1
|
Polisetty SD, Bhat K, Das K, Clark I, Hardwick KG, Sanyal K. The dependence of shugoshin on Bub1-kinase activity is dispensable for the maintenance of spindle assembly checkpoint response in Cryptococcus neoformans. PLoS Genet 2025; 21:e1011552. [PMID: 39804939 PMCID: PMC11774493 DOI: 10.1371/journal.pgen.1011552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/28/2025] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans. Sgo1 maintains optimum levels of Aurora B kinase Ipl1 and protein phosphatase 1 (PP1) at kinetochores. The absence of Sgo1 results in the loss of Aurora BIpl1 with a concomitant increase in PP1 levels at kinetochores. This leads to a premature reduction in the kinetochore-bound Bub1 levels and early termination of the SAC signals. Intriguingly, the kinase function of Bub1 is dispensable for shugoshin's subcellular localization. Sgo1 is predominantly localized to spindle pole bodies (SPBs) and along the mitotic spindle with a minor pool at kinetochores. In the absence of proper kinetochore-microtubule attachments, Sgo1 reinforces the Aurora B kinaseIpl1-PP1 phosphatase balance, which is critical for prolonged maintenance of the SAC response.
Collapse
Affiliation(s)
- Satya Dev Polisetty
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Krishna Bhat
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Kuladeep Das
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ivan Clark
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin G. Hardwick
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
2
|
Song H, Kim EH, Hong J, Gwon D, Kim JW, Bae GU, Jang CY. Hornerin mediates phosphorylation of the polo-box domain in Plk1 by Chk1 to induce death in mitosis. Cell Death Differ 2023; 30:2151-2166. [PMID: 37596441 PMCID: PMC10482915 DOI: 10.1038/s41418-023-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 08/20/2023] Open
Abstract
The centrosome assembles a bipolar spindle for faithful chromosome segregation during mitosis. To prevent the inheritance of DNA damage, the DNA damage response (DDR) triggers programmed spindle multipolarity and concomitant death in mitosis through a poorly understood mechanism. We identified hornerin, which forms a complex with checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1) to mediate phosphorylation at the polo-box domain (PBD) of Plk1, as the link between the DDR and death in mitosis. We demonstrate that hornerin mediates DDR-induced precocious centriole disengagement through a dichotomous mechanism that includes sequestration of Sgo1 and Plk1 in the cytoplasm through phosphorylation of the PBD in Plk1 by Chk1. Phosphorylation of the PBD in Plk1 abolishes the interaction with Sgo1 and phosphorylation-dependent Sgo1 translocation to the centrosome, leading to precocious centriole disengagement and spindle multipolarity. Mechanistically, hornerin traps phosphorylated Plk1 in the cytoplasm. Furthermore, PBD phosphorylation inactivates Plk1 and disrupts Cep192::Aurora A::Plk1 complex translocation to the centrosome and concurrent centrosome maturation. Remarkably, hornerin depletion leads to chemoresistance against DNA damaging agents by attenuating DDR-induced death in mitosis. These results reveal how the DDR eradicates mitotic cells harboring DNA damage to ensure genome integrity during cell division.
Collapse
Affiliation(s)
- Haiyu Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Jihee Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Dasom Gwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Gyu-Un Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Chang-Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
3
|
Reed R, Park K, Waddell B, Timbers TA, Li C, Baxi K, Giacomin RM, Leroux MR, Carvalho CE. The Caenorhabditis elegans Shugoshin regulates TAC-1 in cilia. Sci Rep 2023; 13:9410. [PMID: 37296204 PMCID: PMC10256747 DOI: 10.1038/s41598-023-36430-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The conserved Shugoshin (SGO) protein family is essential for mediating proper chromosome segregation from yeast to humans but has also been implicated in diverse roles outside of the nucleus. SGO's roles include inhibiting incorrect spindle attachment in the kinetochore, regulating the spindle assembly checkpoint (SAC), and ensuring centriole cohesion in the centrosome, all functions that involve different microtubule scaffolding structures in the cell. In Caenorhabditis elegans, a species with holocentric chromosomes, SGO-1 is not required for cohesin protection or spindle attachment but appears important for licensing meiotic recombination. Here we provide the first functional evidence that in C. elegans, Shugoshin functions in another extranuclear, microtubule-based structure, the primary cilium. We identify the centrosomal and microtubule-regulating transforming acidic coiled-coil protein, TACC/TAC-1, which also localizes to the basal body, as an SGO-1 binding protein. Genetic analyses indicate that TAC-1 activity must be maintained below a threshold at the ciliary base for correct cilia function, and that SGO-1 likely participates in constraining TAC-1 to the basal body by influencing the function of the transition zone 'ciliary gate'. This research expands our understanding of cellular functions of Shugoshin proteins and contributes to the growing examples of overlap between kinetochore, centrosome and cilia proteomes.
Collapse
Affiliation(s)
- R Reed
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - K Park
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - B Waddell
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - T A Timbers
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - C Li
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - K Baxi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - R M Giacomin
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - M R Leroux
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - C E Carvalho
- Department of Biology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
4
|
Gorry R, Brennan K, Lavin PTM, Sheridan R, Mc Gee MM. Phosphorylation of the prolyl isomerase Cyclophilin A regulates its localisation and release from the centrosome during mitosis. Cell Cycle 2023; 22:951-966. [PMID: 36691345 PMCID: PMC10054169 DOI: 10.1080/15384101.2023.2167430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/30/2022] [Indexed: 01/25/2023] Open
Abstract
The centrosome acts as a protein platform from which proteins are deployed to function throughout the cell cycle. Previously, we have shown that the prolyl isomerase Cyclophilin A (CypA) localizes to the centrosome in interphase and re-localizes to the midbody during mitosis where it functions in cytokinesis. In this study, investigation of CypA by SDS-PAGE during the cell cycle reveals that it undergoes a mobility shift during mitosis, indicative of a post-translational modification, which may correlate with its subcellular re-localization. Due to the lack of a phospho-specific antibody, we used site-directed mutagenesis to demonstrate that the previously identified serine 77 phosphorylation site within CypA is important for control of CypA centrosome localization. Furthermore, CypA is shown to interact with the mitotic NIMA-related kinase 2 (Nek2) during interphase and mitosis, while also interacting with the Nek2-antagonist PP1 during interphase but not during mitosis, suggesting a potential role for the Nek2-PP1 complex in CypA phospho-regulation. In support of this, Nek2 is capable of phosphorylating CypA in vitro. Overall, this work reveals that phosphorylation of CypA at serine 77 is important for its release from the centrosome during mitosis and may be regulated by the activity of Nek2 and PP1 during the cell cycle.
Collapse
Affiliation(s)
- Rebecca Gorry
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Kieran Brennan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Paul TM Lavin
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Rebecca Sheridan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Margaret M Mc Gee
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| |
Collapse
|
5
|
Sane A, Sridhar S, Sanyal K, Ghosh SK. Shugoshin ensures maintenance of the spindle assembly checkpoint response and efficient spindle disassembly. Mol Microbiol 2021; 116:1079-1098. [PMID: 34407255 DOI: 10.1111/mmi.14796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
Shugoshin proteins are evolutionarily conserved across eukaryotes, with some species-specific cellular functions, ensuring the fidelity of chromosome segregation. They act as adaptors at various subcellular locales to mediate several protein-protein interactions in a spatio-temporal manner. Here, we characterize shugoshin (Sgo1) in the human fungal pathogen Candida albicans. We observe that Sgo1 retains its centromeric localization and performs its conserved functions of regulating the sister chromatid biorientation, centromeric condensin localization, and maintenance of chromosomal passenger complex (CPC). We identify novel roles of Sgo1 as a spindle assembly checkpoint (SAC) component with functions in maintaining a prolonged SAC response by retaining Mad2 and Bub1 at the kinetochores in response to improper kinetochore-microtubule attachments. Strikingly, we discover the in vivo localization of Sgo1 along the length of the mitotic spindle. Our results indicate that Sgo1 performs a hitherto unknown function of facilitating timely disassembly of the mitotic spindle in C. albicans. To summarize, this study unravels a unique functional adaptation of shugoshin in maintaining genomic stability.
Collapse
Affiliation(s)
- Aakanksha Sane
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, India
| | - Shreyas Sridhar
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kaustuv Sanyal
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, India
| |
Collapse
|
6
|
Piché J, Van Vliet PP, Pucéat M, Andelfinger G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 2019; 18:2828-2848. [PMID: 31516082 PMCID: PMC6791706 DOI: 10.1080/15384101.2019.1658476] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
Preservation and development of life depend on the adequate segregation of sister chromatids during mitosis and meiosis. This process is ensured by the cohesin multi-subunit complex. Mutations in this complex have been associated with an increasing number of diseases, termed cohesinopathies. The best characterized cohesinopathy is Cornelia de Lange syndrome (CdLS), in which intellectual and growth retardations are the main phenotypic manifestations. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably. Novel roles of the cohesin complex have emerged during the past decades, suggesting that important cell cycle regulators exert important biological effects through non-cohesion-related functions and broadening the potential pathomechanisms involved in cohesinopathies. This review focuses on non-cohesion-related functions of the cohesin complex, gene dosage effect, epigenetic regulation and TGF-β in cohesinopathy context, especially in comparison to Chronic Atrial and Intestinal Dysrhythmia (CAID) syndrome, a very distinct cohesinopathy caused by a homozygous Shugoshin-1 (SGO1) mutation (K23E) and characterized by pacemaker failure in both heart (sick sinus syndrome followed by atrial flutter) and gut (chronic intestinal pseudo-obstruction) with no intellectual or growth delay. We discuss the possible impact of SGO1 alterations in human pathologies and the potential impact of the SGO1 K23E mutation in the sinus node and gut development and functions. We suggest that the human phenotypes observed in CdLS, CAID syndrome and other cohesinopathies can inform future studies into the less well-known non-cohesion-related functions of cohesin complex genes. Abbreviations: AD: Alzheimer Disease; AFF4: AF4/FMR2 Family Member 4; ANKRD11: Ankyrin Repeat Domain 11; APC: Anaphase Promoter Complex; ASD: Atrial Septal Defect; ATRX: ATRX Chromatin Remodeler; ATRX: Alpha Thalassemia X-linked intellectual disability syndrome; BIRC5: Baculoviral IAP Repeat Containing 5; BMP: Bone Morphogenetic Protein; BRD4: Bromodomain Containing 4; BUB1: BUB1 Mitotic Checkpoint Serine/Threonine Kinase; CAID: Chronic Atrial and Intestinal Dysrhythmia; CDK1: Cyclin Dependent Kinase 1; CdLS: Cornelia de Lange Syndrome; CHD: Congenital Heart Disease; CHOPS: Cognitive impairment, coarse facies, Heart defects, Obesity, Pulmonary involvement, Short stature, and skeletal dysplasia; CIPO: Chronic Intestinal Pseudo-Obstruction; c-kit: KIT Proto-Oncogene Receptor Tyrosine Kinase; CoATs: Cohesin Acetyltransferases; CTCF: CCCTC-Binding Factor; DDX11: DEAD/H-Box Helicase 11; ERG: Transcriptional Regulator ERG; ESCO2: Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2; GJC1: Gap Junction Protein Gamma 1; H2A: Histone H2A; H3K4: Histone H3 Lysine 4; H3K9: Histone H3 Lysine 9; HCN4: Hyperpolarization Activated Cyclic Nucleotide Gated Potassium and Sodium Channel 4;p HDAC8: Histone deacetylases 8; HP1: Heterochromatin Protein 1; ICC: Interstitial Cells of Cajal; ICC-MP: Myenteric Plexus Interstitial cells of Cajal; ICC-DMP: Deep Muscular Plexus Interstitial cells of Cajal; If: Pacemaker Funny Current; IP3: Inositol trisphosphate; JNK: C-Jun N-Terminal Kinase; LDS: Loeys-Dietz Syndrome; LOAD: Late-Onset Alzheimer Disease; MAPK: Mitogen-Activated Protein Kinase; MAU: MAU Sister Chromatid Cohesion Factor; MFS: Marfan Syndrome; NIPBL: NIPBL, Cohesin Loading Factor; OCT4: Octamer-Binding Protein 4; P38: P38 MAP Kinase; PDA: Patent Ductus Arteriosus; PDS5: PDS5 Cohesin Associated Factor; P-H3: Phospho Histone H3; PLK1: Polo Like Kinase 1; POPDC1: Popeye Domain Containing 1; POPDC2: Popeye Domain Containing 2; PP2A: Protein Phosphatase 2; RAD21: RAD21 Cohesin Complex Component; RBS: Roberts Syndrome; REC8: REC8 Meiotic Recombination Protein; RNAP2: RNA polymerase II; SAN: Sinoatrial node; SCN5A: Sodium Voltage-Gated Channel Alpha Subunit 5; SEC: Super Elongation Complex; SGO1: Shogoshin-1; SMAD: SMAD Family Member; SMC1A: Structural Maintenance of Chromosomes 1A; SMC3: Structural Maintenance of Chromosomes 3; SNV: Single Nucleotide Variant; SOX2: SRY-Box 2; SOX17: SRY-Box 17; SSS: Sick Sinus Syndrome; STAG2: Cohesin Subunit SA-2; TADs: Topology Associated Domains; TBX: T-box transcription factors; TGF-β: Transforming Growth Factor β; TGFBR: Transforming Growth Factor β receptor; TOF: Tetralogy of Fallot; TREK1: TREK-1 K(+) Channel Subunit; VSD: Ventricular Septal Defect; WABS: Warsaw Breakage Syndrome; WAPL: WAPL Cohesin Release Factor.
Collapse
Affiliation(s)
- Jessica Piché
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| | - Patrick Piet Van Vliet
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
| | - Michel Pucéat
- LIA (International Associated Laboratory), CHU Sainte-Justine, Montréal, QC, Canada
- LIA (International Associated Laboratory), INSERM, Marseille, U1251-13885, France
- INSERM U-1251, MMG,Aix-Marseille University, Marseille, 13885, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
7
|
Busselez J, Chichón FJ, Rodríguez MJ, Alpízar A, Gharbi SI, Franch M, Melero R, Paradela A, Carrascosa JL, Carazo JM. Cryo-Electron Tomography and Proteomics studies of centrosomes from differentiated quiescent thymocytes. Sci Rep 2019; 9:7187. [PMID: 31076588 PMCID: PMC6510768 DOI: 10.1038/s41598-019-43338-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 02/02/2023] Open
Abstract
We have used cryo Electron Tomography, proteomics and immunolabeling to study centrosomes isolated from the young lamb thymus, an efficient source of quiescent differentiated cells. We compared the proteome of thymocyte centrosomes to data published for KE37 cells, focusing on proteins associated with centriole disengagement and centrosome separation. The data obtained enhances our understanding of the protein system joining the centrioles, a system comprised of a branched network of fibers linked to an apparently amorphous density that was partially characterized here. A number of proteins were localized to the amorphous density by immunolabeling (C-NAP1, cohesin SMC1, condensin SMC4 and NCAPD2), yet not DNA. In conjuction, these data not only extend our understanding of centrosomes but they will help refine the model that focus on the protein system associated with the centriolar junction.
Collapse
Affiliation(s)
- Johan Busselez
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain. .,Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400, Illkirch-Graffenstaden, France.
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Maria Josefa Rodríguez
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Adan Alpízar
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Séverine Isabelle Gharbi
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Mònica Franch
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Roberto Melero
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain
| | - José-Maria Carazo
- Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Campus de Cantoblanco 28049, Madrid, Spain.
| |
Collapse
|
8
|
Wolf PG, Cuba Ramos A, Kenzel J, Neumann B, Stemmann O. Studying meiotic cohesin in somatic cells reveals that Rec8-containing cohesin requires Stag3 to function and is regulated by Wapl and sororin. J Cell Sci 2018; 131:jcs212100. [PMID: 29724914 DOI: 10.1242/jcs.212100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/26/2018] [Indexed: 01/21/2023] Open
Abstract
The DNA-embracing, ring-shaped multiprotein complex cohesin mediates sister chromatid cohesion and is stepwise displaced in mitosis by Wapl and separase (also known as ESPL1) to facilitate anaphase. Proper regulation of chromosome cohesion throughout meiosis is critical for preventing formation of aneuploid gametes, which are associated with trisomies and infertility in humans. Studying cohesion in meiocytes is complicated by their difficult experimental amenability and the absence of cohesin turnover. Here, we use cultured somatic cells to unravel fundamental aspects of meiotic cohesin. When expressed in Hek293 cells, the kleisin Rec8 displays no affinity for the peripheral cohesin subunits Stag1 or Stag2 and remains cytoplasmic. However, co-expression of Stag3 is sufficient for Rec8 to enter the nucleus, load onto chromatin, and functionally replace its mitotic counterpart Scc1 (also known as RAD21) during sister chromatid cohesion and dissolution. Rec8-Stag3 cohesin physically interacts with Pds5, Wapl and sororin (also known as CDCA5). Importantly, Rec8-Stag3 cohesin is shown to be susceptible to Wapl-dependent ring opening and sororin-mediated protection. These findings exemplify that our model system is suitable to rapidly generate testable predictions for important unresolved issues of meiotic cohesion regulation.
Collapse
Affiliation(s)
- Peter G Wolf
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Alexander Cuba Ramos
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Julia Kenzel
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Brigitte Neumann
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
9
|
Kumar R. Separase: Function Beyond Cohesion Cleavage and an Emerging Oncogene. J Cell Biochem 2017; 118:1283-1299. [PMID: 27966791 DOI: 10.1002/jcb.25835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Proper and timely segregation of genetic endowment is necessary for survival and perpetuation of every species. Mis-segregation of chromosomes and resulting aneuploidy leads to genetic instability, which can jeopardize the survival of an individual or population as a whole. Abnormality with segregation of genetic contents has been associated with several medical consequences including cancer, sterility, mental retardation, spontaneous abortion, miscarriages, and other birth related defects. Separase, by irreversible cleavage of cohesin complex subunit, paves the way for metaphase/anaphase transition during the cell cycle. Both over or reduced expression and altered level of separase have been associated with several medical consequences including cancer, as a result separase now emerges as an important oncogene and potential molecular target for medical intervenes. Recently, separase is also found to be essential in separation and duplication of centrioles. Here, I review the role of separase in mitosis, meiosis, non-canonical roles of separase, separase regulation, as a regulator of centriole disengagement, nonproteolytic roles, diverse substrates, structural insights, and association of separase with cancer. At the ends, I proposed a model which showed that separase is active throughout the cell cycle and there is a mere increase in separase activity during metaphase contrary to the common believes that separase is inactive throughout cell cycle except for metaphase. J. Cell. Biochem. 118: 1283-1299, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, Maharashtra, India
| |
Collapse
|
10
|
Abstract
Cohesin is a large ring-shaped protein complex, conserved from yeast to human, which participates in most DNA transactions that take place in the nucleus. It mediates sister chromatid cohesion, which is essential for chromosome segregation and homologous recombination (HR)-mediated DNA repair. Together with architectural proteins and transcriptional regulators, such as CTCF and Mediator, respectively, it contributes to genome organization at different scales and thereby affects transcription, DNA replication, and locus rearrangement. Although cohesin is essential for cell viability, partial loss of function can affect these processes differently in distinct cell types. Mutations in genes encoding cohesin subunits and regulators of the complex have been identified in several cancers. Understanding the functional significance of these alterations may have relevant implications for patient classification, risk prediction, and choice of treatment. Moreover, identification of vulnerabilities in cancer cells harboring cohesin mutations may provide new therapeutic opportunities and guide the design of personalized treatments.
Collapse
Affiliation(s)
- Magali De Koninck
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| |
Collapse
|