1
|
Frawley L, Taylor NT, Sivills O, McPhillamy E, To TD, Wu Y, Chin BY, Wong CY. Stem Cell Therapy for the Treatment of Amyotrophic Lateral Sclerosis: Comparison of the Efficacy of Mesenchymal Stem Cells, Neural Stem Cells, and Induced Pluripotent Stem Cells. Biomedicines 2024; 13:35. [PMID: 39857620 PMCID: PMC11763168 DOI: 10.3390/biomedicines13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts motor function and quality of life, causing progressive muscle atrophy, spasticity, paralysis, and eventually death. The cause of ALS is largely unknown, with 90% of cases being sporadic and 10% familial. Current research targets molecular mechanisms of inflammation, excitotoxicity, aggregation-prone proteins, and proteinopathy. METHODS This review evaluates the efficacy of three stem cell types in ALS treatment: mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). RESULTS MSCs, derived from various tissues, show neuroprotective and regenerative qualities, with clinical trials suggesting potential benefits but limited by small sample sizes and non-randomised designs. NSCs, isolated from the fetal spinal cord or brain, demonstrate promise in animal models but face functional integration and ethical challenges. iPSCs, created by reprogramming patient-specific somatic cells, offer a novel approach by potentially replacing or supporting neurons. iPSC therapy addresses ethical issues related to embryonic stem cells but encounters challenges regarding genotoxicity and epigenetic irregularities, somatic cell sources, privacy concerns, the need for extensive clinical trials, and high reprogramming costs. CONCLUSIONS This research is significant for advancing ALS treatment beyond symptomatic relief and modest survival extensions to actively modifying disease progression and improving patient outcomes. Successful stem cell therapies could lead to new ALS treatments, slowing motor function loss and reducing symptom severity.
Collapse
Affiliation(s)
- Lauren Frawley
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Noam Tomer Taylor
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Olivia Sivills
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Ella McPhillamy
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Timothy Duy To
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Yibo Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Beek Yoke Chin
- School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia
- Center for Cancer & Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur 57000, Malaysia
| | - Chiew Yen Wong
- School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
2
|
Borella F, Fucina S, Seminara Y, Denti P, Ferraioli D, Bertero L, Gallio N, Cusato J, Valabrega G, Revelli A, Marozio L, Cosma S. Targeting TOP2A in Ovarian Cancer: Biological and Clinical Implications. Curr Oncol 2024; 31:8054-8074. [PMID: 39727717 DOI: 10.3390/curroncol31120594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
The enzyme topoisomerase II alpha (TOP2A) plays a critical role in DNA replication and cell proliferation, making it a promising target for cancer therapy. In epithelial ovarian cancer (EOC), TOP2A overexpression is associated with poor prognosis and resistance to conventional treatments. This review explores the biological functions of TOP2A in EOC and discusses its potential as a therapeutic target. We highlight studies on the mechanisms through which TOP2A contributes to tumor progression and recurrence. Additionally, we evaluate the clinical implications of targeting TOP2A, including the use of TOP2A inhibitors and their combination with novel drugs. We provide a comprehensive overview of the current understanding and future directions for targeting TOP2A in the management of EOC.
Collapse
Affiliation(s)
- Fulvio Borella
- Gynecology and Obstetrics 1U, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Fucina
- Gynecology and Obstetrics 1U, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Ylenia Seminara
- Gynecology and Obstetrics 1U, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Pietro Denti
- Gynecology and Obstetrics 1U, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Domenico Ferraioli
- Department of Gynecology, Léon Bérard, Comprehensive Cancer Centre, 69008 Lyon, France
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Niccolò Gallio
- Gynecology and Obstetrics 2U, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy
| | - Giorgio Valabrega
- Department of Oncology, University of Turin, Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy
| | - Alberto Revelli
- Gynecology and Obstetrics 2U, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Luca Marozio
- Gynecology and Obstetrics 1U, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Stefano Cosma
- Gynecology and Obstetrics 1U, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
3
|
Elfar G, Aning O, Ngai T, Yeo P, Chan J, Sim S, Goh L, Yuan J, Phua C, Yeo J, Mak S, Goh B, Chow PH, Tam W, Ho Y, Cheok C. p53-dependent crosstalk between DNA replication integrity and redox metabolism mediated through a NRF2-PARP1 axis. Nucleic Acids Res 2024; 52:12351-12377. [PMID: 39315696 PMCID: PMC11551750 DOI: 10.1093/nar/gkae811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Mechanisms underlying p53-mediated protection of the replicating genome remain elusive, despite the quintessential role of p53 in maintaining genomic stability. Here, we uncover an unexpected function of p53 in curbing replication stress by limiting PARP1 activity and preventing the unscheduled degradation of deprotected stalled forks. We searched for p53-dependent factors and elucidated RRM2B as a prime factor. Deficiency in p53/RRM2B results in the activation of an NRF2 antioxidant transcriptional program, with a concomitant elevation in basal PARylation in cells. Dissecting the consequences of p53/RRM2B loss revealed a crosstalk between redox metabolism and genome integrity that is negotiated through a hitherto undescribed NRF2-PARP1 axis, and pinpoint G6PD as a primary oxidative stress-induced NRF2 target and activator of basal PARylation. This study elucidates how loss of p53 could be destabilizing for the replicating genome and, importantly, describes an unanticipated crosstalk between redox metabolism, PARP1 and p53 tumor suppressor pathway that is broadly relevant in cancers and can be leveraged therapeutically.
Collapse
Affiliation(s)
- Gamal Ahmed Elfar
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Obed Aning
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Tsz Wai Ngai
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Pearlyn Yeo
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Joel Wai Kit Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shang Hong Sim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Leonard Goh
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Ju Yuan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joanna Zhen Zhen Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shi Ya Mak
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian Kim Poh Goh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore and National Cancer Centre Singapore, Singapore
- Surgery Academic ClinicalProgramme, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chit Fang Cheok
- NUS Department of Pathology, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| |
Collapse
|
4
|
Li X, Yang C, Zhang X, Wang F, Sun L, Zhang W, Xu X. R-loop formation contributes to mTORC1 activation-dependent DNA replication stress induced by p53 deficiency. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1875-1885. [PMID: 39592262 PMCID: PMC11693875 DOI: 10.3724/abbs.2024188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/30/2024] [Indexed: 11/28/2024] Open
Abstract
DNA replication stress is a significant contributor to spontaneous DNA damage and genome instability. While the impact of p53 deficiency on increasing DNA replication stress is known, the specific molecular mechanism underlying this phenomenon remains poorly understood. This study explores how p53 deficiency induces DNA replication stress by activating mTORC1 through R-loop formation, which is facilitated by the upregulation of RNR. Research has shown that p53 deficiency results in increased γH2AX expression and a higher mutation rate in the HPRT gene. Interestingly, these effects can be alleviated by rapamycin, an mTORC1 inhibitor. Additionally, rapamycin reduces the abundance of R-loop structures in p53KO cells, which is linked to mTORC1's regulation of ribonucleotide reductase (RNR) level. These findings suggest that p53 deficiency-induced DNA replication stress relies on mTORC1 activation, with the upregulation of RNR expression and R-loop formation. Overall, this study underscores the importance of R-loops in mTORC1 activation-dependent DNA replication stress triggered by p53 deficiency.
Collapse
Affiliation(s)
- Xiaolei Li
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- China-Japan Friendship Jiangxi HospitalNational Regional Center for Respiratory MedicineNanchang330200China
| | - Cheng Yang
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- Jiangxi Medical CollegeFirst Clinical Medical CollegeNanchang UniversityNanchang330006China
| | - Xiaohui Zhang
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- Department of Respiratory and Critical Care MedicineRenmin Hospital of ShangraoShangrao334000China
| | - Feiyang Wang
- Jiangxi Medical CollegeFirst Clinical Medical CollegeNanchang UniversityNanchang330006China
| | - Longhua Sun
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- China-Japan Friendship Jiangxi HospitalNational Regional Center for Respiratory MedicineNanchang330200China
| | - Wei Zhang
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- China-Japan Friendship Jiangxi HospitalNational Regional Center for Respiratory MedicineNanchang330200China
| | - Xinping Xu
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- China-Japan Friendship Jiangxi HospitalNational Regional Center for Respiratory MedicineNanchang330200China
| |
Collapse
|
5
|
Jalan M, Sharma A, Pei X, Weinhold N, Buechelmaier ES, Zhu Y, Ahmed-Seghir S, Ratnakumar A, Di Bona M, McDermott N, Gomez-Aguilar J, Anderson KS, Ng CKY, Selenica P, Bakhoum SF, Reis-Filho JS, Riaz N, Powell SN. RAD52 resolves transcription-replication conflicts to mitigate R-loop induced genome instability. Nat Commun 2024; 15:7776. [PMID: 39237529 PMCID: PMC11377823 DOI: 10.1038/s41467-024-51784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
Collisions of the transcription and replication machineries on the same DNA strand can pose a significant threat to genomic stability. These collisions occur in part due to the formation of RNA-DNA hybrids termed R-loops, in which a newly transcribed RNA molecule hybridizes with the DNA template strand. This study investigated the role of RAD52, a known DNA repair factor, in preventing collisions by directing R-loop formation and resolution. We show that RAD52 deficiency increases R-loop accumulation, exacerbating collisions and resulting in elevated DNA damage. Furthermore, RAD52's ability to interact with the transcription machinery, coupled with its capacity to facilitate R-loop dissolution, highlights its role in preventing collisions. Lastly, we provide evidence of an increased mutational burden from double-strand breaks at conserved R-loop sites in human tumor samples, which is increased in tumors with low RAD52 expression. In summary, this study underscores the importance of RAD52 in orchestrating the balance between replication and transcription processes to prevent collisions and maintain genome stability.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA.
| | - Aman Sharma
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Xin Pei
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Nils Weinhold
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | | | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
| | | | | | - Melody Di Bona
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
- Human Oncology and Pathogenesis, MSKCC, New York, NY, 10065, USA
| | - Niamh McDermott
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | | | - Kyrie S Anderson
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Charlotte K Y Ng
- Department for BioMedical Research, University of Bern, Bern, CH, 3008, Switzerland
- SIB, Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
- Human Oncology and Pathogenesis, MSKCC, New York, NY, 10065, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, MSKCC, New York, NY, 10065, USA
- AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, MSKCC, New York, NY, 10065, USA.
- Molecular Biology Program, MSKCC, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
7
|
Savage SR, Yi X, Lei JT, Wen B, Zhao H, Liao Y, Jaehnig EJ, Somes LK, Shafer PW, Lee TD, Fu Z, Dou Y, Shi Z, Gao D, Hoyos V, Gao Q, Zhang B. Pan-cancer proteogenomics expands the landscape of therapeutic targets. Cell 2024; 187:4389-4407.e15. [PMID: 38917788 PMCID: PMC12010439 DOI: 10.1016/j.cell.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.
Collapse
Affiliation(s)
- Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongwei Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren K Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul W Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tobie D Lee
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zile Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daming Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Valentina Hoyos
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Murayama T, Nakayama J, Jiang X, Miyata K, Morris AD, Cai KQ, Prasad RM, Ma X, Efimov A, Belani N, Gerstein ER, Tan Y, Zhou Y, Kim W, Maruyama R, Campbell KS, Chen L, Yang Y, Balachandran S, Cañadas I. Targeting DHX9 Triggers Tumor-Intrinsic Interferon Response and Replication Stress in Small Cell Lung Cancer. Cancer Discov 2024; 14:468-491. [PMID: 38189443 PMCID: PMC10905673 DOI: 10.1158/2159-8290.cd-23-0486] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Activating innate immunity in cancer cells through cytoplasmic nucleic acid sensing pathways, a phenomenon known as "viral mimicry," has emerged as an effective strategy to convert immunologically "cold" tumors into "hot." Through a curated CRISPR-based screen of RNA helicases, we identified DExD/H-box helicase 9 (DHX9) as a potent repressor of double-stranded RNA (dsRNA) in small cell lung cancers (SCLC). Depletion of DHX9 induced accumulation of cytoplasmic dsRNA and triggered tumor-intrinsic innate immunity. Intriguingly, ablating DHX9 also induced aberrant accumulation of R-loops, which resulted in an increase of DNA damage-derived cytoplasmic DNA and replication stress in SCLCs. In vivo, DHX9 deletion promoted a decrease in tumor growth while inducing a more immunogenic tumor microenvironment, invigorating responsiveness to immune-checkpoint blockade. These findings suggest that DHX9 is a crucial repressor of tumor-intrinsic innate immunity and replication stress, representing a promising target for SCLC and other "cold" tumors in which genomic instability contributes to pathology. SIGNIFICANCE One promising strategy to trigger an immune response within tumors and enhance immunotherapy efficacy is by inducing endogenous "virus-mimetic" nucleic acid accumulation. Here, we identify DHX9 as a viral-mimicry-inducing factor involved in the suppression of double-stranded RNAs and R-loops and propose DHX9 as a novel target to enhance antitumor immunity. See related commentary by Chiappinelli, p. 389. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Takahiko Murayama
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Xinpei Jiang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Biomedical Science Graduate Program, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kenichi Miyata
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Alexander D. Morris
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Rahul M. Prasad
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xueying Ma
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrey Efimov
- Bio Imaging Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Neel Belani
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Emily R. Gerstein
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - William Kim
- Moores Cancer Center, UC San Diego, La Jolla, California
- Center for Novel Therapeutics, UC San Diego, La Jolla, California
- Department of Medicine, UC San Diego, La Jolla, California
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kerry S. Campbell
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Lu Chen
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yibin Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Khamidullina AI, Abramenko YE, Bruter AV, Tatarskiy VV. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int J Mol Sci 2024; 25:1263. [PMID: 38279263 PMCID: PMC10816012 DOI: 10.3390/ijms25021263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.
Collapse
Affiliation(s)
- Alvina I. Khamidullina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yaroslav E. Abramenko
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
10
|
Nainu F, Frediansyah A, Mamada SS, Permana AD, Salampe M, Chandran D, Emran TB, Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023; 9:e16919. [PMID: 37346355 PMCID: PMC10279840 DOI: 10.1016/j.heliyon.2023.e16919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, the incidence of metabolic disorders is increasing, setting a challenge to global health. With major advancement in the diagnostic tools and clinical procedures, much has been known in the etiology of metabolic disorders and their corresponding pathophysiologies. In addition, the use of in vitro and in vivo experimental models prior to clinical studies has promoted numerous biomedical breakthroughs, including in the discovery and development of drug candidates to treat metabolic disorders. Indeed, chemicals isolated from natural products have been extensively studied as prospective drug candidates to manage diabetes, obesity, heart-related diseases, and cancer, partly due to their antioxidant and anti-inflammatory properties. Continuous efforts have been made in parallel to improve their bioactivity and bioavailability using selected drug delivery approaches. Here, we provide insights on recent progress in the role of inflammatory-mediated responses on the initiation of metabolic disorders, with particular reference to diabetes mellitus, obesity, heart-related diseases, and cancer. In addition, we discussed the prospective role of natural products in the management of diabetes, obesity, heart-related diseases, and cancers and provide lists of potential biological targets for high throughput screening in drug discovery and development. Lastly, we discussed findings observed in the preclinical and clinical studies prior to identifying suitable approaches on the phytochemical drug delivery systems that are potential to be used in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
11
|
Steffens Reinhardt L, Groen K, Newton C, Avery-Kiejda KA. The role of truncated p53 isoforms in the DNA damage response. Biochim Biophys Acta Rev Cancer 2023; 1878:188882. [PMID: 36977456 DOI: 10.1016/j.bbcan.2023.188882] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/28/2023]
Abstract
The tumour suppressor p53 is activated following genotoxic stress and regulates the expression of target genes involved in the DNA damage response (DDR). The discovery that p53 isoforms alter the transcription of p53 target genes or p53 protein interactions unveiled an alternative DDR. This review will focus on the role p53 isoforms play in response to DNA damage. The expression of the C-terminally truncated p53 isoforms may be modulated via DNA damage-induced alternative splicing, whereas alternative translation plays an important role in modulating the expression of N-terminally truncated isoforms. The DDR induced by p53 isoforms may enhance the canonical p53 DDR or block cell death mechanisms in a DNA damage- and cell-specific manner, which could contribute to chemoresistance in a cancer context. Thus, a better understanding of the involvement of p53 isoforms in the cell fate decisions could uncover potential therapeutic targets in cancer and other diseases.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cheryl Newton
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
12
|
Mitra S, Emran TB, Chandran D, Zidan BMRM, Das R, Mamada SS, Masyita A, Salampe M, Nainu F, Khandaker MU, Idris AM, Simal-Gandara J. Cruciferous vegetables as a treasure of functional foods bioactive compounds: Targeting p53 family in gastrointestinal tract and associated cancers. Front Nutr 2022; 9:951935. [PMID: 35990357 PMCID: PMC9386315 DOI: 10.3389/fnut.2022.951935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
In the past few years, phytochemicals from natural products have gotten the boundless praise in treating cancer. The promising role of cruciferous vegetables and active components contained in these vegetables, such as isothiocyanates, indole-3-carbinol, and isothiocyanates, has been widely researched in experimental in vitro and in vivo carcinogenesis models. The chemopreventive agents produced from the cruciferous vegetables were recurrently proven to affect carcinogenesis throughout the onset and developmental phases of cancer formation. Likewise, findings from clinical investigations and epidemiological research supported this statement. The anticancer activities of these functional foods bioactive compounds are closely related to their ability to upregulate p53 and its related target genes, e.g., p21. As the "guardian of the genome," the p53 family (p53, p63, and p73) plays a pivotal role in preventing the cancer progression associated with DNA damage. This review discusses the functional foods bioactive compounds derived from several cruciferous vegetables and their use in altering the tumor-suppressive effect of p53 proteins. The association between the mutation of p53 and the incidence of gastrointestinal malignancies (gastric, small intestine, colon, liver, and pancreatic cancers) is also discussed. This review contains crucial information about the use of cruciferous vegetables in the treatment of gastrointestinal tract malignancies.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, India
| | | | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
13
|
Giansanti C, Manzini V, Dickmanns A, Dickmanns A, Palumbieri MD, Sanchi A, Kienle SM, Rieth S, Scheffner M, Lopes M, Dobbelstein M. MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression. Cell Rep 2022; 39:110879. [PMID: 35649362 DOI: 10.1016/j.celrep.2022.110879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022] Open
Abstract
The MDM2 oncoprotein antagonizes the tumor suppressor p53 by physical interaction and ubiquitination. However, it also sustains the progression of DNA replication forks, even in the absence of functional p53. Here, we show that MDM2 binds, inhibits, ubiquitinates, and destabilizes poly(ADP-ribose) polymerase 1 (PARP1). When cellular MDM2 levels are increased, this leads to accelerated progression of DNA replication forks, much like pharmacological inhibition of PARP1. Conversely, overexpressed PARP1 restores normal fork progression despite elevated MDM2. Strikingly, MDM2 profoundly reduces the frequency of fork reversal, revealed as four-way junctions through electron microscopy. Depletion of RECQ1 or the primase/polymerase (PRIMPOL) reverses the MDM2-mediated acceleration of the nascent DNA elongation rate. MDM2 also increases the occurrence of micronuclei, and it exacerbates camptothecin-induced cell death. In conclusion, high MDM2 levels phenocopy PARP inhibition in modulation of fork restart, representing a potential vulnerability of cancer cells.
Collapse
Affiliation(s)
- Celeste Giansanti
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Valentina Manzini
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute of Microbiology & Genetics, GZMB, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Maria Dilia Palumbieri
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Sonja Rieth
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
14
|
Borel V, Boeing S, Van Wietmarschen N, Sridharan S, Hill BR, Ombrato L, Perez-Lloret J, Jackson D, Goldstone R, Boulton SJ, Nussenzweig A, Bellelli R. Disrupted control of origin activation compromises genome integrity upon destabilization of Polε and dysfunction of the TRP53-CDKN1A/P21 axis. Cell Rep 2022; 39:110871. [PMID: 35649380 PMCID: PMC9637995 DOI: 10.1016/j.celrep.2022.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/16/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
The maintenance of genome stability relies on coordinated control of origin activation and replication fork progression. How the interplay between these processes influences human genetic disease and cancer remains incompletely characterized. Here we show that mouse cells featuring Polε instability exhibit impaired genome-wide activation of DNA replication origins, in an origin-location-independent manner. Strikingly, Trp53 ablation in primary Polε hypomorphic cells increased Polε levels and origin activation and reduced DNA damage in a transcription-dependent manner. Transcriptome analysis of primary Trp53 knockout cells revealed that the TRP53-CDKN1A/P21 axis maintains appropriate levels of replication factors and CDK activity during unchallenged S phase. Loss of this control mechanism deregulates origin activation and perturbs genome-wide replication fork progression. Thus, while our data support an impaired origin activation model for genetic diseases affecting CMG formation, we propose that loss of the TRP53-CDKN1A/P21 tumor suppressor axis induces inappropriate origin activation and deregulates genome-wide fork progression.
Collapse
Affiliation(s)
- Valerie Borel
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Stefan Boeing
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | | | - Sriram Sridharan
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Bethany Rebekah Hill
- Centre for Cancer Cell and Molecular Biology, The Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, EC1M 6BE London, UK
| | - Luigi Ombrato
- Centre for Tumour Microenvironment, The Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, EC1M 6BE London, UK
| | | | - Deb Jackson
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | | | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, The Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, EC1M 6BE London, UK.
| |
Collapse
|
15
|
p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ 2022; 29:972-982. [PMID: 35444234 PMCID: PMC9090812 DOI: 10.1038/s41418-022-00999-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
Despite several decades of intense research focused on understanding function(s) and disease-associated malfunction of p53, there is no sign of any “mid-life crisis” in this rapidly advancing area of biomedicine. Firmly established as the hub of cellular stress responses and tumor suppressor targeted in most malignancies, p53’s many talents continue to surprise us, providing not only fresh insights into cell and organismal biology, but also new avenues to cancer treatment. Among the most fruitful lines of p53 research in recent years have been the discoveries revealing the multifaceted roles of p53-centered pathways in the fundamental processes of DNA replication and ribosome biogenesis (RiBi), along with cellular responses to replication and RiBi stresses, two intertwined areas of cell (patho)physiology that we discuss in this review. Here, we first provide concise introductory notes on the canonical roles of p53, the key interacting proteins, downstream targets and post-translational modifications involved in p53 regulation. We then highlight the emerging involvement of p53 as a key component of the DNA replication Fork Speed Regulatory Network and the mechanistic links of p53 with cellular checkpoint responses to replication stress (RS), the driving force of cancer-associated genomic instability. Next, the tantalizing, yet still rather foggy functional crosstalk between replication and RiBi (nucleolar) stresses is considered, followed by the more defined involvement of p53-mediated monitoring of the multistep process of RiBi, including the latest updates on the RPL5/RPL11/5 S rRNA-MDM2-p53-mediated Impaired Ribosome Biogenesis Checkpoint (IRBC) pathway and its involvement in tumorigenesis. The diverse defects of RiBi and IRBC that predispose and/or contribute to severe human pathologies including developmental syndromes and cancer are then outlined, along with examples of promising small-molecule-based strategies to therapeutically target the RS- and particularly RiBi- stress-tolerance mechanisms to which cancer cells are addicted due to their aberrant DNA replication, repair, and proteo-synthesis demands. ![]()
Collapse
|
16
|
Borowczak J, Szczerbowski K, Maniewski M, Zdrenka M, Słupski P, Antosik P, Kołodziejska S, Sekielska-Domanowska M, Dubiel M, Bodnar M, Szylberg Ł. The Prognostic Role of CDK9 in Bladder Cancer. Cancers (Basel) 2022; 14:cancers14061492. [PMID: 35326643 PMCID: PMC8945910 DOI: 10.3390/cancers14061492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
Introduction: Most patients with urothelial carcinoma are diagnosed with non-invasive tumors, but the prognosis worsens with the progression of the disease. Overexpression of cyclin-dependent kinase 9 has been recently linked to increased cancer proliferation, faster progression, and worse prognosis. However, some cancers seem to contradict this rule. In this work, we explored the prognostic role of CDK9 expression in urothelial carcinoma. Materials and Methods: We performed immunohistochemical analysis on 72 bladder cancer samples. To assess a larger group of patients, the Cancer Genome Atlas (TCGA) database containing 406 cases and transcriptomics information through the Human Pathology Atlas were analyzed. Results: CDK9 is overexpressed in urothelial cancer tissues when compared to normal urothelial tissues (p < 0.05). High CDK9 expression was observed in low-stage, low-grade, and non-muscle-invasive tumors (p < 0.05). The patients with high CDK9 expression had a significantly higher 5-year overall survival rate than those with low CDK9 expression (77.54% vs. 53.6% in the TMA group and 57.75% vs. 35.44% in the TCGA group, respectively) (p < 0.05). The results were consistent in both cohorts. Multivariate Cox regression analysis indicated that low CDK9 status was an independent predictor for poor prognosis in the TCGA cohort (HR 1.60, CL95% 1.1−2.33, p = 0.014). Conclusions: High CDK9 expression predicts a favorable prognosis in urothelial carcinoma and is associated with clinicopathological features characteristic for early-stage disease. The decrease in CDK9 expression can be associated with the build-up of genetic instability and may indicate a key role for CDK9 in the early stages of urothelial carcinoma.
Collapse
Affiliation(s)
- Jędrzej Borowczak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
- Correspondence: ; Tel.: +48-52-5854200; Fax: +48-52-5854049
| | - Krzysztof Szczerbowski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
| | - Mateusz Maniewski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
| | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Centre—Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Piotr Słupski
- Department of Urology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-168 Bydgoszcz, Poland;
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
| | - Sylwia Kołodziejska
- Chair of Pathology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-168 Bydgoszcz, Poland;
| | - Marta Sekielska-Domanowska
- Department of Obstetrics, Gynecology and Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-168 Bydgoszcz, Poland; (M.S.-D.); (M.D.)
| | - Mariusz Dubiel
- Department of Obstetrics, Gynecology and Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-168 Bydgoszcz, Poland; (M.S.-D.); (M.D.)
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
- Chair of Pathology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-168 Bydgoszcz, Poland;
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; (K.S.); (M.M.); (P.A.); (M.B.); (Ł.S.)
- Department of Tumor Pathology and Pathomorphology, Oncology Centre—Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
- Chair of Pathology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-168 Bydgoszcz, Poland;
| |
Collapse
|
17
|
Rapid recruitment of p53 to DNA damage sites directs DNA repair choice and integrity. Proc Natl Acad Sci U S A 2022; 119:e2113233119. [PMID: 35235448 PMCID: PMC8915893 DOI: 10.1073/pnas.2113233119] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our work focuses on the critical longstanding question of the nontranscriptional role of p53 in tumor suppression. We demonstrate here that poly(ADP-ribose) polymerase (PARP)–dependent modification of p53 enables rapid recruitment of p53 to damage sites, where it in turn directs early repair pathway selection. Specifically, p53-mediated recruitment of 53BP1 at early time points promotes nonhomologous end joining over the more error-prone microhomology end-joining. Similarly, p53 directs nucleotide excision repair by mediating DDB1 recruitment. This property of p53 also correlates with tumor suppression in vivo. Our study provides mechanistic insight into how certain transcriptionally deficient p53 mutants may retain tumor-suppressive functions through regulating the DNA damage response. p53 is primarily known as a downstream transcriptional effector in the DNA damage-response cascade. We report that endogenous p53 rapidly accumulates at DNA damage sites within 2 s of UVA microirradiation. The kinetics of p53 recruitment mimics those of known DNA damage-response proteins, such as Ku70 and poly(ADP-ribose) polymerase (PARP), and precedes recruitment of Nbs1, 53BP1, and DDB1. Mutations in the DNA-binding and C-terminal domains significantly suppress this rapid recruitment. The C-terminal domain of p53 contains key residues for PARP interaction that are required for rapid recruitment of p53 to DNA damage sites, as is PARP-dependent modification. The presence of p53 at damage sites influences the recruitment kinetics of 53BP1 and DDB1 and directs the choice of nonhomologous end joining repair (NHEJ) and nucleotide excision repair. Mutations that suppressed rapid recruitment of p53 promoted error-prone alternative end-joining (alt-NHEJ) and inhibited nucleotide excision repair. Our finding that p53 is a critical early responder to DNA damage stands in contrast with its extensively studied role as a downstream transcriptional regulator in DNA damage repair. We highlight an unrecognized role of p53 in directing DNA repair dynamics and integrity and suggest a parallel mode of p53 tumor suppression apart from its function as a transcription factor.
Collapse
|
18
|
Struve N, Hoffer K, Weik AS, Riepen B, Krug L, Cetin MH, Burmester J, Ott L, Liebing J, Gatzemeier F, Müller-Goebel J, Gerbach M, Bußmann L, Parplys AC, Unger K, Mansour WY, Schüller U, Rieckmann T, Petersen C, Rothkamm K, Short SC, Kriegs M. Increased replication stress and R-loop accumulation in EGFRvIII-expressing glioblastoma present new therapeutic opportunities. Neurooncol Adv 2022; 4:vdab180. [PMID: 35274102 PMCID: PMC8903237 DOI: 10.1093/noajnl/vdab180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The oncogene epidermal growth factor receptor variant III (EGFRvIII) is expressed in approximately one-third of all glioblastomas (GBMs). So far it is not clear if EGFRvIII expression induces replication stress in GBM cells, which might serve as a therapeutical target. Methods Isogenetic EGFRvIII− and EGFRvIII+ cell lines with endogenous EGFRvIII expression were used. Markers of oncogenic and replication stress such as γH2AX, RPA, 53BP1, ATR, and CHK1 were analyzed using western blot, immunofluorescence, and flow cytometry. The DNA fiber assay was performed to analyze replication, transcription was measured by incorporation of EU, and genomic instability was investigated by micronuclei and CGH-Array analysis. Immunohistochemistry staining was used to detect replication stress markers and R-loops in human GBM samples. Results EGFRvIII+ cells exhibit an activated replication stress response, increased spontaneous DNA damage, elevated levels of single-stranded DNA, and reduced DNA replication velocity, which are all indicative characteristics of replication stress. Furthermore, we show here that EGFRvIII expression is linked to increased genomic instability. EGFRvIII-expressing cells display elevated RNA synthesis and R-loop formation, which could also be confirmed in EGFRvIII-positive GBM patient samples. Targeting replication stress by irinotecan resulted in increased sensitivity of EGFRvIII+ cells. Conclusion This study demonstrates that EGFRvIII expression is associated with increased replication stress, R-loop accumulation, and genomic instability. This might contribute to intratumoral heterogeneity but may also be exploited for individualized therapy approaches.
Collapse
Affiliation(s)
- Nina Struve
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantin Hoffer
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna-Sophie Weik
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Britta Riepen
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Krug
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meryem H Cetin
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Burmester
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Ott
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Liebing
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Justus Müller-Goebel
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mirja Gerbach
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Bußmann
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology & Experimental Radiation, Germany
| | - Ann Christin Parplys
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Oberschleibheim, Germany
| | - Wael Y Mansour
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology & Experimental Radiation, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan C Short
- Leeds Institute of Cancer and Pathology, St James's University Hospital, UK
| | - Malte Kriegs
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Czegle I, Gray AL, Wang M, Liu Y, Wang J, Wappler-Guzzetta EA. Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life (Basel) 2021; 11:1351. [PMID: 34947882 PMCID: PMC8707674 DOI: 10.3390/life11121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Austin L. Gray
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Minjing Wang
- Independent Researcher, Diamond Bar, CA 91765, USA;
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Edina A. Wappler-Guzzetta
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| |
Collapse
|
20
|
Ihle M, Biber S, Schroeder IS, Blattner C, Deniz M, Damia G, Gottifredi V, Wiesmüller L. Impact of the interplay between stemness features, p53 and pol iota on replication pathway choices. Nucleic Acids Res 2021; 49:7457-7475. [PMID: 34165573 PMCID: PMC8287946 DOI: 10.1093/nar/gkab526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Using human embryonic, adult and cancer stem cells/stem cell-like cells (SCs), we demonstrate that DNA replication speed differs in SCs and their differentiated counterparts. While SCs decelerate DNA replication, differentiated cells synthesize DNA faster and accumulate DNA damage. Notably, both replication phenotypes depend on p53 and polymerase iota (POLι). By exploring protein interactions and newly synthesized DNA, we show that SCs promote complex formation of p53 and POLι at replication sites. Intriguingly, in SCs the translocase ZRANB3 is recruited to POLι and required for slow-down of DNA replication. The known role of ZRANB3 in fork reversal suggests that the p53–POLι complex mediates slow but safe bypass of replication barriers in SCs. In differentiated cells, POLι localizes more transiently to sites of DNA synthesis and no longer interacts with p53 facilitating fast POLι-dependent DNA replication. In this alternative scenario, POLι associates with the p53 target p21, which antagonizes PCNA poly-ubiquitination and, thereby potentially disfavors the recruitment of translocases. Altogether, we provide evidence for diametrically opposed DNA replication phenotypes in SCs and their differentiated counterparts putting DNA replication-based strategies in the spotlight for the creation of therapeutic opportunities targeting SCs.
Collapse
Affiliation(s)
- Michaela Ihle
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Stephanie Biber
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Insa S Schroeder
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt 64291, Germany
| | - Christine Blattner
- Institute for Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Miriam Deniz
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Giovanna Damia
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS Milan, Milan 20156, Italy
| | - Vanesa Gottifredi
- Cell cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, Buenos Aires C1405BWE, Argentina
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| |
Collapse
|
21
|
Coronel L, Riege K, Schwab K, Förste S, Häckes D, Semerau L, Bernhart SH, Siebert R, Hoffmann S, Fischer M. Transcription factor RFX7 governs a tumor suppressor network in response to p53 and stress. Nucleic Acids Res 2021; 49:7437-7456. [PMID: 34197623 PMCID: PMC8287911 DOI: 10.1093/nar/gkab575] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
Despite its prominence, the mechanisms through which the tumor suppressor p53 regulates most genes remain unclear. Recently, the regulatory factor X 7 (RFX7) emerged as a suppressor of lymphoid neoplasms, but its regulation and target genes mediating tumor suppression remain unknown. Here, we identify a novel p53-RFX7 signaling axis. Integrative analysis of the RFX7 DNA binding landscape and the RFX7-regulated transcriptome in three distinct cell systems reveals that RFX7 directly controls multiple established tumor suppressors, including PDCD4, PIK3IP1, MXD4, and PNRC1, across cell types and is the missing link for their activation in response to p53 and stress. RFX7 target gene expression correlates with cell differentiation and better prognosis in numerous cancer types. Interestingly, we find that RFX7 sensitizes cells to Doxorubicin by promoting apoptosis. Together, our work establishes RFX7’s role as a ubiquitous regulator of cell growth and fate determination and a key node in the p53 transcriptional program.
Collapse
Affiliation(s)
- Luis Coronel
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Katjana Schwab
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Silke Förste
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - David Häckes
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Lena Semerau
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Stephan H Bernhart
- Transcriptome Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
22
|
Role of Dietary Antioxidants in p53-Mediated Cancer Chemoprevention and Tumor Suppression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9924328. [PMID: 34257824 PMCID: PMC8257365 DOI: 10.1155/2021/9924328] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer arises through a complex interplay between genetic, behavioral, metabolic, and environmental factors that combined trigger cellular changes that over time promote malignancy. In terms of cancer prevention, behavioral interventions such as diet can promote genetic programs that may facilitate tumor suppression; and one of the key tumor suppressors responsible for initiating such programs is p53. The p53 protein is activated by various cellular events such as DNA damage, hypoxia, heat shock, and overexpression of oncogenes. Due to its role in cell fate decisions after DNA damage, regulatory pathways controlled by p53 help to maintain genome stability and thus “guard the genome” against mutations that cause cancer. Dietary intake of flavonoids, a C15 group of polyphenols, is known to inhibit cancer progression and assist DNA repair through p53-mediated mechanisms in human cells via their antioxidant activities. For example, quercetin arrests human cervical cancer cell growth by blocking the G2/M phase cell cycle and inducing mitochondrial apoptosis through a p53-dependent mechanism. Other polyphenols such as resveratrol upregulate p53 expression in several cancer cell lines by promoting p53 stability, which in colon cancer cells results in the activation of p53-mediated apoptosis. Finally, among vitamins, folic acid seems to play an important role in the chemoprevention of gastric carcinogenesis by enhancing gastric epithelial apoptosis in patients with premalignant lesions by significantly increased expression of p53. In this review, we discuss the role of these and other dietary antioxidants in p53-mediated cell signaling in relation to cancer chemoprevention and tumor suppression in normal and cancer cells.
Collapse
|
23
|
Oscilowska I, Huynh TYL, Baszanowska W, Prokop I, Surazynski A, Galli M, Zabielski P, Palka J. Proline oxidase silencing inhibits p53-dependent apoptosis in MCF-7 breast cancer cells. Amino Acids 2021; 53:1943-1956. [PMID: 34085157 PMCID: PMC8651586 DOI: 10.1007/s00726-021-03013-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 02/02/2023]
Abstract
Proline oxidase (POX) is mitochondrial proline-degrading enzyme of dual apoptosis/survival function. POX expression and proline availability are considered an underlying mechanism for differential POX functions. The mechanism for POX-dependent regulation of cell death/survival was studied in wild-type (MCF-7WT) and shRNA POX-silenced breast cancer cells (MCF-7iPOX). Proline concentration and proteomic analyses were determined by LC/MS/QTOF and LC/MS/ORBITRA, respectively. Inhibition of collagen biosynthesis (proline utilizing process) by 2-methoxyestradiol (2ME) contributed to induction of apoptosis in MCF-7WT cells, as detected by increase in the expression of active caspase-3, -9 and p53. The process was not shown in MCF-7iPOX. In MCF-7iPOX cells prolidase activity and expression as well as proline concentration were drastically increased, compared to MCF-7WT cells. Down-regulation of p53 in MCF-7iPOX cells was corroborated by proteomic analysis showing decrease in the expression of p53-related proteins. The mechanism for down-regulation of p53 expression in MCF-7iPOX cells was found at the level of p53-PEPD complex formation that was counteracted by hydrogen peroxide treatment. In this study, we found that silencing POX modulate pro-survival phenotype of MCF-7 cells and suggest that the mechanism of this process undergoes through down-regulation of p53-dependent signaling.
Collapse
Affiliation(s)
- Ilona Oscilowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Thi Y L Huynh
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Weronika Baszanowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Izabela Prokop
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, Mickiewicza 2C, 15-222, Bialystok, Poland
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Mickiewicza 2C, 15-222, Bialystok, Poland
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
24
|
Wang C, Xie Q, Sun W, Zhou Y, Liu Y. lncRNA WT1-AS is upregulated in osteoporosis and regulates the apoptosis of osteoblasts by interacting with p53. Exp Ther Med 2021; 22:734. [PMID: 34055051 PMCID: PMC8138279 DOI: 10.3892/etm.2021.10166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022] Open
Abstract
In cervical cancer, cellular tumor antigen p53 (p53) interacts with long non-coding WT1 antisense RNA (WT1-AS) and this protein serves an important role in osteoporosis. The present study aimed to investigate the role of WT1-AS in osteoporosis. WT1-AS was upregulated in the plasma of patients with osteoporosis and was positively correlated with p53 expression. Altered expression of WT1-AS and p53 separated patients with osteoporosis from healthy controls. Expression levels of WT1-AS and p53 decreased with prolonged treatment. In osteoblasts, WT1-AS overexpression resulted in increased p53 expression, while WT1-AS small interfering RNA (siRNA) silencing resulted in decreased p53 expression. In addition, WT1-AS overexpression resulted in increased apoptosis rate, while WT1-AS siRNA silencing resulted in decreased apoptosis rate in osteoblasts. p53 overexpression attenuated the effects of WT1-AS siRNA silencing on cell apoptosis. Therefore, WT1-AS was upregulated during osteoporosis and regulated the apoptosis of osteoblasts by interacting with p53.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Nuclear Medicine, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Quan Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Wen Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Ying Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yu Liu
- Cancer Institute Of Hainan Medicail University, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
25
|
Replication stress promotes cell elimination by extrusion. Nature 2021; 593:591-596. [PMID: 33953402 DOI: 10.1038/s41586-021-03526-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/09/2021] [Indexed: 01/21/2023]
Abstract
Cell extrusion is a mechanism of cell elimination that is used by organisms as diverse as sponges, nematodes, insects and mammals1-3. During extrusion, a cell detaches from a layer of surrounding cells while maintaining the continuity of that layer4. Vertebrate epithelial tissues primarily eliminate cells by extrusion, and the dysregulation of cell extrusion has been linked to epithelial diseases, including cancer1,5. The mechanisms that drive cell extrusion remain incompletely understood. Here, to analyse cell extrusion by Caenorhabditis elegans embryos3, we conducted a genome-wide RNA interference screen, identified multiple cell-cycle genes with S-phase-specific function, and performed live-imaging experiments to establish how those genes control extrusion. Extruding cells experience replication stress during S phase and activate a replication-stress response via homologues of ATR and CHK1. Preventing S-phase entry, inhibiting the replication-stress response, or allowing completion of the cell cycle blocked cell extrusion. Hydroxyurea-induced replication stress6,7 triggered ATR-CHK1- and p53-dependent cell extrusion from a mammalian epithelial monolayer. We conclude that cell extrusion induced by replication stress is conserved among animals and propose that this extrusion process is a primordial mechanism of cell elimination with a tumour-suppressive function in mammals.
Collapse
|
26
|
Drainas AP, Lambuta RA, Ivanova I, Serçin Ö, Sarropoulos I, Smith ML, Efthymiopoulos T, Raeder B, Stütz AM, Waszak SM, Mardin BR, Korbel JO. Genome-wide Screens Implicate Loss of Cullin Ring Ligase 3 in Persistent Proliferation and Genome Instability in TP53-Deficient Cells. Cell Rep 2021; 31:107465. [PMID: 32268084 PMCID: PMC7166082 DOI: 10.1016/j.celrep.2020.03.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 11/07/2019] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
TP53 deficiency is the most common alteration in cancer; however, this alone is typically insufficient to drive tumorigenesis. To identify genes promoting tumorigenesis in combination with TP53 deficiency, we perform genome-wide CRISPR-Cas9 knockout screens coupled with proliferation and transformation assays in isogenic cell lines. Loss of several known tumor suppressors enhances cellular proliferation and transformation. Loss of neddylation pathway genes promotes uncontrolled proliferation exclusively in TP53-deficient cells. Combined loss of CUL3 and TP53 activates an oncogenic transcriptional program governed by the nuclear factor κB (NF-κB), AP-1, and transforming growth factor β (TGF-β) pathways. This program maintains persistent cellular proliferation, induces partial epithelial to mesenchymal transition, and increases DNA damage, genomic instability, and chromosomal rearrangements. Our findings reveal CUL3 loss as a key event stimulating persistent proliferation in TP53-deficient cells. These findings may be clinically relevant, since TP53-CUL3-deficient cells are highly sensitive to ataxia telangiectasia mutated (ATM) inhibition, exposing a vulnerability that could be exploited for cancer treatment. Mixed-effect models with MEMcrispR applied to CRISPR screen analyses Knockout of neddylation genes increases persistent proliferation in TP53−/− cells TP53−/−,CUL3−/− cells exhibit persistent proliferation and partial EMT phenotype TP53−/−,CUL3−/− cells show increased DNA damage and display sensitivity to ATM inhibition
Collapse
Affiliation(s)
- Alexandros P Drainas
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Ruxandra A Lambuta
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Irina Ivanova
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ioannis Sarropoulos
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Mike L Smith
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Theocharis Efthymiopoulos
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Sebastian M Waszak
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | | | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| |
Collapse
|
27
|
ARID1A regulates R-loop associated DNA replication stress. PLoS Genet 2021; 17:e1009238. [PMID: 33826602 PMCID: PMC8055027 DOI: 10.1371/journal.pgen.1009238] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/19/2021] [Accepted: 03/20/2021] [Indexed: 01/29/2023] Open
Abstract
ARID1A is a core DNA-binding subunit of the BAF chromatin remodeling complex, and is lost in up to 7% of all cancers. The frequency of ARID1A loss increases in certain cancer types, such as clear cell ovarian carcinoma where ARID1A protein is lost in about 50% of cases. While the impact of ARID1A loss on the function of the BAF chromatin remodeling complexes is likely to drive oncogenic gene expression programs in specific contexts, ARID1A also binds genome stability regulators such as ATR and TOP2. Here we show that ARID1A loss leads to DNA replication stress associated with R-loops and transcription-replication conflicts in human cells. These effects correlate with altered transcription and replication dynamics in ARID1A knockout cells and to reduced TOP2A binding at R-loop sites. Together this work extends mechanisms of replication stress in ARID1A deficient cells with implications for targeting ARID1A deficient cancers. DNA is an incredibly busy molecule. It is bound by an ever-changing array of proteins, which control how our cells read the instructions encoded within DNA, through a process called transcription. DNA also must be replicated, condensed, and segregated every time a cell divides. These processes of DNA replicating and transcribing must not interfere with one another or the cell risks damage to DNA and potentially changes to the DNA code called mutations. In cancer many DNA transactions are perturbed, and this has been associated with damaging collisions between replication and transcription. Here we find that a gene called ARID1A, which is frequently lost in cancer cells, prevents such collisions between replication and transcription machinery. Loss of ARID1A has many effects on the cell, but in this context it seems to change the location and activity of an important regulator of DNA twisting and untangling called Topoisomerase 2A. Understanding how loss of ARID1A creates stresses on dividing cancer cells provides new opportunities to develop or apply therapies that could exploit this stress.
Collapse
|
28
|
Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL, Lin MH, Chen HW, Chang GC, Chang YL, Wu CT, Lin MW, Hsieh MS, Wang YT, Chen YR, Jonassen I, Ghavidel FZ, Lin ZS, Lin KT, Chen CW, Sheu PY, Hung CT, Huang KC, Yang HC, Lin PY, Yen TC, Lin YW, Wang JH, Raghav L, Lin CY, Chen YS, Wu PS, Lai CT, Weng SH, Su KY, Chang WH, Tsai PY, Robles AI, Rodriguez H, Hsiao YJ, Chang WH, Sung TY, Chen JS, Yu SL, Choudhary JS, Chen HY, Yang PC, Chen YJ. Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2021; 182:226-244.e17. [PMID: 32649875 DOI: 10.1016/j.cell.2020.06.012] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Tai Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mong-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tai Wang
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Inge Jonassen
- Computational Biology Unit (CBU), Informatics Department, University of Bergen, Bergen, Norway
| | | | - Ze-Shiang Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ching-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Sheu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ting Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Hao-Chin Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ta-Chi Yen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Bioinformatics Program, Taiwan International Graduate Program, Hsinchu, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yan-Si Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Pei-Shan Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Ting Lai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Yan Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsin Chang
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan.
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
29
|
Biber S, Pospiech H, Gottifredi V, Wiesmüller L. Multiple biochemical properties of the p53 molecule contribute to activation of polymerase iota-dependent DNA damage tolerance. Nucleic Acids Res 2020; 48:12188-12203. [PMID: 33166398 PMCID: PMC7708082 DOI: 10.1093/nar/gkaa974] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
We have previously reported that p53 decelerates nascent DNA elongation in complex with the translesion synthesis (TLS) polymerase ι (POLι) which triggers a homology-directed DNA damage tolerance (DDT) pathway to bypass obstacles during DNA replication. Here, we demonstrate that this DDT pathway relies on multiple p53 activities, which can be disrupted by TP53 mutations including those frequently found in cancer tissues. We show that the p53-mediated DDT pathway depends on its oligomerization domain (OD), while its regulatory C-terminus is not involved. Mutation of residues S315 and D48/D49, which abrogate p53 interactions with the DNA repair and replication proteins topoisomerase I and RPA, respectively, and residues L22/W23, which disrupt formation of p53-POLι complexes, all prevent this DDT pathway. Our results demonstrate that the p53-mediated DDT requires the formation of a DNA binding-proficient p53 tetramer, recruitment of such tetramer to RPA-coated forks and p53 complex formation with POLι. Importantly, our mutational analysis demonstrates that transcriptional transactivation is dispensable for the POLι-mediated DDT pathway, which we show protects against DNA replication damage from endogenous and exogenous sources.
Collapse
Affiliation(s)
- Stephanie Biber
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Helmut Pospiech
- Project group Biochemistry, Leibniz Institute on Aging - Fritz Lipmann Institute, D-07745 Jena, Germany.,Faculty of Biochemistry and Molecular Medicine, FIN-90014 University of Oulu, Finland
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, Buenos Aires C1405BWE, Argentina
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| |
Collapse
|
30
|
Beyond Kinases: Targeting Replication Stress Proteins in Cancer Therapy. Trends Cancer 2020; 7:430-446. [PMID: 33203609 DOI: 10.1016/j.trecan.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
DNA replication stress describes a state of impaired replication fork progress that triggers a cellular stress response to maintain genome stability and complete DNA synthesis. Replication stress is a common state that must be tolerated in many cancers. One promising therapeutic approach is targeting replication stress response factors such as the ataxia telangiectasia and rad 3-related kinase (ATR) or checkpoint kinase 1 (CHK1) kinases that some cancers depend upon to survive endogenous replication stress. However, research revealing the complexity of the replication stress response suggests new genetic interactions and candidate therapeutic targets. Many of these candidates regulate DNA transactions around reversed replication forks, including helicases, nucleases and alternative polymerases that promote fork stability and restart. Here we review emerging strategies to exploit replication stress for cancer therapy.
Collapse
|
31
|
Gong Y, Tian C, Lu S, Gao Y, Wen L, Chen B, Gao H, Zhang H, Zhao J, Wang J. Harmine Combined with Rad54 Knockdown Inhibits the Viability of Echinococcus granulosus by Enhancing DNA Damage. DNA Cell Biol 2020; 40:1-9. [PMID: 33170025 DOI: 10.1089/dna.2020.5779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed at exploring the role of EgRad54 and the effect of harmine (HM) or HM derivatives (HMDs) on DNA damage in Echinococcus granulosus. DNA damage in E. granulosus protoscoleces (PSCs) was assessed by using a comet assay, after treatment with HM or HMDs. Efficiency of electroporation-based transfection of PSCs and subsequent EgRad54 knockdown was evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR) and fluorescence intensity. Viability of PSCs was determined via eosin exclusion test, and expression of related genes was analyzed via RT-qPCR. HM and HMDs significantly (p < 0.05) increased DNA damage in E. granulosus, and upregulated EgRad54 expression. Compared with HM and HMD-only treatment groups, EgRad54 knockdown combined with HM and HMD treatment further reduced E. granulosus viability. This combined approach resulted in significant (p < 0.05) downregulation of Rad54 and Topo2a expression, and upregulation of ATM expression, whereas H2A and P53 expression was significantly higher compared with control groups. These data show that EgRad54 knockdown, combined with HM or HMD treatment, enhances DNA damage in E. granulosus via upregulation of ATM and H2A, and downregulation of Rad54 and Topo2a, thereby inhibiting E. granulosus growth, and suggest that EgRad54 is a potential therapeutic target for cystic echinococcosis treatment.
Collapse
Affiliation(s)
- Yuehong Gong
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chunyan Tian
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shuai Lu
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi Gao
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Limei Wen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bei Chen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huijing Gao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haibo Zhang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jun Zhao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianhua Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
32
|
Khot M, Sreekumar D, Jahagirdar S, Kulkarni A, Hari K, Faseela EE, Sabarinathan R, Jolly MK, Sengupta K. Twist1 induces chromosomal instability (CIN) in colorectal cancer cells. Hum Mol Genet 2020; 29:1673-1688. [PMID: 32337580 PMCID: PMC7322571 DOI: 10.1093/hmg/ddaa076] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Twist1 is a basic helix-loop-helix transcription factor, essential during early development in mammals. While Twist1 induces epithelial-to-mesenchymal transition (EMT), here we show that Twist1 overexpression enhances nuclear and mitotic aberrations. This is accompanied by an increase in whole chromosomal copy number gains and losses, underscoring the role of Twist1 in inducing chromosomal instability (CIN) in colorectal cancer cells. Array comparative genomic hybridization (array CGH) analysis further shows sub-chromosomal deletions, consistent with an increased frequency of DNA double strand breaks (DSBs). Remarkably, Twist1 overexpression downmodulates key cell cycle checkpoint factors-Bub1, BubR1, Mad1 and Mad2-that regulate CIN. Mathematical simulations using the RACIPE tool show a negative correlation of Twist1 with E-cadherin and BubR1. Data analyses of gene expression profiles of patient samples from The Cancer Genome Atlas (TCGA) reveal a positive correlation between Twist1 and mesenchymal genes across cancers, whereas the correlation of TWIST1 with CIN and DSB genes is cancer subtype-specific. Taken together, these studies highlight the mechanistic involvement of Twist1 in the deregulation of factors that maintain genome stability during EMT in colorectal cancer cells. Twist1 overexpression enhances genome instability in the context of EMT that further contributes to cellular heterogeneity. In addition, these studies imply that Twist1 downmodulates nuclear lamins that further alter spatiotemporal organization of the cancer genome and epigenome. Notwithstanding their genetic background, colorectal cancer cells nevertheless maintain their overall ploidy, while the downstream effects of Twist1 enhance CIN and DNA damage enriching for sub-populations of aggressive cancer cells.
Collapse
Affiliation(s)
- Maithilee Khot
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Dyuthi Sreekumar
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sanika Jahagirdar
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Apoorva Kulkarni
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kishore Hari
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Kundan Sengupta
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
- To whom correspondence should be addressed at: B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India. Tel: +91 20 25908071; Fax: +91-20-20251566;
| |
Collapse
|
33
|
Chromatin Architectural Factors as Safeguards against Excessive Supercoiling during DNA Replication. Int J Mol Sci 2020; 21:ijms21124504. [PMID: 32599919 PMCID: PMC7349988 DOI: 10.3390/ijms21124504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Key DNA transactions, such as genome replication and transcription, rely on the speedy translocation of specialized protein complexes along a double-stranded, right-handed helical template. Physical tethering of these molecular machines during translocation, in conjunction with their internal architectural features, generates DNA topological strain in the form of template supercoiling. It is known that the build-up of transient excessive supercoiling poses severe threats to genome function and stability and that highly specialized enzymes—the topoisomerases (TOP)—have evolved to mitigate these threats. Furthermore, due to their intracellular abundance and fast supercoil relaxation rates, it is generally assumed that these enzymes are sufficient in coping with genome-wide bursts of excessive supercoiling. However, the recent discoveries of chromatin architectural factors that play important accessory functions have cast reasonable doubts on this concept. Here, we reviewed the background of these new findings and described emerging models of how these accessory factors contribute to supercoil homeostasis. We focused on DNA replication and the generation of positive (+) supercoiling in front of replisomes, where two accessory factors—GapR and HMGA2—from pro- and eukaryotic cells, respectively, appear to play important roles as sinks for excessive (+) supercoiling by employing a combination of supercoil constrainment and activation of topoisomerases. Looking forward, we expect that additional factors will be identified in the future as part of an expanding cellular repertoire to cope with bursts of topological strain. Furthermore, identifying antagonists that target these accessory factors and work synergistically with clinically relevant topoisomerase inhibitors could become an interesting novel strategy, leading to improved treatment outcomes.
Collapse
|
34
|
Histone chaperone FACT is essential to overcome replication stress in mammalian cells. Oncogene 2020; 39:5124-5137. [PMID: 32533099 PMCID: PMC7343669 DOI: 10.1038/s41388-020-1346-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
The histone chaperone FACT is upregulated during mammary tumorigenesis and necessary for the viability and growth of breast tumor cells. We established that only proliferating tumor cells are sensitive to FACT knockdown, suggesting that FACT functions during DNA replication in tumor cells but not in normal cells. We hypothesized that the basal level of replication stress defines the FACT dependence of cells. Using genetic and chemical tools, we demonstrated that FACT is needed to overcome replication stress. In the absence of FACT during replication stress, the MCM2-7 helicase dissociates from chromatin, resulting in the absence of ssDNA accumulation, RPA binding, and activation of the ATR/CHK1 checkpoint response. Without this response, stalled replication forks are not stabilized, and new origin firing cannot be prevented, leading to the accumulation of DNA damage and cell death. Thus, we propose a novel role for FACT as a factor preventing helicase dissociation from chromatin during replication stress.
Collapse
|
35
|
Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution. Nat Commun 2020; 11:2322. [PMID: 32385269 PMCID: PMC7210998 DOI: 10.1038/s41467-020-16180-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/20/2020] [Indexed: 01/19/2023] Open
Abstract
The evolutionary history of horseshoe crabs, spanning approximately 500 million years, is characterized by remarkable morphological stasis and a low species diversity with only four extant species. Here we report a chromosome-level genome assembly for the mangrove horseshoe crab (Carcinoscorpius rotundicauda) using PacBio reads and Hi-C data. The assembly spans 1.67 Gb with contig N50 of 7.8 Mb and 98% of the genome assigned to 16 chromosomes. The genome contains five Hox clusters with 34 Hox genes, the highest number reported in any invertebrate. Detailed analysis of the genome provides evidence that suggests three rounds of whole-genome duplication (WGD), raising questions about the relationship between WGD and species radiation. Several gene families, particularly those involved in innate immunity, have undergone extensive tandem duplication. These expanded gene families may be important components of the innate immune system of horseshoe crabs, whose amebocyte lysate is a sensitive agent for detecting endotoxin contamination. Horseshoe crabs have been morphologically stable across evolutionary time. Here, the authors generate a chromosome-level assembly for the mangrove horseshoe crab, with implications for innate immunity, and challenging assumptions about the role of genome duplication in adaptive radiation.
Collapse
|
36
|
Kong LR, Ong RW, Tan TZ, Mohamed Salleh NAB, Thangavelu M, Chan JV, Koh LYJ, Periyasamy G, Lau JA, Le TBU, Wang L, Lee M, Kannan S, Verma CS, Lim CM, Chng WJ, Lane DP, Venkitaraman A, Hung HT, Cheok CF, Goh BC. Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation. Nat Commun 2020; 11:2086. [PMID: 32350249 PMCID: PMC7190866 DOI: 10.1038/s41467-020-15608-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Gain of function (GOF) DNA binding domain (DBD) mutations of TP53 upregulate chromatin regulatory genes that promote genome-wide histone methylation and acetylation. Here, we therapeutically exploit the oncogenic GOF mechanisms of p53 codon 158 (Arg158) mutation, a DBD mutant found to be prevalent in lung carcinomas. Using high throughput compound screening and combination analyses, we uncover that acetylating mutp53R158G could render cancers susceptible to cisplatin-induced DNA stress. Acetylation of mutp53R158G alters DNA binding motifs and upregulates TRAIP, a RING domain-containing E3 ubiquitin ligase which dephosphorylates IĸB and impedes nuclear translocation of RelA (p65), thus repressing oncogenic nuclear factor kappa-B (NF-ĸB) signaling and inducing apoptosis. Given that this mechanism of cytotoxic vulnerability appears inapt in p53 wild-type (WT) or other hotspot GOF mutp53 cells, our work provides a therapeutic opportunity specific to Arg158-mutp53 tumors utilizing a regimen consisting of DNA-damaging agents and mutp53 acetylators, which is currently being pursued clinically. Codon 158 gain-of-function mutant p53 (158-mutp53) promotes tumourigenesis in lung cancer. Here, the authors show that 158-mutp53 render cancers sensitive to cisplatin and p53 acetylation agents through a mechanism where acetylated mutant p53 upregulates TRAIP and inhibits NF-ĸB signaling.
Collapse
Affiliation(s)
- Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK.
| | - Richard Weijie Ong
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | | | - Matan Thangavelu
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Jane Vin Chan
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Lie Yong Judice Koh
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Giridharan Periyasamy
- Genome Institute of Singapore, Agency for Science, Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Jieying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Thi Bich Uyen Le
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chwee Ming Lim
- Division of Surgical Oncology (Head and Neck Surgery), National University Cancer Institute, Singapore (NCIS), Singapore, 119074, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore, 138648, Singapore
| | - Ashok Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Huynh The Hung
- Laboratory of Molecular Endocrinology, National Cancer Centre Singapore, Singapore, Singapore
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119074, Singapore.
| |
Collapse
|
37
|
Ho T, Tan BX, Lane D. How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor. Int J Mol Sci 2019; 21:ijms21010013. [PMID: 31861395 PMCID: PMC6982169 DOI: 10.3390/ijms21010013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
It has been four decades since the discovery of p53, the designated ‘Guardian of the Genome’. P53 is primarily known as a master transcription factor and critical tumor suppressor, with countless studies detailing the mechanisms by which it regulates a host of gene targets and their consequent signaling pathways. However, transcription-independent functions of p53 also strongly define its tumor-suppressive capabilities and recent findings shed light on the molecular mechanisms hinted at by earlier efforts. This review highlights the transcription-independent mechanisms by which p53 influences the cellular response to genomic instability (in the form of replication stress, centrosome homeostasis, and transposition) and cell death. We also pinpoint areas for further investigation in order to better understand the context dependency of p53 transcription-independent functions and how these are perturbed when TP53 is mutated in human cancer.
Collapse
|
38
|
R. Babu K, Tay Y. The Yin-Yang Regulation of Reactive Oxygen Species and MicroRNAs in Cancer. Int J Mol Sci 2019; 20:ijms20215335. [PMID: 31717786 PMCID: PMC6862169 DOI: 10.3390/ijms20215335] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/17/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing chemical species formed as a by-product of normal aerobic respiration and also from a number of other cellular enzymatic reactions. ROS function as key mediators of cellular signaling pathways involved in proliferation, survival, apoptosis, and immune response. However, elevated and sustained ROS production promotes tumor initiation by inducing DNA damage or mutation and activates oncogenic signaling pathways to promote cancer progression. Recent studies have shown that ROS can facilitate carcinogenesis by controlling microRNA (miRNA) expression through regulating miRNA biogenesis, transcription, and epigenetic modifications. Likewise, miRNAs have been shown to control cellular ROS homeostasis by regulating the expression of proteins involved in ROS production and elimination. In this review, we summarized the significance of ROS in cancer initiation, progression, and the regulatory crosstalk between ROS and miRNAs in cancer.
Collapse
Affiliation(s)
- Kamesh R. Babu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-6516-7756
| |
Collapse
|
39
|
Wells JP, White J, Stirling PC. R Loops and Their Composite Cancer Connections. Trends Cancer 2019; 5:619-631. [DOI: 10.1016/j.trecan.2019.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
|
40
|
Chang EYC, Tsai S, Aristizabal MJ, Wells JP, Coulombe Y, Busatto FF, Chan YA, Kumar A, Dan Zhu Y, Wang AYH, Fournier LA, Hieter P, Kobor MS, Masson JY, Stirling PC. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts. Nat Commun 2019; 10:4265. [PMID: 31537797 PMCID: PMC6753070 DOI: 10.1038/s41467-019-12271-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors including the MRE11-RAD50-NBS1 (MRN) complex. While MRN has been shown to promote R-loops at DNA double-strand breaks, we show that it suppresses R-loops and associated DNA damage at transcription-replication conflicts. This occurs through a non-nucleolytic function of MRE11 that is important for R-loop suppression by the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms at transcription-replication conflicts.
Collapse
Affiliation(s)
| | - Shuhe Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yan Coulombe
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Franciele F Busatto
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Yujia A Chan
- The Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yi Dan Zhu
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | | | | | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - Jean-Yves Masson
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
41
|
Shin G, Jeong D, Kim H, Im JS, Lee JK. RecQL4 tethering on the pre-replicative complex induces unscheduled origin activation and replication stress in human cells. J Biol Chem 2019; 294:16255-16265. [PMID: 31519754 DOI: 10.1074/jbc.ra119.009996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Sequential activation of DNA replication origins is precisely programmed and critical to maintaining genome stability. RecQL4, a member of the conserved RecQ family of helicases, plays an essential role in the initiation of DNA replication in mammalian cells. Here, we showed that RecQL4 protein tethered on the pre-replicative complex (pre-RC) induces early activation of late replicating origins during S phase. Tethering of RecQL4 or its N terminus on pre-RCs via fusion with Orc4 protein resulted in the recruitment of essential initiation factors, such as Mcm10, And-1, Cdc45, and GINS, increasing nascent DNA synthesis in late replicating origins during early S phase. In this origin activation process, tethered RecQL4 was able to recruit Cdc45 even in the absence of cyclin-dependent kinase (CDK) activity, whereas CDK phosphorylation of RecQL4 N terminus was required for interaction with and origin recruitment of And-1 and GINS. In addition, forced activation of replication origins by RecQL4 tethering resulted in increased replication stress and the accumulation of ssDNAs, which can be recovered by transcription inhibition. Collectively, these results suggest that recruitment of RecQL4 to replication origins is an important step for temporal activation of replication origins during S phase. Further, perturbation of replication timing control by unscheduled origin activation significantly induces replication stress, which is mostly caused by transcription-replication conflicts.
Collapse
Affiliation(s)
- Gwangsu Shin
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongsoo Jeong
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunsup Kim
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Sub Im
- Department of Biology Education, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joon-Kyu Lee
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, 08826, Republic of Korea .,Department of Biology Education, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
42
|
Ismail T, Kim Y, Lee H, Lee DS, Lee HS. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. Int J Mol Sci 2019; 20:ijms20184407. [PMID: 31500275 PMCID: PMC6770548 DOI: 10.3390/ijms20184407] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are multifunctional cellular organelles that are major producers of reactive oxygen species (ROS) in eukaryotes; to maintain the redox balance, they are supplemented with different ROS scavengers, including mitochondrial peroxiredoxins (Prdxs). Mitochondrial Prdxs have physiological and pathological significance and are associated with the initiation and progression of various cancer types. In this review, we have focused on signaling involving ROS and mitochondrial Prdxs that is associated with cancer development and progression. An upregulated expression of Prdx3 and Prdx5 has been reported in different cancer types, such as breast, ovarian, endometrial, and lung cancers, as well as in Hodgkin's lymphoma and hepatocellular carcinoma. The expression of Prdx3 and Prdx5 in different types of malignancies involves their association with different factors, such as transcription factors, micro RNAs, tumor suppressors, response elements, and oncogenic genes. The microenvironment of mitochondrial Prdxs plays an important role in cancer development, as cancerous cells are equipped with a high level of antioxidants to overcome excessive ROS production. However, an increased production of Prdx3 and Prdx5 is associated with the development of chemoresistance in certain types of cancers and it leads to further complications in cancer treatment. Understanding the interplay between mitochondrial Prdxs and ROS in carcinogenesis can be useful in the development of anticancer drugs with better proficiency and decreased resistance. However, more targeted studies are required for exploring the tumor microenvironment in association with mitochondrial Prdxs to improve the existing cancer therapies and drug development.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
43
|
PHF2 histone demethylase prevents DNA damage and genome instability by controlling cell cycle progression of neural progenitors. Proc Natl Acad Sci U S A 2019; 116:19464-19473. [PMID: 31488723 DOI: 10.1073/pnas.1903188116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Histone H3 lysine 9 methylation (H3K9me) is essential for cellular homeostasis; however, its contribution to development is not well established. Here, we demonstrate that the H3K9me2 demethylase PHF2 is essential for neural progenitor proliferation in vitro and for early neurogenesis in the chicken spinal cord. Using genome-wide analyses and biochemical assays we show that PHF2 controls the expression of critical cell cycle progression genes, particularly those related to DNA replication, by keeping low levels of H3K9me3 at promoters. Accordingly, PHF2 depletion induces R-loop accumulation that leads to extensive DNA damage and cell cycle arrest. These data reveal a role of PHF2 as a guarantor of genome stability that allows proper expansion of neural progenitors during development.
Collapse
|
44
|
Merchut-Maya JM, Bartek J, Maya-Mendoza A. Regulation of replication fork speed: Mechanisms and impact on genomic stability. DNA Repair (Amst) 2019; 81:102654. [PMID: 31320249 DOI: 10.1016/j.dnarep.2019.102654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Replication of DNA is a fundamental biological process that ensures precise duplication of the genome and thus safeguards inheritance. Any errors occurring during this process must be repaired before the cell divides, by activating the DNA damage response (DDR) machinery that detects and corrects the DNA lesions. Consistent with its significance, DNA replication is under stringent control, both spatial and temporal. Defined regions of the genome are replicated at specific times during S phase and the speed of replication fork progression is adjusted to fully replicate DNA in pace with the cell cycle. Insults that impair DNA replication cause replication stress (RS), which can lead to genomic instability and, potentially, to cell transformation. In this perspective, we review the current concept of replication stress, including the recent findings on the effects of accelerated fork speed and their impact on genomic (in)stability. We discuss in detail the Fork Speed Regulatory Network (FSRN), an integrated molecular machinery that regulates the velocity of DNA replication forks. Finally, we explore the potential for targeting FSRN components as an avenue to treat cancer.
Collapse
Affiliation(s)
- Joanna Maria Merchut-Maya
- DNA Replication and Cancer Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| | - Apolinar Maya-Mendoza
- DNA Replication and Cancer Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
45
|
Abdeen SK, Aqeilan RI. Decoding the link between WWOX and p53 in aggressive breast cancer. Cell Cycle 2019; 18:1177-1186. [PMID: 31075076 PMCID: PMC6592247 DOI: 10.1080/15384101.2019.1616998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022] Open
Abstract
Basal-like breast cancer (BLBC) and triple-negative breast cancer (TNBC) are aggressive forms of human breast cancer with poor prognosis and limited treatment response. Molecular understanding of BLBC and TNBC biology is instrumental to improve detection and management of these deadly diseases. Tumor suppressors WW domain-containing oxidoreductase (WWOX) and TP53 are altered in BLBC and in TNBC. Nevertheless, the functional interplay between WWOX and p53 is poorly understood. In a recent study by Abdeen and colleagues, it has been demonstrated that WWOX loss drives BLBC formation via deregulating p53 functions. In this review, we highlight important signaling pathways regulated by WWOX and p53 that are related to estrogen receptor signaling, epithelial-to-mesenchymal transition, and genomic instability and how they impact BLBC and TNBC development.
Collapse
Affiliation(s)
- Suhaib K. Abdeen
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
46
|
Diab A, Kao M, Kehrli K, Kim HY, Sidorova J, Mendez E. Multiple Defects Sensitize p53-Deficient Head and Neck Cancer Cells to the WEE1 Kinase Inhibition. Mol Cancer Res 2019; 17:1115-1128. [PMID: 30679201 PMCID: PMC6497558 DOI: 10.1158/1541-7786.mcr-18-0860] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/27/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022]
Abstract
The p53 gene is the most commonly mutated gene in solid tumors, but leveraging p53 status in therapy remains a challenge. Previously, we determined that p53 deficiency sensitizes head and neck cancer cells to AZD1775, a WEE1 kinase inhibitor, and translated our findings into a phase I clinical trial. Here, we investigate how p53 affects cellular responses to AZD1775 at the molecular level. We found that p53 modulates both replication stress and mitotic deregulation triggered by WEE1 inhibition. Without p53, slowing of replication forks due to replication stress is exacerbated. Abnormal, γH2AX-positive mitoses become more common and can proceed with damaged or underreplicated DNA. p53-deficient cells fail to properly recover from WEE1 inhibition and exhibit fewer 53BP1 nuclear bodies despite evidence of unresolved damage. A faulty G1-S checkpoint propagates this damage into the next division. Together, these deficiencies can intensify damages in each consecutive cell cycle in the drug. IMPLICATIONS: The data encourage the use of AZD1775 in combination with genotoxic modalities against p53-deficient head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Ahmed Diab
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael Kao
- Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle, Washington
| | - Keffy Kehrli
- Department of Pathology, University of Washington, Seattle, Washington
| | - Hee Yeon Kim
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Julia Sidorova
- Department of Pathology, University of Washington, Seattle, Washington.
| | - Eduardo Mendez
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
| |
Collapse
|
47
|
Aning OA, Cheok CF. Drugging in the absence of p53. J Mol Cell Biol 2019; 11:255-264. [PMID: 30865230 PMCID: PMC6478123 DOI: 10.1093/jmcb/mjz012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023] Open
Abstract
Inactivation of the p53 gene is a key driver of tumorigenesis in various cancer cohorts and types. The quest for a successful p53-based therapy that holds the promise of treating more than half of the cancer population has culminated in extensive knowledge about the role and function of p53 and led to new proposed innovative strategies against p53-defective cancers. We will discuss some of these latest studies with a focus on metabolic regulation and DNA damage response and also highlight novel functions of p53 in these pathways that may provide a contemporary rationale for targeting p53 loss in tumors.
Collapse
Affiliation(s)
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology, A*STAR, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
48
|
High Risk of Hepatocellular Carcinoma Development in Fibrotic Liver: Role of the Hippo-YAP/TAZ Signaling Pathway. Int J Mol Sci 2019; 20:ijms20030581. [PMID: 30700007 PMCID: PMC6387126 DOI: 10.3390/ijms20030581] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related death globally, accounting for approximately 800,000 deaths annually. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, making up about 80% of cases. Liver fibrosis and its end-stage disease, cirrhosis, are major risk factors for HCC. A fibrotic liver typically shows persistent hepatocyte death and compensatory regeneration, chronic inflammation, and an increase in reactive oxygen species, which collaboratively create a tumor-promoting microenvironment via inducing genetic alterations and chromosomal instability, and activating various oncogenic molecular signaling pathways. In this article, we review recent advances in fields of liver fibrosis and carcinogenesis, and consider several molecular signaling pathways that promote hepato-carcinogenesis under the microenvironment of liver fibrosis. In particular, we pay attention to emerging roles of the Hippo-YAP/TAZ signaling pathway in stromal activation, hepatic fibrosis, and liver cancer.
Collapse
|
49
|
Cingir Koker S, Jahja E, Shehwana H, Keskus AG, Konu O. Cholinergic Receptor Nicotinic Alpha 5 (CHRNA5) RNAi is associated with cell cycle inhibition, apoptosis, DNA damage response and drug sensitivity in breast cancer. PLoS One 2018; 13:e0208982. [PMID: 30543688 PMCID: PMC6292578 DOI: 10.1371/journal.pone.0208982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Cholinergic Receptor Nicotinic Alpha 5 (CHRNA5) is an important susceptibility locus for nicotine addiction and lung cancer. Depletion of CHRNA5 has been associated with reduced cell viability, increased apoptosis and alterations in cellular motility in different cancers yet not in breast cancer. Herein we first showed the expression of CHRNA5 was variable and positively correlated with the fraction of total genomic alterations in breast cancer cell lines and tumors indicating its potential role in DNA damage response (DDR). Next, we demonstrated that silencing of CHRNA5 expression in MCF7 breast cancer cell line by RNAi affected expression of genes involved in cytoskeleton, TP53 signaling, DNA synthesis and repair, cell cycle, and apoptosis. The transcription profile of CHRNA5 depleted MCF7 cells showed a significant positive correlation with that of A549 lung cancer cell line while exhibiting a negative association with the CHRNA5 co-expression profile obtained from Cancer Cell Line Encylopedia (CCLE). Moreover, it exhibited high similarities with published MCF7 expression profiles obtained from exposure to TP53 inducer nutlin-3a and topoisomerase inhibitors. We then demonstrated that CHRNA5 siRNA treatment reduced cell viability and DNA synthesis indicating G1 arrest while it significantly increased apoptotic sub-G1 cell population. Accordingly, we observed lower levels of phosphorylated RB (Ser807/811) and an increased BAX/BCL2 ratio in RNAi treated MCF7 cells. We also showed that CHRNA5 RNAi transcriptome correlated negatively with DDR relevant gene expression profile in breast cancer gene expression datasets while the coexposure to topoisomerase inhibitors in the presence of CHRNA5 RNAi enhanced chemosensitivity potentially due to reduced DDR. CHRNA5 RNAi consistently lowered total CHEK1 mRNA and protein levels as well as phosphorylated CHEK1 (Ser345) in MCF7 cells. We also detected a significant positive correlation between the expression levels of CHRNA5 and CHEK1 in CCLE, TCGA and METABRIC breast cancer datasets. Our study suggests CHRNA5 RNAi is associated with cell cycle inhibition, apoptosis as well as reduced DDR and increased drug sensitivity in breast cancer yet future studies are warranted since dose- and cell line-specific differences exist in response to CHRNA5 depletion. Gene expression microarray data can be accessed from GEO database under the accession number GSE89333.
Collapse
Affiliation(s)
- Sahika Cingir Koker
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Ermira Jahja
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
- Department of Multidisciplinary Studies, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ayse Gokce Keskus
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey
- UNAM-Institute of Materials Science and Nanotechnology, Ankara, Turkey
| |
Collapse
|
50
|
Yoon JH, Kim O, Eun JW, Choi SS, Ashktorab H, Smoot DT, Nam SW, Park WS. Multiple genetic mutations caused by NKX6.3 depletion contribute to gastric tumorigenesis. Sci Rep 2018; 8:17609. [PMID: 30514953 PMCID: PMC6279800 DOI: 10.1038/s41598-018-35733-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
NKX family members are involved in a variety of developmental processes such as cell fate determination in the central nervous system, gastrointestinal tract, and pancreas. However, whether NKX6.3 contributes to gastric carcinogenesis remains unclear. The objective of this study was to examine roles of NKX6.3 depletion in mutagenesis and gastric carcinogenesis, focusing on its effects on genetic alterations and expression of genes. Our results revealed that NKX6.3 depletion induced multiple genetic mutations in coding regions, including high frequency of point mutations such as cytosine-to-thymine and guanine-to-adenine transitions caused by aberrant expression of AICDA/APOBEC family in human gastric epithelial cells. Interestingly, NKX6.3 downregulated AICDA/APOBEC family, NFκB, and CBFβ genes by acting as a transcription factor while inhibiting deaminase activity in gastric epithelial cells. Functional relevance of NKX6.3 was validated in xenograft mice injected with NKX6.3 depleting cells. NKX6.3 depletion resulted in tumor formation and mutations of tumor-associated genes, including p53 and E-cadherin. Moreover, expression levels of NKX6.3 and its target genes were analyzed in tumors derived from mice implanted with NKX6.3 depleting cells and tissue samples of gastric cancer patients. Our results indicate that NKX6.3 depletion in gastric epithelial cells activates AICDA/APOBEC family, leading to accumulation of genetic mutations and eventually driving the development of gastric cancers.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Olga Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Jung Woo Eun
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Sung Sook Choi
- College of Pharmacy, Sahmyook University, Hwarangro 815, Nowon-gu, Seoul, 139-742, South Korea
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, District of Columbia, 20060, USA
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN, 37208, USA
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|