1
|
Broich L, Wullenkord H, Osman MK, Fu Y, Müsken M, Reuther P, Brönstrup M, Sieben C. Single influenza A viruses induce nanoscale cellular reprogramming at the virus-cell interface. Nat Commun 2025; 16:3846. [PMID: 40280912 PMCID: PMC12032206 DOI: 10.1038/s41467-025-58935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
During infection, individual virions trigger specific cellular signaling at the virus-cell interface, a nanoscale region of the plasma membrane in direct contact with the virus. However, virus-induced receptor recruitment and cellular activation are transient processes that occur within minutes at the nanoscale. Hence, the temporal and spatial kinetics of such early events often remain poorly understood due to technical limitations. To address this challenge, we develop a protocol to covalently immobilize labelled influenza A viruses on glass surfaces before exposing them to live epithelial cells. Our method extends the observation time for virus-plasma membrane association while minimizing viral modifications, facilitating live imaging of virus-cell interactions. Using single-molecule super-resolution microscopy, we investigate virus-receptor interaction showing that viral receptors exhibit reduced mobility at the virus-binding site, which leads to a specific local receptor accumulation and turnover. We further follow the dynamics of clathrin-mediated endocytosis at the single-virus level and demonstrate the recruitment of adaptor protein 2 (AP-2), previously thought to be uninvolved in influenza A virus infection. Finally, we examine the nanoscale organization of the actin cytoskeleton at the virus-binding site, showing a local and dynamic response of the cellular actin cortex to the infecting virus.
Collapse
Affiliation(s)
- Lukas Broich
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hannah Wullenkord
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Kaukab Osman
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Yang Fu
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Reuther
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig, Germany
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
2
|
Jin M, Iwamoto Y, Shirazinejad C, Drubin DG. Intersectin1 promotes clathrin-mediated endocytosis by organizing and stabilizing endocytic protein interaction networks. Cell Rep 2024; 43:114989. [PMID: 39580802 PMCID: PMC11728081 DOI: 10.1016/j.celrep.2024.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/10/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
During clathrin-mediated endocytosis (CME), dozens of proteins are recruited to nascent CME sites on the plasma membrane, and their spatial and temporal coordination is crucial for efficient CME. Here, we show that the scaffold protein intersectin1 (ITSN1) promotes CME by organizing and stabilizing endocytic protein interaction networks. Live-cell imaging of genome-edited cells revealed that endogenously labeled ITSN1 is recruited during CME site stabilization and growth and that ITSN1 knockdown impairs endocytic protein recruitment during this stage. Targeting ITSN1 to the mitochondrial surface was sufficient to assemble puncta consisting of the EPS15 and FCHO2 initiation proteins, the AP2 and epsin1 (EPN1) adaptor proteins, and the dynamin2 (DNM2) vesicle scission GTPase. ITSN1 can form puncta and recruit DNM2 independent of EPS15/FCHO2 or EPN1. Our findings redefine ITSN1's primary endocytic role as organizing and stabilizing CME protein interaction networks rather than initiation, providing deeper insights into the multi-step and multi-zone organization of CME site assembly.
Collapse
Affiliation(s)
- Meiyan Jin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cyna Shirazinejad
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Jin M, Iwamoto Y, Shirazinejad C, Drubin DG. Intersectin1 promotes clathrin-mediated endocytosis by organizing and stabilizing endocytic protein interaction networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590579. [PMID: 38712149 PMCID: PMC11071352 DOI: 10.1101/2024.04.22.590579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
During clathrin-mediated endocytosis (CME), dozens of proteins are recruited to nascent CME sites on the plasma membrane. Coordination of endocytic protein recruitment in time and space is important for efficient CME. Here, we show that the multivalent scaffold protein intersectin1 (ITSN1) promotes CME by organizing and stabilizing endocytic protein interaction networks. By live-cell imaging of genome-edited cells, we observed that endogenously labeled ITSN1 is recruited to CME sites shortly after they begin to assemble. Knocking down ITSN1 impaired endocytic protein recruitment during the stabilization stage of CME site assembly. Artificially locating ITSN1 to the mitochondria surface was sufficient to assemble puncta consisting of CME initiation proteins, including EPS15, FCHO, adaptor proteins, the AP2 complex and epsin1 (EPN1), and the vesicle scission GTPase dynamin2 (DNM2). ITSN1 can form puncta and recruit DNM2 independently of EPS15/FCHO or EPN1. Our work redefines ITSN1's primary endocytic role as organizing and stabilizing the CME protein interaction networks rather than a previously suggested role in initiation and provides new insights into the multi-step and multi-zone organization of CME site assembly.
Collapse
Affiliation(s)
- Meiyan Jin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Current Address: Department of Biology, University of Florida, Gainesville, Fl 32611, USA
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Cyna Shirazinejad
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Lead author
| |
Collapse
|
4
|
Iwamoto Y, Ye AA, Shirazinejad C, Hurley JH, Drubin DG. Kinetic investigation reveals an HIV-1 Nef-dependent increase in AP-2 recruitment and productivity at endocytic sites. Mol Biol Cell 2024; 35:ar9. [PMID: 37938925 PMCID: PMC10881171 DOI: 10.1091/mbc.e23-04-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The HIV-1 accessory protein Nef hijacks clathrin adaptors to degrade or mislocalize host proteins involved in antiviral defenses. Here, using quantitative live-cell microscopy in genome-edited Jurkat cells, we investigate the impact of Nef on clathrin-mediated endocytosis (CME), a major pathway for membrane protein internalization in mammalian cells. Nef is recruited to CME sites on the plasma membrane, and this recruitment is associated with an increase in the recruitment and lifetime of the CME coat protein AP-2 and the late-arriving CME protein dynamin2. Furthermore, we find that CME sites that recruit Nef are more likely to recruit dynamin2 and transferrin, suggesting that Nef recruitment to CME sites promotes site maturation to ensure high efficiency in host protein downregulation. Implications of these observations for HIV-1 infection are discussed.
Collapse
Affiliation(s)
- Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Anna A. Ye
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Cyna Shirazinejad
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
5
|
Iwamoto Y, Ye A, Shirazinejad C, Hurley JH, Drubin DG. Kinetic investigation reveals an HIV-1 Nef-dependent increase in AP-2 recruitment and productivity at endocytic sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537262. [PMID: 37131815 PMCID: PMC10153213 DOI: 10.1101/2023.04.18.537262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lentiviruses express non-enzymatic accessory proteins whose function is to subvert cellular machinery in the infected host. The HIV-1 accessory protein Nef hijacks clathrin adaptors to degrade or mislocalize host proteins involved in antiviral defenses. Here, we investigate the interaction between Nef and clathrin-mediated endocytosis (CME), a major pathway for membrane protein internalization in mammalian cells, using quantitative live-cell microscopy in genome-edited Jurkat cells. Nef is recruited to CME sites on the plasma membrane, and this recruitment correlates with an increase in the recruitment and lifetime of CME coat protein AP-2 and late-arriving CME protein dynamin2. Furthermore, we find that CME sites that recruit Nef are more likely to recruit dynamin2, suggesting that Nef recruitment to CME sites promotes CME site maturation to ensure high efficiency in host protein downregulation.
Collapse
Affiliation(s)
- Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
| | - Anna Ye
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
| | - Cyna Shirazinejad
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Floris E, Piras A, Pezzicoli FS, Zamparo M, Dall'Asta L, Gamba A. Phase separation and critical size in molecular sorting. Phys Rev E 2022; 106:044412. [PMID: 36397477 DOI: 10.1103/physreve.106.044412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Molecular sorting is a fundamental process that allows eukaryotic cells to distill and concentrate specific chemical factors in appropriate cell membrane subregions, thus endowing them with different chemical identities and functional properties. A phenomenological theory of this molecular distillation process has recently been proposed [M. Zamparo, D. Valdembri, G. Serini, I. V. Kolokolov, V. V. Lebedev, L. Dall'Asta, and A. Gamba, Phys. Rev. Lett. 126, 088101 (2021)0031-900710.1103/PhysRevLett.126.088101], based on the idea that molecular sorting emerges from the combination of (a) phase separation driven formation of sorting domains and (b) domain-induced membrane bending, leading to the production of submicrometric lipid vesicles enriched in the sorted molecules. In this framework, a natural parameter controlling the efficiency of molecular distillation is the critical size of phase separated domains. In the experiments, sorting domains appear to fall into two classes: unproductive domains, characterized by short lifetimes and low probability of extraction, and productive domains, that evolve into vesicles that ultimately detach from the membrane system. It is tempting to link these two classes to the different fates predicted by classical phase separation theory for subcritical and supercritical phase separated domains. Here, we discuss the implication of this picture in the framework of the previously introduced phenomenological theory of molecular sorting. Several predictions of the theory are verified by numerical simulations of a lattice-gas model. Sorting is observed to be most efficient when the number of sorting domains is close to a minimum. To help in the analysis of experimental data, an operational definition of the critical size of sorting domains is proposed. Comparison with experimental results shows that the statistical properties of productive and unproductive domains inferred from experimental data are in agreement with those predicted from numerical simulations of the model, compatibly with the hypothesis that molecular sorting is driven by a phase separation process.
Collapse
Affiliation(s)
- Elisa Floris
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Andrea Piras
- Italian Institute for Genomic Medicine and Candiolo Cancer Institute IRCCS, Strada Provinciale 142, km 3.95, Candiolo (TO) 10060, Italy
| | - Francesco Saverio Pezzicoli
- Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, Gif-sur-Yvette, 91190 Île-de-France, France
| | - Marco Zamparo
- Dipartimento di Fisica, Università degli Studi di Bari, via Amendola 173, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| | - Luca Dall'Asta
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Italian Institute for Genomic Medicine and Candiolo Cancer Institute IRCCS, Strada Provinciale 142, km 3.95, Candiolo (TO) 10060, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
- Collegio Carlo Alberto, Piazza Arbarello 8, 10122 Torino, Italy
| | - Andrea Gamba
- Institute of Condensed Matter Physics and Complex Systems, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Italian Institute for Genomic Medicine and Candiolo Cancer Institute IRCCS, Strada Provinciale 142, km 3.95, Candiolo (TO) 10060, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
| |
Collapse
|
7
|
Cail RC, Shirazinejad CR, Drubin DG. Induced nanoscale membrane curvature bypasses the essential endocytic function of clathrin. J Cell Biol 2022; 221:e202109013. [PMID: 35532382 PMCID: PMC9093045 DOI: 10.1083/jcb.202109013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 04/21/2022] [Indexed: 01/07/2023] Open
Abstract
During clathrin-mediated endocytosis (CME), flat plasma membrane is remodeled to produce nanometer-scale vesicles. The mechanisms underlying this remodeling are not completely understood. The ability of clathrin to bind membranes of distinct geometries casts uncertainty on its specific role in curvature generation/stabilization. Here, we used nanopatterning to produce substrates for live-cell imaging, with U-shaped features that bend the ventral plasma membrane of a cell into shapes resembling energetically unfavorable CME intermediates. This induced membrane curvature recruits CME proteins, promoting endocytosis. Upon AP2, FCHo1/2, or clathrin knockdown, CME on flat substrates is severely diminished. However, induced membrane curvature recruits CME proteins in the absence of FCHo1/2 or clathrin and rescues CME dynamics/cargo uptake after clathrin (but not AP2 or FCHo1/2) knockdown. Induced membrane curvature enhances CME protein recruitment upon branched actin assembly inhibition under elevated membrane tension. These data establish that membrane curvature assists in CME nucleation and that the essential function of clathrin during CME is to facilitate curvature evolution, rather than scaffold protein recruitment.
Collapse
Affiliation(s)
- Robert C. Cail
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA
| | | | - David G. Drubin
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
8
|
Jin M, Shirazinejad C, Wang B, Yan A, Schöneberg J, Upadhyayula S, Xu K, Drubin DG. Branched actin networks are organized for asymmetric force production during clathrin-mediated endocytosis in mammalian cells. Nat Commun 2022; 13:3578. [PMID: 35732852 PMCID: PMC9217951 DOI: 10.1038/s41467-022-31207-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 06/08/2022] [Indexed: 01/15/2023] Open
Abstract
Actin assembly facilitates vesicle formation in several trafficking pathways, including clathrin-mediated endocytosis (CME). Interestingly, actin does not assemble at all CME sites in mammalian cells. How actin networks are organized with respect to mammalian CME sites and how assembly forces are harnessed, are not fully understood. Here, branched actin network geometry at CME sites was analyzed using three different advanced imaging approaches. When endocytic dynamics of unperturbed CME sites are compared, sites with actin assembly show a distinct signature, a delay between completion of coat expansion and vesicle scission, indicating that actin assembly occurs preferentially at stalled CME sites. In addition, N-WASP and the Arp2/3 complex are recruited to one side of CME sites, where they are positioned to stimulate asymmetric actin assembly and force production. We propose that actin assembles preferentially at stalled CME sites where it pulls vesicles into the cell asymmetrically, much as a bottle opener pulls off a bottle cap.
Collapse
Affiliation(s)
- Meiyan Jin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Cyna Shirazinejad
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Bowen Wang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Amy Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Pharmacology, and Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Kaplan C, Kenny SJ, Chen X, Schöneberg J, Sitarska E, Diz-Muñoz A, Akamatsu M, Xu K, Drubin DG. Load adaptation by endocytic actin networks. Mol Biol Cell 2022; 33:ar50. [PMID: 35389747 PMCID: PMC9265150 DOI: 10.1091/mbc.e21-11-0589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) robustness under elevated membrane tension is maintained by actin assembly-mediated force generation. However, whether more actin assembles at endocytic sites in response to increased load has not previously been investigated. Here actin network ultrastructure at CME sites was examined under low and high membrane tension. Actin and N-WASP spatial organization indicate that actin polymerization initiates at the base of clathrin-coated pits and that the network then grows away from the plasma membrane. Actin network height at individual CME sites was not coupled to coat shape, raising the possibility that local differences in mechanical load feed back on assembly. By manipulating membrane tension and Arp2/3 complex activity, we tested the hypothesis that actin assembly at CME sites increases in response to elevated load. Indeed, in response to elevated membrane tension, actin grew higher, resulting in greater coverage of the clathrin coat, and CME slowed. When membrane tension was elevated and the Arp2/3 complex was inhibited, shallow clathrin-coated pits accumulated, indicating that this adaptive mechanism is especially crucial for coat curvature generation. We propose that actin assembly increases in response to increased load to ensure CME robustness over a range of plasma membrane tensions.
Collapse
Affiliation(s)
- Charlotte Kaplan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Sam J. Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Xuyan Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
- Department of pharmacology and Department of chemistry and biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Ewa Sitarska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-3220
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220
| |
Collapse
|
10
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Ecker M, Redpath GMI, Nicovich PR, Rossy J. Quantitative visualization of endocytic trafficking through photoactivation of fluorescent proteins. Mol Biol Cell 2021; 32:892-902. [PMID: 33534630 PMCID: PMC8108533 DOI: 10.1091/mbc.e20-10-0669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endocytic trafficking controls the density of molecules at the plasma membrane and by doing so, the cell surface profile, which in turn determines how cells interact with their environment. A full apprehension of any cellular process necessitates understanding how proteins associated with the plasma membrane are endocytosed, how they are sorted after internalization, and if and how they are recycled to the plasma membrane. To date, it is still difficult to experimentally gain access to this information, even more to do it in a quantitative way. Here we present a toolset based on photoactivation of fluorescent proteins that enabled us to generate quantitative information on endocytosis, incorporation into sorting and recycling endosomes, delivery from endosomes to the plasma membrane, and on the type of vesicles performing intracellular transport. We illustrate these approaches by revealing striking differences in the endocytic trafficking of T-cell receptor and CD4, which bind to the same molecule at the surface of antigen-presenting cells during T-cell activation.
Collapse
Affiliation(s)
- Manuela Ecker
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Jérémie Rossy
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences and the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia.,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280 Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
12
|
Pedersen RTA, Hassinger JE, Marchando P, Drubin DG. Spatial regulation of clathrin-mediated endocytosis through position-dependent site maturation. J Cell Biol 2020; 219:211446. [PMID: 33053166 PMCID: PMC7545360 DOI: 10.1083/jcb.202002160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
During clathrin-mediated endocytosis (CME), over 50 different proteins assemble on the plasma membrane to reshape it into a cargo-laden vesicle. It has long been assumed that cargo triggers local CME site assembly in Saccharomyces cerevisiae based on the discovery that cortical actin patches, which cluster near exocytic sites, are CME sites. Quantitative imaging data reported here lead to a radically different view of which CME steps are regulated and which steps are deterministic. We quantitatively and spatially describe progression through the CME pathway and pinpoint a cargo-sensitive regulatory transition point that governs progression from the initiation phase of CME to the internalization phase. Thus, site maturation, rather than site initiation, accounts for the previously observed polarized distribution of actin patches in this organism. While previous studies suggested that cargo ensures its own internalization by regulating either CME initiation rates or frequency of abortive events, our data instead identify maturation through a checkpoint in the pathway as the cargo-sensitive step.
Collapse
Affiliation(s)
- Ross T A Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Julian E Hassinger
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
| | - Paul Marchando
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
13
|
He K, Song E, Upadhyayula S, Dang S, Gaudin R, Skillern W, Bu K, Capraro BR, Rapoport I, Kusters I, Ma M, Kirchhausen T. Dynamics of Auxilin 1 and GAK in clathrin-mediated traffic. J Cell Biol 2020; 219:133624. [PMID: 31962345 PMCID: PMC7054993 DOI: 10.1083/jcb.201908142] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/28/2019] [Accepted: 12/15/2019] [Indexed: 01/08/2023] Open
Abstract
Clathrin-coated vesicles lose their clathrin lattice within seconds of pinching off, through the action of the Hsc70 “uncoating ATPase.” The J- and PTEN-like domain–containing proteins, auxilin 1 (Aux1) and auxilin 2 (GAK), recruit Hsc70. The PTEN-like domain has no phosphatase activity, but it can recognize phosphatidylinositol phosphate head groups. Aux1 and GAK appear on coated vesicles in successive transient bursts, immediately after dynamin-mediated membrane scission has released the vesicle from the plasma membrane. These bursts contain a very small number of auxilins, and even four to six molecules are sufficient to mediate uncoating. In contrast, we could not detect auxilins in abortive pits or at any time during coated pit assembly. We previously showed that clathrin-coated vesicles have a dynamic phosphoinositide landscape, and we have proposed that lipid head group recognition might determine the timing of Aux1 and GAK appearance. The differential recruitment of Aux1 and GAK correlates with temporal variations in phosphoinositide composition, consistent with a lipid-switch timing mechanism.
Collapse
Affiliation(s)
- Kangmin He
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Eli Song
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Srigokul Upadhyayula
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Song Dang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Raphael Gaudin
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Wesley Skillern
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Kevin Bu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
| | | | - Iris Rapoport
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Ilja Kusters
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Minghe Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Teng SY, Yew GY, Sukačová K, Show PL, Máša V, Chang JS. Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnol Adv 2020; 44:107631. [PMID: 32931875 DOI: 10.1016/j.biotechadv.2020.107631] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
With recent advances in novel gene-editing tools such as RNAi, ZFNs, TALENs, and CRISPR-Cas9, the possibility of altering microalgae toward designed properties for various application is becoming a reality. Alteration of microalgae genomes can modify metabolic pathways to give elevated yields in lipids, biomass, and other components. The potential of such genetically optimized microalgae can give a "domino effect" in further providing optimization leverages down the supply chain, in aspects such as cultivation, processing, system design, process integration, and revolutionary products. However, the current level of understanding the functional information of various microalgae gene sequences is still primitive and insufficient as microalgae genome sequences are long and complex. From this perspective, this work proposes to link up this knowledge gap between microalgae genetic information and optimized bioproducts using Artificial Intelligence (AI). With the recent acceleration of AI research, large and complex data from microalgae research can be properly analyzed by combining the cutting-edge of both fields. In this work, the most suitable class of AI algorithms (such as active learning, semi-supervised learning, and meta-learning) are discussed for different cases of microalgae applications. This work concisely reviews the current state of the research milestones and highlight some of the state-of-art that has been carried out, providing insightful future pathways. The utilization of AI algorithms in microalgae cultivation, system optimization, and other aspects of the supply chain is also discussed. This work opens the pathway to a digitalized future for microalgae research and applications.
Collapse
Affiliation(s)
- Sin Yong Teng
- Brno University of Technology, Institute of Process Engineering, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | - Kateřina Sukačová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, Brno 603 00, Czech Republic.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | - Vítězslav Máša
- Brno University of Technology, Institute of Process Engineering, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
15
|
Mino RE, Chen Z, Mettlen M, Schmid SL. An internally eGFP-tagged α-adaptin is a fully functional and improved fiduciary marker for clathrin-coated pit dynamics. Traffic 2020; 21:603-616. [PMID: 32657003 PMCID: PMC7495412 DOI: 10.1111/tra.12755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Clathrin mediated endocytosis (CME) has been extensively studied in living cells by quantitative total internal reflection fluorescence microscopy (TIRFM). Fluorescent protein fusions to subunits of the major coat proteins, clathrin light chains or the heterotetrameric adaptor protein (AP2) complexes, have been used as fiduciary markers of clathrin coated pits (CCPs). However, the functionality of these fusion proteins has not been rigorously compared. Here, we generated stable cells lines overexpressing mRuby‐CLCa and/or μ2‐eGFP, σ2‐eGFP, two markers currently in use, or a novel marker generated by inserting eGFP into the unstructured hinge region of the α subunit (α‐eGFP). Using biochemical and TIRFM‐based assays, we compared the functionality of the AP2 markers. All of the eGFP‐tagged subunits were efficiently incorporated into AP2 and displayed greater accuracy in image‐based CCP analyses than mRuby‐CLCa. However, overexpression of either μ2‐eGFP or σ2‐eGFP impaired transferrin receptor uptake. In addition, μ2‐eGFP reduced the rates of CCP initiation and σ2‐eGFP perturbed AP2 incorporation into CCPs and CCP maturation. In contrast, CME and CCP dynamics were unperturbed in cells overexpressing α‐eGFP. Moreover, α‐eGFP was a more sensitive and accurate marker of CCP dynamics than mRuby‐CLCa. Thus, our work establishes α‐eGFP as a robust, fully functional marker for CME.
Collapse
Affiliation(s)
- Rosa E Mino
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zhiming Chen
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Marcel Mettlen
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
16
|
Rim EY, Kinney LK, Nusse R. β-catenin-mediated Wnt signal transduction proceeds through an endocytosis-independent mechanism. Mol Biol Cell 2020; 31:1425-1436. [PMID: 32320321 PMCID: PMC7353137 DOI: 10.1091/mbc.e20-02-0114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 01/12/2023] Open
Abstract
The Wnt pathway is a key intercellular signaling cascade that regulates development, tissue homeostasis, and regeneration. However, gaps remain in our understanding of the molecular events that take place between ligand-receptor binding and target gene transcription. We used a novel tool for quantitative, real-time assessment of endogenous pathway activation, measured in single cells, to answer an unresolved question in the field-whether receptor endocytosis is required for Wnt signal transduction. We combined knockdown or knockout of essential components of clathrin-mediated endocytosis with quantitative assessment of Wnt signal transduction in mouse embryonic stem cells (mESCs). Disruption of clathrin-mediated endocytosis did not affect accumulation and nuclear translocation of β-catenin, as measured by single-cell live imaging of endogenous β-catenin, and subsequent target gene transcription. Disruption of another receptor endocytosis pathway, caveolin-mediated endocytosis, did not affect Wnt pathway activation in mESCs. Additional results in multiple cell lines support that endocytosis is not a requirement for Wnt signal transduction. We show that off-target effects of a drug used to inhibit endocytosis may be one source of the discrepancy among reports on the role of endocytosis in Wnt signaling.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Leigh Katherine Kinney
- Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Roeland Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
17
|
Wang X, Chen Z, Mettlen M, Noh J, Schmid SL, Danuser G. DASC, a sensitive classifier for measuring discrete early stages in clathrin-mediated endocytosis. eLife 2020; 9:53686. [PMID: 32352376 PMCID: PMC7192580 DOI: 10.7554/elife.53686] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) in mammalian cells is driven by resilient machinery that includes >70 endocytic accessory proteins (EAP). Accordingly, perturbation of individual EAPs often results in minor effects on biochemical measurements of CME, thus providing inconclusive/misleading information regarding EAP function. Live-cell imaging can detect earlier roles of EAPs preceding cargo internalization; however, this approach has been limited because unambiguously distinguishing abortive coats (ACs) from bona fide clathrin-coated pits (CCPs) is required but unaccomplished. Here, we develop a thermodynamics-inspired method, “disassembly asymmetry score classification (DASC)”, that resolves ACs from CCPs based on single channel fluorescent movies. After extensive verification, we use DASC-resolved ACs and CCPs to quantify CME progression in 11 EAP knockdown conditions. We show that DASC is a sensitive detector of phenotypic variation in CCP dynamics that is uncorrelated to the variation in biochemical measurements of CME. Thus, DASC is an essential tool for uncovering EAP function.
Collapse
Affiliation(s)
- Xinxin Wang
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhiming Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jungsik Noh
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
18
|
Akamatsu M, Vasan R, Serwas D, Ferrin MA, Rangamani P, Drubin DG. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. eLife 2020; 9:49840. [PMID: 31951196 PMCID: PMC7041948 DOI: 10.7554/elife.49840] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Force generation by actin assembly shapes cellular membranes. An experimentally constrained multiscale model shows that a minimal branched actin network is sufficient to internalize endocytic pits against membrane tension. Around 200 activated Arp2/3 complexes are required for robust internalization. A newly developed molecule-counting method determined that ~200 Arp2/3 complexes assemble at sites of clathrin-mediated endocytosis in human cells. Simulations predict that actin self-organizes into a radial branched array with growing ends oriented toward the base of the pit. Long actin filaments bend between attachment sites in the coat and the base of the pit. Elastic energy stored in bent filaments, whose presence was confirmed by cryo-electron tomography, contributes to endocytic internalization. Elevated membrane tension directs more growing filaments toward the base of the pit, increasing actin nucleation and bending for increased force production. Thus, spatially constrained actin filament assembly utilizes an adaptive mechanism enabling endocytosis under varying physical constraints. The outer membrane of a cell is a tight but elastic barrier that controls what enters or leaves the cell. Large molecules typically cannot cross this membrane unaided. Instead, to enter the cell, they must be packaged into a pocket of the membrane that is then pulled inside. This process, called endocytosis, shuttles material into a cell hundreds of times a minute. Endocytosis relies on molecular machines that assemble and disassemble at the membrane as required. One component, a protein called actin, self-assembles near the membrane into long filaments with many repeated subunits. These filaments grow against the membrane, pulling it inwards. But it was not clear how actin filaments organize in such a way that allows them to pull on the membrane with enough force – and without a template to follow. Akamatsu et al. set about identifying how actin operates during endocytosis by using computer simulations that were informed by measurements made in living cells. The simulations included information about the location of actin and other essential molecules, along with the details of how these molecules work individually and together. Akamatsu et al. also developed a method to count the numbers of molecules of a key protein at individual sites of endocytosis. High-resolution imaging was then used to create 3D pictures of actin and endocytosis in action in human cells grown in the laboratory. The analysis showed the way actin filaments arrange themselves depends on the starting positions of a few key molecules that connect to actin. Imaging confirmed that, like a pole-vaulting pole, the flexible actin filaments bend to store energy and then release it to pull the membrane inwards during endocytosis. Finally, the simulations predicted that the collection of filaments adapts its shape and size in response to the resistance of the elastic membrane. This makes the system opportunistic and adaptable to the unpredictable environment within cells.
Collapse
Affiliation(s)
- Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ritvik Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - Daniel Serwas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael A Ferrin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
19
|
Manna PT, Davis LJ, Robinson MS. Fast and cloning-free CRISPR/Cas9-mediated genomic editing in mammalian cells. Traffic 2019; 20:974-982. [PMID: 31503392 PMCID: PMC6899835 DOI: 10.1111/tra.12696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
CHoP-In (CRISPR/Cas9-mediated Homology-independent PCR-product integration) is a fast, non-homologous end-joining based, strategy for genomic editing in mammalian cells. There is no requirement for cloning in generation of the integration donor, instead the desired integration donor is produced as a polymerase chain reaction (PCR) product, flanked by the Cas9 recognition sequences of the target locus. When co-transfected with the cognate Cas9 and guide RNA, double strand breaks are introduced at the target genomic locus and at both ends of the PCR product. This allows incorporation into the genomic locus via hon-homologous end joining. The approach is versatile, allowing N-terminal, C-terminal or internal tag integration and gives predictable genomic integrations, as demonstrated for a selection of well characterised membrane trafficking proteins. The lack of donor vectors offers advantages over existing methods in terms of both speed and hands-on time. As such this approach will be a useful addition to the genome editing toolkit of those working in mammalian cell systems.
Collapse
Affiliation(s)
- Paul T. Manna
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Luther J. Davis
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
20
|
Lehmann M, Lukonin I, Noé F, Schmoranzer J, Clementi C, Loerke D, Haucke V. Nanoscale coupling of endocytic pit growth and stability. SCIENCE ADVANCES 2019; 5:eaax5775. [PMID: 31807703 PMCID: PMC6881173 DOI: 10.1126/sciadv.aax5775] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
Clathrin-mediated endocytosis, an essential process for plasma membrane homeostasis and cell signaling, is characterized by stunning heterogeneity in the size and lifetime of clathrin-coated endocytic pits (CCPs). If and how CCP growth and lifetime are coupled and how this relates to their physiological function are unknown. We combine computational modeling, automated tracking of CCP dynamics, electron microscopy, and functional rescue experiments to demonstrate that CCP growth and lifetime are closely correlated and mechanistically linked by the early-acting endocytic F-BAR protein FCHo2. FCHo2 assembles at the rim of CCPs to control CCP growth and lifetime by coupling the invagination of early endocytic intermediates to clathrin lattice assembly. Our data suggest a mechanism for the nanoscale control of CCP growth and stability that may similarly apply to other metastable structures in cells.
Collapse
Affiliation(s)
- Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Corresponding author. (V.H.); (M.L.)
| | - Ilya Lukonin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Frank Noé
- Freie Universität Berlin, Department of Mathematics and Computer Science and Department of Physics, 14195 Berlin, Germany
- Center for Theoretical Biological Physics and Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Jan Schmoranzer
- Charité Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| | - Cecilia Clementi
- Freie Universität Berlin, Department of Mathematics and Computer Science and Department of Physics, 14195 Berlin, Germany
- Center for Theoretical Biological Physics and Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195 Berlin, Germany
- Corresponding author. (V.H.); (M.L.)
| |
Collapse
|
21
|
Weinberg ZY, Puthenveedu MA. Regulation of G protein-coupled receptor signaling by plasma membrane organization and endocytosis. Traffic 2019; 20:121-129. [PMID: 30536564 PMCID: PMC6415975 DOI: 10.1111/tra.12628] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
The trafficking of G protein coupled-receptors (GPCRs) is one of the most exciting areas in cell biology because of recent advances demonstrating that GPCR signaling is spatially encoded. GPCRs, acting in a diverse array of physiological systems, can have differential signaling consequences depending on their subcellular localization. At the plasma membrane, GPCR organization could fine-tune the initial stages of receptor signaling by determining the magnitude of signaling and the type of effectors to which receptors can couple. This organization is mediated by the lipid composition of the plasma membrane, receptor-receptor interactions, and receptor interactions with intracellular scaffolding proteins. GPCR organization is subsequently changed by ligand binding and the regulated endocytosis of these receptors. Activated GPCRs can modulate the dynamics of their own endocytosis through changing clathrin-coated pit dynamics, and through the scaffolding adaptor protein β-arrestin. This endocytic regulation has signaling consequences, predominantly through modulation of the MAPK cascade. This review explores what is known about receptor sorting at the plasma membrane, protein partners that control receptor endocytosis, and the ways in which receptor sorting at the plasma membrane regulates downstream trafficking and signaling.
Collapse
Affiliation(s)
- Zara Y Weinberg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
22
|
Schöneberg J, Dambournet D, Liu TL, Forster R, Hockemeyer D, Betzig E, Drubin DG. 4D cell biology: big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell-derived intestinal organoids. Mol Biol Cell 2018; 29:2959-2968. [PMID: 30188768 PMCID: PMC6329908 DOI: 10.1091/mbc.e18-06-0375] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
New methods in stem cell 3D organoid tissue culture, advanced imaging, and big data image analytics now allow tissue-scale 4D cell biology, but currently available analytical pipelines are inadequate for handing and analyzing the resulting gigabytes and terabytes of high-content imaging data. We expressed fluorescent protein fusions of clathrin and dynamin2 at endogenous levels in genome-edited human embryonic stem cells, which were differentiated into hESC-derived intestinal epithelial organoids. Lattice light-sheet imaging with adaptive optics (AO-LLSM) allowed us to image large volumes of these organoids (70 × 60 × 40 µm xyz) at 5.7 s/frame. We developed an open-source data analysis package termed pyLattice to process the resulting large (∼60 Gb) movie data sets and to track clathrin-mediated endocytosis (CME) events. CME tracks could be recorded from ∼35 cells at a time, resulting in ∼4000 processed tracks per movie. On the basis of their localization in the organoid, we classified CME tracks into apical, lateral, and basal events and found that CME dynamics is similar for all three classes, despite reported differences in membrane tension. pyLattice coupled with AO-LLSM makes possible quantitative high temporal and spatial resolution analysis of subcellular events within tissues.
Collapse
Affiliation(s)
| | - Daphné Dambournet
- Department of Molecular and Cell Biology, Berkeley, Berkeley, CA 94720
| | - Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Ryan Forster
- Department of Molecular and Cell Biology, Berkeley, Berkeley, CA 94720
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, Berkeley, Berkeley, CA 94720
| | - Eric Betzig
- Department of Molecular and Cell Biology, Berkeley, Berkeley, CA 94720.,Department of Physics, University of California, Berkeley, Berkeley, CA 94720.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - David G Drubin
- Department of Molecular and Cell Biology, Berkeley, Berkeley, CA 94720
| |
Collapse
|
23
|
Dambournet D, Sochacki KA, Cheng AT, Akamatsu M, Taraska JW, Hockemeyer D, Drubin DG. Genome-edited human stem cells expressing fluorescently labeled endocytic markers allow quantitative analysis of clathrin-mediated endocytosis during differentiation. J Cell Biol 2018; 217:3301-3311. [PMID: 29980624 PMCID: PMC6123002 DOI: 10.1083/jcb.201710084] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/05/2017] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
We developed a general approach for investigation of how cellular processes become adapted for specific cell types during differentiation. Previous studies reported substantial differences in the morphology and dynamics of clathrin-mediated endocytosis (CME) sites. However, associating specific CME properties with distinct differentiated cell types and determining how these properties are developmentally specified during differentiation have been elusive. Using genome-edited human embryonic stem cells, and isogenic fibroblasts and neuronal progenitor cells derived from them, we established by live-cell imaging and platinum replica transmission electron microscopy that CME site dynamics and ultrastructure on the plasma membrane are precisely reprogrammed during differentiation. Expression levels for the endocytic adaptor protein AP2μ2 were found to underlie dramatic changes in CME dynamics and structure. Additionally, CME dependency on actin assembly and phosphoinositide-3 kinase activity are distinct for each cell type. Collectively, our results demonstrate that key CME properties are reprogrammed during differentiation at least in part through AP2μ2 expression regulation.
Collapse
Affiliation(s)
- Daphné Dambournet
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Kem A Sochacki
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Justin W Taraska
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
24
|
A noncanonical role for dynamin-1 in regulating early stages of clathrin-mediated endocytosis in non-neuronal cells. PLoS Biol 2018; 16:e2005377. [PMID: 29668686 PMCID: PMC5927468 DOI: 10.1371/journal.pbio.2005377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/30/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
Dynamin Guanosine Triphosphate hydrolases (GTPases) are best studied for their role in the terminal membrane fission process of clathrin-mediated endocytosis (CME), but they have also been proposed to regulate earlier stages of CME. Although highly enriched in neurons, dynamin-1 (Dyn1) is, in fact, widely expressed along with Dyn2 but inactivated in non-neuronal cells via phosphorylation by glycogen synthase kinase-3 beta (GSK3β) kinase. Here, we study the differential, isoform-specific functions of Dyn1 and Dyn2 as regulators of CME. Endogenously expressed Dyn1 and Dyn2 were fluorescently tagged either separately or together in two cell lines with contrasting Dyn1 expression levels. By quantitative live cell dual- and triple-channel total internal reflection fluorescence microscopy, we find that Dyn2 is more efficiently recruited to clathrin-coated pits (CCPs) than Dyn1, and that Dyn2 but not Dyn1 exhibits a pronounced burst of assembly, presumably into supramolecular collar-like structures that drive membrane scission and clathrin-coated vesicle (CCV) formation. Activation of Dyn1 by acute inhibition of GSK3β results in more rapid endocytosis of transferrin receptors, increased rates of CCP initiation, and decreased CCP lifetimes but did not significantly affect the extent of Dyn1 recruitment to CCPs. Thus, activated Dyn1 can regulate early stages of CME that occur well upstream of fission, even when present at low, substoichiometric levels relative to Dyn2. Under physiological conditions, Dyn1 is activated downstream of epidermal growth factor receptor (EGFR) signaling to alter CCP dynamics. We identify sorting nexin 9 (SNX9) as a preferred binding partner to activated Dyn1 that is partially required for Dyn1-dependent effects on early stages of CCP maturation. Together, we decouple regulatory and scission functions of dynamins and report a scission-independent, isoform-specific regulatory role for Dyn1 in CME. Clathrin-mediated endocytosis (CME), a major route for nutrient uptake, also controls signaling downstream of cell surface receptors. Recent studies have shown that signaling, in turn, can reciprocally regulate CME. CME is initiated by the assembly of clathrin-coated pits (CCPs) that mature to form deeply invaginated buds before the large Guanosine Triphosphate hydrolase (GTPase), dynamin, catalyzes membrane scission and clathrin-coated vesicle release. Here, we characterize an isoform-specific and noncanonical function for dynamin-1 (Dyn1) in regulating early stages of CME and show that Dyn1 and Dyn2 have nonredundant functions in CME. By genetically introducing fluorescent tags and using live-cell fluorescence imaging, we detected, tracked, and analyzed thousands of CCPs comprising up to three endocytic proteins in real time. We find that Dyn1, previously assumed to function only at neurological synapses, is expressed but maintained in an inactive state in non-neuronal cells through phosphorylation by glycogen synthase kinase-3 beta (GSK3β). We show that inhibition of GSK3β by a chemical inhibitor or downstream of epidermal growth factor receptor (EGFR) signaling activates Dyn1 and accelerates CCP assembly and maturation. These early effects are seen even when Dyn1 is barely detectable on CCPs. We conclude that Dyn1 is an important component of cross-communication between endocytosis and signaling.
Collapse
|
25
|
Abstract
Clathrin-mediated endocytosis (CME) is the major endocytic pathway in mammalian cells. It is responsible for the uptake of transmembrane receptors and transporters, for remodeling plasma membrane composition in response to environmental changes, and for regulating cell surface signaling. CME occurs via the assembly and maturation of clathrin-coated pits that concentrate cargo as they invaginate and pinch off to form clathrin-coated vesicles. In addition to the major coat proteins, clathrin triskelia and adaptor protein complexes, CME requires a myriad of endocytic accessory proteins and phosphatidylinositol lipids. CME is regulated at multiple steps-initiation, cargo selection, maturation, and fission-and is monitored by an endocytic checkpoint that induces disassembly of defective pits. Regulation occurs via posttranslational modifications, allosteric conformational changes, and isoform and splice-variant differences among components of the CME machinery, including the GTPase dynamin. This review summarizes recent findings on the regulation of CME and the evolution of this complex process.
Collapse
Affiliation(s)
- Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| | - Ping-Hung Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| | - Saipraveen Srinivasan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , , .,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| |
Collapse
|
26
|
Bertot L, Grassart A, Lagache T, Nardi G, Basquin C, Olivo-Marin JC, Sauvonnet N. Quantitative and Statistical Study of the Dynamics of Clathrin-Dependent and -Independent Endocytosis Reveal a Differential Role of EndophilinA2. Cell Rep 2018; 22:1574-1588. [DOI: 10.1016/j.celrep.2018.01.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 01/13/2023] Open
|
27
|
Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics. Nat Commun 2018; 9:419. [PMID: 29379015 PMCID: PMC5789089 DOI: 10.1038/s41467-018-02818-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) internalizes plasma membrane by reshaping small regions of the cell surface into spherical vesicles. The key mechanistic question of how coat assembly produces membrane curvature has been studied with molecular and cellular structural biology approaches, without direct visualization of the process in living cells; resulting in two competing models for membrane bending. Here we use polarized total internal reflection fluorescence microscopy (pol-TIRF) combined with electron, atomic force, and super-resolution optical microscopy to measure membrane curvature during CME. Surprisingly, coat assembly accommodates membrane bending concurrent with or after the assembly of the clathrin lattice. Once curvature began, CME proceeded to scission with robust timing. Four color pol-TIRF showed that CALM accumulated at high levels during membrane bending, implicating its auxiliary role in curvature generation. We conclude that clathrin-coat assembly is versatile and that multiple membrane-bending trajectories likely reflect the energetics of coat assembly relative to competing forces. Two distinct and opposing models for clathrin-mediated endocytosis have been inferred from EM and structural biology data. Here the authors develop an optical method to directly visualize membrane-bending dynamics and show that coat assembly accommodates membrane bending during or after the assembly of the clathrin lattice, which is not predicted by either model.
Collapse
|
28
|
Li N, Zhao R, Sun Y, Ye Z, He K, Fang X. Single-molecule imaging and tracking of molecular dynamics in living cells. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nww055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Unlike the ensemble-averaging measurements, the single-molecule imaging and tracking (SMIT) in living cells provides the real-time quantitative information about the locations, kinetics, dynamics and interactions of individual molecules in their native environments with high spatiotemporal resolution and minimal perturbation. The past decade has witnessed a transforming development in the methods of SMIT with living cells, including fluorescent probes, labeling strategies, fluorescence microscopy, and detection and tracking algorithms. In this review, we will discuss these aspects with a particular focus on their recent advancements. We will then describe representative single-molecule studies to illustrate how the single-molecule approaches can be applied to monitor biomolecular interaction/reaction dynamics, and extract the molecular mechanistic information for different cellular systems.
Collapse
Affiliation(s)
- Nan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahong Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangmin He
- Department of Cell Biology, Harvard Medical School, and Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Elkhatib N, Bresteau E, Baschieri F, Rioja AL, van Niel G, Vassilopoulos S, Montagnac G. Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 2017; 356:356/6343/eaal4713. [DOI: 10.1126/science.aal4713] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/10/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
|
30
|
Giani M, den Otter WK, Briels WJ. Early stages of clathrin aggregation at a membrane in coarse-grained simulations. J Chem Phys 2017; 146:155102. [DOI: 10.1063/1.4979985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- M. Giani
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. K. den Otter
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. J. Briels
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Forschungszentrum Jülich, ICS 3, D-52425 Jülich, Germany
| |
Collapse
|
31
|
Weinberg ZY, Zajac AS, Phan T, Shiwarski DJ, Puthenveedu MA. Sequence-Specific Regulation of Endocytic Lifetimes Modulates Arrestin-Mediated Signaling at the µ Opioid Receptor. Mol Pharmacol 2017; 91:416-427. [PMID: 28153854 PMCID: PMC5363713 DOI: 10.1124/mol.116.106633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
Functional selectivity at the µ opioid receptor (µR), a prototypical G-protein-coupled receptor that is a physiologically relevant target for endogenous opioid neurotransmitters and analgesics, has been a major focus for drug discovery in the recent past. Functional selectivity is a cumulative effect of the magnitudes of individual signaling pathways, e.g., the Gαi-mediated and the arrestin-mediated pathways for µR. The present work tested the hypothesis that lifetimes of agonist-induced receptor-arrestin clusters at the cell surface control the magnitude of arrestin signaling, and therefore functional selectivity, at µR. We show that endomorphin-2 (EM2), an arrestin-biased ligand for µR, lengthens surface lifetimes of receptor-arrestin clusters significantly compared with morphine. The lengthening of lifetimes required two specific leucines on the C-terminal tail of µR. Mutation of these leucines to alanines decreased the magnitude of arrestin-mediated signaling by EM2 without affecting G-protein signaling, suggesting that lengthened endocytic lifetimes were required for arrestin-biased signaling by EM2. Lengthening surface lifetimes by pharmacologically slowing endocytosis was sufficient to increase arrestin-mediated signaling by both EM2 and the clinically relevant agonist morphine. Our findings show that distinct ligands can leverage specific sequence elements on µR to regulate receptor endocytic lifetimes and the magnitude of arrestin-mediated signaling, and implicate these sequences as important determinants of functional selectivity in the opioid system.
Collapse
Affiliation(s)
- Zara Y Weinberg
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Amanda S Zajac
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Tiffany Phan
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Daniel J Shiwarski
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Manojkumar A Puthenveedu
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Ailte I, Lingelem ABD, Kvalvaag AS, Kavaliauskiene S, Brech A, Koster G, Dommersnes PG, Bergan J, Skotland T, Sandvig K. Exogenous lysophospholipids with large head groups perturb clathrin-mediated endocytosis. Traffic 2017; 18:176-191. [PMID: 28067430 DOI: 10.1111/tra.12468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
In this study, we have investigated how clathrin-dependent endocytosis is affected by exogenously added lysophospholipids (LPLs). Addition of LPLs with large head groups strongly inhibits transferrin (Tf) endocytosis in various cell lines, while LPLs with small head groups do not. Electron and total internal reflection fluorescence microscopy (EM and TIRF) reveal that treatment with lysophosphatidylinositol (LPI) with the fatty acyl group C18:0 leads to reduced numbers of invaginated clathrin-coated pits (CCPs) at the plasma membrane, fewer endocytic events per membrane area and increased lifetime of CCPs. Also, endocytosis of Tf becomes dependent on actin upon LPI treatment. Thus, our results demonstrate that one can regulate the kinetics and properties of clathrin-dependent endocytosis by addition of LPLs in a head group size- and fatty acyl-dependent manner. Furthermore, studies performed with optical tweezers show that less force is required to pull membrane tubules outwards from the plasma membrane when LPI is added to the cells. The results are in agreement with the notion that insertion of LPLs with large head groups creates a positive membrane curvature which might have a negative impact on events that require plasma membrane invagination, while it may facilitate membrane bending toward the cell exterior.
Collapse
Affiliation(s)
- Ieva Ailte
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anne Berit D Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Audun S Kvalvaag
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Paul G Dommersnes
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Abstract
Clathrin-mediated endocytosis is an essential cellular process that involves the concerted assembly and disassembly of many different proteins at the plasma membrane. In yeast, live-cell imaging has shown that the spatiotemporal dynamics of these proteins is highly stereotypical. Recent work has focused on determining how the timing and functions of endocytic proteins are regulated. In this Cell Science at a Glance article and accompanying poster, we review our current knowledge of the timeline of endocytic site maturation and discuss recent works focusing on how phosphorylation, ubiquitylation and lipids regulate various aspects of the process.
Collapse
Affiliation(s)
- Rebecca Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Aguet F, Upadhyayula S, Gaudin R, Chou YY, Cocucci E, He K, Chen BC, Mosaliganti K, Pasham M, Skillern W, Legant WR, Liu TL, Findlay G, Marino E, Danuser G, Megason S, Betzig E, Kirchhausen T. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy. Mol Biol Cell 2016; 27:3418-3435. [PMID: 27535432 PMCID: PMC5221578 DOI: 10.1091/mbc.e16-03-0164] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/03/2016] [Indexed: 12/02/2022] Open
Abstract
Lattice light-sheet microscopy is used to examine two problems in membrane dynamics—molecular events in clathrin-coated pit formation and changes in cell shape during cell division. This methodology sets a new standard for imaging membrane dynamics in single cells and multicellular assemblies. Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies.
Collapse
Affiliation(s)
- François Aguet
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Srigokul Upadhyayula
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Raphaël Gaudin
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Yi-Ying Chou
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Emanuele Cocucci
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Kangmin He
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Bi-Chang Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | | | - Mithun Pasham
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Wesley Skillern
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Wesley R Legant
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Greg Findlay
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Eric Marino
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390
| | - Sean Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 .,Departments of Cell Biology and Pediatrics, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
35
|
Ferguson JP, Willy NM, Heidotting SP, Huber SD, Webber MJ, Kural C. Deciphering dynamics of clathrin-mediated endocytosis in a living organism. J Cell Biol 2016; 214:347-58. [PMID: 27458134 PMCID: PMC4970330 DOI: 10.1083/jcb.201604128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022] Open
Abstract
Current understanding of clathrin-mediated endocytosis (CME) dynamics is based on detection and tracking of fluorescently tagged clathrin coat components within cultured cells. Because of technical limitations inherent to detection and tracking of single fluorescent particles, CME dynamics is not characterized in vivo, so the effects of mechanical cues generated during development of multicellular organisms on formation and dissolution of clathrin-coated structures (CCSs) have not been directly observed. Here, we use growth rates of fluorescence signals obtained from short CCS intensity trace fragments to assess CME dynamics. This methodology does not rely on determining the complete lifespan of individual endocytic assemblies. Therefore, it allows for real-time monitoring of spatiotemporal changes in CME dynamics and is less prone to errors associated with particle detection and tracking. We validate the applicability of this approach to in vivo systems by demonstrating the reduction of CME dynamics during dorsal closure of Drosophila melanogaster embryos.
Collapse
Affiliation(s)
- Joshua P Ferguson
- Department of Physics, The Ohio State University, Columbus, OH 43210
| | - Nathan M Willy
- Department of Physics, The Ohio State University, Columbus, OH 43210
| | | | - Scott D Huber
- Department of Physics, The Ohio State University, Columbus, OH 43210
| | - Matthew J Webber
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210 Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
36
|
de León N, Valdivieso MH. The long life of an endocytic patch that misses AP-2. Curr Genet 2016; 62:765-770. [PMID: 27126383 DOI: 10.1007/s00294-016-0605-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Endocytosis is the process by which cells regulate extracellular fluid uptake and internalize molecules bound to their plasma membrane. This process requires the generation of protein-coated vesicles. In clathrin-mediated endocytosis (CME) the assembly polypeptide 2 (AP-2) adaptor facilitates rapid endocytosis of some plasma membrane receptors by mediating clathrin recruitment to the endocytic site and by connecting cargoes to the clathrin coat. While this adaptor is essential for early embryonic development in mammals, initial results suggested that it is dispensable for endocytosis in unicellular eukaryotes. The drastic effect of depleting AP-2 in metazoa and the mild effect of deleting AP-2 subunits in Saccharomyces cerevisiae have prevented a detailed analysis of the dynamics of endocytic patches in the absence of this adaptor. Using live-cell imaging of Schizosaccharomyces pombe endocytic sites we have shown that eliminating AP-2 perturbs the dynamics of endocytic patches beyond the moment of coat assembly. These perturbations affect the cell growth pattern and cell wall synthesis. Our results highlight the importance of using different model organisms to address the study of conserved aspects of CME.
Collapse
Affiliation(s)
- Nagore de León
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.,Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|