1
|
Takaishi M, Ishimoto T, Kataoka S, Yagyu KI, Morisawa K, Kinjo S, Ikeo K, Noma S, Takahashi C, Okazaki Y, Tokunaga M, Kokubu C, Takeda J, Sano S. A Newly Identified Spliceosomal Protein AHED Is Essential for Homeostasis of the Epidermis. J Invest Dermatol 2025:S0022-202X(25)00111-3. [PMID: 39978585 DOI: 10.1016/j.jid.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
To identify genes that are essential for the functions of cells and organs, we established a homozygous mutant mouse embryonic stem cell bank from which we identified a gene, Ahed, that plays an essential role in hematopoiesis. In this study, we characterized the role of AHED in the skin by analyzing mice with an epidermis-specific Ahed deficiency. Those mice had apoptotic cells in their epidermis from the perinatal stage. Thereafter, they developed skin barrier disruptions over time, which caused lethality soon after birth. Experiments using inducible Ahed deletion in vivo and in vitro revealed that an Ahed deficiency led to keratinocyte apoptosis, impaired keratinocyte proliferation, and promoted dermatitis development. Because we found that AHED is a nuclear protein, we further revealed that AHED interacts with known spliceosomal proteins in HeLa cells. Moreover, altered splicing mRNA patterns were demonstrated in Ahed-deficient keratinocytes. These results suggest that AHED plays a crucial role in the maintenance of epidermal integrity, and more importantly, it contributes to mRNA splicing that is essential for multiple cell lineages.
Collapse
Affiliation(s)
- Mikiro Takaishi
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Tatsushi Ishimoto
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Sayo Kataoka
- Science Research Center, Kochi University, Nankoku, Japan
| | - Ken-Ichi Yagyu
- Science Research Center, Kochi University, Nankoku, Japan
| | - Keiko Morisawa
- Science Research Center, Kochi University, Nankoku, Japan
| | - Sonoko Kinjo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Shohei Noma
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Chitose Takahashi
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | | | - Chikara Kokubu
- Child Healthcare and Genetic Science Laboratory, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junji Takeda
- Research Institute of Microbiology and Diseases, Osaka University, Osaka, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan.
| |
Collapse
|
2
|
Dai J, Zheng S, Falco MM, Bao J, Eriksson J, Pikkusaari S, Forstén S, Jiang J, Wang W, Gao L, Perez-Villatoro F, Dufva O, Saeed K, Wang Y, Amiryousefi A, Färkkilä A, Mustjoki S, Kauppi L, Tang J, Vähärautio A. Tracing back primed resistance in cancer via sister cells. Nat Commun 2024; 15:1158. [PMID: 38326354 PMCID: PMC10850087 DOI: 10.1038/s41467-024-45478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Exploring non-genetic evolution of cell states during cancer treatments has become attainable by recent advances in lineage-tracing methods. However, transcriptional changes that drive cells into resistant fates may be subtle, necessitating high resolution analysis. Here, we present ReSisTrace that uses shared transcriptomic features of sister cells to predict the states priming treatment resistance. Applying ReSisTrace in ovarian cancer cells perturbed with olaparib, carboplatin or natural killer (NK) cells reveals pre-resistant phenotypes defined by proteostatic and mRNA surveillance features, reflecting traits enriched in the upcoming subclonal selection. Furthermore, we show that DNA repair deficiency renders cells susceptible to both DNA damaging agents and NK killing in a context-dependent manner. Finally, we leverage the obtained pre-resistance profiles to predict and validate small molecules driving cells to sensitive states prior to treatment. In summary, ReSisTrace resolves pre-existing transcriptional features of treatment vulnerability, facilitating both molecular patient stratification and discovery of synergistic pre-sensitizing therapies.
Collapse
Affiliation(s)
- Jun Dai
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shuyu Zheng
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matías M Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jie Bao
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Eriksson
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sanna Pikkusaari
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sofia Forstén
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jing Jiang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wenyu Wang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Luping Gao
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Fernando Perez-Villatoro
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine, Helsinki, Finland
| | - Olli Dufva
- Research Program in Translational Immunology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Khalid Saeed
- Research Program in Translational Immunology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yinyin Wang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ali Amiryousefi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, and Clinical Trial Unit, Comprehensive Cancer Centre, Helsinki University Hospital, Helsinki, Finland
| | - Satu Mustjoki
- Research Program in Translational Immunology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liisa Kauppi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
3
|
Pedraza-Arevalo S, Alors-Pérez E, Blázquez-Encinas R, Herrera-Martínez AD, Jiménez-Vacas JM, Fuentes-Fayos AC, Reyes Ó, Ventura S, Sánchez-Sánchez R, Ortega-Salas R, Serrano-Blanch R, Gálvez-Moreno MA, Gahete MD, Ibáñez-Costa A, Luque RM, Castaño JP. Spliceosomic dysregulation unveils NOVA1 as a candidate actionable therapeutic target in pancreatic neuroendocrine tumors. Transl Res 2023; 251:63-73. [PMID: 35882361 DOI: 10.1016/j.trsl.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 02/09/2023]
Abstract
Dysregulation of the splicing machinery is emerging as a hallmark in cancer due to its association with multiple dysfunctions in tumor cells. Inappropriate function of this machinery can generate tumor-driving splicing variants and trigger oncogenic actions. However, its role in pancreatic neuroendocrine tumors (PanNETs) is poorly defined. In this study we aimed to characterize the expression pattern of a set of splicing machinery components in PanNETs, and their relationship with aggressiveness features. A qPCR-based array was first deployed to determine the expression levels of components of the major (n = 13) and minor spliceosome (n = 4) and associated splicing factors (n = 27), using a microfluidic technology in 20 PanNETs and non-tumoral adjacent samples. Subsequently, in vivo and in vitro models were applied to explore the pathophysiological role of NOVA1. Expression analysis revealed that a substantial proportion of splicing machinery components was altered in tumors. Notably, key splicing factors were overexpressed in PanNETs samples, wherein their levels correlated with clinical and malignancy features. Using in vivo and in vitro assays, we demonstrate that one of those altered factors, NOVA1, is tightly related to cell proliferation, alters pivotal signaling pathways and interferes with responsiveness to drug treatment in PanNETs, suggesting a role for this factor in the aggressiveness of these tumors and its suitability as therapeutic target. Altogether, our results unveil a severe alteration of the splicing machinery in PanNETs and identify the putative relevance of NOVA1 in tumor development/progression, which could provide novel avenues to develop diagnostic biomarkers and therapeutic tools for this pathology.
Collapse
Affiliation(s)
- Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Óscar Reyes
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Sebastián Ventura
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Computer Sciences, University of Córdoba, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raquel Serrano-Blanch
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María A Gálvez-Moreno
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain.
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain; Reina Sofia University Hospital, Córdoba, Spain.
| |
Collapse
|
4
|
pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation. Nat Commun 2022; 13:6840. [PMID: 36369429 PMCID: PMC9652315 DOI: 10.1038/s41467-022-34529-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer.
Collapse
|
5
|
Wang J, Cui B, Chen Z, Ding X. The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Front Cell Dev Biol 2022; 10:950973. [PMID: 35938153 PMCID: PMC9355246 DOI: 10.3389/fcell.2022.950973] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The epidermis, the outmost layer of the skin, is a stratified squamous epithelium that protects the body from the external world. The epidermis and its appendages need constantly renew themselves and replace the damaged tissues caused by environmental assaults. The mechanistic target of rapamycin (mTOR) signaling is a central controller of cell growth and metabolism that plays a critical role in development, homeostasis and diseases. Recent findings suggest that mTOR signaling is activated in a spatiotemporal and context-dependent manner in the epidermis, coordinating diverse skin homeostatic processes. Dysregulation of mTOR signaling underlies the pathogenesis of skin diseases, including psoriasis and skin cancer. In this review, we discuss the role of epidermal mTOR signaling activity and function in skin, with a focus on skin barrier formation, hair regeneration, wound repair, as well as skin pathological disorders. We propose that fine-tuned control of mTOR signaling is essential for epidermal structural and functional integrity.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Baiping Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai, China
- Shanghai Engineering Research Center for External Chinese Medicine, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiaolei Ding,
| |
Collapse
|
6
|
Wang J, Eming SA, Ding X. Role of mTOR Signaling Cascade in Epidermal Morphogenesis and Skin Barrier Formation. BIOLOGY 2022; 11:biology11060931. [PMID: 35741452 PMCID: PMC9220260 DOI: 10.3390/biology11060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The skin epidermis is a stratified multilayered epithelium that provides a life-sustaining protective and defensive barrier for our body. The barrier machinery is established and maintained through a tightly regulated keratinocyte differentiation program. Under normal conditions, the basal layer keratinocytes undergo active proliferation and migration upward, differentiating into the suprabasal layer cells. Perturbation of the epidermal differentiation program often results in skin barrier defects and inflammatory skin disorders. The protein kinase mechanistic target of rapamycin (mTOR) is the central hub of cell growth, metabolism and nutrient signaling. Over the past several years, we and others using transgenic mouse models have unraveled that mTOR signaling is critical for epidermal differentiation and barrier formation. On the other hand, there is increasing evidence that disturbed activation of mTOR signaling is significantly implicated in the development of various skin diseases. In this review, we focus on the formation of skin barrier and discuss the current understanding on how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal differentiation and skin barrier formation. We hope this review will help us better understand the metabolic signaling in the epidermis, which may open new vistas for epidermal barrier defect-associated disease therapy. Abstract The skin epidermis, with its capacity for lifelong self-renewal and rapid repairing response upon injury, must maintain an active status in metabolism. Mechanistic target of rapamycin (mTOR) signaling is a central controller of cellular growth and metabolism that coordinates diverse physiological and pathological processes in a variety of tissues and organs. Recent evidence with genetic mouse models highlights an essential role of the mTOR signaling network in epidermal morphogenesis and barrier formation. In this review, we focus on the recent advances in understanding how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal morphogenesis and skin barrier formation. Understanding the details of the metabolic signaling will be critical for the development of novel pharmacological approaches to promote skin barrier regeneration and to treat epidermal barrier defect-associated diseases.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| |
Collapse
|
7
|
The Roles of Par3, Par6, and aPKC Polarity Proteins in Normal Neurodevelopment and in Neurodegenerative and Neuropsychiatric Disorders. J Neurosci 2022; 42:4774-4793. [PMID: 35705493 DOI: 10.1523/jneurosci.0059-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Normal neural circuits and functions depend on proper neuronal differentiation, migration, synaptic plasticity, and maintenance. Abnormalities in these processes underlie various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Neural development and maintenance are regulated by many proteins. Among them are Par3, Par6 (partitioning defective 3 and 6), and aPKC (atypical protein kinase C) families of evolutionarily conserved polarity proteins. These proteins perform versatile functions by forming tripartite or other combinations of protein complexes, which hereafter are collectively referred to as "Par complexes." In this review, we summarize the major findings on their biophysical and biochemical properties in cell polarization and signaling pathways. We next summarize their expression and localization in the nervous system as well as their versatile functions in various aspects of neurodevelopment, including neuroepithelial polarity, neurogenesis, neuronal migration, neurite differentiation, synaptic plasticity, and memory. These versatile functions rely on the fundamental roles of Par complexes in cell polarity in distinct cellular contexts. We also discuss how cell polarization may correlate with subcellular polarization in neurons. Finally, we review the involvement of Par complexes in neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. While emerging evidence indicates that Par complexes are essential for proper neural development and maintenance, many questions on their in vivo functions have yet to be answered. Thus, Par3, Par6, and aPKC continue to be important research topics to advance neuroscience.
Collapse
|
8
|
Peng F, Zhao S, Zhang X, Long S, He Y. Calcitonin gene-related peptide upregulates IL-17A and IL-22 in γδ-T cells through the paracrine effect of langerhans cells on LC/γδ-T co-culture model. J Neuroimmunol 2022; 364:577792. [PMID: 35030439 DOI: 10.1016/j.jneuroim.2021.577792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022]
Abstract
Intense mental stimulation and stress often directly induce or exacerbate psoriasis. On the contrary, patients with nerve injury and nervous system dysfunction have psoriasis remission. The nervous system plays an important role in the inflammatory process of psoriasis, and neuropeptides are considered as local mediators of disease maintenance. To examine the molecular mechanism involved in this, first we analyzed calcitonin gene-related peptide (CGRP)-treated langerhans Cells and γδ-T cells separately. CGRP induced IL-23 mRNA and protein expression via PDK1-Rsk signaling pathway. However, CGRP had no effect on secretion of IL-17A and IL-22 in γδ-T cells. Then we treated LCs/γδ-T cells Co-culture Model with CGRP. CGRP upregulated IL-17A and IL-22 expression in co-culture model through the paracrine effect of LCs. IL-17A and IL-22 are key cytokines of psoriasis. These findings provide a potential mechanism by which nerve factors affect the development of psoriasis.
Collapse
Affiliation(s)
- Fen Peng
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Siqi Zhao
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xuan Zhang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Siyu Long
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| |
Collapse
|
9
|
Dainichi T, Nakano Y, Doi H, Nakamizo S, Nakajima S, Matsumoto R, Farkas T, Wong PM, Narang V, Moreno Traspas R, Kawakami E, Guttman-Yassky E, Dreesen O, Litman T, Reversade B, Kabashima K. C10orf99/GPR15L Regulates Proinflammatory Response of Keratinocytes and Barrier Formation of the Skin. Front Immunol 2022; 13:825032. [PMID: 35273606 PMCID: PMC8902463 DOI: 10.3389/fimmu.2022.825032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The epidermis, outermost layer of the skin, forms a barrier and is involved in innate and adaptive immunity in an organism. Keratinocytes participate in all these three protective processes. However, a regulator of keratinocyte protective responses against external dangers and stresses remains elusive. We found that upregulation of the orphan gene 2610528A11Rik was a common factor in the skin of mice with several types of inflammation. In the human epidermis, peptide expression of G protein-coupled receptor 15 ligand (GPR15L), encoded by the human ortholog C10orf99, was highly induced in the lesional skin of patients with atopic dermatitis or psoriasis. C10orf99 gene transfection into normal human epidermal keratinocytes (NHEKs) induced the expression of inflammatory mediators and reduced the expression of barrier-related genes. Gene ontology analyses showed its association with translation, mitogen-activated protein kinase (MAPK), mitochondria, and lipid metabolism. Treatment with GPR15L reduced the expression levels of filaggrin and loricrin in human keratinocyte 3D cultures. Instead, their expression levels in mouse primary cultured keratinocytes did not show significant differences between the wild-type and 2610528A11Rik deficient keratinocytes. Lipopolysaccharide-induced expression of Il1b and Il6 was less in 2610528A11Rik deficient mouse keratinocytes than in wild-type, and imiquimod-induced psoriatic dermatitis was blunted in 2610528A11Rik deficient mice. Furthermore, repetitive subcutaneous injection of GPR15L in mouse ears induced skin inflammation in a dose-dependent manner. These results suggest that C10orf99/GPR15L is a primary inducible regulator that reduces the barrier formation and induces the inflammatory response of keratinocytes.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Faculty of Medicine, Kagawa University, Miki-cho, Japan
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuri Nakano
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Doi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nakamizo
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (A*SRL), A*STAR, Biopolis, Singapore, Singapore
| | - Saeko Nakajima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Drug Discovery for Inflammatory Skin Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Reiko Matsumoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thomas Farkas
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Pui Mun Wong
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Vipin Narang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Ricardo Moreno Traspas
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Eiryo Kawakami
- Advanced Data Science Project (ADSP), RIKEN, Yokohama, Japan
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Oliver Dreesen
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (A*SRL), A*STAR, Biopolis, Singapore, Singapore
| | - Thomas Litman
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (A*SRL), A*STAR, Biopolis, Singapore, Singapore
| |
Collapse
|
10
|
Varga J, Nicolas A, Petrocelli V, Pesic M, Mahmoud A, Michels BE, Etlioglu E, Yepes D, Häupl B, Ziegler PK, Bankov K, Wild PJ, Wanninger S, Medyouf H, Farin HF, Tejpar S, Oellerich T, Ruland J, Siebel CW, Greten FR. AKT-dependent NOTCH3 activation drives tumor progression in a model of mesenchymal colorectal cancer. J Exp Med 2021; 217:151998. [PMID: 32749453 PMCID: PMC7537393 DOI: 10.1084/jem.20191515] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/26/2020] [Accepted: 06/05/2020] [Indexed: 01/15/2023] Open
Abstract
Recently, a transcriptome-based consensus molecular subtype (CMS) classification of colorectal cancer (CRC) has been established, which may ultimately help to individualize CRC therapy. However, the lack of animal models that faithfully recapitulate the different molecular subtypes impedes adequate preclinical testing of stratified therapeutic concepts. Here, we demonstrate that constitutive AKT activation in intestinal epithelial cells markedly enhances tumor invasion and metastasis in Trp53ΔIEC mice (Trp53ΔIECAktE17K) upon challenge with the carcinogen azoxymethane. Gene-expression profiling indicates that Trp53ΔIECAktE17K tumors resemble the human mesenchymal colorectal cancer subtype (CMS4), which is characterized by the poorest survival rate among the four CMSs. Trp53ΔIECAktE17K tumor cells are characterized by Notch3 up-regulation, and treatment of Trp53ΔIECAktE17K mice with a NOTCH3-inhibiting antibody reduces invasion and metastasis. In CRC patients, NOTCH3 expression correlates positively with tumor grading and the presence of lymph node as well as distant metastases and is specifically up-regulated in CMS4 tumors. Therefore, we suggest NOTCH3 as a putative target for advanced CMS4 CRC patients.
Collapse
Affiliation(s)
- Julia Varga
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Adele Nicolas
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Valentina Petrocelli
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Marina Pesic
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Abdelrahman Mahmoud
- German Cancer Research Center, Division of Applied Bioinformatics, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Birgitta E Michels
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Emre Etlioglu
- Digestive Oncology Unit, Department of Oncology, University Hospital Leuven, Leuven, Belgium
| | - Diego Yepes
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Björn Häupl
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Paul K Ziegler
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Stefan Wanninger
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich School of Medicine, Technical University of Munich, Munich, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Henner F Farin
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Sabine Tejpar
- Digestive Oncology Unit, Department of Oncology, University Hospital Leuven, Leuven, Belgium
| | - Thomas Oellerich
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Jürgen Ruland
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.,Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.,German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
11
|
Li H, Charruyer A, Weisenberger T, Khalifa A, Nguyen R, Ghadially R. IL-1α, IL-6, and GM-CSF Are Downstream Mediators of IL-17A that Promote Asymmetric Stem Cell Self-Renewal in Human Keratinocytes. J Invest Dermatol 2021; 141:458-462.e3. [PMID: 32621824 DOI: 10.1016/j.jid.2020.05.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Hang Li
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, VA Medical Center, San Francisco, California, USA
| | - Alex Charruyer
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, VA Medical Center, San Francisco, California, USA
| | - Tracy Weisenberger
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, VA Medical Center, San Francisco, California, USA
| | - Ayman Khalifa
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, VA Medical Center, San Francisco, California, USA; Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Robert Nguyen
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Keck School of Medicine, Los Angeles, California, USA
| | - Ruby Ghadially
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, VA Medical Center, San Francisco, California, USA.
| |
Collapse
|
12
|
Charruyer A, Weisenberger T, Li H, Khalifa A, Schroeder AW, Belzer A, Ghadially R. Decreased p53 is associated with a decline in asymmetric stem cell self-renewal in aged human epidermis. Aging Cell 2021; 20:e13310. [PMID: 33524216 PMCID: PMC7884041 DOI: 10.1111/acel.13310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/26/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
With age, the epidermis becomes hypoplastic and hypoproliferative. Hypoproliferation due to aging has been associated with decreased stem cell (SC) self‐renewal in multiple murine tissues. The fate of SC self‐renewal divisions can be asymmetric (one SC, one committed progenitor) or symmetric (two SCs). Increased asymmetric SC self‐renewal has been observed in inflammatory‐mediated hyperproliferation, while increased symmetric SC self‐renewal has been observed in cancers. We analyzed SC self‐renewal divisions in aging human epidermis to better understand the role of SCs in the hypoproliferation of aging. In human subjects, neonatal to 78 years, there was an age‐dependent decrease in epidermal basal layer divisions. The balance of SC self‐renewal shifted toward symmetric SC self‐renewal, with a decline in asymmetric SC self‐renewal. Asymmetric SC divisions maintain epidermal stratification, and this decrease may contribute to the hypoplasia of aging skin. P53 decreases in multiple tissues with age, and p53 has been shown to promote asymmetric SC self‐renewal. Fewer aged than adult ALDH+CD44+ keratinocyte SCs exhibited p53 expression and activity and Nutlin‐3 (a p53 activator) returned p53 activity as well as asymmetric SC self‐renewal divisions to adult levels. Nutlin‐3 increased Notch signaling (NICD, Hes1) and DAPT inhibition of Notch activation prevented Nutlin‐3 (p53)‐induced asymmetric SC self‐renewal divisions in aged keratinocytes. These studies indicate a role for p53 in the decreased asymmetric SC divisions with age and suggest that in aged keratinocytes, Notch is required for p53‐induced asymmetric SC divisions.
Collapse
Affiliation(s)
- Alexandra Charruyer
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| | - Tracy Weisenberger
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| | - Hang Li
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| | - Ayman Khalifa
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
- Faculty of science Zagazig University Zagazig Egypt
| | | | - Annika Belzer
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
- Yale School of Medicine New Haven Connecticut USA
| | - Ruby Ghadially
- Department of Dermatology UC San Francisco San Francisco California USA
- Department of Dermatology VA Medical Center San Francisco California USA
| |
Collapse
|
13
|
Son JW, Shin JJ, Kim MG, Kim J, Son SW. Keratinocyte-specific knockout mice models via Cre–loxP recombination system. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-020-00115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Flora P, Ezhkova E. Regulatory mechanisms governing epidermal stem cell function during development and homeostasis. Development 2020; 147:147/22/dev194100. [PMID: 33191273 DOI: 10.1242/dev.194100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell divisions and cell-fate decisions require stringent regulation for proper tissue development and homeostasis. The mammalian epidermis is a highly organized tissue structure that is sustained by epidermal stem cells (ESCs) that balance self-renewal and cell-fate decisions to establish a protective barrier, while replacing dying cells during homeostasis and in response to injury. Extensive work over past decades has provided insights into the regulatory mechanisms that control ESC specification, self-renewal and maintenance during different stages of the lifetime of an organism. In this Review, we discuss recent findings that have furthered our understanding of key regulatory features that allow ESCs to establish a functional barrier during development and to maintain tissue homeostasis in adults.
Collapse
Affiliation(s)
- Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
15
|
PDK1 Regulates the Maintenance of Cell Body and the Development of Dendrites of Purkinje Cells by pS6 and PKCγ. J Neurosci 2020; 40:5531-5548. [PMID: 32487697 DOI: 10.1523/jneurosci.2496-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a critical role in the development of mammalian brain. Here, we investigated the role of PDK1 in Purkinje cells (PCs) by generating the PDK1-conditional knock-out mice (cKO) through crossing PV-cre or Pcp2-cre mice with Pdk1fl/fl mice. The male mice were used in the behavioral testing, and the other experiments were performed on mice of both sexes. These PDK1-cKO mice displayed decreased cerebellar size and impaired motor balance and coordination. By the electrophysiological recording, we observed the reduced spontaneous firing of PCs from the cerebellar slices of the PDK1-cKO mice. Moreover, the cell body size of PCs in the PDK1-cKO mice was time dependently reduced compared with that in the control mice. And the morphologic complexity of PCs was also decreased after PDK1 deletion. These effects may have contributed to the reduction of the rpS6 (reduced ribosomal protein S6) phosphorylation and the PKCγ expression in PDK1-cKO mice since the upregulation of pS6 by treatment of 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-1, the agonist of mTOR1, partly rescued the reduction in the cell body size of the PCs, and the delivery of recombinant adeno-associated virus-PKCγ through cerebellar injection rescued the reduced complexity of the dendritic arbor in PDK1-cKO mice. Together, our data suggest that PDK1, by regulating rpS6 phosphorylation and PKCγ expression, controls the cell body maintenance and the dendritic development in PCs and is critical for cerebellar motor coordination.SIGNIFICANCE STATEMENT Here, we show the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1) in Purkinje cells (PCs). The ablation of PDK1 in PCs resulted in a reduction of cell body size, and dendritic complexity and abnormal spontaneous firing, which attributes to the motor defects in PDK1-conditional knock-out (cKO) mice. Moreover, the ribosomal protein S6 (rpS6) phosphorylation and the expression of PKCγ are downregulated after the ablation of PDK1. Additionally, upregulation of rpS6 phosphorylation by3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-1 partly rescued the reduction in cell body size of PCs, and the overexpression of PKCγ in PDK1-KO PCs rescued the reduction in the dendritic complexity. These findings indicate that PDK1 contributes to the maintenance of the cell body and the dendritic development of PCs by regulating rpS6 phosphorylation and PKCγ expression.
Collapse
|
16
|
Sênos Demarco R, Clémot M, Jones DL. The impact of ageing on lipid-mediated regulation of adult stem cell behavior and tissue homeostasis. Mech Ageing Dev 2020; 189:111278. [PMID: 32522455 DOI: 10.1016/j.mad.2020.111278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Adult stem cells sustain tissue homeostasis throughout life and provide an important reservoir of cells capable of tissue repair in response to stress and tissue damage. Age-related changes to stem cells and/or the specialized niches that house them have been shown to negatively impact stem cell maintenance and activity. In addition, metabolic inputs have surfaced as another crucial layer in the control of stem cell behavior (Chandel et al., 2016; Folmes and Terzic, 2016; Ito and Suda, 2014; Mana et al., 2017; Shyh-Chang and Ng, 2017). Here, we will present a brief review of how lipid metabolism influences adult stem cell behavior under homeostatic conditions and speculate on how changes in lipid metabolism may impact stem cell ageing. This review considers the future of lipid metabolism research in stem cells, with the long-term goal of identifying mechanisms that could be targeted to counter or slow the age-related decline in stem cell function.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA
| | - Marie Clémot
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA, 90095, USA; Molecular Biology Institute, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Clémot M, Sênos Demarco R, Jones DL. Lipid Mediated Regulation of Adult Stem Cell Behavior. Front Cell Dev Biol 2020; 8:115. [PMID: 32185173 PMCID: PMC7058546 DOI: 10.3389/fcell.2020.00115] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
Adult stem cells constitute an important reservoir of self-renewing progenitor cells and are crucial for maintaining tissue and organ homeostasis. The capacity of stem cells to self-renew or differentiate can be attributed to distinct metabolic states, and it is now becoming apparent that metabolism plays instructive roles in stem cell fate decisions. Lipids are an extremely vast class of biomolecules, with essential roles in energy homeostasis, membrane structure and signaling. Imbalances in lipid homeostasis can result in lipotoxicity, cell death and diseases, such as cardiovascular disease, insulin resistance and diabetes, autoimmune disorders and cancer. Therefore, understanding how lipid metabolism affects stem cell behavior offers promising perspectives for the development of novel approaches to control stem cell behavior either in vitro or in patients, by modulating lipid metabolic pathways pharmacologically or through diet. In this review, we will first address how recent progress in lipidomics has created new opportunities to uncover stem-cell specific lipidomes. In addition, genetic and/or pharmacological modulation of lipid metabolism have shown the involvement of specific pathways, such as fatty acid oxidation (FAO), in regulating adult stem cell behavior. We will describe and compare findings obtained in multiple stem cell models in order to provide an assessment on whether unique lipid metabolic pathways may commonly regulate stem cell behavior. We will then review characterized and potential molecular mechanisms through which lipids can affect stem cell-specific properties, including self-renewal, differentiation potential or interaction with the niche. Finally, we aim to summarize the current knowledge of how alterations in lipid homeostasis that occur as a consequence of changes in diet, aging or disease can impact stem cells and, consequently, tissue homeostasis and repair.
Collapse
Affiliation(s)
- Marie Clémot
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - D. Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Peng K, Fan X, Li Q, Wang Y, Chen X, Xiao P, Passerini AG, Simon SI, Sun C. IRF-1 mediates the suppressive effects of mTOR inhibition on arterial endothelium. J Mol Cell Cardiol 2020; 140:30-41. [PMID: 32087218 DOI: 10.1016/j.yjmcc.2020.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/16/2020] [Accepted: 02/18/2020] [Indexed: 12/29/2022]
Abstract
AIMS Mammalian target of rapamycin (mTOR) inhibitors used in drug-eluting stents (DES) to control restenosis have been found to delay endothelialization and increase incidence of late-stent thrombosis through mechanisms not completely understood. We revealed that mTOR inhibition (mTORi) upregulated the expression of cell growth suppressor IRF-1 in primary human arterial endothelial cells (HAEC). This study aimed to examine how mTOR-regulated IRF-1 expression contributes to the suppressive effect of mTORi on arterial endothelial proliferation. METHODS AND RESULTS Western blotting, quantitative PCR, and a dual-luciferase reporter assay indicated that mTOR inhibitors rapamycin and torin 1 upregulated IRF-1 expression and increased its transcriptional activity. IRF-1 in turn contributed to the suppressive effect of mTORi by mediating HAEC apoptosis and cell cycle arrest in part through upregulation of caspase 1 and downregulation of cyclin D3, as revealed by CCK-8 assay, Annexin V binding assay, measurement of activated caspase 3, BrdU incorporation assay, and matrigel tube formation assay. In a mouse model of femoral artery wire injury, administration of rapamycin inhibited EC recovery, an effect alleviated by EC deficiency of IRF-1. Chromatin immunoprecipitation assay with HAEC and rescue expression of wild type or dominant-negative IRF-1 in EC isolated from Irf1-/- mice confirmed transcriptional regulation of IRF-1 on the expression of CASP1 and CCND3. Furthermore, mTORi activated multiple PKC members, among which PKCζ was responsible for the growth-inhibitory effect on HAEC. Activated PKCζ increased IRF1 transcription through JAK/STAT-1 and NF-κB signaling. Finally, overexpression of wild type or mutant raptor incapable of binding mTOR indicated that mTOR-free raptor contributed to PKCζ activation in mTOR-inhibited HAEC. CONCLUSIONS The study reveals an IRF-1-mediated mechanism that contributes to the suppressive effects of mTORi on HAEC proliferation. Further study may facilitate the development of effective strategies to reduce the side effects of DES used in coronary interventions.
Collapse
Affiliation(s)
- Kai Peng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China
| | - Xing Fan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China
| | - Qiannan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China
| | - Yiying Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China
| | - Xiaolin Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China
| | - Pingxi Xiao
- Department of Cardiology, The affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Anthony G Passerini
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States of America
| | - Scott I Simon
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States of America
| | - ChongXiu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China; Key laboratory of Human Functional Genomics of Jiang Province, Nanjing, China.
| |
Collapse
|
19
|
Jing P, Zhou S, Xu P, Cui P, Liu X, Liu X, Liu X, Wang H, Xu W. PDK1 promotes metastasis by inducing epithelial–mesenchymal transition in hypopharyngeal carcinoma via the Notch1 signaling pathway. Exp Cell Res 2020; 386:111746. [DOI: 10.1016/j.yexcr.2019.111746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022]
|
20
|
Han X, Wei Y, Wu X, Gao J, Yang Z, Zhao C. PDK1 Regulates Transition Period of Apical Progenitors to Basal Progenitors by Controlling Asymmetric Cell Division. Cereb Cortex 2019; 30:406-420. [DOI: 10.1093/cercor/bhz146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/09/2019] [Accepted: 06/09/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
The six-layered neocortex consists of diverse neuron subtypes. Deeper-layer neurons originate from apical progenitors (APs), while upper-layer neurons are mainly produced by basal progenitors (BPs), which are derivatives of APs. As development proceeds, an AP generates two daughter cells that comprise an AP and a deeper-layer neuron or a BP. How the transition of APs to BPs is spatiotemporally regulated is a fundamental question. Here, we report that conditional deletion of phoshpoinositide-dependent protein kinase 1 (PDK1) in mouse developing cortex achieved by crossing Emx1Cre line with Pdk1fl/fl leads to a delayed transition of APs to BPs and subsequently causes an increased output of deeper-layer neurons. We demonstrate that PDK1 is involved in the modulation of the aPKC-Par3 complex and further regulates the asymmetric cell division (ACD). We also find Hes1, a downstream effecter of Notch signal pathway is obviously upregulated. Knockdown of Hes1 or treatment with Notch signal inhibitor DAPT recovers the ACD defect in the Pdk1 cKO. Thus, we have identified a novel function of PDK1 in controlling the transition of APs to BPs.
Collapse
Affiliation(s)
- Xiaoning Han
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yongjie Wei
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaojing Wu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jun Gao
- Department of Neurobiology
- Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing 211166, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
21
|
Ding X, Willenborg S, Bloch W, Wickström SA, Wagle P, Brodesser S, Roers A, Jais A, Brüning JC, Hall MN, Rüegg MA, Eming SA. Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation. J Allergy Clin Immunol 2019; 145:283-300.e8. [PMID: 31401286 DOI: 10.1016/j.jaci.2019.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Perturbation of epidermal barrier formation will profoundly compromise overall skin function, leading to a dry and scaly, ichthyosis-like skin phenotype that is the hallmark of a broad range of skin diseases, including ichthyosis, atopic dermatitis, and a multitude of clinical eczema variants. An overarching molecular mechanism that orchestrates the multitude of factors controlling epidermal barrier formation and homeostasis remains to be elucidated. OBJECTIVE Here we highlight a specific role of mammalian target of rapamycin complex 2 (mTORC2) signaling in epidermal barrier formation. METHODS Epidermal mTORC2 signaling was specifically disrupted by deleting rapamycin-insensitive companion of target of rapamycin (Rictor), encoding an essential subunit of mTORC2 in mouse epidermis (epidermis-specific homozygous Rictor deletion [RicEKO] mice). Epidermal structure and barrier function were investigated through a combination of gene expression, biochemical, morphological and functional analysis in RicEKO and control mice. RESULTS RicEKO newborns displayed an ichthyosis-like phenotype characterized by dysregulated epidermal de novo lipid synthesis, altered lipid lamellae structure, and aberrant filaggrin (FLG) processing. Despite a compensatory transcriptional epidermal repair response, the protective epidermal function was impaired in RicEKO mice, as revealed by increased transepidermal water loss, enhanced corneocyte fragility, decreased dendritic epidermal T cells, and an exaggerated percutaneous immune response. Restoration of Akt-Ser473 phosphorylation in mTORC2-deficient keratinocytes through expression of constitutive Akt rescued FLG processing. CONCLUSION Our findings reveal a critical metabolic signaling relay of barrier formation in which epidermal mTORC2 activity controls FLG processing and de novo epidermal lipid synthesis during cornification. Our findings provide novel mechanistic insights into epidermal barrier formation and could open up new therapeutic opportunities to restore defective epidermal barrier conditions.
Collapse
Affiliation(s)
- Xiaolei Ding
- Department of Dermatology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Sara A Wickström
- Paul Gerson Unna Group "Skin Homeostasis and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany; Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Prerana Wagle
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Alexander Jais
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany; Max Planck Institute for Metabolism Research, Cologne, Germany
| | | | | | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
22
|
Oncogenic activation of PI3K induces progenitor cell differentiation to suppress epidermal growth. Nat Cell Biol 2018; 20:1256-1266. [PMID: 30361695 PMCID: PMC6291208 DOI: 10.1038/s41556-018-0218-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/18/2018] [Indexed: 12/28/2022]
Abstract
Oncogenic lesions are surprisingly common in morphologically and functionally normal human skin, however, the cellular and molecular mechanisms that suppress their cancer-driving potential to maintain tissue homeostasis are unknown. By employing assays for direct and quantitative assessment of cell fate choices in vivo, we show that oncogenic activation of PI3K/AKT, the most commonly activated oncogenic pathway in cancer, promotes differentiation and cell-cycle exit of epidermal progenitors. As a result, oncogenic PI3K/AKT activated epidermis exhibits growth disadvantage even though its cells are more proliferative. To uncover the underlying mechanism behind oncogene-induced differentiation, we conduct a series of genetic screens in vivo, and identify an AKT substrate SH3RF1 as a specific promoter of epidermal differentiation that has no effect on proliferation. Our study provides evidence for a direct, cell autonomous mechanism that can suppresses progenitor cell renewal and block clonal expansion of epidermal cells bearing a common and activating mutation in Pik3ca.
Collapse
|
23
|
Xing T, Hass DT, Zhang SS, Barnstable CJ. The 3-Phosphoinositide-Dependent Protein Kinase 1 Inhibits Rod Photoreceptor Development. Front Cell Dev Biol 2018; 6:134. [PMID: 30364083 PMCID: PMC6191476 DOI: 10.3389/fcell.2018.00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/24/2018] [Indexed: 01/30/2023] Open
Abstract
The transition of rod precursor cells to post-mitotic rod photoreceptors can be promoted by extrinsic factors such as insulin-like growth factor 1 (IGF-1), which regulates phosphatidylinositide concentration, and consequently the 3-phosphoinositide-dependent protein kinase-1 (PDPK-1). PDPK-1 is a 63 kDa cytoplasmic kinase that controls cell proliferation and differentiation. In the mouse retina, PDPK-1 and its phosphorylated derivative p-PDPK-1 (Ser241), showed peak expression during the first postnatal (PN) day with a substantial decline by PN7 and in the adult retina. Though initially widely distributed among cell types, PDPK-1 expression decreased first in the inner retina and later in the outer retina. When PDPK-1 is inhibited in neonatal retinal explants by BX795, there is a robust increase in rod photoreceptor numbers. The increase in rods depended on the activity of PKC, as BX795 had no effect when PKC is inhibited. Inhibition of PDPK-1-dependent kinases, such as P70-S6K, but not others, such as mTORC-1, stimulated rod development. The P70-S6K-dependent increase in rods appears to be correlated with phosphorylation of Thr252 and not at Thr389, a substrate of mTORC-1. This pathway is also inactive while PKC activity is inhibited. We also found that inhibition of the kinase mTORC-2, also stimulated by insulin activity, similarly increased rod formation, and this effect appears to be independent of PKC activity. This may represent a novel intracellular signaling pathway that also stimulates photoreceptor development. Consistent with previous studies, stimulation of STAT3 activity is sufficient to prevent any PDPK-1, P70-S6K, or mTORC2-dependent increase in rods. Together the data indicate that PDPK-1 and other intrinsic kinases downstream of IGF-1 are key regulators of rod photoreceptor formation.
Collapse
Affiliation(s)
- Tiaosi Xing
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC, United States
| | - Daniel T Hass
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Samuel S Zhang
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
24
|
Activation of S6 signaling is associated with cell survival and multinucleation in hyperplastic skin after epidermal loss of AURORA-A Kinase. Cell Death Differ 2018; 26:548-564. [PMID: 30050055 DOI: 10.1038/s41418-018-0167-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/25/2018] [Accepted: 07/03/2018] [Indexed: 01/17/2023] Open
Abstract
The role of mitosis in the progression of precancerous skin remains poorly understood. To address this question, we deleted the mitotic Kinase Aurora-A (Aur-A) in hyperplastic mutant p53 mouse skin as an experimental tool to study the G2/M transition in precancerous keratinocytes and AUR-A's role in this process. Epidermal Aur-A deletion (Aur-AepiΔ) led to marked keratinocyte enlargement, pleomorphism, multinucleation, and attenuated induction of cell death. This phenotype was characteristic of slippage after a stalled mitosis. We also observed altered or impaired epidermal differentiation, indicative of a partial skin barrier defect. The upregulation of mTOR/PI3K signaling was implicated as a mechanism by which keratinocytes may evade cell death after AUR-A deficiency. This was evidenced by the ectopic expression of the pathway readout, p-S6, in the basal layer of Aur-AepiΔ skin and its mitotic upregulation in isolated keratinocytes. We further tested whether our findings were extended to skin carcinoma cells. The chemical inhibition of AUR-A led to a similar mitotic delay, polyploidy/multinucleation, and attenuated cell death in skin cancer cell lines. Moreover, inhibition of mTOR/PI3K signaling ameliorated the effects caused by the deficiency of AUR-A activity but was also associated with the persistence of mitotic p-S6 detection in surviving cancer cells. These results show the induction of multinucleation/polyploidy may be a compensatory state in keratinocytes that allows for cellular survival and maintenance of partial barrier function in face of aberrant cell division or differentiation. Moreover, mTOR/PI3K signaling is active in the mitosis of hyperplastic keratinocytes expressing mutant p53 and is further enhanced by stalled mitosis, indicating a potential resistance mechanism to the use of anti-mitotic drugs in the treatment of skin cancers.
Collapse
|
25
|
Chen YH, Kratchmarov R, Lin WHW, Rothman NJ, Yen B, Adams WC, Nish SA, Rathmell JC, Reiner SL. Asymmetric PI3K Activity in Lymphocytes Organized by a PI3K-Mediated Polarity Pathway. Cell Rep 2018; 22:860-868. [PMID: 29420173 PMCID: PMC5806629 DOI: 10.1016/j.celrep.2017.12.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/06/2017] [Accepted: 12/22/2017] [Indexed: 11/18/2022] Open
Abstract
Unequal transmission of nutritive signaling during cell division establishes fate disparity between sibling lymphocytes, but how asymmetric signaling becomes organized is not understood. We show that receptor-associated class I phosphatidylinositol 3-kinase (PI3K) signaling activity, indexed by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) staining, is spatially restricted to the microtubule-organizing center and subsequently to one pole of the mitotic spindle in activated T and B lymphocytes. Asymmetric PI3K activity co-localizes with polarization of antigen receptor components implicated in class I PI3K signaling and with facultative glucose transporters whose trafficking is PI3K dependent and whose abundance marks cells destined for differentiation. Perturbation of class I PI3K activity disrupts asymmetry of upstream antigen receptors and downstream glucose transporter traffic. The roles of PI3K signaling in nutrient utilization, proliferation, and gene expression may have converged with the conserved role of PI3K signaling in cellular symmetry breaking to form a logic for regenerative lymphocyte divisions.
Collapse
Affiliation(s)
- Yen-Hua Chen
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Radomir Kratchmarov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wen-Hsuan W Lin
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Nyanza J Rothman
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Bonnie Yen
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - William C Adams
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Simone A Nish
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Steven L Reiner
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
26
|
Xu C, Yu L, Hou J, Jackson RJ, Wang H, Huang C, Liu T, Wang Q, Zou X, Morris RG, Spires-Jones TL, Yang Z, Yin Z, Xu Y, Chen G. Conditional Deletion of PDK1 in the Forebrain Causes Neuron Loss and Increased Apoptosis during Cortical Development. Front Cell Neurosci 2017; 11:330. [PMID: 29104535 PMCID: PMC5655024 DOI: 10.3389/fncel.2017.00330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
Decreased expression but increased activity of PDK1 has been observed in neurodegenerative disease. To study in vivo function of PDK1 in neuron survival during cortical development, we generate forebrain-specific PDK1 conditional knockout (cKO) mice. We demonstrate that PDK1 cKO mice display striking neuron loss and increased apoptosis. We report that PDK1 cKO mice exhibit deficits on several behavioral tasks. Moreover, PDK1 cKO mice show decreased activities for Akt and mTOR. These results highlight an essential role of endogenous PDK1 in the maintenance of neuronal survival during cortical development.
Collapse
Affiliation(s)
- Congyu Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Linjie Yu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jinxing Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Rosemary J Jackson
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | - He Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Chaoli Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Tingting Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Qihui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Xiaochuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Richard G Morris
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom.,Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Instituto de Neurociencias, Alicante, Spain
| | - Tara L Spires-Jones
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Dementia Prevention, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Zhenyu Yin
- Department of Geriatrics, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guiquan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Lymphocyte Fate and Metabolism: A Clonal Balancing Act. Trends Cell Biol 2017; 27:946-954. [PMID: 28818395 DOI: 10.1016/j.tcb.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023]
Abstract
Activated lymphocytes perform a clonal balancing act, yielding a daughter cell that differentiates owing to intense PI3K signaling, alongside a self-renewing sibling cell with blunted anabolic signaling. Divergent cellular anabolism versus catabolism is emerging as a feature of several developmental and regenerative paradigms. Metabolism can dictate cell fate, in part, because lineage-specific regulators are embedded in the circuitry of conserved metabolic switches. Unequal transmission of PI3K signaling during regenerative divisions is reminiscent of compartmentalized PI3K activity during directed motility or polarized information flow in non-dividing cells. The diverse roles of PI3K pathways in membrane traffic, cell polarity, metabolism, and gene expression may have converged to instruct sibling cell feast and famine, thereby enabling clonal differentiation alongside self-renewal.
Collapse
|
28
|
Phosphoinositide 3-Kinase-Dependent Signalling Pathways in Cutaneous Squamous Cell Carcinomas. Cancers (Basel) 2017; 9:cancers9070086. [PMID: 28696382 PMCID: PMC5532622 DOI: 10.3390/cancers9070086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 01/11/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) derives from keratinocytes in the epidermis and accounts for 15–20% of all cutaneous malignancies. Although it is usually curable by surgery, 5% of these tumours metastasise leading to poor prognosis mostly because of a lack of therapies and validated biomarkers. As the incidence rate is rising worldwide it has become increasingly important to better understand the mechanisms involved in cSCC development and progression in order to develop therapeutic strategies. Here we discuss some of the evidence indicating that activation of phosphoinositide 3-kinases (PI3Ks)-dependent signalling pathways (in particular the PI3Ks targets Akt and mTOR) has a key role in cSCC. We further discuss available data suggesting that inhibition of these pathways can be beneficial to counteract the disease. With the growing number of different inhibitors currently available, it would be important to further investigate the specific contribution of distinct components of the PI3Ks/Akt/mTOR pathways in order to identify the most promising molecular targets and the best strategy to inhibit cSCC.
Collapse
|
29
|
Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol 2017; 48:36-52. [PMID: 28571764 DOI: 10.1016/j.semcancer.2017.04.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
Abstract
The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its potential usage as a therapeutic target.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
30
|
Di Blasio L, Gagliardi PA, Puliafito A, Primo L. Serine/Threonine Kinase 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) as a Key Regulator of Cell Migration and Cancer Dissemination. Cancers (Basel) 2017; 9:cancers9030025. [PMID: 28287465 PMCID: PMC5366820 DOI: 10.3390/cancers9030025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 02/03/2023] Open
Abstract
Dissecting the cellular signaling that governs the motility of eukaryotic cells is one of the fundamental tasks of modern cell biology, not only because of the large number of physiological processes in which cell migration is crucial, but even more so because of the pathological ones, in particular tumor invasion and metastasis. Cell migration requires the coordination of at least four major processes: polarization of intracellular signaling, regulation of the actin cytoskeleton and membrane extension, focal adhesion and integrin signaling and contractile forces generation and rear retraction. Among the molecular components involved in the regulation of locomotion, the phosphatidylinositol-3-kinase (PI3K) pathway has been shown to exert fundamental role. A pivotal node of such pathway is represented by the serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDPK1 or PDK1). PDK1, and the majority of its substrates, belong to the AGC family of kinases (related to cAMP-dependent protein kinase 1, cyclic Guanosine monophosphate-dependent protein kinase and protein kinase C), and control a plethora of cellular processes, downstream either to PI3K or to other pathways, such as RAS GTPase-MAPK (mitogen-activated protein kinase). Interestingly, PDK1 has been demonstrated to be crucial for the regulation of each step of cell migration, by activating several proteins such as protein kinase B/Akt (PKB/Akt), myotonic dystrophy-related CDC42-binding kinases alpha (MRCKα), Rho associated coiled-coil containing protein kinase 1 (ROCK1), phospholipase C gamma 1 (PLCγ1) and β3 integrin. Moreover, PDK1 regulates cancer cell invasion as well, thus representing a possible target to prevent cancer metastasis in human patients. The aim of this review is to summarize the various mechanisms by which PDK1 controls the cell migration process, from cell polarization to actin cytoskeleton and focal adhesion regulation, and finally, to discuss the evidence supporting a role for PDK1 in cancer cell invasion and dissemination.
Collapse
Affiliation(s)
- Laura Di Blasio
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
| | | | | | - Luca Primo
- Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
31
|
Xie W, Zhou J. Regulation of mitotic spindle orientation during epidermal stratification. J Cell Physiol 2017; 232:1634-1639. [DOI: 10.1002/jcp.25750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Wei Xie
- Key Laboratory of Animal Resistance Biology of Shandong Province; Institute of Biomedical Sciences; College of Life Sciences; Shandong Normal University; Jinan Shandong China
| | - Jun Zhou
- Key Laboratory of Animal Resistance Biology of Shandong Province; Institute of Biomedical Sciences; College of Life Sciences; Shandong Normal University; Jinan Shandong China
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials of the Ministry of Education; College of Life Sciences; Nankai University; Tianjin China
| |
Collapse
|
32
|
Ipponjima S, Hibi T, Nemoto T. Three-Dimensional Analysis of Cell Division Orientation in Epidermal Basal Layer Using Intravital Two-Photon Microscopy. PLoS One 2016; 11:e0163199. [PMID: 27657513 PMCID: PMC5033459 DOI: 10.1371/journal.pone.0163199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023] Open
Abstract
Epidermal structures are different among body sites, and proliferative keratinocytes in the epidermis play an important role in the maintenance of the epidermal structures. In recent years, intravital skin imaging has been used in mammalian skin research for the investigation of cell behaviors, but most of these experiments were performed with rodent ears. Here, we established a non-invasive intravital imaging approach for dorsal, ear, hind paw, or tail skin using R26H2BEGFP hairless mice. Using four-dimensional (x, y, z, and time) imaging, we successfully visualized mitotic cell division in epidermal basal cells. A comparison of cell division orientation relative to the basement membrane in each body site revealed that most divisions in dorsal and ear epidermis occurred in parallel, whereas the cell divisions in hind paw and tail epidermis occurred both in parallel and oblique orientations. Based on the quantitative analysis of the four-dimensional images, we showed that the epidermal thickness correlated with the basal cell density and the rate of the oblique divisions.
Collapse
Affiliation(s)
- Sari Ipponjima
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Terumasa Hibi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|