1
|
Galmozzi CV, Tippmann F, Wruck F, Auburger JJ, Kats I, Guennigmann M, Till K, O Brien EP, Tans SJ, Kramer G, Bukau B. Proteome-wide determinants of co-translational chaperone binding in bacteria. Nat Commun 2025; 16:4361. [PMID: 40348781 PMCID: PMC12065913 DOI: 10.1038/s41467-025-59067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
Chaperones are essential to the co-translational folding of most proteins. However, the principles of co-translational chaperone interaction throughout the proteome are poorly understood, as current methods are restricted to few substrates and cannot capture nascent protein folding or chaperone binding sites, precluding a comprehensive understanding of productive and erroneous protein biosynthesis. Here, by integrating genome-wide selective ribosome profiling, single-molecule tools, and computational predictions using AlphaFold we show that the binding of the main E. coli chaperones involved in co-translational folding, Trigger Factor (TF) and DnaK correlates with "unsatisfied residues" exposed on nascent partial folds - residues that have begun to form tertiary structure but cannot yet form all native contacts due to ongoing translation. This general principle allows us to predict their co-translational binding across the proteome based on sequence only, which we verify experimentally. The results show that TF and DnaK stably bind partially folded rather than unfolded conformers. They also indicate a synergistic action of TF guiding intra-domain folding and DnaK preventing premature inter-domain contacts, and reveal robustness in the larger chaperone network (TF, DnaK, GroEL). Given the complexity of translation, folding, and chaperone functions, our predictions based on general chaperone binding rules indicate an unexpected underlying simplicity.
Collapse
Affiliation(s)
- Carla Verónica Galmozzi
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Frank Tippmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Josef Johannes Auburger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ilia Kats
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Guennigmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Edward P O Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA, USA
| | - Sander J Tans
- AMOLF, Amsterdam, The Netherlands.
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
2
|
Byju S, Whitford PC. tRNA kinetics on the ribosome depends nonmonotonically on intersubunit rotation. Biophys J 2025:S0006-3495(25)00245-0. [PMID: 40253588 DOI: 10.1016/j.bpj.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/17/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
To translate messenger RNA into proteins, the ribosome must coordinate a wide range of conformational rearrangements. Some steps involve individual molecules, whereas others require synchronization of multiple collective motions. For example, the ribosomal "small" subunit (∼1 MDa) is known to undergo rotational motion (∼10°) that is correlated with large-scale displacements of tRNA molecules (∼50 Å). While decades of biochemical, single-molecule, and structural analysis have provided many insights into the timing of these motions, little is known about how these dynamical processes influence each other. To address this, we use molecular simulations to isolate specific interactions that allow tRNA kinetics to be controlled by subunit rotation. Specifically, we applied an all-atom structure-based model to simulate movement of tRNA between ribosomal binding sites (P/E hybrid formation). These calculations reveal a pronounced nonmonotonic dependence of tRNA kinetics on subunit rotation, where the rate of P/E formation initially increases and then decreases as the subunit rotates. In addition, there was a sharp increase in rate for low degrees of rotation, suggesting that adoption of P/E tRNA conformations may occur early in the rotation process. Together, these calculations demonstrate how molecular structure gives rise to an intricate relationship between these complex rearrangements.
Collapse
Affiliation(s)
- Sandra Byju
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts; Department of Physics, Northeastern University, Dana Research Center 111, Boston, Massachusetts
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts; Department of Physics, Northeastern University, Dana Research Center 111, Boston, Massachusetts.
| |
Collapse
|
3
|
Wang S, Bitran A, Samatova E, Shakhnovich EI, Rodnina MV. Cotranslational Protein Folding Through Non-Native Structural Intermediates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648002. [PMID: 40291668 PMCID: PMC12027329 DOI: 10.1101/2025.04.09.648002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cotranslational protein folding follows a distinct pathway shaped by the vectorial emergence of the peptide and spatial constraints of the ribosome exit tunnel. Variations in translation rhythm can cause misfolding linked to disease; however, predicting cotranslational folding pathways remains challenging. Here we computationally predict and experimentally validate a vectorial hierarchy of folding resolved at the atomistic level, where early intermediates are stabilized through non-native hydrophobic interactions before rearranging into the native-like fold. Disrupting these interactions destabilizes intermediates and impairs folding. The chaperone Trigger Factor alters the cotranslational folding pathway by keeping the nascent peptide dynamic until the full domain emerges. Our results highlight an unexpected role of surface-exposed residues in protein folding on the ribosome and provide tools to improve folding prediction and protein design.
Collapse
|
4
|
Westerfield JM, Kozojedová P, Juli C, Metola A, von Heijne G. Cotranslational membrane insertion of the voltage-sensitive K + channel KvAP. Proc Natl Acad Sci U S A 2025; 122:e2412492122. [PMID: 40163725 PMCID: PMC12002286 DOI: 10.1073/pnas.2412492122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Voltage-sensor domains (VSDs), found in many voltage-sensitive ion channels and enzymes, are composed of four transmembrane helices (TMHs), including the atypical, highly positively charged S4 helix. VSDs are cotranslationally inserted into the membrane, raising the question of how the highly charged S4 helix is integrated into the lipid bilayer as it exits the ribosome. Here, we have used force profile analysis (FPA) to follow the cotranslational insertion of the six-TMH KvAP voltage-sensitive ion channel into the Escherichia coli inner membrane. We find that the insertion process proceeds through three semi-independent steps: i) insertion of the S1-S2 helix hairpin, ii) insertion of the S3-S5 helices, and iii) insertion of the Pore and S6 helices. Our analysis highlights the importance of the concerted insertion of helical hairpins, the dramatic influence of the positively charged residues in S4, and the unexpectedly strong forces and effects on downstream TMHs elicited by amphipathic and re-entrant helices.
Collapse
Affiliation(s)
- Justin M. Westerfield
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Petra Kozojedová
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Cara Juli
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Ane Metola
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, StockholmSE-106 91, Sweden
- Science for Life Laboratory, Stockholm University, SolnaSE-171 21, Sweden
| |
Collapse
|
5
|
Rabl L, Deuerling E. The nascent polypeptide-associated complex (NAC) as regulatory hub on ribosomes. Biol Chem 2025:hsz-2025-0114. [PMID: 40167342 DOI: 10.1515/hsz-2025-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The correct synthesis of new proteins is essential for maintaining a functional proteome and cell viability. This process is tightly regulated, with ribosomes and associated protein biogenesis factors ensuring proper protein production, modification, and targeting. In eukaryotes, the conserved nascent polypeptide-associated complex (NAC) plays a central role in coordinating early protein processing by regulating the ribosome access of multiple protein biogenesis factors. NAC recruits modifying enzymes to the ribosomal exit site to process the N-terminus of nascent proteins and directs secretory proteins into the SRP-mediated targeting pathway. In this review we will focus on these pathways, which are critical for proper protein production, and summarize recent advances in understanding the cotranslational functions and mechanisms of NAC in higher eukaryotes.
Collapse
Affiliation(s)
- Laurenz Rabl
- Department of Biology, 26567 University of Konstanz , D-78457 Konstanz, Germany
| | - Elke Deuerling
- Department of Biology, 26567 University of Konstanz , D-78457 Konstanz, Germany
| |
Collapse
|
6
|
Rashad S, Marahleh A. Metabolism Meets Translation: Dietary and Metabolic Influences on tRNA Modifications and Codon Biased Translation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70011. [PMID: 40119534 PMCID: PMC11928779 DOI: 10.1002/wrna.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
Transfer RNA (tRNA) is not merely a passive carrier of amino acids, but an active regulator of mRNA translation controlling codon bias and optimality. The synthesis of various tRNA modifications is regulated by many "writer" enzymes, which utilize substrates from metabolic pathways or dietary sources. Metabolic and bioenergetic pathways, such as one-carbon (1C) metabolism and the tricarboxylic acid (TCA) cycle produce essential substrates for tRNA modifications synthesis, such as S-Adenosyl methionine (SAM), sulfur species, and α-ketoglutarate (α-KG). The activity of these metabolic pathways can directly impact codon decoding and translation via regulating tRNA modifications levels. In this review, we discuss the complex interactions between diet, metabolism, tRNA modifications, and mRNA translation. We discuss how nutrient availability, bioenergetics, and intermediates of metabolic pathways, modulate the tRNA modification landscape to fine-tune protein synthesis. Moreover, we highlight how dysregulation of these metabolic-tRNA interactions contributes to disease pathogenesis, including cancer, metabolic disorders, and neurodegenerative diseases. We also discuss the new emerging field of GlycoRNA biology drawing parallels from glycobiology and metabolic diseases to guide future directions in this area. Throughout our discussion, we highlight the links between specific modifications, their metabolic/dietary precursors, and various diseases, emphasizing the importance of a metabolism-centric tRNA view in understanding many pathologies. Future research should focus on uncovering the interplay between metabolism and tRNA in specific cellular and disease contexts. Addressing these gaps will guide new research into novel disease interventions.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| | - Aseel Marahleh
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
- Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
7
|
Garbuzynskiy SO, Marchenkov VV, Marchenko NY, Semisotnov GV, Finkelstein AV. How proteins manage to fold and how chaperones manage to assist the folding. Phys Life Rev 2025; 52:66-79. [PMID: 39709754 DOI: 10.1016/j.plrev.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature. We discuss the famous Levinthal's paradox of protein folding and its solution, theoretical models of protein folding and unfolding, and the dependence of the rates of these processes on the protein chain length. Special attention is paid to relatively small, single-domain, and water-soluble globular proteins whose structure and folding are much better studied and understood than those of large proteins, especially membrane or fibrous proteins. Lastly, we describe the chaperone-assisted protein folding with an emphasis on the chaperones' ability to prevent proteins from their irreversible aggregation. Since the possible assistance mechanisms connected with chaperones are still debatable, experimental data useful in selecting the most likely mechanisms of chaperone-assisted protein folding are presented.
Collapse
Affiliation(s)
- Sergiy O Garbuzynskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Victor V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Natalia Y Marchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Gennady V Semisotnov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Alexei V Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| |
Collapse
|
8
|
Lentzsch AM, Lee JH, Shan SO. Mechanistic Insights into Protein Biogenesis and Maturation on the Ribosome. J Mol Biol 2025:169056. [PMID: 40024436 DOI: 10.1016/j.jmb.2025.169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The ribosome is a major cellular machine that converts genetic information into biological function. Emerging data show that the ribosome is not only a protein synthesis machine, but also participates in the maturation of the nascent protein into properly folded and active molecules. The ribosome surface near the opening of the polypeptide exit tunnel can interact directly with the newly synthesized proteins and, more importantly, provides a platform where numerous protein biogenesis factors assemble, gain access to the nascent chain, and direct them into diverse biogenesis pathways. In this article, we review the current understanding of cotranslational protein maturation pathways, with an emphasis on systems in which biochemical studies provided a high-resolution molecular understanding and yielded generalizable mechanistic principles.
Collapse
Affiliation(s)
- Alfred M Lentzsch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jae Ho Lee
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
9
|
Calis S, Gevaert K. The role of Nα-terminal acetylation in protein conformation. FEBS J 2025; 292:453-467. [PMID: 38923676 DOI: 10.1111/febs.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.
Collapse
Affiliation(s)
- Sam Calis
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| |
Collapse
|
10
|
Wales TE, Pajak A, Roeselová A, Shivakumaraswamy S, Howell S, Kjær S, Hartl FU, Engen JR, Balchin D. Resolving chaperone-assisted protein folding on the ribosome at the peptide level. Nat Struct Mol Biol 2024; 31:1888-1897. [PMID: 38987455 PMCID: PMC11638072 DOI: 10.1038/s41594-024-01355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Protein folding in vivo begins during synthesis on the ribosome and is modulated by molecular chaperones that engage the nascent polypeptide. How these features of protein biogenesis influence the maturation pathway of nascent proteins is incompletely understood. Here, we use hydrogen-deuterium exchange mass spectrometry to define, at peptide resolution, the cotranslational chaperone-assisted folding pathway of Escherichia coli dihydrofolate reductase. The nascent polypeptide folds along an unanticipated pathway through structured intermediates not populated during refolding from denaturant. Association with the ribosome allows these intermediates to form, as otherwise destabilizing carboxy-terminal sequences remain confined in the ribosome exit tunnel. Trigger factor binds partially folded states without disrupting their structure, and the nascent chain is poised to complete folding immediately upon emergence of the C terminus from the exit tunnel. By mapping interactions between the nascent chain and ribosomal proteins, we trace the path of the emerging polypeptide during synthesis. Our work reveals new mechanisms by which cellular factors shape the conformational search for the native state.
Collapse
Affiliation(s)
- Thomas E Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | - Aleksandra Pajak
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | - Alžběta Roeselová
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | | | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA.
| | - David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Ishibashi K, Shichino Y, Han P, Wakabayashi K, Mito M, Inada T, Kimura S, Iwasaki S, Mishima Y. Translation of zinc finger domains induces ribosome collision and Znf598-dependent mRNA decay in zebrafish. PLoS Biol 2024; 22:e3002887. [PMID: 39636823 PMCID: PMC11620358 DOI: 10.1371/journal.pbio.3002887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Quality control of translation is crucial for maintaining cellular and organismal homeostasis. Obstacles in translation elongation induce ribosome collision, which is monitored by multiple sensor mechanisms in eukaryotes. The E3 ubiquitin ligase Znf598 recognizes collided ribosomes, triggering ribosome-associated quality control (RQC) to rescue stalled ribosomes and no-go decay (NGD) to degrade stall-prone mRNAs. However, the impact of RQC and NGD on maintaining the translational homeostasis of endogenous mRNAs has remained unclear. In this study, we investigated the endogenous substrate mRNAs of NGD during the maternal-to-zygotic transition (MZT) of zebrafish development. RNA-Seq analysis of zebrafish znf598 mutant embryos revealed that Znf598 down-regulates mRNAs encoding the C2H2-type zinc finger domain (C2H2-ZF) during the MZT. Reporter assays and disome profiling indicated that ribosomes stall and collide while translating tandem C2H2-ZFs, leading to mRNA degradation by Znf598. Our results suggest that NGD maintains the quality of the translatome by mitigating the risk of ribosome collision at the abundantly present C2H2-ZF sequences in the vertebrate genome.
Collapse
Affiliation(s)
- Kota Ishibashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Peixun Han
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Kimi Wakabayashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Toshifumi Inada
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuichiro Mishima
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| |
Collapse
|
12
|
Kolář MH, McGrath H, Nepomuceno FC, Černeková M. Three Stages of Nascent Protein Translocation Through the Ribosome Exit Tunnel. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1873. [PMID: 39496527 DOI: 10.1002/wrna.1873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
All proteins in living organisms are produced in ribosomes that facilitate the translation of genetic information into a sequence of amino acid residues. During translation, the ribosome undergoes initiation, elongation, termination, and recycling. In fact, peptide bonds are formed only during the elongation phase, which comprises periodic association of transfer RNAs and multiple auxiliary proteins with the ribosome and the addition of an amino acid to the nascent polypeptide one at a time. The protein spends a considerable amount of time attached to the ribosome. Here, we conceptually divide this portion of the protein lifetime into three stages. We define each stage on the basis of the position of the N-terminus of the nascent polypeptide within the ribosome exit tunnel and the context of the catalytic center. We argue that nascent polypeptides experience a variety of forces that determine how they translocate through the tunnel and interact with the tunnel walls. We review current knowledge about nascent polypeptide translocation and identify several white spots in our understanding of the birth of proteins.
Collapse
Affiliation(s)
- Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Hugo McGrath
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Felipe C Nepomuceno
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Černeková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
13
|
Taguchi H, Niwa T. Reconstituted Cell-free Translation Systems for Exploring Protein Folding and Aggregation. J Mol Biol 2024; 436:168726. [PMID: 39074633 DOI: 10.1016/j.jmb.2024.168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Protein folding is crucial for achieving functional three-dimensional structures. However, the process is often hampered by aggregate formation, necessitating the presence of chaperones and quality control systems within the cell to maintain protein homeostasis. Despite a long history of folding studies involving the denaturation and subsequent refolding of translation-completed purified proteins, numerous facets of cotranslational folding, wherein nascent polypeptides are synthesized by ribosomes and folded during translation, remain unexplored. Cell-free protein synthesis (CFPS) systems are invaluable tools for studying cotranslational folding, offering a platform not only for elucidating mechanisms but also for large-scale analyses to identify aggregation-prone proteins. This review provides an overview of the extensive use of CFPS in folding studies to date. In particular, we discuss a comprehensive aggregation formation assay of thousands of Escherichia coli proteins conducted under chaperone-free conditions using a reconstituted translation system, along with its derived studies.
Collapse
Affiliation(s)
- Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
14
|
Pardo-Avila F, Kudva R, Levitt M, von Heijne G. Single-residue effects on the behavior of a nascent polypeptide chain inside the ribosome exit tunnel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608737. [PMID: 39229094 PMCID: PMC11370347 DOI: 10.1101/2024.08.20.608737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Nascent polypeptide chains (NCs) are extruded from the ribosome through an exit tunnel (ET) traversing the large ribosomal subunit. The ET's irregular and chemically complex wall allows for various NC-ET interactions. Translational arrest peptides (APs) bind in the ET to induce translational arrest, a property that can be exploited to study NC-ET interactions by Force Profile Analysis (FPA). We employed FPA and molecular dynamics (MD) simulations to investigate how individual residues placed in a glycine-serine repeat segment within an AP-stalled NC interact with the ET to exert a pulling force on the AP and release stalling. Our results indicate that large and hydrophobic residues generate a pulling force on the NC when placed ≳10 residues away from the peptidyl transfer center (PTC). Moreover, an asparagine placed 12 residues from the PTC makes a specific stabilizing interaction with the tip of ribosomal protein uL22 that reduces the pulling force on the NC, while a lysine or leucine residue in the same position increases the pulling force. Finally, the MD simulations suggest how the Mannheimia succiniproducens SecM AP interacts with the ET to promote translational stalling.
Collapse
Affiliation(s)
- Fátima Pardo-Avila
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA
| | - Renuka Kudva
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| | - Michael Levitt
- Department of Structural Biology, Stanford University, Palo Alto, CA, USA
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| |
Collapse
|
15
|
Dall NR, Mendonça CATF, Torres Vera HL, Marqusee S. The importance of the location of the N-terminus in successful protein folding in vivo and in vitro. Proc Natl Acad Sci U S A 2024; 121:e2321999121. [PMID: 39145938 PMCID: PMC11348275 DOI: 10.1073/pnas.2321999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Protein folding in the cell often begins during translation. Many proteins fold more efficiently cotranslationally than when refolding from a denatured state. Changing the vectorial synthesis of the polypeptide chain through circular permutation could impact functional, soluble protein expression and interactions with cellular proteostasis factors. Here, we measure the solubility and function of every possible circular permutant (CP) of HaloTag in Escherichia coli cell lysate using a gel-based assay, and in living E. coli cells via FACS-seq. We find that 78% of HaloTag CPs retain protein function, though a subset of these proteins are also highly aggregation-prone. We examine the function of each CP in E. coli cells lacking the cotranslational chaperone trigger factor and the intracellular protease Lon and find no significant changes in function as a result of modifying the cellular proteostasis network. Finally, we biophysically characterize two topologically interesting CPs in vitro via circular dichroism and hydrogen-deuterium exchange coupled with mass spectrometry to reveal changes in global stability and folding kinetics with circular permutation. For CP33, we identify a change in the refolding intermediate as compared to wild-type (WT) HaloTag. Finally, we show that the strongest predictor of aggregation-prone expression in cells is the introduction of termini within the refolding intermediate. These results, in addition to our finding that termini insertion within the conformationally restrained core is most disruptive to protein function, indicate that successful folding of circular permutants may depend more on changes in folding pathway and termini insertion in flexible regions than on the availability of proteostasis factors.
Collapse
Affiliation(s)
- Natalie R. Dall
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | | | - Héctor L. Torres Vera
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| |
Collapse
|
16
|
Roeselová A, Maslen SL, Shivakumaraswamy S, Pellowe GA, Howell S, Joshi D, Redmond J, Kjær S, Skehel JM, Balchin D. Mechanism of chaperone coordination during cotranslational protein folding in bacteria. Mol Cell 2024; 84:2455-2471.e8. [PMID: 38908370 DOI: 10.1016/j.molcel.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 06/01/2024] [Indexed: 06/24/2024]
Abstract
Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.
Collapse
Affiliation(s)
- Alžběta Roeselová
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Grant A Pellowe
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Dhira Joshi
- Chemical Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Joanna Redmond
- Chemical Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
17
|
Banerjee S, Chowdhury D, Chakraborty S, Haldar S. Force-regulated chaperone activity of BiP/ERdj3 is opposite to their homologs DnaK/DnaJ. Protein Sci 2024; 33:e5068. [PMID: 38864739 PMCID: PMC11168073 DOI: 10.1002/pro.5068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Debojyoti Chowdhury
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
| | - Soham Chakraborty
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Shubhasis Haldar
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
- Technical Research Centre, S.N. Bose National Centre for Basic SciencesKolkataWest BengalIndia
| |
Collapse
|
18
|
Yu Y, Kass MA, Zhang M, Youssef N, Freije CA, Brock KP, Aguado LC, Seifert LL, Venkittu S, Hong X, Shlomai A, de Jong YP, Marks DS, Rice CM, Schneider WM. Deep mutational scanning of hepatitis B virus reveals a mechanism for cis-preferential reverse transcription. Cell 2024; 187:2735-2745.e12. [PMID: 38723628 PMCID: PMC11127778 DOI: 10.1016/j.cell.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Hepatitis B virus (HBV) is a small double-stranded DNA virus that chronically infects 296 million people. Over half of its compact genome encodes proteins in two overlapping reading frames, and during evolution, multiple selective pressures can act on shared nucleotides. This study combines an RNA-based HBV cell culture system with deep mutational scanning (DMS) to uncouple cis- and trans-acting sequence requirements in the HBV genome. The results support a leaky ribosome scanning model for polymerase translation, provide a fitness map of the HBV polymerase at single-nucleotide resolution, and identify conserved prolines adjacent to the HBV polymerase termination codon that stall ribosomes. Further experiments indicated that stalled ribosomes tether the nascent polymerase to its template RNA, ensuring cis-preferential RNA packaging and reverse transcription of the HBV genome.
Collapse
Affiliation(s)
- Yingpu Yu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Maximilian A Kass
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Mengyin Zhang
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Noor Youssef
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Organismic and Evolutionary Biology, Broad Institute of MIT and Harvard, Harvard University, Cambridge, MA 02138, USA
| | - Catherine A Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Organismic and Evolutionary Biology, Broad Institute of MIT and Harvard, Harvard University, Cambridge, MA 02138, USA
| | - Lauren C Aguado
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Leon L Seifert
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Center for Clinical and Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Sanjana Venkittu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Xupeng Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Organismic and Evolutionary Biology, Broad Institute of MIT and Harvard, Harvard University, Cambridge, MA 02138, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
19
|
McDonnell RT, Elcock AH. AutoRNC: An automated modeling program for building atomic models of ribosome-nascent chain complexes. Structure 2024; 32:621-629.e5. [PMID: 38428431 PMCID: PMC11073581 DOI: 10.1016/j.str.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
The interpretation of experimental studies of co-translational protein folding often benefits from the use of computational methods that seek to model or simulate the nascent chain and its interactions with the ribosome. Building realistic 3D models of ribosome-nascent chain (RNC) constructs often requires expert knowledge, so to circumvent this issue, we describe here AutoRNC, an automated modeling program capable of constructing large numbers of plausible atomic models of RNCs within minutes. AutoRNC takes input from the user specifying any regions of the nascent chain that contain secondary or tertiary structure and attempts to build conformations compatible with those specifications-and with the constraints imposed by the ribosome-by sampling and progressively piecing together dipeptide conformations extracted from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB). Despite using only modest computational resources, we show here that AutoRNC can build plausible conformations for a wide range of RNC constructs for which experimental data have already been reported.
Collapse
Affiliation(s)
- Robert T McDonnell
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Adrian H Elcock
- Department of Biochemistry & Molecular Biology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
20
|
Venezian J, Bar-Yosef H, Ben-Arie Zilberman H, Cohen N, Kleifeld O, Fernandez-Recio J, Glaser F, Shiber A. Diverging co-translational protein complex assembly pathways are governed by interface energy distribution. Nat Commun 2024; 15:2638. [PMID: 38528060 DOI: 10.1038/s41467-024-46881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Protein-protein interactions are at the heart of all cellular processes, with the ribosome emerging as a platform, orchestrating the nascent-chain interplay dynamics. Here, to study the characteristics governing co-translational protein folding and complex assembly, we combine selective ribosome profiling, imaging, and N-terminomics with all-atoms molecular dynamics. Focusing on conserved N-terminal acetyltransferases (NATs), we uncover diverging co-translational assembly pathways, where highly homologous subunits serve opposite functions. We find that only a few residues serve as "hotspots," initiating co-translational assembly interactions upon exposure at the ribosome exit tunnel. These hotspots are characterized by high binding energy, anchoring the entire interface assembly. Alpha-helices harboring hotspots are highly thermolabile, folding and unfolding during simulations, depending on their partner subunit to avoid misfolding. In vivo hotspot mutations disrupted co-translational complexation, leading to aggregation. Accordingly, conservation analysis reveals that missense NATs variants, causing neurodevelopmental and neurodegenerative diseases, disrupt putative hotspot clusters. Expanding our study to include phosphofructokinase, anthranilate synthase, and nucleoporin subcomplex, we employ AlphaFold-Multimer to model the complexes' complete structures. Computing MD-derived interface energy profiles, we find similar trends. Here, we propose a model based on the distribution of interface energy as a strong predictor of co-translational assembly.
Collapse
Affiliation(s)
- Johannes Venezian
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Hagit Bar-Yosef
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | | | - Noam Cohen
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Juan Fernandez-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | - Fabian Glaser
- Lorry I. Lokey Interdisciplinary Center for Life Sciences & Engineering, Haifa, Israel
| | - Ayala Shiber
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel.
| |
Collapse
|
21
|
Gersteuer F, Morici M, Gabrielli S, Fujiwara K, Safdari HA, Paternoga H, Bock LV, Chiba S, Wilson DN. The SecM arrest peptide traps a pre-peptide bond formation state of the ribosome. Nat Commun 2024; 15:2431. [PMID: 38503753 PMCID: PMC10951299 DOI: 10.1038/s41467-024-46762-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.
Collapse
Affiliation(s)
- Felix Gersteuer
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Sara Gabrielli
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| |
Collapse
|
22
|
Masse M, Hutchinson RB, Morgan CE, Allaman HJ, Guan H, Yu EW, Cavagnero S. Mapping Protein-Protein Interactions at Birth: Single-Particle Cryo-EM Analysis of a Ribosome-Nascent Globin Complex. ACS CENTRAL SCIENCE 2024; 10:385-401. [PMID: 38435509 PMCID: PMC10906257 DOI: 10.1021/acscentsci.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024]
Abstract
Interactions between ribosome-bound nascent chains (RNCs) and ribosomal components are critical to elucidate the mechanism of cotranslational protein folding. Nascent protein-ribosome contacts within the ribosomal exit tunnel were previously assessed mostly in the presence of C-terminal stalling sequences, yet little is known about contacts taking place in the absence of these strongly interacting motifs. Further, there is nearly no information about ribosomal proteins (r-proteins) interacting with nascent chains within the outer surface of the ribosome. Here, we combine chemical cross-linking, single-particle cryo-EM, and fluorescence anisotropy decays to determine the structural features of ribosome-bound apomyoglobin (apoMb). Within the ribosomal exit tunnel core, interactions are similar to those identified in previous reports. However, once the RNC enters the tunnel vestibule, it becomes more dynamic and interacts with ribosomal RNA (rRNA) and the L23 r-protein. Remarkably, on the outer surface of the ribosome, RNCs interact mainly with a highly conserved nonpolar patch of the L23 r-protein. RNCs also comprise a compact and dynamic N-terminal region lacking contact with the ribosome. In all, apoMb traverses the ribosome and interacts with it via its C-terminal region, while N-terminal residues sample conformational space and form a compact subdomain before the entire nascent protein sequence departs from the ribosome.
Collapse
Affiliation(s)
- Meranda
M. Masse
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Rachel B. Hutchinson
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Christopher E. Morgan
- Department
of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Heather J. Allaman
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Hongqing Guan
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Edward W. Yu
- Department
of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Svetlov MS, Dunand CF, Nakamoto JA, Atkinson GC, Safdari HA, Wilson DN, Vázquez-Laslop N, Mankin AS. Peptidyl-tRNA hydrolase is the nascent chain release factor in bacterial ribosome-associated quality control. Mol Cell 2024; 84:715-726.e5. [PMID: 38183984 DOI: 10.1016/j.molcel.2023.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 01/08/2024]
Abstract
Rescuing stalled ribosomes often involves their splitting into subunits. In many bacteria, the resultant large subunits bearing peptidyl-tRNAs are processed by the ribosome-associated quality control (RQC) apparatus that extends the C termini of the incomplete nascent polypeptides with polyalanine tails to facilitate their degradation. Although the tailing mechanism is well established, it is unclear how the nascent polypeptides are cleaved off the tRNAs. We show that peptidyl-tRNA hydrolase (Pth), the known role of which has been to hydrolyze ribosome-free peptidyl-tRNA, acts in concert with RQC factors to release nascent polypeptides from large ribosomal subunits. Dislodging from the ribosomal catalytic center is required for peptidyl-tRNA hydrolysis by Pth. Nascent protein folding may prevent peptidyl-tRNA retraction and interfere with the peptide release. However, oligoalanine tailing makes the peptidyl-tRNA ester bond accessible for Pth-catalyzed hydrolysis. Therefore, the oligoalanine tail serves not only as a degron but also as a facilitator of Pth-catalyzed peptidyl-tRNA hydrolysis.
Collapse
Affiliation(s)
- Maxim S Svetlov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Clémence F Dunand
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jose A Nakamoto
- Department of Experimental Medicine, University of Lund, 221 00 Lund, Sweden
| | - Gemma C Atkinson
- Department of Experimental Medicine, University of Lund, 221 00 Lund, Sweden
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander S Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
24
|
Samatova E, Komar AA, Rodnina MV. How the ribosome shapes cotranslational protein folding. Curr Opin Struct Biol 2024; 84:102740. [PMID: 38071940 DOI: 10.1016/j.sbi.2023.102740] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/09/2024]
Abstract
During protein synthesis, the growing nascent peptide chain moves inside the polypeptide exit tunnel of the ribosome from the peptidyl transferase center towards the exit port where it emerges into the cytoplasm. The ribosome defines the unique energy landscape of the pioneering round of protein folding. The spatial confinement and the interactions of the nascent peptide with the tunnel walls facilitate formation of secondary structures, such as α-helices. The vectorial nature of protein folding inside the tunnel favors local intra- and inter-molecular interactions, thereby inducing cotranslational folding intermediates that do not form upon protein refolding in solution. Tertiary structures start to fold in the lower part of the tunnel, where interactions with the ribosome destabilize native protein folds. The present review summarizes the recent progress in understanding the driving forces of nascent protein folding inside the tunnel and at the surface of the ribosome.
Collapse
Affiliation(s)
- Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Goettingen 37077, Germany
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; Department of Biochemistry and Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Goettingen 37077, Germany.
| |
Collapse
|
25
|
Chen X, Kaiser CM. AP profiling resolves co-translational folding pathway and chaperone interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555749. [PMID: 37693575 PMCID: PMC10491307 DOI: 10.1101/2023.09.01.555749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural proteins have evolved to fold robustly along specific pathways. Folding begins during synthesis, guided by interactions of the nascent protein with the ribosome and molecular chaperones. However, the timing and progression of co-translational folding remain largely elusive, in part because the process is difficult to measure in the natural environment of the cytosol. We developed a high-throughput method to quantify co-translational folding in live cells that we term Arrest Peptide profiling (AP profiling). We employed AP profiling to delineate co-translational folding for a set of GTPase domains with very similar structures, defining how topology shapes folding pathways. Genetic ablation of major nascent chain-binding chaperones resulted in localized folding changes that suggest how functional redundancies among chaperones are achieved by distinct interactions with the nascent protein. Collectively, our studies provide a window into cellular folding pathways of complex proteins and pave the way for systematic studies on nascent protein folding at unprecedented resolution and throughput.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Present address: Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
26
|
Höpfler M, Hegde RS. Control of mRNA fate by its encoded nascent polypeptide. Mol Cell 2023; 83:2840-2855. [PMID: 37595554 PMCID: PMC10501990 DOI: 10.1016/j.molcel.2023.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Cells tightly regulate mRNA processing, localization, and stability to ensure accurate gene expression in diverse cellular states and conditions. Most of these regulatory steps have traditionally been thought to occur before translation by the action of RNA-binding proteins. Several recent discoveries highlight multiple co-translational mechanisms that modulate mRNA translation, localization, processing, and stability. These mechanisms operate by recognition of the nascent protein, which is necessarily coupled to its encoding mRNA during translation. Hence, the distinctive sequence or structure of a particular nascent chain can recruit recognition factors with privileged access to the corresponding mRNA in an otherwise crowded cellular environment. Here, we draw on both well-established and recent examples to provide a conceptual framework for how cells exploit nascent protein recognition to direct mRNA fate. These mechanisms allow cells to dynamically and specifically regulate their transcriptomes in response to changes in cellular states to maintain protein homeostasis.
Collapse
|
27
|
Tan R, Hoare M, Welle KA, Swovick K, Hryhorenko JR, Ghaemmaghami S. Folding stabilities of ribosome-bound nascent polypeptides probed by mass spectrometry. Proc Natl Acad Sci U S A 2023; 120:e2303167120. [PMID: 37552756 PMCID: PMC10438377 DOI: 10.1073/pnas.2303167120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
The folding of most proteins occurs during the course of their translation while their tRNA-bound C termini are embedded in the ribosome. How the close proximity of nascent proteins to the ribosome influences their folding thermodynamics remains poorly understood. Here, we have developed a mass spectrometry-based approach for determining the stabilities of nascent polypeptide chains using methionine oxidation as a folding probe. This approach enables quantitative measurement subglobal folding stabilities of ribosome nascent chains within complex protein mixtures and extracts. To validate the methodology, we analyzed the folding thermodynamics of three model proteins (dihydrofolate reductase, chemotaxis protein Y, and DNA polymerase IV) in soluble and ribosome-bound states. The data indicate that the ribosome can significantly alter the stability of nascent polypeptides. Ribosome-induced stability modulations were highly variable among different folding domains and were dependent on localized charge distributions within nascent polypeptides. The results implicated electrostatic interactions between the ribosome surface and nascent polypeptides as the cause of ribosome-induced stability modulations. The study establishes a robust proteomic methodology for analyzing localized stabilities within ribosome-bound nascent polypeptides and sheds light on how the ribosome influences the thermodynamics of protein folding.
Collapse
Affiliation(s)
- Ruiyue Tan
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Margaret Hoare
- Department of Biology, University of Rochester, Rochester, NY14627
| | - Kevin A. Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Jennifer R. Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, NY14627
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, NY14627
| |
Collapse
|
28
|
McDonnell RT, Elcock AH. AutoRNC: an automated modeling program for building atomic models of ribosome-nascent chain complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544999. [PMID: 37398297 PMCID: PMC10312685 DOI: 10.1101/2023.06.14.544999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The interpretation of experimental studies of co-translational protein folding often benefits from the use of computational methods that seek to model the nascent chain and its interactions with the ribosome. Ribosome-nascent chain (RNC) constructs studied experimentally can vary significantly in size and the extent to which they contain secondary and tertiary structure, and building realistic 3D models of them therefore often requires expert knowledge. To circumvent this issue, we describe here AutoRNC, an automated modeling program capable of constructing large numbers of plausible atomic models of RNCs within minutes. AutoRNC takes input from the user specifying any regions of the nascent chain that contain secondary or tertiary structure and attempts to build conformations compatible with those specifications - and with the constraints imposed by the ribosome - by sampling and progressively piecing together dipeptide conformations extracted from the RCSB. We first show that conformations of completely unfolded proteins built by AutoRNC in the absence of the ribosome have radii of gyration that match well with the corresponding experimental data. We then show that AutoRNC can build plausible conformations for a wide range of RNC constructs for which experimental data have already been reported. Since AutoRNC requires only modest computational resources, we anticipate that it will prove to be a useful hypothesis generator for experimental studies, for example, in providing indications of whether designed constructs are likely to be capable of folding, as well as providing useful starting points for downstream atomic or coarse-grained simulations of the conformational dynamics of RNCs.
Collapse
|
29
|
Sahakyan H, Nazaryan K, Mushegian A, Sorokina I. A Study of a Protein-Folding Machine: Transient Rotation of the Polypeptide Backbone Facilitates Rapid Folding of Protein Domains in All-Atom Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:10049. [PMID: 37373197 DOI: 10.3390/ijms241210049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Molecular dynamics simulations of protein folding typically consider the polypeptide chain at equilibrium and in isolation from the cellular components. We argue that in order to understand protein folding as it occurs in vivo, it should be modeled as an active, energy-dependent process, in which the cellular protein-folding machine directly manipulates the polypeptide. We conducted all-atom molecular dynamics simulations of four protein domains, whose folding from the extended state was augmented by the application of rotational force to the C-terminal amino acid, while the movement of the N-terminal amino acid was restrained. We have shown earlier that such a simple manipulation of peptide backbone facilitated the formation of native structures in diverse α-helical peptides. In this study, the simulation protocol was modified, to apply the backbone rotation and movement restriction only for a short time at the start of simulation. This transient application of a mechanical force to the peptide is sufficient to accelerate, by at least an order of magnitude, the folding of four protein domains from different structural classes to their native or native-like conformations. Our in silico experiments show that a compact stable fold may be attained more readily when the motions of the polypeptide are biased by external forces and constraints.
Collapse
Affiliation(s)
- Harutyun Sahakyan
- Institute of Molecular Biology, Academy of Sciences of Republic of Armenia, Yerevan 0014, Armenia
| | - Karen Nazaryan
- Institute of Molecular Biology, Academy of Sciences of Republic of Armenia, Yerevan 0014, Armenia
| | - Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, VA 22314, USA
| | | |
Collapse
|
30
|
Shiota N, Shimokawa-Chiba N, Fujiwara K, Chiba S. Identification of Bacillus subtilis YidC substrates using a MifM-instructed translation arrest-based reporter. J Mol Biol 2023:168172. [PMID: 37290739 DOI: 10.1016/j.jmb.2023.168172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
YidC is a member of the YidC/Oxa1/Alb3 protein family that is crucial for membrane protein biogenesis in the bacterial plasma membrane. While YidC facilitates the folding and complex assembly of membrane proteins along with the Sec translocon, it also functions as a Sec-independent membrane protein insertase in the YidC-only pathway. However, little is known about how membrane proteins are recognized and sorted by these pathways, especially in Gram-positive bacteria, for which only a small number of YidC substrates have been identified to date. In this study, we aimed to identify Bacillus subtilis membrane proteins whose membrane insertion depends on SpoIIIJ, the primary YidC homolog in B. subtilis. We took advantage of the translation arrest sequence of MifM, which can monitor YidC-dependent membrane insertion. Our systematic screening identified eight membrane proteins as candidate SpoIIIJ substrates. Results of our genetic study also suggest that the conserved arginine in the hydrophilic groove of SpoIIIJ is crucial for the membrane insertion of the substrates identified here. However, in contrast to MifM, a previously identified YidC substrate, the importance of the negatively charged residue on the substrates for membrane insertion varied depending on the substrate. These results suggest that B. subtilis YidC uses substrate-specific interactions to facilitate membrane insertion.
Collapse
Affiliation(s)
- Narumi Shiota
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan.
| |
Collapse
|
31
|
Vu Q, Nissley DA, Jiang Y, O’Brien EP, Li MS. Is Posttranslational Folding More Efficient Than Refolding from a Denatured State: A Computational Study. J Phys Chem B 2023; 127:4761-4774. [PMID: 37200608 PMCID: PMC10240488 DOI: 10.1021/acs.jpcb.3c01694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Indexed: 05/20/2023]
Abstract
The folding of proteins into their native conformation is a complex process that has been extensively studied over the past half-century. The ribosome, the molecular machine responsible for protein synthesis, is known to interact with nascent proteins, adding further complexity to the protein folding landscape. Consequently, it is unclear whether the folding pathways of proteins are conserved on and off the ribosome. The main question remains: to what extent does the ribosome help proteins fold? To address this question, we used coarse-grained molecular dynamics simulations to compare the mechanisms by which the proteins dihydrofolate reductase, type III chloramphenicol acetyltransferase, and d-alanine-d-alanine ligase B fold during and after vectorial synthesis on the ribosome to folding from the full-length unfolded state in bulk solution. Our results reveal that the influence of the ribosome on protein folding mechanisms varies depending on the size and complexity of the protein. Specifically, for a small protein with a simple fold, the ribosome facilitates efficient folding by helping the nascent protein avoid misfolded conformations. However, for larger and more complex proteins, the ribosome does not promote folding and may contribute to the formation of intermediate misfolded states cotranslationally. These misfolded states persist posttranslationally and do not convert to the native state during the 6 μs runtime of our coarse-grain simulations. Overall, our study highlights the complex interplay between the ribosome and protein folding and provides insight into the mechanisms of protein folding on and off the ribosome.
Collapse
Affiliation(s)
- Quyen
V. Vu
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Daniel A. Nissley
- Department
of Statistics, University of Oxford, Oxford OX1 3LB, U.K.
| | - Yang Jiang
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edward P. O’Brien
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Bioinformatics
and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute
for Computational and Data Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute
for Computational Sciences and Technology, Quang Trung Software City, Tan
Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
32
|
Lee J, Moon B, Lee DW, Hwang I. Translation rate underpins specific targeting of N-terminal transmembrane proteins to mitochondria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36897023 DOI: 10.1111/jipb.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Protein biogenesis is a complex process, and complexity is greatly increased in eukaryotic cells through specific targeting of proteins to different organelles. To direct targeting, organellar proteins carry an organelle-specific targeting signal for recognition by organelle-specific import machinery. However, the situation is confusing for transmembrane domain (TMD)-containing signal-anchored (SA) proteins of various organelles because TMDs function as an endoplasmic reticulum (ER) targeting signal. Although ER targeting of SA proteins is well understood, how they are targeted to mitochondria and chloroplasts remains elusive. Here, we investigated how the targeting specificity of SA proteins is determined for specific targeting to mitochondria and chloroplasts. Mitochondrial targeting requires multiple motifs around and within TMDs: a basic residue and an arginine-rich region flanking the N- and C-termini of TMDs, respectively, and an aromatic residue in the C-terminal side of the TMD that specify mitochondrial targeting in an additive manner. These motifs play a role in slowing down the elongation speed during translation, thereby ensuring mitochondrial targeting in a co-translational manner. By contrast, the absence of any of these motifs individually or together causes at varying degrees chloroplast targeting that occurs in a post-translational manner.
Collapse
Affiliation(s)
- Junho Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Byeongho Moon
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea
- Department Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| |
Collapse
|
33
|
The Structure of Evolutionary Model Space for Proteins across the Tree of Life. BIOLOGY 2023; 12:biology12020282. [PMID: 36829559 PMCID: PMC9952988 DOI: 10.3390/biology12020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The factors that determine the relative rates of amino acid substitution during protein evolution are complex and known to vary among taxa. We estimated relative exchangeabilities for pairs of amino acids from clades spread across the tree of life and assessed the historical signal in the distances among these clade-specific models. We separately trained these models on collections of arbitrarily selected protein alignments and on ribosomal protein alignments. In both cases, we found a clear separation between the models trained using multiple sequence alignments from bacterial clades and the models trained on archaeal and eukaryotic data. We assessed the predictive power of our novel clade-specific models of sequence evolution by asking whether fit to the models could be used to identify the source of multiple sequence alignments. Model fit was generally able to correctly classify protein alignments at the level of domain (bacterial versus archaeal), but the accuracy of classification at finer scales was much lower. The only exceptions to this were the relatively high classification accuracy for two archaeal lineages: Halobacteriaceae and Thermoprotei. Genomic GC content had a modest impact on relative exchangeabilities despite having a large impact on amino acid frequencies. Relative exchangeabilities involving aromatic residues exhibited the largest differences among models. There were a small number of exchangeabilities that exhibited large differences in comparisons among major clades and between generalized models and ribosomal protein models. Taken as a whole, these results reveal that a small number of relative exchangeabilities are responsible for much of the structure of the "model space" for protein sequence evolution. The clade-specific models we generated may be useful tools for protein phylogenetics, and the structure of evolutionary model space that they revealed has implications for phylogenomic inference across the tree of life.
Collapse
|
34
|
Yu S, Srebnik S, Dao Duc K. Geometric differences in the ribosome exit tunnel impact the escape of small nascent proteins. Biophys J 2023; 122:20-29. [PMID: 36463403 PMCID: PMC9822834 DOI: 10.1016/j.bpj.2022.11.2945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The exit tunnel is the subcompartment of the ribosome that contains the nascent polypeptide chain and, as such, is involved in various vital functions, including regulation of translation and protein folding. As the geometry of the tunnel shows important differences across species, we focus on key geometrical features of eukaryote and prokaryote tunnels. We used a simple coarse-grained molecular dynamics model to study the role of the tunnel geometry in the post-translational escape of short proteins (short open reading frames [sORFs]) with lengths ranging from 6 to 56 amino acids. We found that the probability of escape for prokaryotes is one for all but the 12-mer chains. Moreover, proteins of this length have an extremely low escape probability in eukaryotes. A detailed examination of the associated single trajectories and energy profiles showed that these variations can be explained by the interplay between the protein configurational space and the confinement effects introduced by the constriction sites of the ribosome exit tunnel. For certain lengths, either one or both of the constriction sites can lead to the trapping of the protein in the "pocket" regions preceding these sites. As the distribution of existing sORFs indicates some bias in length that is consistent with our findings, we finally suggest that the constraints imposed by the tunnel geometry have impacted the evolution of sORFs.
Collapse
Affiliation(s)
- Shiqi Yu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simcha Srebnik
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
35
|
Mermans D, Nicolaus F, Baygin A, von Heijne G. Cotranslational folding of human growth hormone in vitro and in Escherichia coli. FEBS Lett 2022; 597:1355-1362. [PMID: 36520514 DOI: 10.1002/1873-3468.14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Human growth hormone (hGH) is a four-helix bundle protein of considerable pharmacological interest. Recombinant hGH is produced in bacteria, yet little is known about its folding during expression in Escherichia coli. We have studied the cotranslational folding of hGH using force profile analysis (FPA), both during in vitro translation in the absence and presence of the chaperone trigger factor (TF), and when expressed in E. coli. We find that the main folding transition starts before hGH is completely released from the ribosome, and that it can interact with TF and possibly other chaperones.
Collapse
Affiliation(s)
- Daphne Mermans
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Felix Nicolaus
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Aysel Baygin
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Science for Life Laboratory Stockholm University, Solna, Sweden
| |
Collapse
|
36
|
McGrath H, Černeková M, Kolář MH. Binding of the peptide deformylase on the ribosome surface modulates the exit tunnel interior. Biophys J 2022; 121:4443-4451. [PMID: 36335428 PMCID: PMC9748369 DOI: 10.1016/j.bpj.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Proteosynthesis on ribosomes is regulated at many levels. Conformational changes of the ribosome, possibly induced by external factors, may transfer over large distances and contribute to the regulation. The molecular principles of this long-distance allostery within the ribosome remain poorly understood. Here, we use structural analysis and atomistic molecular dynamics simulations to investigate peptide deformylase (PDF), an enzyme that binds to the ribosome surface near the ribosomal protein uL22 during translation and chemically modifies the emerging nascent peptide. Our simulations of the entire ribosome-PDF complex reveal that the PDF undergoes a swaying motion on the ribosome surface at the submicrosecond timescale. We show that the PDF affects the conformational dynamics of parts of the ribosome over distances of more than 5 nm. Using a supervised-learning algorithm, we demonstrate that the exit tunnel is influenced by the presence or absence of PDF. Our findings suggest a possible effect of the PDF on the nascent peptide translocation through the ribosome exit tunnel.
Collapse
Affiliation(s)
- Hugo McGrath
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Černeková
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal H Kolář
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
37
|
Kriachkov V, Ormsby AR, Kusnadi EP, McWilliam HE, Mintern JD, Amarasinghe SL, Ritchie ME, Furic L, Hatters DM. Arginine-rich C9ORF72 ALS proteins stall ribosomes in a manner distinct from a canonical ribosome-associated quality control substrate. J Biol Chem 2022; 299:102774. [PMID: 36481270 PMCID: PMC9830226 DOI: 10.1016/j.jbc.2022.102774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Hexanucleotide expansion mutations in C9ORF72 are a frequent cause of amyotrophic lateral sclerosis. We previously reported that long arginine-rich dipeptide repeats (DPRs), mimicking abnormal proteins expressed from the hexanucleotide expansion, caused translation stalling when expressed in cell culture models. Whether this stalling provides a mechanism of pathogenicity remains to be determined. Here, we explored the molecular features of DPR-induced stalling and examined whether known mechanisms such as ribosome quality control (RQC) regulate translation elongation on sequences that encode arginine-rich DPRs. We demonstrate that arginine-rich DPRs lead to stalling in a length-dependent manner, with lengths longer than 40 repeats invoking severe translation arrest. Mutational screening of 40×Gly-Xxx DPRs shows that stalling is most pronounced when Xxx is a charged amino acid (Arg, Lys, Glu, or Asp). Through a genome-wide knockout screen, we find that genes regulating stalling on polyadenosine mRNA coding for poly-Lys, a canonical RQC substrate, act differently in the case of arginine-rich DPRs. Indeed, these findings point to a limited scope for natural regulatory responses to resolve the arginine-rich DPR stalls, even though the stalls may be sensed, as evidenced by an upregulation of RQC gene expression. These findings therefore implicate arginine-rich DPR-mediated stalled ribosomes as a source of stress and toxicity and may be a crucial component in pathomechanisms.
Collapse
Affiliation(s)
- Viacheslav Kriachkov
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Angelique R. Ormsby
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric P. Kusnadi
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Hamish E.G. McWilliam
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia,Department of Microbiology and Immunology, Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justine D. Mintern
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Matthew E. Ritchie
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Luc Furic
- Translational Prostate Cancer Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia,Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Danny M. Hatters
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia,For correspondence: Danny M. Hatters
| |
Collapse
|
38
|
McCaul N, Braakman I. Hold the fold: how delayed folding aids protein secretion. EMBO J 2022; 41:e112787. [PMID: 36314692 PMCID: PMC9713708 DOI: 10.15252/embj.2022112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
In bacteria, N-terminal signal peptides mark proteins for transport across the plasma membrane. A recent study by Smets et al (2022) followed the folding of a pair of structural twins to shed light on how evolution has optimised the secretory process.
Collapse
Affiliation(s)
- Nicholas McCaul
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Science4Life, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
39
|
Modulating co-translational protein folding by rational design and ribosome engineering. Nat Commun 2022; 13:4243. [PMID: 35869078 PMCID: PMC9307626 DOI: 10.1038/s41467-022-31906-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/08/2022] [Indexed: 12/23/2022] Open
Abstract
Co-translational folding is a fundamental process for the efficient biosynthesis of nascent polypeptides that emerge through the ribosome exit tunnel. To understand how this process is modulated by the shape and surface of the narrow tunnel, we have rationally engineered three exit tunnel protein loops (uL22, uL23 and uL24) of the 70S ribosome by CRISPR/Cas9 gene editing, and studied the co-translational folding of an immunoglobulin-like filamin domain (FLN5). Our thermodynamics measurements employing 19F/15N/methyl-TROSY NMR spectroscopy together with cryo-EM and molecular dynamics simulations reveal how the variations in the lengths of the loops present across species exert their distinct effects on the free energy of FLN5 folding. A concerted interplay of the uL23 and uL24 loops is sufficient to alter co-translational folding energetics, which we highlight by the opposite folding outcomes resulting from their extensions. These subtle modulations occur through a combination of the steric effects relating to the shape of the tunnel, the dynamic interactions between the ribosome surface and the unfolded nascent chain, and its altered exit pathway within the vestibule. These results illustrate the role of the exit tunnel structure in co-translational folding, and provide principles for how to remodel it to elicit a desired folding outcome. The narrow exit tunnel of the ribosome is important for cotranslational protein folding. Here, authors show that their rationally designed and engineered exit tunnel protein loops modulate the free energy of nascent chain dynamics and folding.
Collapse
|
40
|
Finkelstein AV, Bogatyreva NS, Ivankov DN, Garbuzynskiy SO. Protein folding problem: enigma, paradox, solution. Biophys Rev 2022; 14:1255-1272. [PMID: 36659994 PMCID: PMC9842845 DOI: 10.1007/s12551-022-01000-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/19/2022] [Indexed: 01/22/2023] Open
Abstract
The ability of protein chains to spontaneously form their three-dimensional structures is a long-standing mystery in molecular biology. The most conceptual aspect of this mystery is how the protein chain can find its native, "working" spatial structure (which, for not too big protein chains, corresponds to the global free energy minimum) in a biologically reasonable time, without exhaustive enumeration of all possible conformations, which would take billions of years. This is the so-called "Levinthal's paradox." In this review, we discuss the key ideas and discoveries leading to the current understanding of protein folding kinetics, including folding landscapes and funnels, free energy barriers at the folding/unfolding pathways, and the solution of Levinthal's paradox. A special role here is played by the "all-or-none" phase transition occurring at protein folding and unfolding and by the point of thermodynamic (and kinetic) equilibrium between the "native" and the "unfolded" phases of the protein chain (where the theory obtains the simplest form). The modern theory provides an understanding of key features of protein folding and, in good agreement with experiments, it (i) outlines the chain length-dependent range of protein folding times, (ii) predicts the observed maximal size of "foldable" proteins and domains. Besides, it predicts the maximal size of proteins and domains that fold under solely thermodynamic (rather than kinetic) control. Complementarily, a theoretical analysis of the number of possible protein folding patterns, performed at the level of formation and assembly of secondary structures, correctly outlines the upper limit of protein folding times.
Collapse
Affiliation(s)
- Alexei V. Finkelstein
- Institute of Protein Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Biotechnology Department of the Lomonosov Moscow State University, 4 Institutskaya Str, 142290 Pushchino, Moscow Region, Russia
- Biology Department of the Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Natalya S. Bogatyreva
- Institute of Protein Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Dmitry N. Ivankov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Sergiy O. Garbuzynskiy
- Institute of Protein Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
41
|
Burke PC, Park H, Subramaniam AR. A nascent peptide code for translational control of mRNA stability in human cells. Nat Commun 2022; 13:6829. [PMID: 36369503 PMCID: PMC9652226 DOI: 10.1038/s41467-022-34664-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended β strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides.
Collapse
Affiliation(s)
- Phillip C Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
42
|
Bottorff TA, Park H, Geballe AP, Subramaniam AR. Translational buffering by ribosome stalling in upstream open reading frames. PLoS Genet 2022; 18:e1010460. [PMID: 36315596 PMCID: PMC9648851 DOI: 10.1371/journal.pgen.1010460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Upstream open reading frames (uORFs) are present in over half of all human mRNAs. uORFs can potently regulate the translation of downstream open reading frames through several mechanisms: siphoning away scanning ribosomes, regulating re-initiation, and allowing interactions between scanning and elongating ribosomes. However, the consequences of these different mechanisms for the regulation of protein expression remain incompletely understood. Here, we performed systematic measurements on the uORF-containing 5' UTR of the cytomegaloviral UL4 mRNA to test alternative models of uORF-mediated regulation in human cells. We find that a terminal diproline-dependent elongating ribosome stall in the UL4 uORF prevents decreases in main ORF protein expression when ribosome loading onto the mRNA is reduced. This uORF-mediated buffering is insensitive to the location of the ribosome stall along the uORF. Computational kinetic modeling based on our measurements suggests that scanning ribosomes dissociate rather than queue when they collide with stalled elongating ribosomes within the UL4 uORF. We identify several human uORFs that repress main ORF protein expression via a similar terminal diproline motif. We propose that ribosome stalls in uORFs provide a general mechanism for buffering against reductions in main ORF translation during stress and developmental transitions.
Collapse
Affiliation(s)
- Ty A. Bottorff
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Adam P. Geballe
- Human Biology and Clinical Research Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
43
|
Cotranslational folding and assembly of the dimeric Escherichia coli inner membrane protein EmrE. Proc Natl Acad Sci U S A 2022; 119:e2205810119. [PMID: 35994672 PMCID: PMC9436324 DOI: 10.1073/pnas.2205810119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, it has become clear that many homo- and heterodimeric cytoplasmic proteins in both prokaryotic and eukaryotic cells start to dimerize cotranslationally (i.e., while at least one of the two chains is still attached to the ribosome). Whether this is also possible for integral membrane proteins is, however, unknown. Here, we apply force profile analysis (FPA)-a method where a translational arrest peptide (AP) engineered into the polypeptide chain is used to detect force generated on the nascent chain during membrane insertion-to demonstrate cotranslational interactions between a fully membrane-inserted monomer and a nascent, ribosome-tethered monomer of the Escherichia coli inner membrane protein EmrE. Similar cotranslational interactions are also seen when the two monomers are fused into a single polypeptide. Further, we uncover an apparent intrachain interaction between E14 in transmembrane helix 1 (TMH1) and S64 in TMH3 that forms at a precise nascent chain length during cotranslational membrane insertion of an EmrE monomer. Like soluble proteins, inner membrane proteins thus appear to be able to both start to fold and start to dimerize during the cotranslational membrane insertion process.
Collapse
|
44
|
The ribosome stabilizes partially folded intermediates of a nascent multi-domain protein. Nat Chem 2022; 14:1165-1173. [PMID: 35927328 PMCID: PMC7613651 DOI: 10.1038/s41557-022-01004-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Co-translational folding is crucial to ensure the production of biologically active proteins. The ribosome can alter the folding pathways of nascent polypeptide chains, yet a structural understanding remains largely inaccessible experimentally. We have developed site-specific labelling of nascent chains to detect and measure, using 19F nuclear magnetic resonance (NMR) spectroscopy, multiple states accessed by an immunoglobulin-like domain within a tandem repeat protein during biosynthesis. By examining ribosomes arrested at different stages during translation of this common structural motif, we observe highly broadened NMR resonances attributable to two previously unidentified intermediates, which are stably populated across a wide folding transition. Using molecular dynamics simulations and corroborated by cryo-electron microscopy, we obtain models of these partially folded states, enabling experimental verification of a ribosome-binding site that contributes to their high stabilities. We thus demonstrate a mechanism by which the ribosome could thermodynamically regulate folding and other co-translational processes. ![]()
Most proteins must fold co-translationally on the ribosome to adopt biologically active conformations, yet structural, mechanistic descriptions are lacking. Using 19F NMR spectroscopy to study a nascent multi-domain protein has now enabled the identification of two co-translational folding intermediates that are significantly more stable than intermediates formed off the ribosome, suggesting that the ribosome may thermodynamically regulate folding.
Collapse
|
45
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
46
|
Nissley DA, Jiang Y, Trovato F, Sitarik I, Narayan KB, To P, Xia Y, Fried SD, O'Brien EP. Universal protein misfolding intermediates can bypass the proteostasis network and remain soluble and less functional. Nat Commun 2022; 13:3081. [PMID: 35654797 PMCID: PMC9163053 DOI: 10.1038/s41467-022-30548-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/05/2022] [Indexed: 01/12/2023] Open
Abstract
Some misfolded protein conformations can bypass proteostasis machinery and remain soluble in vivo. This is an unexpected observation, as cellular quality control mechanisms should remove misfolded proteins. Three questions, then, are: how do long-lived, soluble, misfolded proteins bypass proteostasis? How widespread are such misfolded states? And how long do they persist? We address these questions using coarse-grain molecular dynamics simulations of the synthesis, termination, and post-translational dynamics of a representative set of cytosolic E. coli proteins. We predict that half of proteins exhibit misfolded subpopulations that bypass molecular chaperones, avoid aggregation, and will not be rapidly degraded, with some misfolded states persisting for months or longer. The surface properties of these misfolded states are native-like, suggesting they will remain soluble, while self-entanglements make them long-lived kinetic traps. In terms of function, we predict that one-third of proteins can misfold into soluble less-functional states. For the heavily entangled protein glycerol-3-phosphate dehydrogenase, limited-proteolysis mass spectrometry experiments interrogating misfolded conformations of the protein are consistent with the structural changes predicted by our simulations. These results therefore provide an explanation for how proteins can misfold into soluble conformations with reduced functionality that can bypass proteostasis, and indicate, unexpectedly, this may be a wide-spread phenomenon.
Collapse
Affiliation(s)
- Daniel A Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Fabio Trovato
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Karthik B Narayan
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Philip To
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yingzi Xia
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
47
|
León-González JA, Flatet P, Juárez-Ramírez MS, Farías-Rico JA. Folding and Evolution of a Repeat Protein on the Ribosome. Front Mol Biosci 2022; 9:851038. [PMID: 35707224 PMCID: PMC9189291 DOI: 10.3389/fmolb.2022.851038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Life on earth is the result of the work of proteins, the cellular nanomachines that fold into elaborated 3D structures to perform their functions. The ribosome synthesizes all the proteins of the biosphere, and many of them begin to fold during translation in a process known as cotranslational folding. In this work we discuss current advances of this field and provide computational and experimental data that highlight the role of ribosome in the evolution of protein structures. First, we used the sequence of the Ankyrin domain from the Drosophila Notch receptor to launch a deep sequence-based search. With this strategy, we found a conserved 33-residue motif shared by different protein folds. Then, to see how the vectorial addition of the motif would generate a full structure we measured the folding on the ribosome of the Ankyrin repeat protein. Not only the on-ribosome folding data is in full agreement with classical in vitro biophysical measurements but also it provides experimental evidence on how folded proteins could have evolved by duplication and fusion of smaller fragments in the RNA world. Overall, we discuss how the ribosomal exit tunnel could be conceptualized as an active site that is under evolutionary pressure to influence protein folding.
Collapse
Affiliation(s)
- José Alberto León-González
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Perline Flatet
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - María Soledad Juárez-Ramírez
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - José Arcadio Farías-Rico
- Synthetic Biology Program, Center for Genome Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
- *Correspondence: José Arcadio Farías-Rico,
| |
Collapse
|
48
|
Fedorov AN. Biosynthetic Protein Folding and Molecular Chaperons. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S128-S19. [PMID: 35501992 DOI: 10.1134/s0006297922140115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of linear polypeptide chain folding into a unique tertiary structure is one of the fundamental scientific challenges. The process of folding cannot be fully understood without its biological context, especially for big multidomain and multisubunit proteins. The principal features of biosynthetic folding are co-translational folding of growing nascent polypeptide chains and involvement of molecular chaperones in the process. The review summarizes available data on the early events of nascent chain folding, as well as on later advanced steps, including formation of elements of native structure. The relationship between the non-uniformity of translation rate and folding of the growing polypeptide is discussed. The results of studies on the effect of biosynthetic folding features on the parameters of folding as a physical process, its kinetics and mechanisms, are presented. Current understanding and hypotheses on the relationship of biosynthetic folding with the fundamental physical parameters and current views on polypeptide folding in the context of energy landscapes are discussed.
Collapse
Affiliation(s)
- Alexey N Fedorov
- Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
49
|
Mercier E, Wang X, Bögeholz LAK, Wintermeyer W, Rodnina MV. Cotranslational Biogenesis of Membrane Proteins in Bacteria. Front Mol Biosci 2022; 9:871121. [PMID: 35573737 PMCID: PMC9099147 DOI: 10.3389/fmolb.2022.871121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY. The growing nascent peptide is then inserted into the phospholipid bilayer at the translocon, an inner-membrane protein complex consisting of SecY, SecE, and SecG. Folding of membrane proteins requires that transmembrane helices (TMs) attain their correct topology, the soluble domains are inserted at the correct (cytoplasmic or periplasmic) side of the membrane, and – for polytopic membrane proteins – the TMs find their interaction partner TMs in the phospholipid bilayer. This review describes the recent progress in understanding how growing nascent peptides are processed and how inner-membrane proteins are targeted to the translocon and find their correct orientation at the membrane, with the focus on biophysical approaches revealing the dynamics of the process. We describe how spontaneous fluctuations of the translocon allow diffusion of TMs into the phospholipid bilayer and argue that the ribosome orchestrates cotranslational targeting not only by providing the binding platform for the RPBs or the translocon, but also by helping the nascent chains to find their correct orientation in the membrane. Finally, we present the auxiliary role of YidC as a chaperone for inner-membrane proteins. We show how biophysical approaches provide new insights into the dynamics of membrane protein biogenesis and raise new questions as to how translation modulates protein folding.
Collapse
|
50
|
Worthan SB, Franklin EA, Pham C, Yap MNF, Cruz-Vera LR. The Identity of the Constriction Region of the Ribosomal Exit Tunnel Is Important to Maintain Gene Expression in Escherichia coli. Microbiol Spectr 2022; 10:e0226121. [PMID: 35311583 PMCID: PMC9045200 DOI: 10.1128/spectrum.02261-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Mutational changes in bacterial ribosomes often affect gene expression and consequently cellular fitness. Understanding how mutant ribosomes disrupt global gene expression is critical to determining key genetic factors that affect bacterial survival. Here, we describe gene expression and phenotypic changes presented in Escherichia coli cells carrying an uL22(K90D) mutant ribosomal protein, which displayed alterations during growth. Ribosome profiling analyses revealed reduced expression of operons involved in catabolism, indole production, and lysine-dependent acid resistance. In general, translation initiation of proximal genes in several of these affected operons was substantially reduced. These reductions in expression were accompanied by increases in the expression of acid-induced membrane proteins and chaperones, the glutamate-decarboxylase regulon, and the autoinducer-2 metabolic regulon. In agreement with these changes, uL22(K90D) mutant cells had higher glutamate decarboxylase activity, survived better in extremely acidic conditions, and generated more biofilm in static cultures compared to their parental strain. Our work demonstrates that a single mutation in a non-conserved residue of a ribosomal protein affects a substantial number of genes to alter pH resistance and the formation of biofilms. IMPORTANCE All newly synthesized proteins must pass through a channel in the ribosome named the exit tunnel before emerging into the cytoplasm, membrane, and other compartments. The structural characteristics of the tunnel could govern protein folding and gene expression in a species-specific manner but how the identity of tunnel elements influences gene expression is less well-understood. Our global transcriptomics and translatome profiling demonstrate that a single substitution in a non-conserved amino acid of the E. coli tunnel protein uL22 has a profound impact on catabolism, cellular signaling, and acid resistance systems. Consequently, cells bearing the uL22 mutant ribosomes had an increased ability to survive acidic conditions and form biofilms. This work reveals a previously unrecognized link between tunnel identity and bacterial stress adaptation involving pH response and biofilm formation.
Collapse
Affiliation(s)
- Sarah B. Worthan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Elizabeth A. Franklin
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Chi Pham
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Mee-Ngan F. Yap
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luis R. Cruz-Vera
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| |
Collapse
|