar
- Karl-Franzens-Universitat Graz Pharmacognosy, Graz, Austria
| |
Collapse
|
13
|
Ferguson ST, Bakis I, Edwards ND, Zwiebel LJ. Age and Task Modulate Olfactory Sensitivity in the Florida Carpenter Ant Camponotus floridanus. INSECTS 2023; 14:724. [PMID: 37754692 PMCID: PMC10532128 DOI: 10.3390/insects14090724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Age-related changes in behavior and sensory perception have been observed in a wide variety of animal species. In ants and other eusocial insects, workers often progress through an ordered sequence of olfactory-driven behavioral tasks. Notably, these behaviors are plastic, and workers adapt and rapidly switch tasks in response to changing environmental conditions. In the Florida carpenter ant, smaller minors typically perform most of the work needed to maintain the colony, while the larger majors are specialized for nest defense and rarely engage in these routine tasks. Here, we investigate the effects of age and task group on olfactory responses to a series of odorant blends in minor and major worker castes. Consistent with their respective roles within the colony, we observed significant age-associated shifts in the olfactory responses of minors as they transitioned between behavioral states, whereas the responses of majors remained consistently low regardless of age. Furthermore, we have identified a unitary compound, 3-methylindole, which elicited significantly higher responses and behavioral aversion in minor nurses than in similarly aged foragers suggesting that this compound may play an important role in brood care. Taken together, our results suggest that age- and task-associated shifts in olfactory physiology may play a critical role in the social organization of ant colonies.
Collapse
Affiliation(s)
| | | | | | - Laurence J. Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; (S.T.F.); (I.B.); (N.D.E.)
| |
Collapse
|
14
|
Grüter C, Balbuena MS, Valadares L. Mechanisms and adaptations that shape division of labour in stingless bees. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101057. [PMID: 37230412 DOI: 10.1016/j.cois.2023.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Stingless bees are a diverse and ecologically important group of pollinators in the tropics. Division of labour allows bee colonies to meet the various demands of their social life, but has been studied in only ∼3% of all described stingless bee species. The available data suggest that division of labour shows both parallels and striking differences compared with other social bees. Worker age is a reliable predictor of worker behaviour in many species, while morphological variation in body size or differences in brain structure are important for specific worker tasks in some species. Stingless bees provide opportunities to confirm general patterns of division of labour, but they also offer prospects to discover and study novel mechanisms underlying the different lifestyles found in eusocial bees.
Collapse
Affiliation(s)
- Christoph Grüter
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, BS8 1TQ, UK.
| | - María Sol Balbuena
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Ciencias Naturales y Exactas, Universidad de Buenos Aires, CABA, Argentina
| | - Lohan Valadares
- Evolution, Genomes, Behavior, and Ecology (EGCE), Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Ferguson ST, Bakis I, Edwards ND, Zwiebel LJ. Age and Task Modulate Olfactory Sensitivity in the Florida Carpenter Ant Camponotus floridanus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549561. [PMID: 37503123 PMCID: PMC10370051 DOI: 10.1101/2023.07.18.549561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Age-related changes in behavior and sensory perception have been observed in a wide variety of animal species. In ants and other eusocial insects, workers often progress through an ordered sequence of olfactory-driven behavioral tasks. Notably, these behaviors are plastic, and workers adapt and rapidly switch tasks in response to changing environmental conditions. In the Florida carpenter ant, smaller minors typically perform most of the work needed to maintain the colony while the larger majors are specialized for nest defense and rarely engage in these routine tasks. Here, we investigate the effects of age and task group on olfactory responses to a series of odorant blends in minor and major worker castes. Consistent with their respective roles within the colony, we observed significant age-associated shifts in the olfactory responses of minors as they transitioned between behavioral states, whereas the responses of majors remained consistently low regardless of age. Furthermore, we identified a unitary compound, 3-methylindole, which elicited significantly higher responses and behavioral aversion in minor nurses than in similarly aged foragers suggesting that this compound may play an important role in brood care. Taken together, our results suggest that age- and task-associated shifts in olfactory physiology may play a critical role in the social organization of ant colonies. Simple Summary Florida carpenter ants ( Camponotus floridanus ) live in colonies comprised of thousands of workers. The smallest workers, known as minors, engage in routine tasks such as nursing and foraging while the largest workers, known as majors, are thought to be soldiers specialized for defending the nest. How ant colonies allocate their workforce to address the dynamic and ever-changing needs of the colonies remains an open question in the field, but current evidence suggests that ant social behavior likely results from a combination of genetic/epigenetic, physiological, and systems-level processes. Here, we extend these studies by investigating the role of olfactory sensitivity in regulating ant behavior. Minor workers exhibited significant shifts in olfactory sensitivity and odor coding as they aged and switched tasks. The olfactory sensitivity of majors, however, remained relatively stable as they aged. From these studies, we also identified a single compound, 3-methylindole, which elicited significantly higher olfactory responses and aversive behavior in nurses compared to foragers, suggesting that this chemical may have a role in brood care. Overall, these studies support the hypothesis that changes in olfactory sensitivity play an important role in regulating social behavior in ants.
Collapse
|
16
|
Hart T, Frank DD, Lopes LE, Olivos-Cisneros L, Lacy KD, Trible W, Ritger A, Valdés-Rodríguez S, Kronauer DJC. Sparse and stereotyped encoding implicates a core glomerulus for ant alarm behavior. Cell 2023; 186:3079-3094.e17. [PMID: 37321218 PMCID: PMC10334690 DOI: 10.1016/j.cell.2023.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Ants communicate via large arrays of pheromones and possess expanded, highly complex olfactory systems, with antennal lobes in the brain comprising up to ∼500 glomeruli. This expansion implies that odors could activate hundreds of glomeruli, which would pose challenges for higher-order processing. To study this problem, we generated transgenic ants expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon imaging, we mapped complete glomerular responses to four ant alarm pheromones. Alarm pheromones robustly activated ≤6 glomeruli, and activity maps for the three pheromones inducing panic alarm in our study species converged on a single glomerulus. These results demonstrate that, rather than using broadly tuned combinatorial encoding, ants employ precise, narrowly tuned, and stereotyped representations of alarm pheromones. The identification of a central sensory hub glomerulus for alarm behavior suggests that a simple neural architecture is sufficient to translate pheromone perception into behavioral outputs.
Collapse
Affiliation(s)
- Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lindsey E Lopes
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kip D Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; John Harvard Distinguished Science Fellowship Program, Harvard University, 52 Oxford Street, NW Cambridge, MA 02138, USA
| | - Amelia Ritger
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Marine Science Research Building, Bldg. 520, Santa Barbara, CA 93106, USA
| | - Stephany Valdés-Rodríguez
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
17
|
Zhang B, Yang RR, Jiang XC, Xu XX, Wang B, Wang GR. Genome-Wide Analysis of the Odorant Receptor Gene Family in Solenopsis invicta, Ooceraea biroi, and Monomorium pharaonis (Hymenoptera: Formicidae). Int J Mol Sci 2023; 24:ijms24076624. [PMID: 37047591 PMCID: PMC10095046 DOI: 10.3390/ijms24076624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Olfactory systems in eusocial insects play a vital role in the discrimination of various chemical cues. Odorant receptors (ORs) are critical for odorant detection, and this family has undergone extensive expansion in ants. In this study, we re-annotated the OR genes from the most destructive invasive ant species Solenopsis invicta and 2 other Formicidae species, Ooceraea biroi and Monomorium pharaonis, with the aim of systematically comparing and analyzing the evolution and the functions of the ORs in ant species, identifying 356, 298, and 306 potential functional ORs, respectively. The evolutionary analysis of these ORs showed that ants had undergone chromosomal rearrangements and that tandem duplication may be the main contributor to the expansion of the OR gene family in S. invicta. Our further analysis revealed that 9-exon ORs had biased chromosome localization patterns in all three ant species and that a 9-exon OR cluster (SinvOR4–8) in S. invicta was under strong positive selection (Ka/Ks = 1.32). Moreover, we identified 5 S. invicta OR genes, namely SinvOR89, SinvOR102, SinvOR352, SinvOR327, and SinvOR135, with high sequence similarity (>70%) to the orthologs in O. biroi and M. pharaonis. An RT-PCR analysis was used to verify the antennal expression levels of these ORs, which showed caste-specific expression. The subsequent analysis of the antennal expression profiles of the ORs of the S. invicta workers from the polygyne and monogyne social forms indicated that SinvOR35 and SinvOR252 were expressed at much higher levels in the monogyne workers than in the polygyne workers and that SinvOR21 was expressed at higher levels in polygyne workers. Our study has contributed to the identification and analysis of the OR gene family in ants and expanded the understanding of the evolution and functions of the ORs in Formicidae species.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Rong-Rong Yang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Chuan Jiang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Xia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
18
|
de Fouchier A, Leroy C, Khila A, d'Ettorre P. Discrimination of non-nestmate early brood in ants: behavioural and chemical analyses. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
19
|
Watanabe H, Ogata S, Nodomi N, Tateishi K, Nishino H, Matsubara R, Ozaki M, Yokohari F. Cuticular hydrocarbon reception by sensory neurons in basiconic sensilla of the Japanese carpenter ant. Front Cell Neurosci 2023; 17:1084803. [PMID: 36814868 PMCID: PMC9940637 DOI: 10.3389/fncel.2023.1084803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
To maintain the eusociality of a colony, ants recognize subtle differences in colony-specific sets of cuticular hydrocarbons (CHCs). The CHCs are received by female-specific antennal basiconic sensilla and processed in specific brain regions. However, it is controversial whether a peripheral or central neural mechanism is mainly responsible for discrimination of CHC blends. In the Japanese carpenter ant, Camponotus japonicus, about 140 sensory neurons (SNs) are co-housed in a single basiconic sensillum and receive colony-specific blends of 18 CHCs. The complexity of this CHC sensory process makes the neural basis of peripheral nestmate recognition difficult to understand. Here, we electrophysiologically recorded responses of single basiconic sensilla to each of 18 synthesized CHCs, and identified CHC responses of each SN co-housed in a single sensillum. Each CHC activated different sets of SNs and each SN was broadly tuned to CHCs. Multiple SNs in a given sensillum fired in synchrony, and the synchronicity of spikes was impaired by treatment with a gap junction inhibitor. These results indicated that SNs in single basiconic sensilla were electrically coupled. Quantitative analysis indicated that the Japanese carpenter ants have the potential to discriminate chemical structures of CHCs based on the combinational patterns of activated SNs. SNs of ants from different colonies exhibited different CHC response spectra. In addition, ants collected from the same colony but bred in separate groups also exhibited different CHC response spectra. These results support the hypothesis that the peripheral sensory mechanism is important for discrimination between nestmate and non-nestmate ants.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Department of Earth System Science, Fukuoka University, Fukuoka, Japan,*Correspondence: Hidehiro Watanabe,
| | - Shoji Ogata
- Department of Earth System Science, Fukuoka University, Fukuoka, Japan
| | - Nonoka Nodomi
- Department of Earth System Science, Fukuoka University, Fukuoka, Japan
| | - Kosuke Tateishi
- Department of Earth System Science, Fukuoka University, Fukuoka, Japan
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan,KYOUSEI Science Center for Life and Nature, Nara Women’s University, Nara, Japan
| | - Fumio Yokohari
- Department of Earth System Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
20
|
Ferguson ST, Bakis I, Edwards ND, Zwiebel LJ. Olfactory sensitivity differentiates morphologically distinct worker castes in Camponotus floridanus. BMC Biol 2023; 21:3. [PMID: 36617574 PMCID: PMC9827628 DOI: 10.1186/s12915-022-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Camponotus floridanus ant colonies are comprised of a single reproductive queen and thousands of sterile female offspring that consist of two morphologically distinct castes: smaller minors and larger majors. Minors perform most of the tasks within the colony, including brood care and food collection, whereas majors have fewer clear roles and have been hypothesized to act as a specialized solider caste associated with colony defense. The allocation of workers to these different tasks depends, in part, on the detection and processing of local information including pheromones and other chemical blends such as cuticular hydrocarbons. However, the role peripheral olfactory sensitivity plays in establishing and maintaining morphologically distinct worker castes and their associated behaviors remains largely unexplored. RESULTS We examined the electrophysiological responses to general odorants, cuticular extracts, and a trail pheromone in adult minor and major C. floridanus workers, revealing that the repertoire of social behaviors is positively correlated with olfactory sensitivity. Minors in particular display primarily excitatory responses to olfactory stimuli, whereas major workers primarily manifest suppressed, sub-solvent responses. The notable exception to this paradigm is that both minors and majors display robust, dose-dependent excitatory responses to conspecific, non-nestmate cuticular extracts. Moreover, while both minors and majors actively aggress non-nestmate foes, the larger and physiologically distinct majors display significantly enhanced capabilities to rapidly subdue and kill their adversaries. CONCLUSIONS Our studies reveal the behavioral repertoire of minors and majors aligns with profound shifts in peripheral olfactory sensitivity and odor coding. The data reported here support the hypothesis that minors are multipotential workers with broad excitatory sensitivity, and majors are dedicated soldiers with a highly specialized olfactory system for distinguishing non-nestmate foes. Overall, we conclude that C. floridanus majors do indeed represent a physiologically and behaviorally specialized soldier caste in which caste-specific olfactory sensitivity plays an important role in task allocation and the regulation of social behavior in ant colonies.
Collapse
Affiliation(s)
- S. T. Ferguson
- grid.152326.10000 0001 2264 7217Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235 USA
| | - I. Bakis
- grid.152326.10000 0001 2264 7217Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235 USA
| | - N. D. Edwards
- grid.152326.10000 0001 2264 7217Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235 USA
| | - L. J. Zwiebel
- grid.152326.10000 0001 2264 7217Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
21
|
Gellert HR, Halley DC, Sieb ZJ, Smith JC, Pask GM. Microstructures at the distal tip of ant chemosensory sensilla. Sci Rep 2022; 12:19328. [PMID: 36369461 PMCID: PMC9652420 DOI: 10.1038/s41598-022-21507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Ants and other eusocial insects emit and receive chemical signals to communicate important information within the colony. In ants, nestmate recognition, task allocation, and reproductive distribution of labor are largely mediated through the detection of cuticular hydrocarbons (CHCs) that cover the exoskeleton. With their large size and limited volatility, these CHCs are believed to be primarily detected through direct contact with the antennae during behavioral interactions. Here we first use scanning electron microscopy to investigate the unique morphological features of CHC-sensitive basiconic sensilla of two ant species, the black carpenter ant Camponotus pennsylvanicus and the Indian jumping ant Harpegnathos saltator. These basiconic sensilla possess an abundance of small pores typical of most insect olfactory sensilla, but also have a large concave depression at the terminal end. Basiconic sensilla are enriched at the distal segments of the antennae in both species, which aligns with their proposed role in contact chemosensation of CHCs. A survey of these sensilla across additional ant species shows varied microstructures at their tips, but each possess surface textures that would also increase sensory surface area. These unique ant chemosensory sensilla represent yet another example of how specialized structures have evolved to serve the functional requirements of eusocial communication.
Collapse
Affiliation(s)
- Hannah R Gellert
- Department of Biology, Middlebury College, Middlebury, VT, 05753, USA
| | - Daphné C Halley
- Program in Environmental Studies, Middlebury College, Middlebury, VT, 05753, USA
| | - Zackary J Sieb
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Jody C Smith
- Sciences Technical Support Services, Middlebury College, Middlebury, VT, 05753, USA
| | - Gregory M Pask
- Department of Biology, Middlebury College, Middlebury, VT, 05753, USA.
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
- Program in Molecular Biology and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA.
| |
Collapse
|
22
|
Uebi T, Sakita T, Ikeda R, Sakanishi K, Tsutsumi T, Zhang Z, Ma H, Matsubara R, Matsuyama S, Nakajima S, Huang RN, Habe S, Hefetz A, Ozaki M. Chemical identification of an active component and putative neural mechanism for repellent effect of a native ant’s odor on invasive species. Front Physiol 2022; 13:844084. [PMID: 36111148 PMCID: PMC9468892 DOI: 10.3389/fphys.2022.844084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
The invasive Argentine ants (Linepithema humile) and the red imported fire ants (Solenopsis invicta) constitute a worldwide threat, causing severe disruption to ecological systems and harming human welfare. In view of the limited success of current pest control measures, we propose here to employ repellents as means to mitigate the effect of these species. We demonstrate that cuticular hydrocarbons (CHCs) used as nestmate-recognition pheromone in the Japanese carpenter ant (Camponotus japonicus), and particularly its (Z)-9-tricosene component, induced vigorous olfactory response and intense aversion in these invasive species. (Z)-9-Tricosene, when given to their antennae, caused indiscriminate glomerular activation of antennal lobe (AL) regions, creating neural disarray and leading to aversive behavior. Considering the putative massive central neural effect, we suggest that the appropriate use of certain CHCs of native ants can facilitate aversive withdrawal of invasive ants.
Collapse
Affiliation(s)
- Tatsuya Uebi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- KYOUSEI Science Center for Life and Nature, Nara Women’s University, Nara, Japan
| | - Tomoya Sakita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ryo Ikeda
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Keita Sakanishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Tomoaki Tsutsumi
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Zijian Zhang
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Huiying Ma
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shigeru Matsuyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Satoko Nakajima
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Rong-Nan Huang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Shunya Habe
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Abraham Hefetz
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- KYOUSEI Science Center for Life and Nature, Nara Women’s University, Nara, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
- Morphogenetic Signaling Team, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- *Correspondence: Mamiko Ozaki,
| |
Collapse
|
23
|
Weise C, Ortiz CC, Tibbetts EA. Paper wasps form abstract concept of 'same and different'. Proc Biol Sci 2022; 289:20221156. [PMID: 35855600 PMCID: PMC9297017 DOI: 10.1098/rspb.2022.1156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Concept formation requires animals to learn and use abstract rules that transcend the characteristics of specific stimuli. Abstract concepts are often associated with high levels of cognitive sophistication, so there has been much interest in which species can form and use concepts. A key abstract concept is that of sameness and difference, where stimuli are classified as either the same as or different than an original stimulus. Here, we used a simultaneous two-item same-different task to test whether paper wasps (Polistes fuscatus) can learn and apply a same-different concept. We trained wasps by simultaneously presenting pairs of same or different stimuli (e.g. colours). Then, we tested whether wasps could apply the concept to new stimuli of the same type (e.g. new colours) and to new stimulus types (e.g. odours). We show that wasps learned a general concept of sameness or difference and applied it to new samples and types of stimuli. Notably, wasps were able to transfer the learned rules to new stimuli in a different sensory modality. Therefore, P. fuscatus can classify stimuli based on their relationships and apply abstract concepts to novel stimulus types. These results indicate that abstract concept learning may be more widespread than previously thought.
Collapse
Affiliation(s)
- Chloe Weise
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| | - Christian Cely Ortiz
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| | - Elizabeth A. Tibbetts
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| |
Collapse
|
24
|
Pulliainen U, Morandin C, Bos N, Sundström L, Schultner E. Social environment affects sensory gene expression in ant larvae. INSECT MOLECULAR BIOLOGY 2022; 31:1-9. [PMID: 34418191 DOI: 10.1111/imb.12732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Social insects depend on communication to regulate social behaviour. This also applies to their larvae, which are commonly exposed to social interactions and can react to social stimulation. However, how social insect larvae sense their environment is not known. Using RNAseq, we characterized expression of sensory-related genes in larvae of the ant Formica fusca, upon exposure to two social environments: isolation without contact to other individuals, and stimulation via the presence of other developing individuals. Expression of key sensory-related genes was higher following social stimulation, and larvae expressed many of the same sensory-related genes as adult ants and larvae of other insects, including genes belonging to the major insect chemosensory gene families. Our study provides first insights into the molecular changes associated with social information perception in social insect larvae.
Collapse
Affiliation(s)
- U Pulliainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - C Morandin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - N Bos
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Biology, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L Sundström
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - E Schultner
- Zoology and Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Golian M, Bien T, Schmelzle S, Esparza-Mora MA, McMahon DP, Dreisewerd K, Buellesbach J. Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects. INSECTS 2022; 13:insects13010083. [PMID: 35055926 PMCID: PMC8778109 DOI: 10.3390/insects13010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary The waxy layer covering the surface of most terrestrial insects is mainly composed of non-polar lipids termed cuticular hydrocarbons (CHCs). These have a long research history as important dual traits for both desiccation prevention and chemical communication. We analyzed CHC profiles of seven species of the insect order Blattodea (termites and cockroaches) with the most commonly applied chromatographic method, gas-chromatography coupled with mass spectrometry (GC-MS), and the more novel approach of silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS). Comparing these two analytical methods, we demonstrated that the conventional GC-MS approach does not provide enough information on the entire CHC profile range in the tested species. Ag-LDI-MS was able to detect very long-chain CHCs ranging up to C58, which remained undetected when solely relying on standard GC-MS analysis. Additionally, we measured the body surface areas of each tested species applying 3D scanning technology to assess their respective CHC amounts per mm2. When adjusting for body surface areas, proportional CHC quantity distributions shifted considerably between our studied species, suggesting the importance of including this factor when conducting quantitative CHC comparisons, particularly in insects that vary substantially in body size. Abstract Most of our knowledge on insect cuticular hydrocarbons (CHCs) stems from analytical techniques based on gas-chromatography coupled with mass spectrometry (GC-MS). However, this method has its limits under standard conditions, particularly in detecting compounds beyond a chain length of around C40. Here, we compare the CHC chain length range detectable by GC-MS with the range assessed by silver-assisted laser desorption/ionization mass spectrometry (Ag-LDI-MS), a novel and rarely applied technique on insect CHCs, in seven species of the order Blattodea. For all tested species, we unveiled a considerable range of very long-chain CHCs up to C58, which are not detectable by standard GC-MS technology. This indicates that general studies on insect CHCs may frequently miss compounds in this range, and we encourage future studies to implement analytical techniques extending the conventionally accessed chain length range. Furthermore, we incorporate 3D scanned insect body surface areas as an additional factor for the comparative quantification of extracted CHC amounts between our study species. CHC quantity distributions differed considerably when adjusted for body surface areas as opposed to directly assessing extracted CHC amounts, suggesting that a more accurate evaluation of relative CHC quantities can be achieved by taking body surface areas into account.
Collapse
Affiliation(s)
- Marek Golian
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
| | - Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Sebastian Schmelzle
- Ecological Networks, Technical University of Darmstadt, Schnittspahnstr. 2, D-64287 Darmstadt, Germany;
| | - Margy Alejandra Esparza-Mora
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Dino Peter McMahon
- Institute of Biology—Zoology, Free University of Berlin, Unter den Eichen 87, D-12205 Berlin, Germany; (M.A.E.-M.); (D.P.M.)
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany; (T.B.); (K.D.)
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, D-48149 Münster, Germany;
- Correspondence: ; Tel.: +49-(0)-251-83-21637
| |
Collapse
|
26
|
Almeida FCR, Magalhães DM, Favaris AP, Rodríguez J, Azevedo KEX, Bento JMS, Alves DA. Side effects of a fungus-based biopesticide on stingless bee guarding behaviour. CHEMOSPHERE 2022; 287:132147. [PMID: 34492415 DOI: 10.1016/j.chemosphere.2021.132147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Pathogenic fungi have been used worldwide to control crop pests and are assumed to pose negligible threats to the survival of pollinators. Although eusocial stingless bees provide essential pollination services and might be exposed to these biopesticides in tropical agroecosystems, there is a substantial knowledge gap regarding the side effects of fungal pathogens on behavioural traits that are crucial for colony functioning, such as guarding behaviour. Here, we evaluated the effect of Beauveria bassiana on the sophisticated kin recognition system of Tetragonisca angustula, a bee with morphologically specialized entrance guards. By combining behavioural assays and chemical analyses, we show that guards detect pathogen-exposed nestmates, preventing them from accessing nests. Furthermore, cuticular profiles of pathogen-exposed foragers contained significantly lower amounts of linear alkanes than the unexposed ones. Such chemical cues associated with fungal conidia may potentially trigger aggression towards pathogen-exposed bees, preventing pathogen spread into and among colonies. This is the first demonstration that this highly abundant native bee seems to respond in a much more adaptive way to a potentially infectious threat, outweighing the costs of losing foraging workforce when reducing the chances of fungal pathogen outbreaks within their colonies, than honeybees do.
Collapse
Affiliation(s)
- Felipe Chagas Rocha Almeida
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Diego Martins Magalhães
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Arodí Prado Favaris
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Jonathan Rodríguez
- Laboratory of Pathology and Microbial Control, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Kamila Emmanuella Xavier Azevedo
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - José Maurício Simões Bento
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Denise Araujo Alves
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil.
| |
Collapse
|
27
|
Stink Bug Communication and Signal Detection in a Plant Environment. INSECTS 2021; 12:insects12121058. [PMID: 34940147 PMCID: PMC8705670 DOI: 10.3390/insects12121058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022]
Abstract
Plants influenced the evolution of plant-dwelling stink bugs' systems underlying communication with chemical and substrate-borne vibratory signals. Plant volatiles provides cues that increase attractiveness or interfere with the probability of finding a mate in the field. Mechanical properties of herbaceous hosts and associated plants alter the frequency, amplitude, and temporal characteristics of stink bug species and sex-specific vibratory signals. The specificity of pheromone odor tuning has evolved through highly specific odorant receptors located within the receptor membrane. The narrow-band low-frequency characteristics of the signals produced by abdomen vibration and the frequency tuning of the highly sensitive subgenual organ vibration receptors match with filtering properties of the plants enabling optimized communication. A range of less sensitive mechanoreceptors, tuned to lower vibration frequencies, detect signals produced by other mechanisms used at less species-specific levels of communication in a plant environment. Whereas the encoding of frequency-intensity and temporal parameters of stink bug vibratory signals is relatively well investigated at low levels of processing in the ventral nerve cord, processing of this information and its integration with other modalities at higher neuronal levels still needs research attention.
Collapse
|
28
|
Xu T, Xu M, Lu Y, Zhang W, Sun J, Zeng R, Turlings TCJ, Chen L. A trail pheromone mediates the mutualism between ants and aphids. Curr Biol 2021; 31:4738-4747.e4. [PMID: 34496221 DOI: 10.1016/j.cub.2021.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Mutualisms, such as the ones between ants and aphids, evolve and persist when benefits outweigh the costs from the interactions between the partners. We show here that the trail pheromone of the red imported fire ant, Solenopsis invicta, can enhance these benefits by suppressing aphid dispersal and stimulating their reproduction. The ant's mutualistic partner, the cotton aphid Aphis gossypii, was found to readily perceive and respond to two specific trail pheromone components. Two pheromone components, Z,E-α-farnesene and E,E-α-farnesene, both suppressed walking dispersal of apterous aphids, whereas only the major pheromone component, Z,E-α-farnesene, also increased aphid reproduction rate. The ants, as well as the aphids, benefit from this inter-species function of the trail pheromone. For the ants it increases and prolongs the availability of honeydew as a key food source, whereas the aphid colony benefits from faster population growth and continuous ant-provided protection. These findings reveal a hitherto unknown mechanism by which ants and aphids both increase the benefits that they provide to each other, thereby likely enhancing the stability of their mutualistic relationship.
Collapse
Affiliation(s)
- Tian Xu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongyue Lu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Wenqian Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| | - Rensen Zeng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Li Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China; Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
29
|
Godfrey RK, Oberski JT, Allmark T, Givens C, Hernandez-Rivera J, Gronenberg W. Olfactory System Morphology Suggests Colony Size Drives Trait Evolution in Odorous Ants (Formicidae: Dolichoderinae). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.733023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In social insects colony fitness is determined in part by individual worker phenotypes. Across ant species, colony size varies greatly and is thought to affect worker trait variation in both proximate and ultimate ways. Little is known about the relationship between colony size and worker trait evolution, but hypotheses addressing the role of social structure in brain evolution suggest workers of small-colony species may have larger brains or larger brain regions necessary for complex behaviors. In previous work on odorous ants (Formicidae: Dolichoderinae) we found no correlation between colony size and these brain properties, but found that relative antennal lobe size scaled negatively with colony size. Therefore, we now test whether sensory systems scale with colony size, with particular attention to olfactory components thought to be involved in nestmate recognition. Across three species of odorous ants, Forelius mccooki, Dorymyrmex insanus, and D. bicolor, which overlap in habitat and foraging ecology but vary in colony size, we compare olfactory sensory structures, comparing those thought to be involved in nestmate recognition. We use the visual system, a sensory modality not as important in social communication in ants, as a control comparison. We find that body size scaling largely explains differences in eye size, antennal length, antennal sensilla density, and total number of olfactory glomeruli across these species. However, sensilla basiconica and olfactory glomeruli in the T6 cluster of the antennal lobe, structures known to be involved in nestmate recognition, do not follow body size scaling observed for other structures. Instead, we find evidence from the closely related Dorymyrmex species that the larger colony species, D. bicolor, invests more in structures implicated in nestmate recognition. To test for functional consequences, we compare nestmate and non-nestmate interactions between these two species and find D. bicolor pairs of either type engage in more interactions than D. insaus pairs. Thus, we do not find evidence supporting a universal pattern of sensory system scaling associated with changes in colony size, but hypothesize that observed differences in the olfactory components in two closely related Dorymyrmex species are evidence of a link between colony size and sensory trait evolution.
Collapse
|
30
|
Couto A, Arnold G, Ai H, Sandoz JC. Interspecific variation of antennal lobe composition among four hornet species. Sci Rep 2021; 11:20883. [PMID: 34686710 PMCID: PMC8536693 DOI: 10.1038/s41598-021-00280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Olfaction is a crucial sensory modality underlying foraging, social and mating behaviors in many insects. Since the olfactory system is at the interface between the animal and its environment, it receives strong evolutionary pressures that promote neuronal adaptations and phenotypic variations across species. Hornets are large eusocial predatory wasps with a highly developed olfactory system, critical for foraging and intra-specific communication. In their natural range, hornet species display contrasting ecologies and olfactory-based behaviors, which might match to adaptive shifts in their olfactory system. The first olfactory processing center of the insect brain, the antennal lobe, is made of morphological and functional units called glomeruli. Using fluorescent staining, confocal microscopy and 3D reconstructions, we compared antennal lobe structure, glomerular numbers and volumes in four hornet species (Vespa crabro, Vespa velutina, Vespa mandarinia and Vespa orientalis) with marked differences in nesting site preferences and predatory behaviors. Despite a conserved organization of their antennal lobe compartments, glomeruli numbers varied strongly between species, including in a subsystem thought to process intraspecific cuticular signals. Moreover, specific adaptations involving enlarged glomeruli appeared in two species, V. crabro and V. mandarinia, but not in the others. We discuss the possible function of these adaptations based on species-specific behavioral differences.
Collapse
Affiliation(s)
- Antoine Couto
- Laboratory Evolution Genomes Behavior and Ecology, CNRS, University Paris-Sud, IRD, Université Paris Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette, France.,School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Gérard Arnold
- Laboratory Evolution Genomes Behavior and Ecology, CNRS, University Paris-Sud, IRD, Université Paris Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Hiroyuki Ai
- Department of Earth System Science, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Jean-Christophe Sandoz
- Laboratory Evolution Genomes Behavior and Ecology, CNRS, University Paris-Sud, IRD, Université Paris Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
31
|
McKenzie SK, Winston ME, Grewe F, Vargas Asensio G, Rodríguez-Hernández N, Rubin BER, Murillo-Cruz C, von Beeren C, Moreau CS, Suen G, Pinto-Tomás AA, Kronauer DJC. The genomic basis of army ant chemosensory adaptations. Mol Ecol 2021; 30:6627-6641. [PMID: 34582590 PMCID: PMC9292994 DOI: 10.1111/mec.16198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022]
Abstract
The evolution of mass raiding has allowed army ants to become dominant arthropod predators in the tropics. Although a century of research has led to many discoveries about behavioural, morphological and physiological adaptations in army ants, almost nothing is known about the molecular basis of army ant biology. Here we report the genome of the iconic New World army ant Eciton burchellii, and show that it is unusually compact, with a reduced gene complement relative to other ants. In contrast to this overall reduction, a particular gene subfamily (9‐exon ORs) expressed predominantly in female antennae is expanded. This subfamily has previously been linked to the recognition of hydrocarbons, key olfactory cues used in insect communication and prey discrimination. Confocal microscopy of the brain showed a corresponding expansion in a putative hydrocarbon response centre within the antennal lobe, while scanning electron microscopy of the antenna revealed a particularly high density of hydrocarbon‐sensitive sensory hairs. E. burchellii shares these features with its predatory and more cryptic relative, the clonal raider ant. By integrating genomic, transcriptomic and anatomical analyses in a comparative context, our work thus provides evidence that army ants and their relatives possess a suite of modifications in the chemosensory system that may be involved in behavioural coordination and prey selection during social predation. It also lays the groundwork for future studies of army ant biology at the molecular level.
Collapse
Affiliation(s)
- Sean K McKenzie
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, USA.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Felix Grewe
- Grainger Bioinformatics Center, Science and Education, Field Museum of Natural History, Chicago, Illinois, USA
| | - Gabriel Vargas Asensio
- Centro de Investigación en Biología Molecular y Celular (CIBCM), Universidad de Costa Rica, San José, Costa Rica.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Natalia Rodríguez-Hernández
- Centro de Investigación en Estructuras Microscópicas (CIEMIC), Universidad de Costa Rica, San José, Costa Rica
| | - Benjamin E R Rubin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Catalina Murillo-Cruz
- Centro de Investigación en Estructuras Microscópicas (CIEMIC), Universidad de Costa Rica, San José, Costa Rica
| | - Christoph von Beeren
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, USA.,Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Corrie S Moreau
- Departments of Entomology and Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adrian A Pinto-Tomás
- Centro de Investigación en Biología Molecular y Celular (CIBCM), Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Estructuras Microscópicas (CIEMIC), Universidad de Costa Rica, San José, Costa Rica.,Escuela de Medicina, Departamento de Bioquímica, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, New York, USA
| |
Collapse
|
32
|
Suitability of drone olfactory sensitivity as a selection trait for Varroa-resistance in honeybees. Sci Rep 2021; 11:17703. [PMID: 34489529 PMCID: PMC8421409 DOI: 10.1038/s41598-021-97191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
The most effective strategy against brood diseases, such as those stemming from infestation by the mite Varroa destructor, is the early detection and removal of sick brood. Recent findings suggest that genes associated with worker bee olfactory perception play a central role in Varroa-sensitive hygiene (VSH). In this study, the odour sensitivity of Apis mellifera drones was examined through proboscis extension response (PER) conditioning. Individuals sensitive/insensitive to the two Varroa-parasitised-brood odours (extract-low and extract-high) were used for breeding. Twenty-one queens from a VSH-selected line (SelQ) and nineteen queens from a nonselected line (ConQ) were single-drone-inseminated with sperm from drones that showed either sensitivity (SenD+) or insensitivity (SenD-) to the two extracts. Individual VSH behaviour in a total of 5072 offspring of these combinations (SelQ × SenD+, SelQ × SenD-, ConQ × SenD+, ConQ × SenD-) was subsequently observed in a specially designed observation unit with infrared light. The results from the video observation were also separately examined, considering the genetic origin (VSH-selected or nonselected line) of the participating queens and drones. While the drone PER conditioning results were not significantly reflected in the VSH results of the respective offspring, the genetic origin of the participating queens/drones was crucial for VSH manifestation.
Collapse
|
33
|
Mizutani H, Tagai K, Habe S, Takaku Y, Uebi T, Kimura T, Hariyama T, Ozaki M. Antenna Cleaning Is Essential for Precise Behavioral Response to Alarm Pheromone and Nestmate-Non-Nestmate Discrimination in Japanese Carpenter Ants ( Camponotus japonicus). INSECTS 2021; 12:insects12090773. [PMID: 34564213 PMCID: PMC8471180 DOI: 10.3390/insects12090773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Grooming is a common behavior in animals. It serves the function of removing foreign materials and excessive amounts of self-secreted materials from the body’s surface. Social insects, such as honeybees or ants, use various types of pheromones, some of which propagate information about the environment to conspecific individuals, for chemical communication. The individuals that receive such information can respond with suitable behaviors to protect themselves and their society. Hence, grooming is important for the maintenance of the correct performance of their sensory organs on antennae for pheromone perception. Here, we experimentally limited self-grooming of the antennae in workers of the Japanese carpenter ant (Camponotus japonicus) by removing a pair of antennal cleaning apparatuses from the forelegs and investigated their behavioral change in response to exposure to the alarm pheromone or to encounters with nestmates or non-nestmates. Comparisons between self-grooming-nonlimited and self-grooming-limited ants showed that the self-grooming-limited ants gradually exhibited decreased locomotion activity in their fight-or-flight response to the alarm pheromone and experienced increased failure in nestmate and non-nestmate discrimination. Thus, the results of the present study suggest that antennal sensory system maintenance supports social communication, which is indispensable not only to the individual workers but also to the survival of their society. Abstract Self-grooming of the antennae is frequently observed in ants. This antennal maintenance behavior is presumed to be essential for effective chemical communication but, to our knowledge, this has not yet been well studied. When we removed the antenna-cleaning apparatuses of the Japanese carpenter ant (C. japonicus) to limit the self-grooming of the antennae, the worker ants demonstrated the self-grooming gesture as usual, but the antennal surface could not be sufficiently cleaned. By using scanning electron microscopy with NanoSuit, we observed the ants’ antennae for up to 48 h and found that the antennal surfaces gradually became covered with self-secreted surface material. Concurrently, the self-grooming-limited workers gradually lost their behavioral responsiveness to undecane—the alarm pheromone. Indeed, their locomotive response to the alarm pheromone diminished for up to 24 h after the antenna cleaner removal operation. In addition, the self-grooming-limited workers exhibited less frequent aggressive behavior toward non-nestmate workers, and 36 h after the operation, approximately half of the encountered non-nestmate workers were accepted as nestmates. These results suggest that the antennal sensing system is affected by excess surface material; hence, their proper function is prevented until they are cleaned.
Collapse
Affiliation(s)
- Hitomi Mizutani
- Department of Biology, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan;
| | - Kazuhiro Tagai
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan; (K.T.); (T.K.)
| | - Shunya Habe
- Department of Biotechnology, Graduate School of Science and Technology, Kyoto Institute of Technology, Ukyo-ku, Kyoto 616-8354, Japan;
| | - Yasuharu Takaku
- Preeminent Medical Photonics Education and Research Center, Institute for NanoSuit Research & NanoSuit Inc., Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; (Y.T.); (T.H.)
| | - Tatsuya Uebi
- KYOUSEI Science Center for Life and Nature, Nara Women’s University, Nara 630-8263, Japan;
| | - Toshifumi Kimura
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan; (K.T.); (T.K.)
| | - Takahiko Hariyama
- Preeminent Medical Photonics Education and Research Center, Institute for NanoSuit Research & NanoSuit Inc., Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan; (Y.T.); (T.H.)
| | - Mamiko Ozaki
- KYOUSEI Science Center for Life and Nature, Nara Women’s University, Nara 630-8263, Japan;
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan
- Morphogenetic Signaling Team, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe 650-0047, Japan
- Correspondence: ; Tel.: +81-742-20-3687
| |
Collapse
|
34
|
Wissink M, Nehring V. Appetitive olfactory learning suffers in ants when octopamine or dopamine receptors are blocked. J Exp Biol 2021; 224:271209. [PMID: 34357377 DOI: 10.1242/jeb.242732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 01/24/2023]
Abstract
Associative learning relies on the detection of coincidence between a stimulus and a reward or punishment. In the insect brain, this process is carried out in the mushroom bodies under the control of octopaminergic and dopaminergic neurons. It was assumed that appetitive learning is governed by octopaminergic neurons, while dopamine is required for aversive learning. This view has recently been challenged: both neurotransmitters are involved in both types of learning in bees and flies. Here, we tested which neurotransmitters are required for appetitive learning in ants. We trained Lasius niger workers to discriminate two mixtures of linear hydrocarbons and to associate one of them with a sucrose reward. We analysed the walking paths of the ants using machine learning and found that the ants spent more time near the rewarded odour than near the other, a preference that was stable for at least 24 h. We then treated the ants before learning with either epinastine, an octopamine receptor blocker, or flupentixol, a dopamine receptor blocker. Ants with blocked octopamine receptors did not prefer the rewarded odour. Octopamine signalling is thus necessary for appetitive learning of olfactory cues, probably because it signals information about odours or reward to the mushroom body. In contrast, ants with blocked dopamine receptors initially learned the rewarded odour but failed to retrieve this memory 24 h later. Dopamine is thus probably required for long-term memory consolidation, independent of short-term memory formation. Our results show that appetitive olfactory learning depends on both octopamine and dopamine signalling in ants.
Collapse
Affiliation(s)
- Maarten Wissink
- Evolutionary Biology & Ecology, Institute for Biology I (Zoology), University of Freiburg, D-79104 Freiburg, Germany
| | - Volker Nehring
- Evolutionary Biology & Ecology, Institute for Biology I (Zoology), University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
35
|
Hazarika HN, Khanikor B. Integration of morphological and molecular taxonomic characters for identification of Odontoponera denticulata (Hymenoptera: Formicidae: Ponerinae) with the description of the antennal sensilla. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Castillo P, Le N, Sun Q. Comparative Antennal Morphometry and Sensilla Organization in the Reproductive and Non-Reproductive Castes of the Formosan Subterranean Termite. INSECTS 2021; 12:576. [PMID: 34202744 PMCID: PMC8307099 DOI: 10.3390/insects12070576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/02/2022]
Abstract
Antennae are the primary sensory organs in insects, where a variety of sensilla are distributed for the perception of the chemical environment. In eusocial insects, colony function is maintained by a division of labor between reproductive and non-reproductive castes, and chemosensation is essential for regulating their specialized social activities. Several social species in Hymenoptera display caste-specific characteristics in antennal morphology and diversity of sensilla, reflecting their differential tasks. In termites, however, little is known about how the division of labor is associated with chemosensory morphology among castes. Using light and scanning electron microscopy, we performed antennal morphometry and characterized the organization of sensilla in reproductive (female and male alates) and non-reproductive (worker and soldier) castes in the Formosan subterranean termite, Coptotermes formosanus Shiraki. Here, we show that the antennal sensilla in alates are twice as abundant as in workers and soldiers, along with the greater number of antennal segments and antennal length in alates. However, all castes exhibit the same types of antennal sensilla, including basiconicum, campaniformium, capitulum, chaeticum I, chaeticum II, chaeticum III, marginal, trichodeum I, and trichodeum I. The quantitative composition of sensilla diverges between reproductive and non-reproductive castes, but not between female and male alates or between worker and soldier castes. The sensilla display spatial-specific distribution, with basiconicum exclusively and capitulum predominantly found on the ventral side of antennae. In addition, the abundance of chemosensilla increases toward the distal end of antennae in each caste. This research provides morphological signatures of chemosensation and their implications for the division of labor, and suggests future neurophysiological and molecular studies to address the mechanisms of chemical communication in termites.
Collapse
Affiliation(s)
| | | | - Qian Sun
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (P.C.); (N.L.)
| |
Collapse
|
37
|
Sung JY, Harris OK, Hensley NM, Chemero AP, Morehouse NI. Beyond cognitive templates: re-examining template metaphors used for animal recognition and navigation. Integr Comp Biol 2021; 61:825-841. [PMID: 33970266 DOI: 10.1093/icb/icab040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The term 'cognitive template' originated from work in human-based cognitive science to describe a literal, stored, neural representation used in recognition tasks. As the study of cognition has expanded to non-human animals, the term has diffused to describe a wider range of animal cognitive tools and strategies that guide action through the recognition of and discrimination between external states. One potential reason for this non-standardized meaning and variable employment is that researchers interested in the broad range of animal recognition tasks enjoy the simplicity of the cognitive template concept and have allowed it to become shorthand for many dissimilar or unknown neural processes without deep scrutiny of how this metaphor might comport with underlying neurophysiology. We review the functional evidence for cognitive templates in fields such as perception, navigation, communication, and learning, highlighting any neural correlates identified by these studies. We find that the concept of cognitive templates has facilitated valuable exploration at the interface between animal behavior and cognition, but the quest for a literal template has failed to attain mechanistic support at the level of neurophysiology. This may be the result of a misled search for a single physical locus for the 'template' itself. We argue that recognition and discrimination processes are best treated as emergent and, as such, may not be physically localized within single structures of the brain. Rather, current evidence suggests that such tasks are accomplished through synergies between multiple distributed processes in animal nervous systems. We thus advocate for researchers to move towards a more ecological, process-oriented conception, especially when discussing the neural underpinnings of recognition-based cognitive tasks.
Collapse
Affiliation(s)
- Jenny Y Sung
- Department of Biological Sciences, University of Cincinnati
| | | | | | | | | |
Collapse
|
38
|
Kennedy A, Peng T, Glaser SM, Linn M, Foitzik S, Grüter C. Use of waggle dance information in honey bees is linked to gene expression in the antennae, but not in the brain. Mol Ecol 2021; 30:2676-2688. [PMID: 33742503 DOI: 10.1111/mec.15893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Communication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e., private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression differences in different parts of the nervous system. We trained bees to collect food from sugar water feeders and observed whether they utilize social or private information when exposed to dances for a new food source. We performed transcriptome analysis of four brain parts (11-16 bees per tissue type) critical for cognition: the subesophageal ganglion, the central brain, the mushroom bodies, and the antennal lobes but, unexpectedly, detected no differences between social or private information users. In contrast, we found 413 differentially expressed genes in the antennae, suggesting that variation in sensory perception mediates the decision to use social information. Social information users were characterized by the upregulation of biogenic amine genes, while private information users upregulated several genes coding for odour perception. These results highlight that decision-making in honey bees might also depend on peripheral processes of perception rather than higher-order brain centres of information integration.
Collapse
Affiliation(s)
- Anissa Kennedy
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tianfei Peng
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.,College of Plant Science, Jilin University, Changchun, China
| | - Simone M Glaser
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melissa Linn
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.,School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
39
|
Jungwirth S, Ruther J, Pokorny T. Similar Is Not the Same – Mate Recognition in a Parasitoid Wasp. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.646667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Finding and recognizing a suitable mate is a key prerequisite to reproductive success. Insects often recognize prospective mates using chemical cues and signals. Among these, cuticular lipids commonly serve for mate recognition at close range. The lipid layer on the surface of insects is comprised predominantly of cuticular hydrocarbons (CHCs), though more polar compounds may also be present. While the composition of the cuticular profile is typically species specific, many species additionally show differentiation between the sexes by sex specific compounds and/or compound ratios. It is often assumed that a clear sexual dimorphism of cuticular lipid profiles is a prerequisite for a potential function as sex pheromones. Both, sex specific single compounds or the profiles as a whole have been shown to serve as sex pheromones in parasitoid wasps. Here, we studied parasitoid wasps of the speciesTachinaephagus zealandicus(Encyrtidae, Hymenoptera). Chemical analyses revealed that this species presents a case where males and females produce the same set of CHCs in similar relative amounts. To test whether these wasps nonetheless can use the cuticular lipids for close range mate recognition, we tested the reaction of males toward freeze-killed conspecifics. Males showed copulation behavior exclusively toward dead females, but not toward dead males. Dead females from which the cuticular lipids had been removed did not elicit copulation behavior by tested males. Reapplication of female whole body extracts restored bioactivity, and males reacted with copulation attempts as often as toward the freeze-killed females. Bioassays with lipid fractions revealed that only the CHC fraction was bioactive on its own. Here, again, males reacted to female, but not to male CHCs. Our results indicate that these wasps are capable of using CHCs for close range sex recognition despite the similarity of male and female profiles.
Collapse
|
40
|
Ferguson ST, Bakis I, Zwiebel LJ. Advances in the Study of Olfaction in Eusocial Ants. INSECTS 2021; 12:252. [PMID: 33802783 PMCID: PMC8002415 DOI: 10.3390/insects12030252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022]
Abstract
Over the past decade, spurred in part by the sequencing of the first ant genomes, there have been major advances in the field of olfactory myrmecology. With the discovery of a significant expansion of the odorant receptor gene family, considerable efforts have been directed toward understanding the olfactory basis of complex social behaviors in ant colonies. Here, we review recent pivotal studies that have begun to reveal insights into the development of the olfactory system as well as how olfactory stimuli are peripherally and centrally encoded. Despite significant biological and technical impediments, substantial progress has been achieved in the application of gene editing and other molecular techniques that notably distinguish the complex olfactory system of ants from other well-studied insect model systems, such as the fruit fly. In doing so, we hope to draw attention not only to these studies but also to critical knowledge gaps that will serve as a compass for future research endeavors.
Collapse
Affiliation(s)
| | | | - Laurence J. Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; (S.T.F.); (I.B.)
| |
Collapse
|
41
|
The male swallowtail butterfly, Papilio polytes, uses cuticular hydrocarbons for mate discrimination. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Ge J, Ge Z, Zhu D, Wang X. Pheromonal Regulation of the Reproductive Division of Labor in Social Insects. Front Cell Dev Biol 2020; 8:837. [PMID: 32974354 PMCID: PMC7468439 DOI: 10.3389/fcell.2020.00837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
The reproductive altruism in social insects is an evolutionary enigma that has been puzzling scientists starting from Darwin. Unraveling how reproductive skew emerges and maintains is crucial to understand the reproductive altruism involved in the consequent division of labor. The regulation of adult worker reproduction involves conspecific inhibitory signals, which are thought to be chemical signals by numerous studies. Despite the primary identification of few chemical ligands, the action modes of primer pheromones that regulate reproduction and their molecular causes and effects remain challenging. Here, these questions were elucidated by comprehensively reviewing recent advances. The coordination with other modalities of queen pheromones (QPs) and its context-dependent manner to suppress worker reproduction were discussed under the vast variation and plasticity of reproduction during colony development and across taxa. In addition to the effect of QPs, special attention was paid to recent studies revealing the regulatory effect of brood pheromones. Considering the correlation between pheromone and hormone, this study focused on the production and perception of pheromones under the endocrine control and highlighted the pivotal roles of nutrition-related pathways. The novel chemicals and gene pathways discovered by recent works provide new insights into the understanding of social regulation of reproductive division of labor in insects.
Collapse
Affiliation(s)
- Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxi Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Würf J, Pokorny T, Wittbrodt J, Millar JG, Ruther J. Cuticular Hydrocarbons as Contact Sex Pheromone in the Parasitoid Wasp Urolepis rufipes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
44
|
Yan H, Jafari S, Pask G, Zhou X, Reinberg D, Desplan C. Evolution, developmental expression and function of odorant receptors in insects. J Exp Biol 2020; 223:jeb208215. [PMID: 32034042 PMCID: PMC7790194 DOI: 10.1242/jeb.208215] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals rely on their chemosensory system to discriminate among a very large number of attractive or repulsive chemical cues in the environment, which is essential to respond with proper action. The olfactory sensory systems in insects share significant similarities with those of vertebrates, although they also exhibit dramatic differences, such as the molecular nature of the odorant receptors (ORs): insect ORs function as heteromeric ion channels with a common Orco subunit, unlike the G-protein-coupled olfactory receptors found in vertebrates. Remarkable progress has recently been made in understanding the evolution, development and function of insect odorant receptor neurons (ORNs). These studies have uncovered the diversity of olfactory sensory systems among insect species, including in eusocial insects that rely extensively on olfactory sensing of pheromones for social communication. However, further studies, notably functional analyses, are needed to improve our understanding of the origins of the Orco-OR system, the mechanisms of ORN fate determination, and the extraordinary diversity of behavioral responses to chemical cues.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste (UFCST), University of Florida, Gainesville, FL 32610, USA
| | - Shadi Jafari
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Biology, New York University, New York, NY 10003, USA
| | - Gregory Pask
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Danny Reinberg
- Howard Hughes Medical Institute (HHMI), Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
45
|
Ferguson ST, Park KY, Ruff AA, Bakis I, Zwiebel LJ. Odor coding of nestmate recognition in the eusocial ant Camponotus floridanus. J Exp Biol 2020; 223:jeb215400. [PMID: 31900348 PMCID: PMC7033718 DOI: 10.1242/jeb.215400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 11/20/2022]
Abstract
In eusocial ants, aggressive behaviors require the ability to discriminate between chemical signatures such as cuticular hydrocarbons that distinguish nestmate friends from non-nestmate foes. It has been suggested that a mismatch between a chemical signature (label) and the internal, neuronal representation of the colony odor (template) leads to aggression between non-nestmates. Moreover, a definitive demonstration that odorant receptors are responsible for the processing of the chemical signals that regulate nestmate recognition has thus far been lacking. To address these issues, we have developed an aggression-based bioassay incorporating highly selective modulators that target odorant receptor functionality to characterize their role in nestmate recognition in the formicine ant Camponotus floridanus Electrophysiological studies were used to show that exposure to either a volatilized antagonist or an agonist eliminated or dramatically altered signaling, respectively. Administration of these compounds to adult workers significantly reduced aggression between non-nestmates without altering aggression levels between nestmates. These studies provide direct evidence that odorant receptors are indeed necessary and sufficient for mediating aggression towards non-nestmates. Furthermore, our observations support a hypothesis in which rejection of non-nestmates depends on the precise decoding of chemical signatures present on non-nestmates as opposed to the absence of any information or the active acceptance of familiar signatures.
Collapse
Affiliation(s)
- Stephen T Ferguson
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| | - Kyu Young Park
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| | - Alexandra A Ruff
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| | - Isaac Bakis
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37235, USA
| |
Collapse
|
46
|
Neves EF, Lima LD, Sguarizi-Antonio D, Andrade LHC, Lima SM, Lima-Junior SE, Antonialli-Junior WF. Intraspecific Cuticular Chemical Profile Variation in the Social Wasp Mischocyttarus consimilis (Hymenoptera, Vespidae). NEOTROPICAL ENTOMOLOGY 2019; 48:1030-1038. [PMID: 31456168 DOI: 10.1007/s13744-019-00711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Chemical compounds present on the cuticle of social insects are important in communication, as they are used in recognition of nestmates and sexual partners as well as in caste distinction, varying according to several factors, such as genetic and environmental. In this context, some studies have explored the cuticular chemical profile as a tool for assessing intra- and interspecific differences in social insects, although few studies have investigated this in social wasps. This study aimed to assess the differences in cuticular chemical profiles among different geographic samples of the wasp Mischocyttarus consimilis Zikán. Our hypothesis was that environmental factors are decisive to compose the cuticular chemical profiles of colonies of these social wasps and that there are differences regarding the geographic distribution among colonies. We used Fourier Transform Infrared-Photoacoustic Spectroscopy (FTIR-PAS) to assess the chemical profiles of samples. Our results show that despite there are differences between the cuticular chemical composition of the wasps' samples from different populations, there is no significant correlation compared to the spatial distribution of the colonies nor with the environment. Thus, our hypothesis was refuted, and we can infer that in this species neither exogenous nor genetic factors stand out to differentiate the chemical signature of their colonies, but a combination of both.
Collapse
Affiliation(s)
- E F Neves
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Univ Federal da Grande Dourados, Dourados, MS, Brasil.
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil.
| | - L D Lima
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil
| | - D Sguarizi-Antonio
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil
| | - L H C Andrade
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - S M Lima
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - S E Lima-Junior
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - W F Antonialli-Junior
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| |
Collapse
|
47
|
Mansourian S, Fandino RA, Riabinina O. Progress in the use of genetic methods to study insect behavior outside Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:45-56. [PMID: 31494407 DOI: 10.1016/j.cois.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In the span of a decade we have seen a rapid progress in the application of genetic tools and genome editing approaches in 'non-model' insects. It is now possible to target sensory receptor genes and neurons, explore their functional roles and manipulate behavioral responses in these insects. In this review, we focus on the latest examples from Diptera, Lepidoptera and Hymenoptera of how applications of genetic tools advanced our understanding of diverse behavioral phenomena. We further discuss genetic methods that could be applied to study insect behavior in the future.
Collapse
Affiliation(s)
| | - Richard A Fandino
- Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
48
|
Massey SE, Mishra B. Origin of biomolecular games: deception and molecular evolution. J R Soc Interface 2019; 15:rsif.2018.0429. [PMID: 30185543 DOI: 10.1098/rsif.2018.0429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Biological macromolecules encode information: some of it to endow the molecule with structural flexibility, some of it to enable molecular actions as a catalyst or a substrate, but a residual part can be used to communicate with other macromolecules. Thus, macromolecules do not need to possess information only to survive in an environment, but also to strategically interact with others by sending signals to a receiving macromolecule that can properly interpret the signal and act suitably. These sender-receiver signalling games are sustained by the information asymmetry that exists among the macromolecules. In both biochemistry and molecular evolution, the important role of information asymmetry remains largely unaddressed. Here, we provide a new unifying perspective on the impact of information symmetry between macromolecules on molecular evolutionary processes, while focusing on molecular deception. Biomolecular games arise from the ability of biological macromolecules to exert precise recognition, and their role as units of selection, meaning that they are subject to competition and cooperation with other macromolecules. Thus, signalling game theory can be used to better understand fundamental features of living systems such as molecular recognition, molecular mimicry, selfish elements and 'junk' DNA. We show how deceptive behaviour at the molecular level indicates a conflict of interest, and so provides evidence of genetic conflict. This model proposes that molecular deception is diagnostic of selfish behaviour, helping to explain the evasive behaviour of transposable elements in 'junk' DNA, for example. Additionally, in this broad review, a range of major evolutionary transitions are shown to be associated with the establishment of signalling conventions, many of which are susceptible to molecular deception. These perspectives allow us to assign rudimentary behaviour to macromolecules, and show how participation in signalling games differentiates biochemistry from abiotic chemistry.
Collapse
Affiliation(s)
- Steven E Massey
- Department of Biology, University of Puerto Rico, San Juan, PR, USA
| | - Bud Mishra
- Courant Institute, New York University, NY, USA
| |
Collapse
|
49
|
Stamps GF, Shaw KL. Male use of chemical signals in sex discrimination of Hawaiian swordtail crickets (genus Laupala). Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Phenotypic Plasticity of Nest-Mate Recognition Cues in Formica exsecta Ants. J Chem Ecol 2019; 45:735-740. [PMID: 31475301 PMCID: PMC6754345 DOI: 10.1007/s10886-019-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 11/07/2022]
Abstract
It is well established that many ant species have evolved qualitatively distinct species-specific chemical profile that are stable over large geographical distances. Within these species profiles quantitative variations in the chemical profile allows distinct colony-specific odours to arise (chemotypes) that are shared by all colony members. This help maintains social cohesion, including defence of their colonies against all intruders, including con-specifics. How these colony -level chemotypes are maintained among nest-mates has long been debated. The two main theories are; each ant is able to biochemically adjust its chemical profile to ‘match’ that of its nest-mates and or the queen, or all nest-mates share their individually generated chemical profile via trophollaxis resulting in an average nest-mate profile. This ‘mixing’ idea is better known as the Gestalt model. Unfortunately, it has been very difficult to experimentally test these two ideas in a single experimental design. However, it is now possible using the ant Formica exsecta because the compounds used in nest-mate recognition compounds are known. We demonstrate that workers adjust their profile to ‘match’ the dominant chemical profile within that colony, hence maintaining the colony-specific chemotype and indicates that a ‘gestalt’ mechanism, i.e. profile mixing, plays no or only a minor role.
Collapse
|