1
|
Gómez-Zaldívar FJ, Córdova-Bahena L, Ruiz-Moreno AJ, Ceppi P, Velasco-Velázquez MA. In silico characterization of the interaction of AKR1B1 with the deacetylase activation domain (DAD). Front Mol Biosci 2025; 12:1562206. [PMID: 40309007 PMCID: PMC12040874 DOI: 10.3389/fmolb.2025.1562206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
The aldo-keto reductase family 1 member B1 (AKR1B1) plays a key role in cancer progression by competing with histone deacetylase 3 to bind to the deacetylase activation domain (DAD) of the nuclear receptor corepressor SMRT. Previous studies showed that the L289A mutation in AKR1B1 disrupts its ability to form a dimer with DAD but further details of this interaction remain uncharacterized. This study aimed to model the DAD/AKR1B1 dimer by molecular docking and characterize the complex using molecular dynamics simulations. We identified a new model with increased structural stability for AKR1B1, reduced disruption of secondary structures of DAD, and lower ΔG than a previously reported one. In silico mutagenesis of AKR1B1 assessed the contributions from individual residues. We identified six hotspot residues that mediate the complex interface. Those residues are located in the α8 and H2 alpha helices of AKR1B1 and include the experimentally determined L289. These results propose new hypotheses regarding the interaction between DAD and AKR1B1, guiding future experimental approaches.
Collapse
Affiliation(s)
- Francisco J. Gómez-Zaldívar
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Graduate Program in Biochemical Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Córdova-Bahena
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Investigadores por México, Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Mexico City, Mexico
| | - Angel J. Ruiz-Moreno
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Paolo Ceppi
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
2
|
Syamprasad NP, Jain S, Rajdev B, Panda SR, Kumar GJ, Shaik KM, Shantanu P, Challa VS, Jorvekar SB, Borkar RM, Vaidya JR, Tripathi DM, Naidu V. AKR1B1 drives hyperglycemia-induced metabolic reprogramming in MASLD-associated hepatocellular carcinoma. JHEP Rep 2024; 6:100974. [PMID: 38283757 PMCID: PMC10820337 DOI: 10.1016/j.jhepr.2023.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 01/30/2024] Open
Abstract
Background & Aims The mechanism behind the progressive pathological alteration in metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH)-associated hepatocellular carcinoma (HCC) is poorly understood. In the present study, we investigated the role of the polyol pathway enzyme AKR1B1 in metabolic switching associated with MASLD/MASH and in the progression of HCC. Methods AKR1B1 expression was estimated in the tissue and plasma of patients with MASLD/MASH, HCC, and HCC with diabetes mellitus. The role of AKR1B1 in metabolic switching in vitro was assessed through media conditioning, lentiviral transfection, and pharmacological probes. A proteomic and metabolomic approach was applied for the in-depth investigation of metabolic pathways. Preclinically, mice were subjected to a high-fructose diet and diethylnitrosamine to investigate the role of AKR1B1 in the hyperglycemia-mediated metabolic switching characteristic of MASLD-HCC. Results A significant increase in the expression of AKR1B1 was observed in tissue and plasma samples from patients with MASLD/MASH, HCC, and HCC with diabetes mellitus compared to normal samples. Mechanistically, in vitro assays revealed that AKR1B1 modulates the Warburg effect, mitochondrial dynamics, the tricarboxylic acid cycle, and lipogenesis to promote hyperglycemia-mediated MASLD and cancer progression. A pathological increase in the expression of AKR1B1 was observed in experimental MASLD-HCC, and expression was positively correlated with high blood glucose levels. High-fructose diet + diethylnitrosamine-treated animals also exhibited statistically significant elevation of metabolic markers and carcinogenesis markers. AKR1B1 inhibition with epalrestat or NARI-29 inhibited cellular metabolism in in vitro and in vivo models. Conclusions Pathological AKR1B1 modulates hepatic metabolism to promote MASLD-associated hepatocarcinogenesis. Aldose reductase inhibition modulates the glycolytic pathway to prevent precancerous hepatocyte formation. Impact and implications This research work highlights AKR1B1 as a druggable target in metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC), which could provide the basis for the development of new chemotherapeutic agents. Moreover, our results indicate the potential of plasma AKR1B1 levels as a prognostic marker and diagnostic test for MASLD and associated HCC. Additionally, a major observation in this study was that AKR1B1 is associated with the promotion of the Warburg effect in HCC.
Collapse
Affiliation(s)
- NP Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Gangasani Jagadeesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Khaja Moinuddin Shaik
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - P.A. Shantanu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Veerabhadra Swamy Challa
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Sachin B. Jorvekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Roshan M. Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| | - Jayathirtha Rao Vaidya
- Fluoro Agro Chemicals Department and AcSIR-Ghaziabad, CSIR-Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad, Telangana, 500007, India
| | - Dinesh Mani Tripathi
- Liver Physiology & Vascular Biology Lab, Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, ILBS, D-1, Vasant Kunj, New Delhi, Delhi 110070, India
| | - V.G.M. Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Assam, 781101, India
| |
Collapse
|
3
|
Almaguer J, Hindle A, Lawrence JJ. The Contribution of Hippocampal All-Trans Retinoic Acid (ATRA) Deficiency to Alzheimer's Disease: A Narrative Overview of ATRA-Dependent Gene Expression in Post-Mortem Hippocampal Tissue. Antioxidants (Basel) 2023; 12:1921. [PMID: 38001775 PMCID: PMC10669734 DOI: 10.3390/antiox12111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023] Open
Abstract
There is accumulating evidence that vitamin A (VA) deficiency contributes to the pathogenesis and progression of Alzheimer's disease (AD). All-trans retinoic acid (ATRA), a metabolite of VA in the brain, serves distinct roles in the human hippocampus. Agonists of retinoic acid receptors (RAR), including ATRA, promote activation of the non-amyloidogenic pathway by enhancing expression of α-secretases, providing a mechanistic basis for delaying/preventing amyloid beta (Aβ) toxicity. However, whether ATRA is actually deficient in the hippocampi of patients with AD is not clear. Here, using a publicly available human transcriptomic dataset, we evaluated the extent to which ATRA-sensitive genes are dysregulated in hippocampal tissue from post-mortem AD brains, relative to age-matched controls. Consistent with ATRA deficiency, we found significant dysregulation of many ATRA-sensitive genes and significant upregulation of RAR co-repressors, supporting the idea of transcriptional repression of ATRA-mediated signaling. Consistent with oxidative stress and neuroinflammation, Nrf2 and NfkB transcripts were upregulated, respectively. Interestingly, transcriptional targets of Nrf2 were not upregulated, accompanied by upregulation of several histone deacetylases. Overall, our investigation of ATRA-sensitive genes in the human hippocampus bolsters the scientific premise of ATRA depletion in AD and that epigenetic factors should be considered and addressed as part of VA supplementation.
Collapse
Affiliation(s)
- Joey Almaguer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ashly Hindle
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Center of Excellence for Translational Neuroscience and Therapeutics, and Center of Excellence for Integrated Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
4
|
Yu Q, Zhao G, Liu J, Peng Y, Xu X, Zhao F, Shi Y, Jin C, Zhang J, Wei B. The role of histone deacetylases in cardiac energy metabolism in heart diseases. Metabolism 2023; 142:155532. [PMID: 36889378 DOI: 10.1016/j.metabol.2023.155532] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Heart diseases are associated with substantial morbidity and mortality worldwide. The underlying mechanisms and pathological changes associated with cardiac diseases are exceptionally complex. Highly active cardiomyocytes require sufficient energy metabolism to maintain their function. Under physiological conditions, the choice of fuel is a delicate process that depends on the whole body and organs to support the normal function of heart tissues. However, disordered cardiac metabolism has been discovered to play a key role in many forms of heart diseases, including ischemic heart disease, cardiac hypertrophy, heart failure, and cardiac injury induced by diabetes or sepsis. Regulation of cardiac metabolism has recently emerged as a novel approach to treat heart diseases. However, little is known about cardiac energy metabolic regulators. Histone deacetylases (HDACs), a class of epigenetic regulatory enzymes, are involved in the pathogenesis of heart diseases, as reported in previous studies. Notably, the effects of HDACs on cardiac energy metabolism are gradually being explored. Our knowledge in this respect would facilitate the development of novel therapeutic strategies for heart diseases. The present review is based on the synthesis of our current knowledge concerning the role of HDAC regulation in cardiac energy metabolism in heart diseases. In addition, the role of HDACs in different models is discussed through the examples of myocardial ischemia, ischemia/reperfusion, cardiac hypertrophy, heart failure, diabetic cardiomyopathy, and diabetes- or sepsis-induced cardiac injury. Finally, we discuss the application of HDAC inhibitors in heart diseases and further prospects, thus providing insights into new treatment possibilities for different heart diseases.
Collapse
Affiliation(s)
- Qingwen Yu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Guangyuan Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Jingjing Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Yajie Peng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Xueli Xu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Fei Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Yangyang Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Chengyun Jin
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Bo Wei
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
5
|
Gopal K, Karwi QG, Tabatabaei Dakhili SA, Wagg CS, Zhang L, Sun Q, Saed CT, Panidarapu S, Perfetti R, Ramasamy R, Ussher JR, Lopaschuk GD. Aldose reductase inhibition alleviates diabetic cardiomyopathy and is associated with a decrease in myocardial fatty acid oxidation. Cardiovasc Diabetol 2023; 22:73. [PMID: 36978133 PMCID: PMC10053619 DOI: 10.1186/s12933-023-01811-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Cardiovascular diseases, including diabetic cardiomyopathy, are major causes of death in people with type 2 diabetes. Aldose reductase activity is enhanced in hyperglycemic conditions, leading to altered cardiac energy metabolism and deterioration of cardiac function with adverse remodeling. Because disturbances in cardiac energy metabolism can promote cardiac inefficiency, we hypothesized that aldose reductase inhibition may mitigate diabetic cardiomyopathy via normalization of cardiac energy metabolism. METHODS Male C57BL/6J mice (8-week-old) were subjected to experimental type 2 diabetes/diabetic cardiomyopathy (high-fat diet [60% kcal from lard] for 10 weeks with a single intraperitoneal injection of streptozotocin (75 mg/kg) at 4 weeks), following which animals were randomized to treatment with either vehicle or AT-001, a next-generation aldose reductase inhibitor (40 mg/kg/day) for 3 weeks. At study completion, hearts were perfused in the isolated working mode to assess energy metabolism. RESULTS Aldose reductase inhibition by AT-001 treatment improved diastolic function and cardiac efficiency in mice subjected to experimental type 2 diabetes. This attenuation of diabetic cardiomyopathy was associated with decreased myocardial fatty acid oxidation rates (1.15 ± 0.19 vs 0.5 ± 0.1 µmol min-1 g dry wt-1 in the presence of insulin) but no change in glucose oxidation rates compared to the control group. In addition, cardiac fibrosis and hypertrophy were also mitigated via AT-001 treatment in mice with diabetic cardiomyopathy. CONCLUSIONS Inhibiting aldose reductase activity ameliorates diastolic dysfunction in mice with experimental type 2 diabetes, which may be due to the decline in myocardial fatty acid oxidation, indicating that treatment with AT-001 may be a novel approach to alleviate diabetic cardiomyopathy in patients with diabetes.
Collapse
Affiliation(s)
- Keshav Gopal
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Cory S Wagg
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Liyan Zhang
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Qiuyu Sun
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christina T Saed
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Sai Panidarapu
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Ravichandran Ramasamy
- Diabetes Research Program, New York University Grossman Medical Center, New York, NY, USA
| | - John R Ussher
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Türkeş C, Demir Y, Beydemir Ş. In Vitro
Inhibitory Activity and Molecular Docking Study of Selected Natural Phenolic Compounds as AR and SDH Inhibitors**. ChemistrySelect 2022. [DOI: 10.1002/slct.202204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
7
|
Thiagarajan D, Quadri N, Jawahar S, Zirpoli H, Del Pozo CH, López-Díez R, Hasan SN, Yepuri G, Gugger PF, Finlin BS, Kern PA, Gabbay K, Schmidt AM, Ramasamy R. Aldose reductase promotes diet-induced obesity via induction of senescence in subcutaneous adipose tissue. Obesity (Silver Spring) 2022; 30:1647-1658. [PMID: 35894077 DOI: 10.1002/oby.23496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Aldose reductase (AKR1B1 in humans; Akr1b3 in mice), a key enzyme of the polyol pathway, mediates lipid accumulation in the murine heart and liver. The study objective was to explore potential roles for AKR1B1/Akr1b3 in the pathogenesis of obesity and its complications. METHODS The study employed mice treated with an inhibitor of aldose reductase or mice devoid of Akr1b3 were used to determine their response to a high-fat diet. The study used subcutaneous adipose tissue-derived adipocytes to investigate mechanisms by which AKR1B1/Akr1b3 promotes diet-induced obesity. RESULTS Increased expression of aldose reductase and senescence in the adipose tissue of humans and mice with obesity were demonstrated. Genetic deletion of Akr1b3 or pharmacological blockade of AKRIB3 with zopolrestat reduced high-fat-diet-induced obesity, attenuated markers of adipose tissue senescence, and increased lipolysis. CONCLUSIONS AKR1B1/Akr1b3 modulation of senescence in subcutaneous adipose tissue contributes to aberrant metabolic responses to high-fat feeding. These data unveil new opportunities to target these pathways to combat obesity.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Saha Cardiovascular Research Center, Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Shabnam Jawahar
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Hylde Zirpoli
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Carmen Hurtado Del Pozo
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Syed Nurul Hasan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Brian S Finlin
- Center for Clinical and Translational Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Philip A Kern
- Center for Clinical and Translational Sciences, University of Kentucky, Lexington, Kentucky, USA
| | | | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
8
|
Sadgrove NJ. The ‘bald’ phenotype (androgenetic alopecia) is caused by the high glycaemic, high cholesterol and low mineral ‘western diet’. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Jannapureddy S, Sharma M, Yepuri G, Schmidt AM, Ramasamy R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front Endocrinol (Lausanne) 2021; 12:636267. [PMID: 33776930 PMCID: PMC7992003 DOI: 10.3389/fendo.2021.636267] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Qiu L, Guo C. Natural Aldose Reductase Inhibitor: A Potential Therapeutic Agent for Non-alcoholic Fatty Liver Disease. Curr Drug Targets 2021; 21:599-609. [PMID: 31589122 DOI: 10.2174/1389450120666191007111712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
Aldose reductase (AR) has been reported to be involved in the development of nonalcoholic fatty liver disease (NAFLD). Hepatic AR is induced under hyperglycemia condition and converts excess glucose to lipogenic fructose, which contributes in part to the accumulation of fat in the liver cells of diabetes rodents. In addition, the hyperglycemia-induced AR or nutrition-induced AR causes suppression of the transcriptional activity of peroxisome proliferator-activated receptor (PPAR) α and reduced lipolysis in the liver, which also contribute to the development of NAFLD. Moreover, AR induction in non-alcoholic steatohepatitis (NASH) may aggravate oxidative stress and the expression of inflammatory cytokines in the liver. Here, we summarize the knowledge on AR inhibitors of plant origin and review the effect of some plant-derived AR inhibitors on NAFLD/NASH in rodents. Natural AR inhibitors may improve NAFLD at least in part through attenuating oxidative stress and inflammatory cytokine expression. Some of the natural AR inhibitors have been reported to attenuate hepatic steatosis through the regulation of PPARα-mediated fatty acid oxidation. In this review, we propose that the natural AR inhibitors are potential therapeutic agents for NAFLD.
Collapse
Affiliation(s)
- Longxin Qiu
- School of Life Sciences, Longyan University, Longyan 364012, China.,Fujian Province Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan 364012, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| | - Chang Guo
- School of Life Sciences, Longyan University, Longyan 364012, China.,Fujian Province Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan 364012, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| |
Collapse
|
11
|
Wan YJ, Wang YH, Guo Q, Jiang Y, Tu PF, Zeng KW. Protocatechualdehyde protects oxygen-glucose deprivation/reoxygenation-induced myocardial injury via inhibiting PERK/ATF6α/IRE1α pathway. Eur J Pharmacol 2021; 891:173723. [PMID: 33159933 DOI: 10.1016/j.ejphar.2020.173723] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/31/2023]
Abstract
Endoplasmic reticulum (ER) stress has been considered as a promising strategy in developing novel therapeutic agents for cardiovascular diseases through inhibiting cardiomyocyte apoptosis. Protocatechualdehyde (PCA) is a natural phenolic compound from medicinal plant Salvia miltiorrhiza with cardiomyocyte protection. However, the potential mechanism of PCA on cardiovascular ischemic injury is largely unexplored. Here, we found that PCA exerted markedly anti-apoptotic effect in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced H9c2 cells (Rat embryonic ventricular H9c2 cardiomyocytes), which was detected by 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH), Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) assays. PCA also obviously protected cardiomyocytes in myocardial fibrosis model of mice, which was determined by hematoxylin-eosin (HE) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining. Transcriptomics coupled with bioinformatics analysis revealed a complex pharmacological signaling network especially for PCA-mediated ER stress on cardiomyocytes. Further mechanism study suggested that PCA suppressed ER stress via inhibiting protein kinase R-like ER kinase (PERK), inositol-requiring enzyme1α (IRE1α), and transcription factor 6α (ATF6α) signaling pathway through Western blot, DIOC6 and ER-Tracker Red staining, leading to a protective effect against ER stress-mediated cardiomyocyte apoptosis. Taken together, our observations suggest that PCA is a major component from Salvia miltiorrhiza against cardiovascular ischemic injury by suppressing ER stress-associated PERK, IRE1α and ATF6α signaling pathways.
Collapse
Affiliation(s)
- Yan-Jun Wan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
12
|
Qiu Z, Ming H, Lei S, Zhou B, Zhao B, Yu Y, Xue R, Xia Z. Roles of HDAC3-orchestrated circadian clock gene oscillations in diabetic rats following myocardial ischaemia/reperfusion injury. Cell Death Dis 2021; 12:43. [PMID: 33414413 PMCID: PMC7791027 DOI: 10.1038/s41419-020-03295-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/03/2023]
Abstract
The circadian clock is closely related to the development of diabetes mellitus and cardiovascular disease, and disruption of the circadian clock exacerbates myocardial ischaemia/reperfusion injury (MI/RI). HDAC3 is a key component of the circadian negative feedback loop that controls the expression pattern of the circadian nuclear receptor Rev-erbα to maintain the stability of circadian genes such as BMAL1. However, the mechanism by which the HDAC3-orchestrated Rev-erbα/BMAL1 pathway increases MI/RI in diabetes and its relationship with mitophagy have yet to be elucidated. Here, we observed that the clock genes Rev-erbα, BMAL1, and C/EBPβ oscillations were altered in the hearts of rats with streptozotocin (STZ)-induced diabetes, with upregulated HDAC3 expression. Oscillations of Rev-erbα and BMAL1 were rapidly attenuated in diabetic MI/R hearts versus non-diabetic I/RI hearts, in accordance with impaired and rhythm-disordered circadian-dependent mitophagy that increased injury. Genetic knockdown of HDAC3 significantly attenuated diabetic MI/RI by mediating the Rev-erbα/BMAL1 circadian pathway to recover mitophagy. Primary cardiomyocytes with or without HDAC3 siRNA and Rev-erbα siRNA were exposed to hypoxia/reoxygenation (H/R) in vitro. The expression of HDAC3 and Rev-erbα in cardiomyocytes was increased under high-glucose conditions compared with low-glucose conditions, with decreased BMAL1 expression and mitophagy levels. After H/R stimulation, high glucose aggravated H/R injury, with upregulated HDAC3 and Rev-erbα expression and decreased BMAL1 and mitophagy levels. HDAC3 and Rev-erbα siRNA can alleviate high glucose-induced and H/R-induced injury by upregulating BMAL1 to increase mitophagy. Collectively, these findings suggest that disruption of HDAC3-mediated circadian gene expression oscillations induces mitophagy dysfunction, aggravating diabetic MI/RI. Cardiac-specific HDAC3 knockdown could alleviate diabetic MI/RI by regulating the Rev-erbα/BMAL1 pathway to restore the activation of mitophagy.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Hao Ming
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Bin Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Yanli Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Rui Xue
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Yeh CH, Chou YJ, Kao CH, Tsai TF. Mitochondria and Calcium Homeostasis: Cisd2 as a Big Player in Cardiac Ageing. Int J Mol Sci 2020; 21:ijms21239238. [PMID: 33287440 PMCID: PMC7731030 DOI: 10.3390/ijms21239238] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
The ageing of human populations has become a problem throughout the world. In this context, increasing the healthy lifespan of individuals has become an important target for medical research and governments. Cardiac disease remains the leading cause of morbidity and mortality in ageing populations and results in significant increases in healthcare costs. Although clinical and basic research have revealed many novel insights into the pathways that drive heart failure, the molecular mechanisms underlying cardiac ageing and age-related cardiac dysfunction are still not fully understood. In this review we summarize the most updated publications and discuss the central components that drive cardiac ageing. The following characters of mitochondria-related dysfunction have been identified during cardiac ageing: (a) disruption of the integrity of mitochondria-associated membrane (MAM) contact sites; (b) dysregulation of energy metabolism and dynamic flexibility; (c) dyshomeostasis of Ca2+ control; (d) disturbance to mitochondria–lysosomal crosstalk. Furthermore, Cisd2, a pro-longevity gene, is known to be mainly located in the endoplasmic reticulum (ER), mitochondria, and MAM. The expression level of Cisd2 decreases during cardiac ageing. Remarkably, a high level of Cisd2 delays cardiac ageing and ameliorates age-related cardiac dysfunction; this occurs by maintaining correct regulation of energy metabolism and allowing dynamic control of metabolic flexibility. Together, our previous studies and new evidence provided here highlight Cisd2 as a novel target for developing therapies to promote healthy ageing
Collapse
Affiliation(s)
- Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Yi-Ju Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan;
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (C.-H.K.); (T.-F.T.); Tel.: +886-3-211-8800 (ext. 5149) (C.-H.K.); +886-2-2826-7293 (T.-F.T.); Fax: +886-3-211-8700 (C.-H.K.); +886-2-2828-0872 (T.-F.T.)
| | - Ting-Fen Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 350, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (C.-H.K.); (T.-F.T.); Tel.: +886-3-211-8800 (ext. 5149) (C.-H.K.); +886-2-2826-7293 (T.-F.T.); Fax: +886-3-211-8700 (C.-H.K.); +886-2-2828-0872 (T.-F.T.)
| |
Collapse
|
14
|
Affiliation(s)
- Diem H Tran
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Zhao V Wang
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| |
Collapse
|
15
|
Efficacy of aldose reductase inhibitors is affected by oxidative stress induced under X-ray irradiation. Sci Rep 2019; 9:3177. [PMID: 30816220 PMCID: PMC6395642 DOI: 10.1038/s41598-019-39722-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
Human aldose reductase (hAR, AKR1B1) has been explored as drug target since the 1980s for its implication in diabetic complications. An activated form of hAR was found in cells from diabetic patients, showing a reduced sensitivity to inhibitors in clinical trials, which may prevent its pharmacological use. Here we report the conversion of native hAR to its activated form by X-ray irradiation simulating oxidative stress conditions. Upon irradiation, the enzyme activity increases moderately and the potency of several hAR inhibitors decay before global protein radiation damage appears. The catalytic behavior of activated hAR is also reproduced as the KM increases dramatically while the kcat is not much affected. Consistently, the catalytic tetrad is not showing any modification. The only catalytically-relevant structural difference observed is the conversion of residue Cys298 to serine and alanine. A mechanism involving electron capture is suggested for the hAR activation. We propose that hAR inhibitors should not be designed against the native protein but against the activated form as obtained from X-ray irradiation. Furthermore, since the reactive species produced under irradiation conditions are the same as those produced under oxidative stress, the described irradiation method can be applied to other relevant proteins under oxidative stress environments.
Collapse
|
16
|
Huang Q, Liu Q, Ouyang D. Sorbinil, an Aldose Reductase Inhibitor, in Fighting Against Diabetic Complications. Med Chem 2019; 15:3-7. [PMID: 29792152 DOI: 10.2174/1573406414666180524082445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aldose reductase (AR) is involved in the pathogenesis of diabetes, which is one of the major threats to global public health. OBJECTIVE In this review article, we have discussed the role of sorbinil, an AR inhibitor (ARI), in preventing diabetic complications. RESULTS AR contributes in diabetes by generating excess intracellular superoxide and other mediators of oxidative stress through polyol pathway. Inhibition of AR activity thus might be a potential approach for the management of diabetic complications. Experimental evidences indicated that sorbinil can decrease AR activity and inhibit polyol pathway. Both in vitro and animal model studies reported the efficacy of sorbinil in controlling the progression of diabetes. Moreover, Sorbinil has been found to be comparatively safer than other ARIs for human use. But, it is still in earlyphase testing for the treatment of diabetic complications clinically. CONCLUSION Sorbinil is an effective ARI, which could play therapeutic role in treating diabetes and diabetic complications. However, advanced clinical trials are required for sorbinil so that it could be applied with the lowest efficacious dose in humans.
Collapse
Affiliation(s)
- Qi Huang
- Department of Clinical Pharmacology, Xiangya Hospital of Central South University, Changsha 410008, China.,Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qiong Liu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
17
|
Matsuoka S, Bariuan JV, Nakagiri S, Abd Eldaim MA, Okamatsu-Ogura Y, Kimura K. Linking pathways and processes: Retinoic acid and glucose. MOLECULAR NUTRITION: CARBOHYDRATES 2019:247-264. [DOI: 10.1016/b978-0-12-849886-6.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Zhang L, Chen Y, Jiang Q, Song W, Zhang L. Therapeutic potential of selective histone deacetylase 3 inhibition. Eur J Med Chem 2018; 162:534-542. [PMID: 30472601 DOI: 10.1016/j.ejmech.2018.10.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Abstract
Histone deacetylases (HDACs) are closely related to the occurrence and development of a variety of diseases, such as tumor, inflammation, diabetes mellitus, cardiovascular and neurodegenerative diseases. Inhibition of HDACs by developing HDAC inhibitors has achieved significant progress in the treatment of diseases caused by epigenetic abnormalities, and especially in the cancer therapy. Isoform selective HDAC inhibitors are emphasized to be disease specific and have less off-target effects and better safety performances. HDAC3 has been illustrated to play specific role in the development of several diseases, and the discovery of HDAC3 selective inhibitors has exhibited potential in the targeted disease treatment. Herein, we summarize the current knowledge about the prospects of selective inhibition of HDAC3 for the drug development.
Collapse
Affiliation(s)
- Lihui Zhang
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Yiming Chen
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Qixiao Jiang
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Weiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
19
|
Müller L, Hainberger D, Stolz V, Ellmeier W. NCOR1-a new player on the field of T cell development. J Leukoc Biol 2018; 104:1061-1068. [PMID: 30117609 DOI: 10.1002/jlb.1ri0418-168r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/27/2022] Open
Abstract
Nuclear receptor corepressor 1 (NCOR1) is a transcriptional corepressor that links chromatin-modifying enzymes with gene-specific transcription factors. Although identified more than 20 years ago as a corepressor of nuclear receptors, the role of NCOR1 in T cells remained only poorly understood. However, recent studies indicate that the survival of developing thymocytes is regulated by NCOR1, revealing an essential role for NCOR1 in the T cell lineage. In this review, we will briefly summarize basic facts about NCOR1 structure and functions. We will further summarize studies demonstrating an essential role for NCOR1 in controlling positive and negative selection of thymocytes during T cell development. Finally, we will discuss similarities and differences between the phenotypes of mice with a T cell-specific deletion of NCOR1 or histone deacetylase 3 (HDAC3), because HDAC3 is the predominant member of the HDAC family that interacts with NCOR1 corepressor complexes. With this review we aim to introduce NCOR1 as a new player in the team of transcriptional coregulators that control T cell development and thus the generation of the peripheral T cell pool.
Collapse
Affiliation(s)
- Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Zhao HX, Huang YX, Tao JG. ST1926 Attenuates Steroid-Induced Osteoporosis in Rats by Inhibiting Inflammation Response. J Cell Biochem 2017; 118:2072-2086. [PMID: 27918081 DOI: 10.1002/jcb.25812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Hong-xing Zhao
- Department of Orthopedics; The First Affiliated Hospital of Xinxiang Medical University; Weihui City Henan 453100 China
| | - Yuan-xia Huang
- Department of Orthopedics; The First Affiliated Hospital of Xinxiang Medical University; Weihui City Henan 453100 China
| | - Jin-gang Tao
- Department of Orthopedics; The First Affiliated Hospital of Xinxiang Medical University; Weihui City Henan 453100 China
| |
Collapse
|
21
|
Thiagarajan D, Vedantham S, Ananthakrishnan R, Schmidt AM, Ramasamy R. Mechanisms of transcription factor acetylation and consequences in hearts. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2221-2231. [PMID: 27543804 PMCID: PMC5159280 DOI: 10.1016/j.bbadis.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 01/06/2023]
Abstract
Acetylation of proteins as a post-translational modification is gaining rapid acceptance as a cellular control mechanism on par with other protein modification mechanisms such as phosphorylation and ubiquitination. Through genetic manipulations and evolving proteomic technologies, identification and consequences of transcription factor acetylation is beginning to emerge. In this review, we summarize the field and discuss newly unfolding mechanisms and consequences of transcription factor acetylation in normal and stressed hearts. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | | | - Radha Ananthakrishnan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States.
| |
Collapse
|
22
|
Drosatos K. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:32221. [PMID: 27558317 PMCID: PMC4996860 DOI: 10.3402/pba.v6.32221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
Abstract
Age-related cardiomyopathy accounts for a significant part of heart failure cases. Imbalance of the energetic equilibrium of the heart along with mitochondrial dysfunction and impaired β-adrenergic receptor signaling contributes in the aggravation of cardiac function in the elderly. In this review article, studies that correlate cardiac aging with lipotoxicity are summarized. The involvement of inhibition of peroxisome proliferator-activated receptor-α, β-adrenergic receptor desensitization, and mitochondrial dysfunction as underlying mechanisms for the lipid-driven age-related cardiomyopathy are presented with the aim to indicate potential therapeutic targets for cardiac aging.
Collapse
Affiliation(s)
- Konstantinos Drosatos
- Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA;
| |
Collapse
|