1
|
Li W, Wang H, Zhao J, Xia J, Sun X. scHyper: reconstructing cell-cell communication through hypergraph neural networks. Brief Bioinform 2024; 25:bbae436. [PMID: 39276328 PMCID: PMC11401449 DOI: 10.1093/bib/bbae436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 08/07/2024] [Indexed: 09/16/2024] Open
Abstract
Cell-cell communications is crucial for the regulation of cellular life and the establishment of cellular relationships. Most approaches of inferring intercellular communications from single-cell RNA sequencing (scRNA-seq) data lack a comprehensive global network view of multilayered communications. In this context, we propose scHyper, a new method that can infer intercellular communications from a global network perspective and identify the potential impact of all cells, ligand, and receptor expression on the communication score. scHyper designed a new way to represent tripartite relationships, by extracting a heterogeneous hypergraph that includes the source (ligand expression), the target (receptor expression), and the relevant ligand-receptor (L-R) pairs. scHyper is based on hypergraph representation learning, which measures the degree of match between the intrinsic attributes (static embeddings) of nodes and their observed behaviors (dynamic embeddings) in the context (hyperedges), quantifies the probability of forming hyperedges, and thus reconstructs the cell-cell communication score. Additionally, to effectively mine the key mechanisms of signal transmission, we collect a rich dataset of multisubunit complex L-R pairs and propose a nonparametric test to determine significant intercellular communications. Comparing with other tools indicates that scHyper exhibits superior performance and functionality. Experimental results on the human tumor microenvironment and immune cells demonstrate that scHyper offers reliable and unique capabilities for analyzing intercellular communication networks. Therefore, we introduced an effective strategy that can build high-order interaction patterns, surpassing the limitations of most methods that can only handle low-order interactions, thus more accurately interpreting the complexity of intercellular communications.
Collapse
Affiliation(s)
- Wenying Li
- School of Mathematics and System Science, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, Xinjiang 830017, China
| | - Haiyun Wang
- School of Mathematics and System Science, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, Xinjiang 830017, China
| | - Jianping Zhao
- School of Mathematics and System Science, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, Xinjiang 830017, China
| | - Junfeng Xia
- School of Mathematics and System Science, Xinjiang University, No. 777 Huarui Street, Shuimogou District, Urumqi, Xinjiang 830017, China
- Institute of Physical Science and Information Technology, Anhui University, No. 111 Jiulong Road, Shushan District, Hefei, Anhui 230601, China
| | - Xiaoqiang Sun
- School of Mathematics, Sun Yat-sen University, No. 135 Xingang Xi Road, Haizhu District, Guangzhou, Guangdong 510275, China
| |
Collapse
|
2
|
Bustillo ME, Douthit J, Astigarraga S, Treisman JE. Two distinct mechanisms of Plexin A function in Drosophila optic lobe lamination and morphogenesis. Development 2024; 151:dev202237. [PMID: 38738602 PMCID: PMC11190435 DOI: 10.1242/dev.202237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.
Collapse
Affiliation(s)
- Maria E. Bustillo
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| | - Jessica Douthit
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| | - Sergio Astigarraga
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| | - Jessica E. Treisman
- Department of Cell Biology, New York University Grossman School of Medicine, 435 E. 30th Street, New York, NY 10016, USA
| |
Collapse
|
3
|
Malin JA, Chen YC, Simon F, Keefer E, Desplan C. Spatial patterning controls neuron numbers in the Drosophila visual system. Dev Cell 2024; 59:1132-1145.e6. [PMID: 38531357 PMCID: PMC11078608 DOI: 10.1016/j.devcel.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Neurons must be made in the correct proportions to communicate with the appropriate synaptic partners and form functional circuits. In the Drosophila visual system, multiple subtypes of distal medulla (Dm) inhibitory interneurons are made in distinct, reproducible numbers-from 5 to 800 per optic lobe. These neurons are born from a crescent-shaped neuroepithelium called the outer proliferation center (OPC), which can be subdivided into specific domains based on transcription factor and growth factor expression. We fate mapped Dm neurons and found that more abundant neural types are born from larger neuroepithelial subdomains, while less abundant subtypes are born from smaller ones. Additionally, morphogenetic Dpp/BMP signaling provides a second layer of patterning that subdivides the neuroepithelium into smaller domains to provide more granular control of cell proportions. Apoptosis appears to play a minor role in regulating Dm neuron abundance. This work describes an underappreciated mechanism for the regulation of neuronal stoichiometry.
Collapse
Affiliation(s)
- Jennifer A Malin
- Department of Biology, New York University, New York, NY 10003, USA.
| | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - Félix Simon
- Department of Biology, New York University, New York, NY 10003, USA
| | - Evelyn Keefer
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
4
|
Bustillo ME, Douthit J, Astigarraga S, Treisman JE. Two distinct mechanisms of Plexin A function in Drosophila optic lobe lamination and morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552282. [PMID: 37609142 PMCID: PMC10441316 DOI: 10.1101/2023.08.07.552282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of Semaphorin function indicates that Semaphorin 1a, provided by cells that include Tm5 neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A does not disrupt the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles. Summary statement The axon guidance molecule Plexin A has two functions in Drosophila medulla development; morphogenesis of the neuropil requires its cytoplasmic domain, but establishing synaptic layers through Semaphorin 1a does not.
Collapse
|
5
|
Hopkins BR, Barmina O, Kopp A. A single-cell atlas of the sexually dimorphic Drosophila foreleg and its sensory organs during development. PLoS Biol 2023; 21:e3002148. [PMID: 37379332 DOI: 10.1371/journal.pbio.3002148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/03/2023] [Indexed: 06/30/2023] Open
Abstract
To respond to the world around them, animals rely on the input of a network of sensory organs distributed throughout the body. Distinct classes of sensory organs are specialized for the detection of specific stimuli such as strain, pressure, or taste. The features that underlie this specialization relate both to the neurons that innervate sensory organs and the accessory cells they comprise. To understand the genetic basis of this diversity of cell types, both within and between sensory organs, we performed single-cell RNA sequencing on the first tarsal segment of the male Drosophila melanogaster foreleg during pupal development. This tissue displays a wide variety of functionally and structurally distinct sensory organs, including campaniform sensilla, mechanosensory bristles, and chemosensory taste bristles, as well as the sex comb, a recently evolved male-specific structure. In this study, we characterize the cellular landscape in which the sensory organs reside, identify a novel cell type that contributes to the construction of the neural lamella, and resolve the transcriptomic differences among support cells within and between sensory organs. We identify the genes that distinguish between mechanosensory and chemosensory neurons, resolve a combinatorial transcription factor code that defines 4 distinct classes of gustatory neurons and several types of mechanosensory neurons, and match the expression of sensory receptor genes to specific neuron classes. Collectively, our work identifies core genetic features of a variety of sensory organs and provides a rich, annotated resource for studying their development and function.
Collapse
Affiliation(s)
- Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
6
|
Özel MN, Gibbs CS, Holguera I, Soliman M, Bonneau R, Desplan C. Coordinated control of neuronal differentiation and wiring by sustained transcription factors. Science 2022; 378:eadd1884. [PMID: 36480601 DOI: 10.1126/science.add1884] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The large diversity of cell types in nervous systems presents a challenge in identifying the genetic mechanisms that encode it. Here, we report that nearly 200 distinct neurons in the Drosophila visual system can each be defined by unique combinations of on average 10 continuously expressed transcription factors. We show that targeted modifications of this terminal selector code induce predictable conversions of neuronal fates that appear morphologically and transcriptionally complete. Cis-regulatory analysis of open chromatin links one of these genes to an upstream patterning factor that specifies neuronal fates in stem cells. Experimentally validated network models describe the synergistic regulation of downstream effectors by terminal selectors and ecdysone signaling during brain wiring. Our results provide a generalizable framework of how specific fates are implemented in postmitotic neurons.
Collapse
Affiliation(s)
| | - Claudia Skok Gibbs
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA.,Center for Data Science, New York University, New York, NY 10003, USA
| | - Isabel Holguera
- Department of Biology, New York University, New York, NY 10003, USA
| | - Mennah Soliman
- Department of Biology, New York University, New York, NY 10003, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA.,Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA.,Center for Data Science, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.,New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Valentino P, Erclik T. Spalt and disco define the dorsal-ventral neuroepithelial compartments of the developing Drosophila medulla. Genetics 2022; 222:iyac145. [PMID: 36135799 PMCID: PMC9630984 DOI: 10.1093/genetics/iyac145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/14/2022] Open
Abstract
Spatial patterning of neural stem cell populations is a powerful mechanism by which to generate neuronal diversity. In the developing Drosophila medulla, the symmetrically dividing neuroepithelial cells of the outer proliferation center crescent are spatially patterned by the nonoverlapping expression of 3 transcription factors: Vsx1 in the center, Optix in the adjacent arms, and Rx in the tips. These spatial genes compartmentalize the outer proliferation center and, together with the temporal patterning of neuroblasts, act to diversify medulla neuronal fates. The observation that the dorsal and ventral halves of the outer proliferation center also grow as distinct compartments, together with the fact that a subset of neuronal types is generated from only one half of the crescent, suggests that additional transcription factors spatially pattern the outer proliferation center along the dorsal-ventral axis. Here, we identify the spalt (salm and salr) and disco (disco and disco-r) genes as the dorsal-ventral patterning transcription factors of the outer proliferation center. Spalt and Disco are differentially expressed in the dorsal and ventral outer proliferation center from the embryo through to the third instar larva, where they cross-repress each other to form a sharp dorsal-ventral boundary. We show that hedgehog is necessary for Disco expression in the embryonic optic placode and that disco is subsequently required for the development of the ventral outer proliferation center and its neuronal progeny. We further demonstrate that this dorsal-ventral patterning axis acts independently of Vsx1-Optix-Rx and thus propose that Spalt and Disco represent a third outer proliferation center patterning axis that may act to further diversify medulla fates.
Collapse
Affiliation(s)
- Priscilla Valentino
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ted Erclik
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
8
|
González-Ramírez MC, Rojo-Cortés F, Candia N, Garay-Montecinos J, Guzmán-Palma P, Campusano JM, Oliva C. Autocrine/Paracrine Slit–Robo Signaling Controls Optic Lobe Development in Drosophila melanogaster. Front Cell Dev Biol 2022; 10:874362. [PMID: 35982851 PMCID: PMC9380857 DOI: 10.3389/fcell.2022.874362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Cell segregation mechanisms play essential roles during the development of the central nervous system (CNS) to support its organization into distinct compartments. The Slit protein is a secreted signal, classically considered a paracrine repellent for axonal growth through Robo receptors. However, its function in the compartmentalization of CNS is less explored. In this work, we show that Slit and Robo3 are expressed in the same neuronal population of the Drosophila optic lobe, where they are required for the correct compartmentalization of optic lobe neuropils by the action of an autocrine/paracrine mechanism. We characterize the endocytic route followed by the Slit/Robo3 complex and detected genetic interactions with genes involved in endocytosis and actin dynamics. Thus, we report that the Slit-Robo3 pathway regulates the morphogenesis of the optic lobe through an atypical autocrine/paracrine mechanism in addition to its role in axon guidance, and in association with proteins of the endocytic pathway and small GTPases.
Collapse
|
9
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
10
|
Guzmán-Palma P, Contreras EG, Mora N, Smith M, González-Ramírez MC, Campusano JM, Sierralta J, Hassan BA, Oliva C. Slit/Robo Signaling Regulates Multiple Stages of the Development of the Drosophila Motion Detection System. Front Cell Dev Biol 2021; 9:612645. [PMID: 33968921 PMCID: PMC8097104 DOI: 10.3389/fcell.2021.612645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Neurogenesis is achieved through a sequence of steps that include specification and differentiation of progenitors into mature neurons. Frequently, precursors migrate to distinct positions before terminal differentiation. The Slit-Robo pathway, formed by the secreted ligand Slit and its membrane bound receptor Robo, was first discovered as a regulator of axonal growth. However, today, it is accepted that this pathway can regulate different cellular processes even outside the nervous system. Since most of the studies performed in the nervous system have been focused on axonal and dendritic growth, it is less clear how versatile is this signaling pathway in the developing nervous system. Here we describe the participation of the Slit-Robo pathway in the development of motion sensitive neurons of the Drosophila visual system. We show that Slit and Robo receptors are expressed in different stages during the neurogenesis of motion sensitive neurons. Furthermore, we find that Slit and Robo regulate multiple aspects of their development including neuronal precursor migration, cell segregation between neural stem cells and daughter cells and formation of their connectivity pattern. Specifically, loss of function of slit or robo receptors in differentiated motion sensitive neurons impairs dendritic targeting, while knocking down robo receptors in migratory progenitors or neural stem cells leads to structural defects in the adult optic lobe neuropil, caused by migration and cell segregation defects during larval development. Thus, our work reveals the co-option of the Slit-Robo signaling pathway in distinct developmental stages of a neural lineage.
Collapse
Affiliation(s)
- Pablo Guzmán-Palma
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban G Contreras
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Natalia Mora
- Institut du Cerveau-Paris Brain Institute (ICM), Inserm, CNRS, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Macarena Smith
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Constanza González-Ramírez
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge M Campusano
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jimena Sierralta
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Bassem A Hassan
- Institut du Cerveau-Paris Brain Institute (ICM), Inserm, CNRS, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Carlos Oliva
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Bostock MP, Prasad AR, Chaouni R, Yuen AC, Sousa-Nunes R, Amoyel M, Fernandes VM. An Immobilization Technique for Long-Term Time-Lapse Imaging of Explanted Drosophila Tissues. Front Cell Dev Biol 2020; 8:590094. [PMID: 33117817 PMCID: PMC7576353 DOI: 10.3389/fcell.2020.590094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
Time-lapse imaging is an essential tool to study dynamic biological processes that cannot be discerned from fixed samples alone. However, imaging cell- and tissue-level processes in intact animals poses numerous challenges if the organism is opaque and/or motile. Explant cultures of intact tissues circumvent some of these challenges, but sample drift remains a considerable obstacle. We employed a simple yet effective technique to immobilize tissues in medium-bathed agarose. We applied this technique to study multiple Drosophila tissues from first-instar larvae to adult stages in various orientations and with no evidence of anisotropic pressure or stress damage. Using this method, we were able to image fine features for up to 18 h and make novel observations. Specifically, we report that fibers characteristic of quiescent neuroblasts are inherited by their basal daughters during reactivation; that the lamina in the developing visual system is assembled roughly 2-3 columns at a time; that lamina glia positions are dynamic during development; and that the nuclear envelopes of adult testis cyst stem cells do not break down completely during mitosis. In all, we demonstrate that our protocol is well-suited for tissue immobilization and long-term live imaging, enabling new insights into tissue and cell dynamics in Drosophila.
Collapse
Affiliation(s)
- Matthew P. Bostock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Anadika R. Prasad
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rita Chaouni
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Alice C. Yuen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rita Sousa-Nunes
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Liu C, Trush O, Han X, Wang M, Takayama R, Yasugi T, Hayashi T, Sato M. Dscam1 establishes the columnar units through lineage-dependent repulsion between sister neurons in the fly brain. Nat Commun 2020; 11:4067. [PMID: 32792493 PMCID: PMC7426427 DOI: 10.1038/s41467-020-17931-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/24/2020] [Indexed: 11/15/2022] Open
Abstract
The brain is organized morphologically and functionally into a columnar structure. According to the radial unit hypothesis, neurons from the same lineage form a radial unit that contributes to column formation. However, the molecular mechanisms that link neuronal lineage and column formation remain elusive. Here, we show that neurons from the same lineage project to different columns under control of Down syndrome cell adhesion molecule (Dscam) in the fly brain. Dscam1 is temporally expressed in newly born neuroblasts and is inherited by their daughter neurons. The transient transcription of Dscam1 in neuroblasts enables the expression of the same Dscam1 splice isoform within cells of the same lineage, causing lineage-dependent repulsion. In the absence of Dscam1 function, neurons from the same lineage project to the same column. When the splice diversity of Dscam1 is reduced, column formation is significantly compromised. Thus, Dscam1 controls column formation through lineage-dependent repulsion. Columns are the functional and morphological unit of the brain, but how neurons assemble into this structure was unclear. Here, the authors show that Dscam gene rewires neurons that derive from the same stem cell to establish columns through the process of lineage-dependent repulsion.
Collapse
Affiliation(s)
- Chuyan Liu
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Olena Trush
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Xujun Han
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Miaoxing Wang
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Rie Takayama
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takashi Hayashi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Makoto Sato
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan. .,Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
13
|
Li Z, Dong Z, Bai X, Liu M. Characterizing the orientation selectivity in V1 and V4 of macaques by quadratic phase coupling. J Neural Eng 2020; 17:036028. [PMID: 32480396 DOI: 10.1088/1741-2552/ab9843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Orientation selectivity is one of the significant characteristics of neurons in the primary visual cortex (V1). Some neurons in extrastriate visual cortical areas also exhibit certain orientation selectivity. But it is still not well understood that how the orientation selectivity generates. Most previous studies about the orientation selectivity are based on the spike firing rate. However, the spikes are prone to be biased by the detection and sorting algorithms. Then, in this paper, the local field potential (LFP) is adopted to investigate the mechanism of orientation selectivity. APPROACH We used the quadratic phase coupling (QPC), which was calculated by wavelet bicoherence, to describe the characteristics of orientation selectivity available in V1 and V4. The raw wideband neural signals were recorded by two chronically implanted multi-electrode arrays, which were placed in V1 and V4 respectively in two macaques performing a selective visual attention task. MAIN RESULTS There is a strong correlation between the total bicoherence (TotalBic), which is a quantization for the overall QPC of frequency pairs in gamma band, and the grating orientation. Furthermore, the QPC distribution at the non-preferred orientation is mainly concentrated in the low frequencies (30-40 Hz) of gamma; while the QPC distribution at the preferred orientation concentrates in both the low frequencies and high frequencies (60-80 Hz) of gamma. In addition, the TotalBic of the gamma-band LFP between V1 and V4 varies with the grating orientations, indicating that the QPC is available in the feedforward link and the gamma-band LFP in V1 modulates the QPC in V4. SIGNIFICANCE The QPC reflects the orientations of the sinusoidal grating and describes the interaction of gamma-band LFP between different brain regions. Our results suggest that the QPC is an alternative avenue to explore the mechanism for generating orientation selectivity of visual neurons effectively.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, People's Republic of China. Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Caipo L, González-Ramírez MC, Guzmán-Palma P, Contreras EG, Palominos T, Fuenzalida-Uribe N, Hassan BA, Campusano JM, Sierralta J, Oliva C. Slit neuronal secretion coordinates optic lobe morphogenesis in Drosophila. Dev Biol 2020; 458:32-42. [PMID: 31606342 DOI: 10.1016/j.ydbio.2019.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
Abstract
The complexity of the nervous system requires the coordination of multiple cellular processes during development. Among them, we find boundary formation, axon guidance, cell migration and cell segregation. Understanding how different cell populations such as glial cells, developing neurons and neural stem cells contribute to the formation of boundaries and morphogenesis in the nervous system is a critical question in neurobiology. Slit is an evolutionary conserved protein essential for the development of the nervous system. For signaling, Slit has to bind to its cognate receptor Robo, a single-pass transmembrane protein. Although the Slit/Robo signaling pathway is well known for its involvement in axon guidance, it has also been associated to boundary formation in the Drosophila visual system. In the optic lobe, Slit is expressed in glial cells, positioned at the boundaries between developing neuropils, and in neurons of the medulla ganglia. Although it has been assumed that glial cells provide Slit to the system, the contribution of the neuronal expression has not been tested. Here, we show that, contrary to what was previously thought, Slit protein provided by medulla neurons is also required for boundary formation and morphogenesis of the optic lobe. Furthermore, tissue specific rescue using modified versions of Slit demonstrates that this protein acts at long range and does not require processing by extracellular proteases. Our data shed new light on our understanding of the cellular mechanisms involved in Slit function in the fly visual system morphogenesis.
Collapse
Affiliation(s)
- Lorena Caipo
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile; Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - M Constanza González-Ramírez
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Pablo Guzmán-Palma
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Esteban G Contreras
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Tomás Palominos
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Nicolás Fuenzalida-Uribe
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Bassem A Hassan
- Institut du Cerveau et de la Moelle Epinière (ICM) - Sorbonne Université, Hôpital Pitié-Salpêtrière, Inserm, CNRS, Paris, France
| | - Jorge M Campusano
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Jimena Sierralta
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Carlos Oliva
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av Libertador Bernardo O'Higgins 340, Santiago, Chile.
| |
Collapse
|
15
|
Shinomiya K, Horne JA, McLin S, Wiederman M, Nern A, Plaza SM, Meinertzhagen IA. The Organization of the Second Optic Chiasm of the Drosophila Optic Lobe. Front Neural Circuits 2019; 13:65. [PMID: 31680879 PMCID: PMC6797552 DOI: 10.3389/fncir.2019.00065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023] Open
Abstract
Visual pathways from the compound eye of an insect relay to four neuropils, successively the lamina, medulla, lobula, and lobula plate in the underlying optic lobe. Among these neuropils, the medulla, lobula, and lobula plate are interconnected by the complex second optic chiasm, through which the anteroposterior axis undergoes an inversion between the medulla and lobula. Given their complex structure, the projection patterns through the second optic chiasm have so far lacked critical analysis. By densely reconstructing axon trajectories using a volumetric scanning electron microscopy (SEM) technique, we reveal the three-dimensional structure of the second optic chiasm of Drosophila melanogaster, which comprises interleaving bundles and sheets of axons insulated from each other by glial sheaths. These axon bundles invert their horizontal sequence in passing between the medulla and lobula. Axons connecting the medulla and lobula plate are also bundled together with them but do not decussate the sequence of their horizontal positions. They interleave with sheets of projection neuron axons between the lobula and lobula plate, which also lack decussations. We estimate that approximately 19,500 cells per hemisphere, about two thirds of the optic lobe neurons, contribute to the second chiasm, most being Tm cells, with an estimated additional 2,780 T4 and T5 cells each. The chiasm mostly comprises axons and cell body fibers, but also a few synaptic elements. Based on our anatomical findings, we propose that a chiasmal structure between the neuropils is potentially advantageous for processing complex visual information in parallel. The EM reconstruction shows not only the structure of the chiasm in the adult brain, the previously unreported main topic of our study, but also suggest that the projection patterns of the neurons comprising the chiasm may be determined by the proliferation centers from which the neurons develop. Such a complex wiring pattern could, we suggest, only have arisen in several evolutionary steps.
Collapse
Affiliation(s)
| | - Jane Anne Horne
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Sari McLin
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Meagan Wiederman
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Aljoscha Nern
- Howard Hughes Medical Institute, Ashburn, VA, United States
| | | | - Ian A Meinertzhagen
- Howard Hughes Medical Institute, Ashburn, VA, United States.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
16
|
Plazaola-Sasieta H, Zhu Q, Gaitán-Peñas H, Rios M, Estévez R, Morey M. Drosophila ClC-a is required in glia of the stem cell niche for proper neurogenesis and wiring of neural circuits. Glia 2019; 67:2374-2398. [PMID: 31479171 PMCID: PMC6851788 DOI: 10.1002/glia.23691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023]
Abstract
Glial cells form part of the neural stem cell niche and express a wide variety of ion channels; however, the contribution of these channels to nervous system development is poorly understood. We explored the function of the Drosophila ClC‐a chloride channel, since its mammalian ortholog CLCN2 is expressed in glial cells, and defective channel function results in leukodystrophies, which in humans are accompanied by cognitive impairment. We found that ClC‐a was expressed in the niche in cortex glia, which are closely associated with neurogenic tissues. Characterization of loss‐of‐function ClC‐a mutants revealed that these animals had smaller brains and widespread wiring defects. We showed that ClC‐a is required in cortex glia for neurogenesis in neuroepithelia and neuroblasts, and identified defects in a neuroblast lineage that generates guidepost glial cells essential for photoreceptor axon guidance. We propose that glia‐mediated ionic homeostasis could nonautonomously affect neurogenesis, and consequently, the correct assembly of neural circuits.
Collapse
Affiliation(s)
- Haritz Plazaola-Sasieta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Qi Zhu
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Gaitán-Peñas
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Martín Rios
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Raúl Estévez
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morey
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Programa de Biologia Integrativa, Barcelona, Spain
| |
Collapse
|
17
|
Contreras EG, Sierralta J, Oliva C. Novel Strategies for the Generation of Neuronal Diversity: Lessons From the Fly Visual System. Front Mol Neurosci 2019; 12:140. [PMID: 31213980 PMCID: PMC6554424 DOI: 10.3389/fnmol.2019.00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022] Open
Abstract
Among all organs of an adult animal, the central nervous system stands out because of its vast complexity and morphological diversity. During early development, the entire central nervous system develops from an apparently homogenous group of progenitors that differentiate into all neural cell types. Therefore, understanding the molecular and genetic mechanisms that give rise to the cellular and anatomical diversity of the brain is a key goal of the developmental neurobiology field. With this aim in mind, the development of the central nervous system of model organisms has been extensively studied. From more than a century, the mechanisms of neurogenesis have been studied in the fruit fly Drosophila melanogaster. The visual system comprises one of the major structures of the Drosophila brain. The visual information is collected by the eye-retina photoreceptors and then processed by the four optic lobe ganglia: the lamina, medulla, lobula and lobula plate. The molecular mechanisms that originate neuronal diversity in the optic lobe have been unveiled in the past decade. In this article, we describe the early development and differentiation of the lobula plate ganglion, from the formation of the optic placode and the inner proliferation center to the specification of motion detection neurons. We focused specifically on how the precise combination of signaling pathways and cell-specific transcription factors patterns the pool of neural stem cells that generates the different neurons of the motion detection system.
Collapse
Affiliation(s)
- Esteban G Contreras
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jimena Sierralta
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carlos Oliva
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Schilling T, Ali AH, Leonhardt A, Borst A, Pujol-Martí J. Transcriptional control of morphological properties of direction-selective T4/T5 neurons in Drosophila. Development 2019; 146:dev169763. [PMID: 30642835 PMCID: PMC6361130 DOI: 10.1242/dev.169763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/07/2019] [Indexed: 02/02/2023]
Abstract
In the Drosophila visual system, T4/T5 neurons represent the first stage of computation of the direction of visual motion. T4 and T5 neurons exist in four subtypes, each responding to motion in one of the four cardinal directions and projecting axons into one of the four lobula plate layers. However, all T4/T5 neurons share properties essential for sensing motion. How T4/T5 neurons acquire their properties during development is poorly understood. We reveal that the transcription factors SoxN and Sox102F control the acquisition of properties common to all T4/T5 neuron subtypes, i.e. the layer specificity of dendrites and axons. Accordingly, adult flies are motion blind after disruption of SoxN or Sox102F in maturing T4/T5 neurons. We further find that the transcription factors Ato and Dac are redundantly required in T4/T5 neuron progenitors for SoxN and Sox102F expression in T4/T5 neurons, linking the transcriptional programmes specifying progenitor identity to those regulating the acquisition of morphological properties in neurons. Our work will help to link structure, function and development in a neuronal type performing a computation that is conserved across vertebrate and invertebrate visual systems.
Collapse
Affiliation(s)
- Tabea Schilling
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Aicha H Ali
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Aljoscha Leonhardt
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Alexander Borst
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Jesús Pujol-Martí
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| |
Collapse
|
19
|
Ramon-Cañellas P, Peterson HP, Morante J. From Early to Late Neurogenesis: Neural Progenitors and the Glial Niche from a Fly's Point of View. Neuroscience 2018; 399:39-52. [PMID: 30578972 DOI: 10.1016/j.neuroscience.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Drosophila melanogaster is an important model organism used to study the brain development of organisms ranging from insects to mammals. The central nervous system in fruit flies is formed primarily in two waves of neurogenesis, one of which occurs in the embryo and one of which occurs during larval stages. In order to understand neurogenesis, it is important to research the behavior of progenitor cells that give rise to the neural networks which make up the adult nervous system. This behavior has been shown to be influenced by different factors including interactions with other cells within the progenitor niche, or local tissue microenvironment. Glial cells form a crucial part of this niche and play an active role in the development of the brain. Although in the early years of neuroscience it was believed that glia were simply scaffolding for neurons and passive components of the nervous system, their importance is nowadays recognized. Recent discoveries in progenitors and niche cells have led to new understandings of how the developing brain shapes its diverse regions. In this review, we attempt to summarize the distinct neural progenitors and glia in the Drosophila melanogaster central nervous system, from embryo to late larval stages, and make note of homologous features in mammals. We also outline the recent advances in this field in order to define the impact that glial cells have on progenitor cell niches, and we finally emphasize the importance of communication between glia and progenitor cells for proper brain formation.
Collapse
Affiliation(s)
- Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
20
|
Suzuki T, Liu C, Kato S, Nishimura K, Takechi H, Yasugi T, Takayama R, Hakeda-Suzuki S, Suzuki T, Sato M. Netrin Signaling Defines the Regional Border in the Drosophila Visual Center. iScience 2018; 8:148-160. [PMID: 30316037 PMCID: PMC6187055 DOI: 10.1016/j.isci.2018.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/13/2018] [Accepted: 09/24/2018] [Indexed: 11/21/2022] Open
Abstract
The brain consists of distinct domains defined by sharp borders. So far, the mechanisms of compartmentalization of developing tissues include cell adhesion, cell repulsion, and cortical tension. These mechanisms are tightly related to molecular machineries at the cell membrane. However, we and others demonstrated that Slit, a chemorepellent, is required to establish the borders in the fly brain. Here, we demonstrate that Netrin, a classic guidance molecule, is also involved in the compartmental subdivision in the fly brain. In Netrin mutants, many cells are intermingled with cells from the adjacent ganglia penetrating the ganglion borders, resulting in disorganized compartmental subdivisions. How do these guidance molecules regulate the compartmentalization? Our mathematical model demonstrates that a simple combination of known guidance properties of Slit and Netrin is sufficient to explain their roles in boundary formation. Our results suggest that Netrin indeed regulates boundary formation in combination with Slit in vivo. Netrin regulates boundary formation in combination with Slit in the fly brain Dual Netrin functions as attractant and repellent explain boundary formation
Collapse
Affiliation(s)
- Takumi Suzuki
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Chuyan Liu
- Graduate School of Medical Sciences, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Satoru Kato
- School of Medical Sciences, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Kohei Nishimura
- School of Medical Sciences, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Hiroki Takechi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Kanagawa 226-8501, Japan
| | - Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Rie Takayama
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Kanagawa 226-8501, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Kanagawa 226-8501, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan; Graduate School of Medical Sciences, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan; School of Medical Sciences, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan.
| |
Collapse
|
21
|
Sato M, Yasugi T, Trush O. Temporal patterning of neurogenesis and neural wiring in the fly visual system. Neurosci Res 2018; 138:49-58. [PMID: 30227165 DOI: 10.1016/j.neures.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
During neural development, a wide variety of neurons are produced in a highly coordinated manner and form complex and highly coordinated neural circuits. Temporal patterning of neuron type specification plays very important roles in orchestrating the production and wiring of neurons. The fly visual system, which is composed of the retina and the optic lobe of the brain, is an outstanding model system to study temporal patterning and wiring of the nervous system. All of the components of the fly visual system are topographically connected, and each ommatidial unit in the retina corresponds to a columnar unit in the optic lobe. In the retina, the wave of differentiation follows the morphogenetic furrow, which progresses in a posterior-to-anterior direction. At the same time, differentiation of the optic lobe also accompanies the wave of differentiation or temporally coordinated neurogenesis. Thus, temporal patterning plays important roles in establishing topographic connections throughout the fly visual system. In this article, we review how neuronal differentiation and connectivity are orchestrated in the fly visual system by temporal patterning mechanisms.
Collapse
Affiliation(s)
- Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Japan; Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Japan.
| | - Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Japan
| | - Olena Trush
- Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Japan
| |
Collapse
|
22
|
Suzuki T, Sato M. Inter-progenitor pool wiring: An evolutionarily conserved strategy that expands neural circuit diversity. Dev Biol 2017; 431:101-110. [PMID: 28958816 DOI: 10.1016/j.ydbio.2017.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/23/2017] [Indexed: 11/28/2022]
Abstract
Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems.
Collapse
Affiliation(s)
- Takumi Suzuki
- Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Makoto Sato
- Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
23
|
Copenhaver PF, Ramaker JM. Neuronal migration during development and the amyloid precursor protein. CURRENT OPINION IN INSECT SCIENCE 2016; 18:1-10. [PMID: 27939704 PMCID: PMC5157842 DOI: 10.1016/j.cois.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
The Amyloid Precursor Protein (APP) is the source of amyloid peptides that accumulate in Alzheimer's disease. However, members of the APP family are strongly expressed in the developing nervous systems of invertebrates and vertebrates, where they regulate neuronal guidance, synaptic remodeling, and injury responses. In contrast to mammals, insects express only one APP ortholog (APPL), simplifying investigations into its normal functions. Recent studies have shown that APPL regulates neuronal migration in the developing insect nervous system, analogous to the roles ascribed to APP family proteins in the mammalian cortex. The comparative simplicity of insect systems offers new opportunities for deciphering the signaling mechanisms by which this enigmatic class of proteins contributes to the formation and function of the nervous system.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
24
|
Suzuki T, Trush O, Yasugi T, Takayama R, Sato M. Wnt Signaling Specifies Anteroposterior Progenitor Zone Identity in the Drosophila Visual Center. J Neurosci 2016; 36:6503-13. [PMID: 27307238 PMCID: PMC6601925 DOI: 10.1523/jneurosci.0864-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED During brain development, various types of neuronal populations are produced from different progenitor pools to produce neuronal diversity that is sufficient to establish functional neuronal circuits. However, the molecular mechanisms that specify the identity of each progenitor pool remain obscure. Here, we show that Wnt signaling is essential for the specification of the identity of posterior progenitor pools in the Drosophila visual center. In the medulla, the largest component of the visual center, different types of neurons are produced from two progenitor pools: the outer proliferation center (OPC) and glial precursor cells (GPCs; also known as tips of the OPC). We found that OPC-type neurons are produced from the GPCs at the expense of GPC-type neurons when Wnt signaling is suppressed in the GPCs. In contrast, GPC-type neurons are ectopically induced when Wnt signaling is ectopically activated in the OPC. These results suggest that Wnt signaling is necessary and sufficient for the specification of the progenitor pool identity. We also found that Homothorax (Hth), which is temporally expressed in the OPC, is ectopically induced in the GPCs by suppression of Wnt signaling and that ectopic induction of Hth phenocopies the suppression of Wnt signaling in the GPCs. Thus, Wnt signaling is involved in regionalization of the fly visual center through the specification of the progenitor pool located posterior to the medulla by suppressing Hth expression. SIGNIFICANCE STATEMENT Brain consists of considerably diverse neurons of different origins. In mammalian brain, excitatory and inhibitory neurons derive from the dorsal and ventral telencephalon, respectively. Multiple progenitor pools also contribute to the neuronal diversity in fly brain. However, it has been unclear how differences between these progenitor pools are established. Here, we show that Wnt signaling, an evolutionarily conserved signaling, is involved in the process that establishes the differences between these progenitor pools. Because β-catenin signaling, which is under the control of Wnt ligands, specifies progenitor pool identity in the developing mammalian thalamus, Wnt signaling-mediated specification of progenitor pool identity may be conserved in insect and mammalian brains.
Collapse
Affiliation(s)
- Takumi Suzuki
- Laboratory of Developmental Neurobiology, Brain/Liver Interface Medicine Research Center
| | | | - Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa 920-8640, Japan, and
| | - Rie Takayama
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa 920-8640, Japan, and Core Research for Evolutional Science and Technology, JST, Saitama 332-0012, Japan
| | - Makoto Sato
- Laboratory of Developmental Neurobiology, Brain/Liver Interface Medicine Research Center, Graduate School of Medical Sciences, and Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa 920-8640, Japan, and Core Research for Evolutional Science and Technology, JST, Saitama 332-0012, Japan
| |
Collapse
|