1
|
Fletcher EV, Chalif JI, Rotterman TM, Pagiazitis JG, Alstyne MV, Sivakumar N, Rabinowitz JE, Pellizzoni L, Alvarez FJ, Mentis GZ. Synaptic imbalance and increased inhibition impair motor function in SMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610545. [PMID: 39257773 PMCID: PMC11383993 DOI: 10.1101/2024.08.30.610545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Movement is executed through the balanced action of excitatory and inhibitory neurotransmission in motor circuits of the spinal cord. Short-term perturbations in one of the two types of transmission are counteracted by homeostatic changes of the opposing type. Prolonged failure to balance excitatory and inhibitory drive results in dysfunction at the single neuron, as well as neuronal network levels. However, whether dysfunction in one or both types of neurotransmission leads to pathogenicity in neurodegenerative diseases characterized by select synaptic deficits is not known. Here, we used mouse genetics, functional assays, morphological methods, and viral-mediated approaches to uncover the pathogenic contribution of unbalanced excitation-inhibition neurotransmission in a mouse model of spinal muscular atrophy (SMA). We show that vulnerable motor circuits in the SMA spinal cord fail to respond homeostatically to the reduction of excitatory drive and instead increase inhibition. This imposes an excessive burden on motor neurons and further restricts their recruitment to activate muscle contraction. Importantly, genetic or pharmacological reduction of inhibitory synaptic drive improves neuronal function and provides behavioural benefit in SMA mice. Our findings identify the lack of excitation-inhibition homeostasis as a major maladaptive mechanism in SMA, by which the combined effects of reduced excitation and increased inhibition diminish the capacity of premotor commands to recruit motor neurons and elicit muscle contractions.
Collapse
Affiliation(s)
- Emily V. Fletcher
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Joshua I. Chalif
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | | | - John G. Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Nandhini Sivakumar
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Joseph E. Rabinowitz
- Department of Pharmacology, Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | | | - George Z. Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
2
|
Utkina-Sosunova I, Chiorazzi A, de Planell-Saguer M, Li H, Meregalli C, Pozzi E, Carozzi VA, Canta A, Monza L, Alberti P, Fumagalli G, Karan C, Moayedi Y, Przedborski S, Cavaletti G, Lotti F. Molsidomine provides neuroprotection against vincristine-induced peripheral neurotoxicity through soluble guanylyl cyclase activation. Sci Rep 2024; 14:19341. [PMID: 39164364 PMCID: PMC11336221 DOI: 10.1038/s41598-024-70294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Peripheral neurotoxicity is a dose-limiting adverse reaction of primary frontline chemotherapeutic agents, including vincristine. Neuropathy can be so disabling that patients drop out of potentially curative therapy, negatively impacting cancer prognosis. The hallmark of vincristine neurotoxicity is axonopathy, yet its underpinning mechanisms remain uncertain. We developed a comprehensive drug discovery platform to identify neuroprotective agents against vincristine-induced neurotoxicity. Among the hits identified, SIN-1-an active metabolite of molsidomine-prevents vincristine-induced axonopathy in both motor and sensory neurons without compromising vincristine anticancer efficacy. Mechanistically, we found that SIN-1's neuroprotective effect is mediated by activating soluble guanylyl cyclase. We modeled vincristine-induced peripheral neurotoxicity in rats to determine molsidomine therapeutic potential in vivo. Vincristine administration induced severe nerve damage and mechanical hypersensitivity that were attenuated by concomitant treatment with molsidomine. This study provides evidence of the neuroprotective properties of molsidomine and warrants further investigations of this drug as a therapy for vincristine-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Irina Utkina-Sosunova
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Mariangels de Planell-Saguer
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Hai Li
- Department of Systems Biology, Columbia University, New York, USA
- Sulzberger Columbia Genome Center, High Throughput Screening Facility, Columbia University Medical Center, New York, USA
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Charles Karan
- Department of Systems Biology, Columbia University, New York, USA
- Sulzberger Columbia Genome Center, High Throughput Screening Facility, Columbia University Medical Center, New York, USA
| | - Yalda Moayedi
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Department of Neuroscience, Columbia University Medical Center, New York, USA
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Simon CM, Delestree N, Montes J, Gerstner F, Carranza E, Sowoidnich L, Buettner JM, Pagiazitis JG, Prat-Ortega G, Ensel S, Donadio S, Garcia JL, Kratimenos P, Chung WK, Sumner CJ, Weimer LH, Pirondini E, Capogrosso M, Pellizzoni L, De Vivo DC, Mentis GZ. Dysfunction of proprioceptive sensory synapses is a pathogenic event and therapeutic target in mice and humans with spinal muscular atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.03.24308132. [PMID: 38883729 PMCID: PMC11177917 DOI: 10.1101/2024.06.03.24308132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by a varying degree of severity that correlates with the reduction of SMN protein levels. Motor neuron degeneration and skeletal muscle atrophy are hallmarks of SMA, but it is unknown whether other mechanisms contribute to the spectrum of clinical phenotypes. Here, through a combination of physiological and morphological studies in mouse models and SMA patients, we identify dysfunction and loss of proprioceptive sensory synapses as key signatures of SMA pathology. We demonstrate that SMA patients exhibit impaired proprioception, and their proprioceptive sensory synapses are dysfunctional as measured by the neurophysiological test of the Hoffmann reflex (H-reflex). We further show that loss of excitatory afferent synapses and altered potassium channel expression in SMA motor neurons are conserved pathogenic events found in both severely affected patients and mouse models. Lastly, we report that improved motor function and fatigability in ambulatory SMA patients and mouse models treated with SMN-inducing drugs correlate with increased function of sensory-motor circuits that can be accurately captured by the H-reflex assay. Thus, sensory synaptic dysfunction is a clinically relevant event in SMA, and the H-reflex is a suitable assay to monitor disease progression and treatment efficacy of motor circuit pathology.
Collapse
Affiliation(s)
- CM Simon
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - N Delestree
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
| | - J Montes
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Rehabilitation and Regenerative Medicine, Columbia University, NY, USA
| | - F Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - E Carranza
- Depts. Physical Medicine & Rehabilitation & Bioengineering, University of Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
| | - L Sowoidnich
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - JM Buettner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - JG Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
| | - G Prat-Ortega
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - S Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - S Donadio
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - JL Garcia
- Dept. of Neurology, Columbia University, NY, USA
| | - P Kratimenos
- Center for Neuroscience Research, Children’s National Res. Institute, Washington, DC, USA
- Dept. of Pediatrics, G Washington Univ. Sch. of Medicine, Washington, DC, USA
| | - WK Chung
- Dept. of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
| | - CJ Sumner
- Depts. of Neurology, Neuroscience and Genetic Medicine, Johns Hopkins University School of Medicine, MD, USA
| | - LH Weimer
- Dept. of Neurology, Columbia University, NY, USA
| | - E Pirondini
- Depts. Physical Medicine & Rehabilitation & Bioengineering, University of Pittsburgh, PA, USA
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
| | - M Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, PA, USA
- Depts. of Neurological Surgery & Bioengineering, University of Pittsburgh, PA, USA
| | - L Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
- Dept. of Pathology and Cell Biology, Columbia University, NY, USA
| | - DC De Vivo
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
| | - GZ Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, NY, USA
- Dept. of Neurology, Columbia University, NY, USA
- Dept. of Pathology and Cell Biology, Columbia University, NY, USA
| |
Collapse
|
4
|
Karafoulidou E, Kesidou E, Theotokis P, Konstantinou C, Nella MK, Michailidou I, Touloumi O, Polyzoidou E, Salamotas I, Einstein O, Chatzisotiriou A, Boziki MK, Grigoriadis N. Systemic LPS Administration Stimulates the Activation of Non-Neuronal Cells in an Experimental Model of Spinal Muscular Atrophy. Cells 2024; 13:785. [PMID: 38727321 PMCID: PMC11083572 DOI: 10.3390/cells13090785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.
Collapse
Affiliation(s)
- Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Chrystalla Konstantinou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Maria-Konstantina Nella
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Olga Touloumi
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Eleni Polyzoidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Ilias Salamotas
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| | - Athanasios Chatzisotiriou
- Department of Physiology, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Marina-Kleopatra Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, Faculty of Health Science, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (E.K.); (P.T.); (C.K.); (M.-K.N.); (I.M.); (O.T.); (E.P.); (I.S.)
| |
Collapse
|
5
|
Dermentzaki G, Furlan M, Tanaka I, Leonardi T, Rinchetti P, Passos PMS, Bastos A, Ayala YM, Hanna JH, Przedborski S, Bonanomi D, Pelizzola M, Lotti F. Depletion of Mettl3 in cholinergic neurons causes adult-onset neuromuscular degeneration. Cell Rep 2024; 43:113999. [PMID: 38554281 PMCID: PMC11216409 DOI: 10.1016/j.celrep.2024.113999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024] Open
Abstract
Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.
Collapse
Affiliation(s)
- Georgia Dermentzaki
- Center for Motor Neuron Biology and Disease, Departments of Pathology & Cell Biology and Neurology, Columbia University, New York, NY, USA
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Iris Tanaka
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Paola Rinchetti
- Center for Motor Neuron Biology and Disease, Departments of Pathology & Cell Biology and Neurology, Columbia University, New York, NY, USA
| | - Patricia M S Passos
- Department of Biochemistry & Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Alliny Bastos
- Department of Biochemistry & Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Yuna M Ayala
- Department of Biochemistry & Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Serge Przedborski
- Center for Motor Neuron Biology and Disease, Departments of Pathology & Cell Biology and Neurology, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Departments of Pathology & Cell Biology and Neurology, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Cheung VCK, Ha SCW, Zhang-Lea JH, Chan ZYS, Teng Y, Yeung G, Wu L, Liang D, Cheung RTH. Motor patterns of patients with spinal muscular atrophy suggestive of sensory and corticospinal contributions to the development of locomotor muscle synergies. J Neurophysiol 2024; 131:338-359. [PMID: 38230872 PMCID: PMC11321722 DOI: 10.1152/jn.00513.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Complex locomotor patterns are generated by combination of muscle synergies. How genetic processes, early sensorimotor experiences, and the developmental dynamics of neuronal circuits contribute to the expression of muscle synergies remains elusive. We shed light on the factors that influence development of muscle synergies by studying subjects with spinal muscular atrophy (SMA, types II/IIIa), a disorder associated with degeneration and deafferentation of motoneurons and possibly motor cortical and cerebellar abnormalities, from which the afflicted would have atypical sensorimotor histories around typical walking onset. Muscle synergies of children with SMA were identified from electromyographic signals recorded during active-assisted leg motions or walking, and compared with those of age-matched controls. We found that the earlier the SMA onset age, the more different the SMA synergies were from the normative. These alterations could not just be explained by the different degrees of uneven motoneuronal losses across muscles. The SMA-specific synergies had activations in muscles from multiple limb compartments, a finding reminiscent of the neonatal synergies of typically developing infants. Overall, while the synergies shared between SMA and control subjects may reflect components of a core modular infrastructure determined early in life, the SMA-specific synergies may be developmentally immature synergies that arise from inadequate activity-dependent interneuronal sculpting due to abnormal sensorimotor experience and other factors. Other mechanisms including SMA-induced intraspinal changes and altered cortical-spinal interactions may also contribute to synergy changes. Our interpretation highlights the roles of the sensory and descending systems to the typical and abnormal development of locomotor modules.NEW & NOTEWORTHY This is likely the first report of locomotor muscle synergies of children with spinal muscular atrophy (SMA), a subject group with atypical developmental sensorimotor experience. We found that the earlier the SMA onset age, the more the subjects' synergies deviated from those of age-matched controls. This result suggests contributions of the sensory/corticospinal activities to the typical expression of locomotor modules, and how their disruptions during a critical period of development may lead to abnormal motor modules.
Collapse
Affiliation(s)
- Vincent C K Cheung
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong and Kunming Institute of Zoology of the Chinese Academy of Sciences, Hong Kong, China
| | - Sophia C W Ha
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China
| | - Janet H Zhang-Lea
- School of Nursing and Human Physiology, Gonzaga University, Spokane, Washington, United States
| | - Zoe Y S Chan
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Yanling Teng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Geshi Yeung
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Roy T H Cheung
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Delestrée N, Semizoglou E, Pagiazitis JG, Vukojicic A, Drobac E, Paushkin V, Mentis GZ. Serotonergic dysfunction impairs locomotor coordination in spinal muscular atrophy. Brain 2023; 146:4574-4593. [PMID: 37678880 PMCID: PMC10629775 DOI: 10.1093/brain/awad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 09/09/2023] Open
Abstract
Neuromodulation by serotonin regulates the activity of neuronal networks responsible for a wide variety of essential behaviours. Serotonin (or 5-HT) typically activates metabotropic G protein-coupled receptors, which in turn initiate second messenger signalling cascades and induce short and long-lasting behavioural effects. Serotonin is intricately involved in the production of locomotor activity and gait control for different motor behaviours. Although dysfunction of serotonergic neurotransmission has been associated with mood disorders and spasticity after spinal cord injury, whether and to what extent such dysregulation is implicated in movement disorders has not been firmly established. Here, we investigated whether serotonergic neuromodulation is affected in spinal muscular atrophy (SMA), a neurodegenerative disease caused by ubiquitous deficiency of the SMN protein. The hallmarks of SMA are death of spinal motor neurons, muscle atrophy and impaired motor control, both in human patients and mouse models of disease. We used a severe mouse model of SMA, that closely recapitulates the severe symptoms exhibited by type I SMA patients, the most common and most severe form of the disease. Together, with mouse genetics, optogenetics, physiology, morphology and behavioural analysis, we report severe dysfunction of serotonergic neurotransmission in the spinal cord of SMA mice, both at early and late stages of the disease. This dysfunction is followed by reduction of 5-HT synapses on vulnerable motor neurons. We demonstrate that motor neurons innervating axial and trunk musculature are preferentially affected, suggesting a possible cause for the proximo-distal progression of disease, and raising the possibility that it may underlie scoliosis in SMA patients. We also demonstrate that the 5-HT dysfunction is caused by SMN deficiency in serotonergic neurons in the raphe nuclei of the brainstem. The behavioural significance of the dysfunction in serotonergic neuromodulation is underlined by inter-limb discoordination in SMA mice, which is ameliorated when selective restoration of SMN in 5-HT neurons is achieved by genetic means. Our study uncovers an unexpected dysfunction of serotonergic neuromodulation in SMA and indicates that, if normal function is to be restored under disease conditions, 5-HT neuromodulation should be a key target for therapeutic approaches.
Collapse
Affiliation(s)
- Nicolas Delestrée
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Evangelia Semizoglou
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - John G Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Aleksandra Vukojicic
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Estelle Drobac
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Vasilissa Paushkin
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
8
|
Cottam NC, Bamfo T, Harrington MA, Charvet CJ, Hekmatyar K, Tulin N, Sun J. Cerebellar structural, astrocytic, and neuronal abnormalities in the SMNΔ7 mouse model of spinal muscular atrophy. Brain Pathol 2023; 33:e13162. [PMID: 37218083 PMCID: PMC10467044 DOI: 10.1111/bpa.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Spinalmuscular atrophy (SMA) is a neuromuscular disease that affects as many as 1 in 6000 individuals at birth, making it the leading genetic cause of infant mortality. A growing number of studies indicate that SMA is a multi-system disease. The cerebellum has received little attention even though it plays an important role in motor function and widespread pathology has been reported in the cerebella of SMA patients. In this study, we assessed SMA pathology in the cerebellum using structural and diffusion magnetic resonance imaging, immunohistochemistry, and electrophysiology with the SMNΔ7 mouse model. We found a significant disproportionate loss in cerebellar volume, decrease in afferent cerebellar tracts, selective lobule-specific degeneration of Purkinje cells, abnormal lobule foliation and astrocyte integrity, and a decrease in spontaneous firing of cerebellar output neurons in the SMA mice compared to controls. Our data suggest that defects in cerebellar structure and function due to decreased survival motor neuron (SMN) levels impair the functional cerebellar output affecting motor control, and that cerebellar pathology should be addressed to achieve comprehensive treatment and therapy for SMA patients.
Collapse
Affiliation(s)
- Nicholas C. Cottam
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | - Tiffany Bamfo
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | | | - Christine J. Charvet
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
- Department of Anatomy, Physiology and PharmacologyAuburn UniversityAuburnAlabamaUSA
- Department of PsychologyDelaware State UniversityDoverDEUnited States
| | - Khan Hekmatyar
- Center for Biomedical and Brain ImagingUniversity of DelawareNewarkDelawareUSA
- Bioimaging Research Center for Biomedical and Brain ImagingUniversity of GeorgiaAthensGeorgiaUSA
| | - Nikita Tulin
- Department of NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Jianli Sun
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
| |
Collapse
|
9
|
Welby E, Ebert AD. Diminished motor neuron activity driven by abnormal astrocytic EAAT1 glutamate transporter activity in spinal muscular atrophy is not fully restored after lentiviral SMN delivery. Glia 2023; 71:1311-1332. [PMID: 36655314 DOI: 10.1002/glia.24340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
Spinal muscular atrophy (SMA) is characterized by the loss of the lower spinal motor neurons due to survival motor neuron (SMN) deficiency. The motor neuron cell autonomous and non-cell autonomous disease mechanisms driving early glutamatergic dysfunction, a therapeutically targetable phenotype prior to motor neuron cell loss, remain unclear. Using microelectrode array analysis, we demonstrate that the secretome and cell surface proteins needed for proper synaptic modulation are likely disrupted in human SMA astrocytes and lead to diminished motor neuron activity. While healthy astrocyte conditioned media did not improve SMA motor neuron activity, SMA motor neurons robustly responded to healthy astrocyte neuromodulation in direct contact cultures. This suggests an important role of astrocyte synaptic-associated plasma membrane proteins and contact-mediated cellular interactions for proper motor neuron function in SMA. Specifically, we identified a significant reduction of the glutamate Na+ dependent excitatory amino acid transporter EAAT1 within human SMA astrocytes and SMA lumbar spinal cord tissue. The selective inhibition of EAAT1 in healthy co-cultures phenocopied the diminished neural activity observed in SMA astrocyte co-cultures. Caveolin-1, an SMN-interacting protein previously associated with local translation at the plasma membrane, was abnormally elevated in human SMA astrocytes. Although lentiviral SMN delivery to SMA astrocytes partially rescued EAAT1 expression, limited activity of healthy motor neurons was still observed in SMN-transduced SMA astrocyte co-cultures. Together, these data highlight the detrimental impact of astrocyte-mediated disease mechanisms on motor neuron function in SMA and that SMN delivery may be insufficient to fully restore astrocyte function at the synapse.
Collapse
Affiliation(s)
- Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Buettner JM, Sowoidnich L, Gerstner F, Blanco-Redondo B, Hallermann S, Simon CM. p53-dependent c-Fos expression is a marker but not executor for motor neuron death in spinal muscular atrophy mouse models. Front Cell Neurosci 2022; 16:1038276. [DOI: 10.3389/fncel.2022.1038276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
The activation of the p53 pathway has been associated with neuronal degeneration in different neurological disorders, including spinal muscular atrophy (SMA) where aberrant expression of p53 drives selective death of motor neurons destined to degenerate. Since direct p53 inhibition is an unsound therapeutic approach due carcinogenic effects, we investigated the expression of the cell death-associated p53 downstream targets c-fos, perp and fas in vulnerable motor neurons of SMA mice. Fluorescence in situ hybridization (FISH) of SMA motor neurons revealed c-fos RNA as a promising candidate. Accordingly, we identified p53-dependent nuclear upregulation of c-Fos protein in degenerating motor neurons from the severe SMNΔ7 and intermediate Smn2B/– SMA mouse models. Although motor neuron-specific c-fos genetic deletion in SMA mice did not improve motor neuron survival or motor behavior, p53-dependent c-Fos upregulation marks vulnerable motor neurons in different mouse models. Thus, nuclear c-Fos accumulation may serve as a readout for therapeutic approaches targeting neuronal death in SMA and possibly other p53-dependent neurodegenerative diseases.
Collapse
|
11
|
Welby E, Rehborg RJ, Harmelink M, Ebert AD. Assessment of cerebral spinal fluid biomarkers and microRNA-mediated disease mechanisms in spinal muscular atrophy patient samples. Hum Mol Genet 2021; 31:1830-1843. [PMID: 34919695 DOI: 10.1093/hmg/ddab365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/14/2022] Open
Abstract
Cerebral spinal fluid (CSF) is a promising biospecimen for the detection of central nervous system biomarkers to monitor therapeutic efficacy at the cellular level in neurological diseases. Spinal muscular atrophy (SMA) patients receiving intrathecal antisense oligonucleotide (nusinersen) therapy tend to show improved motor function, but the treatment effect on cellular health remains unknown. The objective of this study was to assess the potential of extracellular RNAs and microRNAs in SMA patient CSF as indicators of neuron and glial health following nusinersen treatment. Extracellular RNA analysis of CSF samples revealed ongoing cellular stress related to inflammation and glial differentiation, even after treatment administration. Downregulated microRNA expression associated with SMA-specific or general motor neuron dysfunction in animal and cellular models, tended to increase in nusinersen treated patient CSF samples and correlated with SMA Type 1 and 2 motor functioning improvements. However, miR-146a, known to be upregulated in SMA induced pluripotent stem cell (iPSC)-derived astrocytes, showed increased expression in nusinersen treated CSF samples. We then used mRNA sequencing and multi-electrode arrays to assess the transcriptional and functional effects of miR-146a on healthy and SMA iPSC-derived motor neurons. miR-146a treatment on iPSC-derived motor neurons led to a downregulation of extracellular matrix genes associated with synaptic perineuronal net and alterations in spontaneous electrophysiological activity. Together, this study suggests that extracellular RNAs and microRNAs may serve as useful biomarkers to monitor cellular health during nusinersen treatment. Moreover, these data highlight the importance of addressing astrocyte health and response to nusinersen in SMA pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Rebecca J Rehborg
- Department of Neurology (Child Neurology), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew Harmelink
- Department of Neurology (Child Neurology), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
12
|
Casalia ML, Casabona JC, García C, Cavaliere Candedo V, Quintá HR, Farías MI, Gonzalez J, Gonzalez Morón D, Córdoba M, Consalvo D, Mostoslavsky G, Urbano FJ, Pasquini J, Murer MG, Rela L, Kauffman MA, Pitossi FJ. A familiar study on self-limited childhood epilepsy patients using hIPSC-derived neurons shows a bias towards immaturity at the morphological, electrophysiological and gene expression levels. Stem Cell Res Ther 2021; 12:590. [PMID: 34823607 PMCID: PMC8620942 DOI: 10.1186/s13287-021-02658-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
Background Self-limited Childhood Epilepsies are the most prevalent epileptic syndrome in children. Its pathogenesis is unknown. In this disease, symptoms resolve spontaneously in approximately 50% of patients when maturity is reached, prompting to a maturation problem. The purpose of this study was to understand the molecular bases of this disease by generating and analyzing induced pluripotent stem cell-derived neurons from a family with 7 siblings, among whom 4 suffer from this disease.
Methods Two affected siblings and, as controls, a healthy sister and the unaffected mother of the family were studied. Using exome sequencing, a homozygous variant in the FYVE, RhoGEF and PH Domain Containing 6 gene was identified in the patients as a putative genetic factor that could contribute to the development of this familial disorder. After informed consent was signed, skin biopsies from the 4 individuals were collected, fibroblasts were derived and reprogrammed and neurons were generated and characterized by markers and electrophysiology. Morphological, electrophysiological and gene expression analyses were performed on these neurons. Results Bona fide induced pluripotent stem cells and derived neurons could be generated in all cases. Overall, there were no major shifts in neuronal marker expression among patient and control-derived neurons. Compared to two familial controls, neurons from patients showed shorter axonal length, a dramatic reduction in synapsin-1 levels and cytoskeleton disorganization. In addition, neurons from patients developed a lower action potential threshold with time of in vitro differentiation and the amount of current needed to elicit an action potential (rheobase) was smaller in cells recorded from NE derived from patients at 12 weeks of differentiation when compared with shorter times in culture. These results indicate an increased excitability in patient cells that emerges with the time in culture. Finally, functional genomic analysis showed a biased towards immaturity in patient-derived neurons. Conclusions We are reporting the first in vitro model of self-limited childhood epilepsy, providing the cellular bases for future in-depth studies to understand its pathogenesis. Our results show patient-specific neuronal features reflecting immaturity, in resonance with the course of the disease and previous imaging studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02658-2.
Collapse
Affiliation(s)
| | | | - Corina García
- Institute Leloir Foundation- IIBBA-CONICET, Buenos Aires, Argentina
| | | | - Héctor Ramiro Quintá
- CONICET and Laboratorio de Medicina Experimental "Dr. J Toblli", Hospital Alemán, Buenos Aires, Argentina
| | | | - Joaquín Gonzalez
- Institute Leloir Foundation- IIBBA-CONICET, Buenos Aires, Argentina
| | - Dolores Gonzalez Morón
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Marta Córdoba
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Damian Consalvo
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Gustavo Mostoslavsky
- Center For Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, USA
| | - Francisco J Urbano
- Department of Physiology, Molecular and Cellular Biology "Dr. Héctor Maldonado", Faculty of Exact and Natural Sciences, University of Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
| | - Juana Pasquini
- Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Buenos Aires, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Buenos Aires, Argentina
| | - Marcelo A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina.
| | | |
Collapse
|
13
|
Buettner JM, Sime Longang JK, Gerstner F, Apel KS, Blanco-Redondo B, Sowoidnich L, Janzen E, Langenhan T, Wirth B, Simon CM. Central synaptopathy is the most conserved feature of motor circuit pathology across spinal muscular atrophy mouse models. iScience 2021; 24:103376. [PMID: 34825141 PMCID: PMC8605199 DOI: 10.1016/j.isci.2021.103376] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by reduced survival motor neuron (SMN) protein. Recently, SMN dysfunction has been linked to individual aspects of motor circuit pathology in a severe SMA mouse model. To determine whether these disease mechanisms are conserved, we directly compared the motor circuit pathology of three SMA mouse models. The severe SMNΔ7 model exhibits vast motor circuit defects, including degeneration of motor neurons, spinal excitatory synapses, and neuromuscular junctions (NMJs). In contrast, the Taiwanese model shows very mild motor neuron pathology, but early central synaptic loss. In the intermediate Smn2B/- model, strong pathology of central excitatory synapses and NMJs precedes the late onset of p53-dependent motor neuron death. These pathological events correlate with SMN-dependent splicing dysregulation of specific mRNAs. Our study provides a knowledge base for properly tailoring future studies and identifies central excitatory synaptopathy as a key feature of motor circuit pathology in SMA. Comparison of detailed motor circuit pathology across three SMA mouse models Motor circuit pathology correlates with dysregulation of specific mRNAs Motor neuron death in severe and intermediate SMA models is p53-dependent Central excitatory synaptopathy is the most conserved feature of SMA pathology
Collapse
Affiliation(s)
- Jannik M Buettner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | | | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Katharina S Apel
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Beatriz Blanco-Redondo
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Leonie Sowoidnich
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
14
|
Shi T, Cheung M. Urine-derived induced pluripotent/neural stem cells for modeling neurological diseases. Cell Biosci 2021; 11:85. [PMID: 33985584 PMCID: PMC8117626 DOI: 10.1186/s13578-021-00594-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Neurological diseases are mainly modeled using rodents through gene editing, surgery or injury approaches. However, differences between humans and rodents in terms of genetics, neural development, and physiology pose limitations on studying disease pathogenesis in rodent models for neuroscience research. In the past decade, the generation of induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) by reprogramming somatic cells offers a powerful alternative for modeling neurological diseases and for testing regenerative medicines. Among the different somatic cell types, urine-derived stem cells (USCs) are an ideal cell source for iPSC and iNSC reprogramming, as USCs are highly proliferative, multipotent, epithelial in nature, and easier to reprogram than skin fibroblasts. In addition, the use of USCs represents a simple, low-cost and non-invasive procedure for generating iPSCs/iNSCs. This review describes the cellular and molecular properties of USCs, their differentiation potency, different reprogramming methods for the generation of iPSCs/iNSCs, and their potential applications in modeling neurological diseases.
Collapse
Affiliation(s)
- Tianyuan Shi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Sergeeva EG, Rosenberg PA, Benowitz LI. Non-Cell-Autonomous Regulation of Optic Nerve Regeneration by Amacrine Cells. Front Cell Neurosci 2021; 15:666798. [PMID: 33935656 PMCID: PMC8085350 DOI: 10.3389/fncel.2021.666798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Visual information is conveyed from the eye to the brain through the axons of retinal ganglion cells (RGCs) that course through the optic nerve and synapse onto neurons in multiple subcortical visual relay areas. RGCs cannot regenerate their axons once they are damaged, similar to most mature neurons in the central nervous system (CNS), and soon undergo cell death. These phenomena of neurodegeneration and regenerative failure are widely viewed as being determined by cell-intrinsic mechanisms within RGCs or to be influenced by the extracellular environment, including glial or inflammatory cells. However, a new concept is emerging that the death or survival of RGCs and their ability to regenerate axons are also influenced by the complex circuitry of the retina and that the activation of a multicellular signaling cascade involving changes in inhibitory interneurons - the amacrine cells (AC) - contributes to the fate of RGCs. Here, we review our current understanding of the role that interneurons play in cell survival and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Elena G. Sergeeva
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Paul A. Rosenberg
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Larry I. Benowitz
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Chronic Pharmacological Increase of Neuronal Activity Improves Sensory-Motor Dysfunction in Spinal Muscular Atrophy Mice. J Neurosci 2020; 41:376-389. [PMID: 33219005 DOI: 10.1523/jneurosci.2142-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Dysfunction of neuronal circuits is an important determinant of neurodegenerative diseases. Synaptic dysfunction, death, and intrinsic activity of neurons are thought to contribute to the demise of normal behavior in the disease state. However, the interplay between these major pathogenic events during disease progression is poorly understood. Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by a deficiency in the ubiquitously expressed protein SMN and is characterized by motor neuron death, skeletal muscle atrophy, as well as dysfunction and loss of both central and peripheral excitatory synapses. These disease hallmarks result in an overall reduction of neuronal activity in the spinal sensory-motor circuit. Here, we show that increasing neuronal activity by chronic treatment with the FDA-approved potassium channel blocker 4-aminopyridine (4-AP) improves motor behavior in both sexes of a severe mouse model of SMA. 4-AP restores neurotransmission and number of proprioceptive synapses and neuromuscular junctions (NMJs), while having no effects on motor neuron death. In addition, 4-AP treatment with pharmacological inhibition of p53-dependent motor neuron death results in additive effects, leading to full correction of sensory-motor circuit pathology and enhanced phenotypic benefit in SMA mice. Our in vivo study reveals that 4-AP-induced increase of neuronal activity restores synaptic connectivity and function in the sensory-motor circuit to improve the SMA motor phenotype.SIGNIFICANCE STATEMENT Spinal muscular atrophy (SMA) is a neurodegenerative disease, characterized by synaptic loss, motor neuron death, and reduced neuronal activity in spinal sensory-motor circuits. However, whether these are parallel or dependent events is unclear. We show here that long-term increase of neuronal activity by the FDA-approved drug 4-aminopyridine (4-AP) rescues the number and function of central and peripheral synapses in a SMA mouse model, resulting in an improvement of the sensory-motor circuit and motor behavior. Combinatorial treatment of pharmacological inhibition of p53, which is responsible for motor neuron death and 4-AP, results in additive beneficial effects on the sensory-motor circuit in SMA. Thus, neuronal activity restores synaptic connections and improves significantly the severe SMA phenotype.
Collapse
|
17
|
Tharaneetharan A, Cole M, Norman B, Romero NC, Wooltorton JRA, Harrington MA, Sun J. Functional Abnormalities of Cerebellum and Motor Cortex in Spinal Muscular Atrophy Mice. Neuroscience 2020; 452:78-97. [PMID: 33212215 DOI: 10.1016/j.neuroscience.2020.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating genetic neuromuscular disease. Diffuse neuropathology has been reported in SMA patients and mouse models, however, functional changes in brain regions have not been studied. In the SMNΔ7 mouse model, we identified three types of differences in neuronal function in the cerebellum and motor cortex from two age groups: P7-9 (P7) and P11-14 (P11). Microelectrode array studies revealed significantly lower spontaneous firing and network activity in the cerebellum of SMA mice in both age groups, but it was more profound in the P11 group. In the motor cortex, however, neural activity was not different in either age group. Whole-cell patch-clamp was used to study the function of output neurons in both brain regions. In cerebellar Purkinje cells (PCs) of SMA mice, the input resistance was larger at P7, while capacitance was smaller at P11. In the motor cortex, no difference was observed in the passive membrane properties of layer V pyramidal neurons (PN5s). The action potential threshold of both types of output neurons was depolarized in the P11 group. We also observed lower spontaneous excitatory and inhibitory synaptic activity in PN5s and PCs respectively from P11 SMA mice. Overall, these differences suggest functional alterations in the neural network in these motor regions that change during development. Our results also suggest that neuronal dysfunction in these brain regions may contribute to the pathology of SMA. Comprehensive treatment strategies may consider motor regions outside of the spinal cord for better outcomes.
Collapse
Affiliation(s)
- Arumugarajah Tharaneetharan
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Madison Cole
- Department of Psychology, Washington College, Chestertown, MD, USA
| | - Brandon Norman
- Department of Biology, Salisbury University, Salisbury, MD, USA
| | - Nayeli C Romero
- Department of Agriculture and Natural Science, Delaware State University, Dover, DE, USA
| | - Julian R A Wooltorton
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Melissa A Harrington
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA
| | - Jianli Sun
- Delaware Center for Neuroscience Research, Department of Biological Sciences, Delaware State University, Dover, DE, USA.
| |
Collapse
|
18
|
Huang SH, Yang SM, Lo JJ, Wu SH, Tai MH. Irisin Gene Delivery Ameliorates Burn-Induced Sensory and Motor Neuropathy. Int J Mol Sci 2020; 21:ijms21207798. [PMID: 33096842 PMCID: PMC7589574 DOI: 10.3390/ijms21207798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Burn-related neuropathy is common and often involves pain, paresthesia, or muscle weakness. Irisin, an exercise-induced myokine after cleavage from its membrane precursor fibronectin type III domain-containing 5 (FNDC5), exhibits neuroprotective and anti-inflammatory activities. A rat model of third-degree burn on the right hind paw was used to investigate the therapeutic role of irisin/FNDC5. Rats received burn injury and were treated with intrathecal recombinant adenovirus containing the irisin sequence (Ad-irisin) at 3 weeks postburn. One week later, mechanical allodynia was examined. The expression of irisin in cerebrospinal fluid (CSF) was detected. Ipsilateral gastrocnemius muscle and lumbar spinal cord were also obtained for further investigation. Furthermore, the anti-apoptotic effect of recombinant irisin in SH-SY5Y cells was evaluated through tumor necrosis factor alpha (TNFα) stimulus to mimic burn injury. We noted intrathecal Ad-irisin attenuated pain sensitization and gastrocnemius muscle atrophy by modulating the level of irisin in CSF, and the expression of neuronal FNDC5/irisin and TNFα in the spinal cord. Ad-irisin also ameliorated neuronal apoptosis in both dorsal and ventral horns. Furthermore, recombinant irisin attenuated TNFα-induced SH-SY5Y cell apoptosis. In summary, irisin attenuated allodynia and muscle wasting by ameliorating neuroinflammation-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan;
| | - Jing-Jou Lo
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- Correspondence: (S.-H.W.); (M.-H.T.)
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan;
- Correspondence: (S.-H.W.); (M.-H.T.)
| |
Collapse
|
19
|
Vukojicic A, Delestrée N, Fletcher EV, Pagiazitis JG, Sankaranarayanan S, Yednock TA, Barres BA, Mentis GZ. The Classical Complement Pathway Mediates Microglia-Dependent Remodeling of Spinal Motor Circuits during Development and in SMA. Cell Rep 2020; 29:3087-3100.e7. [PMID: 31801075 PMCID: PMC6937140 DOI: 10.1016/j.celrep.2019.11.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/20/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
Movement is an essential behavior requiring the assembly and refinement of spinal motor circuits. However, the mechanisms responsible for circuit refinement and synapse maintenance are poorly understood. Similarly, the molecular mechanisms by which gene mutations cause dysfunction and elimination of synapses in neurodegenerative diseases that occur during development are unknown. Here, we demonstrate that the complement protein C1q is required for the refinement of sensory-motor circuits during normal development, as well as for synaptic dysfunction and elimination in spinal muscular atrophy (SMA). C1q tags vulnerable SMA synapses, which triggers activation of the classical complement pathway leading to microglia-mediated elimination. Pharmacological inhibition of C1q or depletion of microglia rescues the number and function of synapses, conferring significant behavioral benefit in SMA mice. Thus, the classical complement pathway plays critical roles in the refinement of developing motor circuits, while its aberrant activation contributes to motor neuron disease.
Collapse
Affiliation(s)
- Aleksandra Vukojicic
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Nicolas Delestrée
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Emily V Fletcher
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - John G Pagiazitis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | - Ted A Yednock
- Annexon Biosciences, 180 Kimball Way, South San Francisco, CA 94080, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University, Palo Alto, CA, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
20
|
Simon CM, Van Alstyne M, Lotti F, Bianchetti E, Tisdale S, Watterson DM, Mentis GZ, Pellizzoni L. Stasimon Contributes to the Loss of Sensory Synapses and Motor Neuron Death in a Mouse Model of Spinal Muscular Atrophy. Cell Rep 2020; 29:3885-3901.e5. [PMID: 31851921 PMCID: PMC6956708 DOI: 10.1016/j.celrep.2019.11.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Reduced expression of the survival motor neuron (SMN) protein causes the neurodegenerative disease spinal muscular atrophy (SMA). Here, we show that adeno-associated virus serotype 9 (AAV9)-mediated delivery of Stasimon—a gene encoding an endoplasmic reticulum (ER)-resident transmembrane protein regulated by SMN—improves motor function in a mouse model of SMA through multiple mechanisms. In proprioceptive neurons, Stasimon overexpression prevents the loss of afferent synapses on motor neurons and enhances sensory-motor neurotransmission. In motor neurons, Stasimon suppresses neurodegeneration by reducing phosphorylation of the tumor suppressor p53. Moreover, Stasimon deficiency converges on SMA-related mechanisms of p53 upregulation to induce phosphorylation of p53 through activation of p38 mitogen-activated protein kinase (MAPK), and pharmacological inhibition of this kinase prevents motor neuron death in SMA mice. These findings identify Stasimon dysfunction induced by SMN deficiency as an upstream driver of distinct cellular cascades that lead to synaptic loss and motor neuron degeneration, revealing a dual contribution of Stasimon to motor circuit pathology in SMA. SMN deficiency causes motor circuit dysfunction in SMA. Simon et al. show that Stasimon—an ER-resident protein regulated by SMN—contributes to sensory synaptic loss and motor neuron death in SMA mice through distinct mechanisms. In motor neurons, Stasimon dysfunction induces p38 MAPK-mediated phosphorylation of p53 whose inhibition prevents neurodegeneration.
Collapse
Affiliation(s)
- Christian M Simon
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Elena Bianchetti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
Oskoui M, Kim DH, Mentis GZ, De Vivo DC. Transient hyperreflexia: An early diagnostic clue in later-onset spinal muscular atrophy. Neurol Clin Pract 2020; 10:e66-e67. [PMID: 33520420 DOI: 10.1212/cpj.0000000000000810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/26/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Maryam Oskoui
- Departments of Pediatric and Neurology/Neurosurgery (MO) and Faculty of Medicine (DHK), McGill University, Montréal, QC, Canada; and Departments of Pathology and Cell Biology and Neurology (GZM), Center for Motor Neuron Biology and Disease (GZM, DCDV), and Departments of Neurology and Pediatrics (DCDV), Columbia University, New York
| | - Dong Hyun Kim
- Departments of Pediatric and Neurology/Neurosurgery (MO) and Faculty of Medicine (DHK), McGill University, Montréal, QC, Canada; and Departments of Pathology and Cell Biology and Neurology (GZM), Center for Motor Neuron Biology and Disease (GZM, DCDV), and Departments of Neurology and Pediatrics (DCDV), Columbia University, New York
| | - George Z Mentis
- Departments of Pediatric and Neurology/Neurosurgery (MO) and Faculty of Medicine (DHK), McGill University, Montréal, QC, Canada; and Departments of Pathology and Cell Biology and Neurology (GZM), Center for Motor Neuron Biology and Disease (GZM, DCDV), and Departments of Neurology and Pediatrics (DCDV), Columbia University, New York
| | - Darryl C De Vivo
- Departments of Pediatric and Neurology/Neurosurgery (MO) and Faculty of Medicine (DHK), McGill University, Montréal, QC, Canada; and Departments of Pathology and Cell Biology and Neurology (GZM), Center for Motor Neuron Biology and Disease (GZM, DCDV), and Departments of Neurology and Pediatrics (DCDV), Columbia University, New York
| |
Collapse
|
22
|
Da Silva JD, Oliveira S, Pereira-Sousa J, Teixeira-Castro A, Costa MD, Maciel P. Loss of egli-1, the Caenorhabditis elegans Orthologue of a Downstream Target of SMN, Leads to Abnormalities in Sensorimotor Integration. Mol Neurobiol 2019; 57:1553-1569. [PMID: 31797327 DOI: 10.1007/s12035-019-01833-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
Abstract
The connectome of Caenorhabditis elegans has been extensively studied and fully mapped, allowing researchers to more confidently conclude on the impact of any change in neuronal circuits based on behavioral data. One of the more complex sensorimotor circuits in nematodes is the one that regulates the integration of feeding status with the subsequent behavioral responses that allow animals to adapt to environmental conditions. Here, we have characterized a Caenorhabditis elegans knockout model of the egli-1 gene (previously known as tag-175). This is an orthologue of the stasimon/tmem41b gene, a downstream target of SMN, the depleted protein in spinal muscular atrophy (SMA), which partially recapitulates the SMA phenotype in fly and zebrafish models when mutated. Surprisingly, egli-1 mutants reveal no deficits in motor function. Instead, they show functional impairment of a specific neuronal circuit, leading to defects in the integration of sensorial information related to food abundance, with consequences at the level of locomotion adaptation, egg laying, and the response to aversive chemical stimuli. This work has demonstrated for the first time the relevance of egli-1 in the nervous system, as well as revealed a function for this gene, which had remained elusive so far.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphanie Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Daniela Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
23
|
Circuit-Specific Early Impairment of Proprioceptive Sensory Neurons in the SOD1 G93A Mouse Model for ALS. J Neurosci 2019; 39:8798-8815. [PMID: 31530644 DOI: 10.1523/jneurosci.1214-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons degenerate, resulting in muscle atrophy, paralysis, and fatality. Studies using mouse models of ALS indicate a protracted period of disease development with progressive motor neuron pathology, evident as early as embryonic and postnatal stages. Key missing information includes concomitant alterations in the sensorimotor circuit essential for normal development and function of the neuromuscular system. Leveraging unique brainstem circuitry, we show in vitro evidence for reflex circuit-specific postnatal abnormalities in the jaw proprioceptive sensory neurons in the well-studied SOD1G93A mouse. These include impaired and arrhythmic action potential burst discharge associated with a deficit in Nav1.6 Na+ channels. However, the mechanoreceptive and nociceptive trigeminal ganglion neurons and the visual sensory retinal ganglion neurons were resistant to excitability changes in age-matched SOD1G93A mice. Computational modeling of the observed disruption in sensory patterns predicted asynchronous self-sustained motor neuron discharge suggestive of imminent reflexive defects, such as muscle fasciculations in ALS. These results demonstrate a novel reflex circuit-specific proprioceptive sensory abnormality in ALS.SIGNIFICANCE STATEMENT Neurodegenerative diseases have prolonged periods of disease development and progression. Identifying early markers of vulnerability can therefore help devise better diagnostic and treatment strategies. In this study, we examined postnatal abnormalities in the electrical excitability of muscle spindle afferent proprioceptive neurons in the well-studied SOD1G93A mouse model for neurodegenerative motor neuron disease, amyotrophic lateral sclerosis. Our findings suggest that these proprioceptive sensory neurons are exclusively afflicted early in the disease process relative to sensory neurons of other modalities. Moreover, they presented Nav1.6 Na+ channel deficiency, which contributed to arrhythmic burst discharge. Such sensory arrhythmia could initiate reflexive defects, such as muscle fasciculations in amyotrophic lateral sclerosis, as suggested by our computational model.
Collapse
|
24
|
Quinlan KA, Reedich EJ, Arnold WD, Puritz AC, Cavarsan CF, Heckman CJ, DiDonato CJ. Hyperexcitability precedes motoneuron loss in the Smn2B/- mouse model of spinal muscular atrophy. J Neurophysiol 2019; 122:1297-1311. [PMID: 31365319 DOI: 10.1152/jn.00652.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal motoneuron dysfunction and loss are pathological hallmarks of the neuromuscular disease spinal muscular atrophy (SMA). Changes in motoneuron physiological function precede cell death, but how these alterations vary with disease severity and motoneuron maturational state is unknown. To address this question, we assessed the electrophysiology and morphology of spinal motoneurons of presymptomatic Smn2B/- mice older than 1 wk of age and tracked the timing of motor unit loss in this model using motor unit number estimation (MUNE). In contrast to other commonly used SMA mouse models, Smn2B/- mice exhibit more typical postnatal development until postnatal day (P)11 or 12 and have longer survival (~3 wk of age). We demonstrate that Smn2B/- motoneuron hyperexcitability, marked by hyperpolarization of the threshold voltage for action potential firing, was present at P9-10 and preceded the loss of motor units. Using MUNE studies, we determined that motor unit loss in this mouse model occurred 2 wk after birth. Smn2B/- motoneurons were also larger in size, which may reflect compensatory changes taking place during postnatal development. This work suggests that motoneuron hyperexcitability, marked by a reduced threshold for action potential firing, is a pathological change preceding motoneuron loss that is common to multiple models of severe SMA with different motoneuron maturational states. Our results indicate voltage-gated sodium channel activity may be altered in the disease process.NEW & NOTEWORTHY Changes in spinal motoneuron physiologic function precede cell death in spinal muscular atrophy (SMA), but how they vary with maturational state and disease severity remains unknown. This study characterized motoneuron and neuromuscular electrophysiology from the Smn2B/- model of SMA. Motoneurons were hyperexcitable at postnatal day (P)9-10, and specific electrophysiological changes in Smn2B/- motoneurons preceded functional motor unit loss at P14, as determined by motor unit number estimation studies.
Collapse
Affiliation(s)
- K A Quinlan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - E J Reedich
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - W D Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - A C Puritz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C F Cavarsan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C J DiDonato
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| |
Collapse
|
25
|
Held A, Major P, Sahin A, Reenan RA, Lipscombe D, Wharton KA. Circuit Dysfunction in SOD1-ALS Model First Detected in Sensory Feedback Prior to Motor Neuron Degeneration Is Alleviated by BMP Signaling. J Neurosci 2019; 39:2347-2364. [PMID: 30659087 PMCID: PMC6433758 DOI: 10.1523/jneurosci.1771-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which the origin and underlying cellular defects are not fully understood. Although motor neuron degeneration is the signature feature of ALS, it is not clear whether motor neurons or other cells of the motor circuit are the site of disease initiation. To better understand the contribution of multiple cell types in ALS, we made use of a Drosophila Sod1G85R knock-in model, in which all cells harbor the disease allele. End-stage dSod1G85R animals of both sexes exhibit severe motor deficits with clear degeneration of motor neurons. Interestingly, earlier in dSod1G85R larvae, motor function is also compromised, but their motor neurons exhibit only subtle morphological and electrophysiological changes that are unlikely to cause the observed decrease in locomotion. We analyzed the intact motor circuit and identified a defect in sensory feedback that likely accounts for the altered motor activity of dSod1G85R We found cell-autonomous activation of bone morphogenetic protein signaling in proprioceptor sensory neurons which are critical for the relay of the contractile status of muscles back to the central nerve cord, completely rescues early-stage motor defects and partially rescue late-stage motor function to extend lifespan. Identification of a defect in sensory feedback as a potential initiating event in ALS motor dysfunction, coupled with the ability of modified proprioceptors to alleviate such motor deficits, underscores the critical role that nonmotor neurons play in disease progression and highlights their potential as a site to identify early-stage ALS biomarkers and for therapeutic intervention.SIGNIFICANCE STATEMENT At diagnosis, many cellular processes are already disrupted in the amyotrophic lateral sclerosis (ALS) patient. Identifying the initiating cellular events is critical for achieving an earlier diagnosis to slow or prevent disease progression. Our findings indicate that neurons relaying sensory information underlie early stage motor deficits in a Drosophila knock-in model of ALS that best replicates gene dosage in familial ALS (fALS). Importantly, studies on intact motor circuits revealed defects in sensory feedback before evidence of motor neuron degeneration. These findings strengthen our understanding of how neural circuit dysfunctions lead to neurodegeneration and, coupled with our demonstration that the activation of bone morphogenetic protein signaling in proprioceptors alleviates both early and late motor dysfunction, underscores the importance of considering nonmotor neurons as therapeutic targets.
Collapse
Affiliation(s)
- Aaron Held
- Department of Molecular Biology, Cell Biology and Biochemistry
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Paxton Major
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Asli Sahin
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Robert A Reenan
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Diane Lipscombe
- Department of Neuroscience, and
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry,
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
26
|
Shorrock HK, Gillingwater TH, Groen EJN. Molecular Mechanisms Underlying Sensory-Motor Circuit Dysfunction in SMA. Front Mol Neurosci 2019; 12:59. [PMID: 30886572 PMCID: PMC6409332 DOI: 10.3389/fnmol.2019.00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
Activation of skeletal muscle in response to acetylcholine release from the neuromuscular junction triggered by motor neuron firing forms the basis of all mammalian locomotion. Intricate feedback and control mechanisms, both from within the central nervous system and from sensory organs in the periphery, provide essential inputs that regulate and finetune motor neuron activity. Interestingly, in motor neuron diseases, such as spinal muscular atrophy (SMA), pathological studies in patients have identified alterations in multiple parts of the sensory-motor system. This has stimulated significant research efforts across a range of different animal models of SMA in order to understand these defects and their contribution to disease pathogenesis. Several recent studies have demonstrated that defects in sensory components of the sensory-motor system contribute to dysfunction of motor neurons early in the pathogenic process. In this review, we provide an overview of these findings, with a specific focus on studies that have provided mechanistic insights into the molecular processes that underlie dysfunction of the sensory-motor system in SMA. These findings highlight the role that cell types other than motor neurons play in SMA pathogenesis, and reinforce the need for therapeutic interventions that target and rescue the wide array of defects that occur in SMA.
Collapse
Affiliation(s)
- Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ewout J N Groen
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy. Cell Rep 2019; 21:3767-3780. [PMID: 29281826 DOI: 10.1016/j.celrep.2017.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/09/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022] Open
Abstract
The hallmark of spinal muscular atrophy (SMA), an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons.
Collapse
|
28
|
Sun J, Harrington MA. The Alteration of Intrinsic Excitability and Synaptic Transmission in Lumbar Spinal Motor Neurons and Interneurons of Severe Spinal Muscular Atrophy Mice. Front Cell Neurosci 2019; 13:15. [PMID: 30792629 PMCID: PMC6374350 DOI: 10.3389/fncel.2019.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/16/2019] [Indexed: 01/22/2023] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of death in infants. Studies with mouse models have demonstrated increased excitability and loss of afferent proprioceptive synapses on motor neurons (MNs). To further understand functional changes in the motor neural network occurring in SMA, we studied the intrinsic excitability and synaptic transmission of both MNs and interneurons (INs) from ventral horn in the lumbar spinal cord in the survival motor neuron (SMN)Δ7 mouse model. We found significant differences in the membrane properties of MNs in SMA mice compared to littermate controls, including hyperpolarized resting membrane potential, increased input resistance and decreased membrane capacitance. Action potential (AP) properties in MNs from SMA mice were also different from controls, including decreased rheobase current, increased amplitude and an increased afterdepolarization (ADP) potential. The relationship between AP firing frequency and injected current was reduced in MNs, as was the threshold current, while the percentage of MNs showing long-lasting potentiation (LLP) in the intrinsic excitability was higher in SMA mice. INs showed a high rate of spontaneous firing, and those from SMA mice fired at higher frequency. INs from SMA mice showed little difference in their input-output relationship, threshold current, and plasticity in intrinsic excitability. The changes observed in both passive membrane and AP properties suggest greater overall excitability in both MNs and INs in SMA mice, with MNs showing more differences. There were also changes of synaptic currents in SMA mice. The average charge transfer per post-synaptic current of spontaneous excitatory and inhibitory synaptic currents (sEPSCs/sIPSCs) were lower in SMA MNs, while in INs sIPSC frequency was higher. Strikingly in light of the known loss of excitatory synapses on MNs, there was no difference in sEPSC frequency in MNs from SMA mice compared to controls. For miniature synaptic currents, mEPSC frequency was higher in SMA MNs, while for SMA INs, both mEPSC and mIPSC frequencies were higher. In SMA-affected mice we observed alterations of intrinsic and synaptic properties in both MNs and INs in the spinal motor network that may contribute to the pathophysiology, or alternatively, may be a compensatory response to preserve network function.
Collapse
Affiliation(s)
- Jianli Sun
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, United States.,Department of Biological Science, Delaware State University, Dover, DE, United States
| | - Melissa A Harrington
- Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, United States.,Department of Biological Science, Delaware State University, Dover, DE, United States
| |
Collapse
|
29
|
Cell cycle inhibitors protect motor neurons in an organoid model of Spinal Muscular Atrophy. Cell Death Dis 2018; 9:1100. [PMID: 30368521 PMCID: PMC6204135 DOI: 10.1038/s41419-018-1081-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 11/25/2022]
Abstract
Spinal Muscular Atrophy (SMA) is caused by genetic mutations in the SMN1 gene, resulting in drastically reduced levels of Survival of Motor Neuron (SMN) protein. Although SMN is ubiquitously expressed, spinal motor neurons are one of the most affected cell types. Previous studies have identified pathways uniquely activated in SMA motor neurons, including a hyperactivated ER stress pathway, neuronal hyperexcitability, and defective spliceosomes. To investigate why motor neurons are more affected than other neural types, we developed a spinal organoid model of SMA. We demonstrate overt motor neuron degeneration in SMA spinal organoids, and this degeneration can be prevented using a small molecule inhibitor of CDK4/6, indicating that spinal organoids are an ideal platform for therapeutic discovery.
Collapse
|
30
|
Lin X, Li JJ, Qian WJ, Zhang QJ, Wang ZF, Lu YQ, Dong EL, He J, Wang N, Ma LX, Chen WJ. Modeling the differential phenotypes of spinal muscular atrophy with high-yield generation of motor neurons from human induced pluripotent stem cells. Oncotarget 2018; 8:42030-42042. [PMID: 28159932 PMCID: PMC5522047 DOI: 10.18632/oncotarget.14925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating motor neuron disease caused by mutations of the survival motor neuron 1 (SMN1) gene. SMN2, a paralogous gene to SMN1, can partially compensate for the loss of SMN1. On the basis of age at onset, highest motor function and SMN2 copy numbers, childhood-onset SMA can be divided into three types (SMA I-III). An inverse correlation was observed between SMN2 copies and the differential phenotypes of SMA. Interestingly, this correlation is not always absolute. Using SMA induced pluripotent stem cells (iPSCs), we found that the SMN was significantly decreased in both SMA III and SMA I iPSCs derived postmitotic motor neurons (pMNs) and γ-aminobutyric acid (GABA) neurons. Moreover, the significant differences of SMN expression level between SMA III (3 copies of SMN2) and SMA I (2 copies of SMN2) were observed only in pMNs culture, but not in GABA neurons or iPSCs. From these findings, we further discovered that the neurite outgrowth was suppressed in both SMA III and SMA I derived MNs. Meanwhile, the significant difference of neurite outgrowth between SMA III and SMA I group was also found in long-term cultures. However, significant hyperexcitability was showed only in SMA I derived mature MNs, but not in SMA III group. Above all, we propose that SMN protein is a major factor of phenotypic modifier. Our data may provide a new insight into recognition for differential phenotypes of SMA disease.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jin-Jing Li
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Wen-Jing Qian
- Institutes of Brain Science, Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qi-Jie Zhang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhong-Feng Wang
- Institutes of Brain Science, Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ying-Qian Lu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - En-Lin Dong
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jin He
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Li-Xiang Ma
- Department of Anatomy, Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
31
|
Arumugam S, Garcera A, Soler RM, Tabares L. Smn-Deficiency Increases the Intrinsic Excitability of Motoneurons. Front Cell Neurosci 2017; 11:269. [PMID: 28928636 PMCID: PMC5591959 DOI: 10.3389/fncel.2017.00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
During development, motoneurons experience significant changes in their size and in the number and strength of connections that they receive, which requires adaptive changes in their passive and active electrical properties. Even after reaching maturity, motoneurons continue to adjust their intrinsic excitability and synaptic activity for proper functioning of the sensorimotor circuit in accordance with physiological demands. Likewise, if some elements of the circuit become dysfunctional, the system tries to compensate for the alterations to maintain appropriate function. In Spinal Muscular Atrophy (SMA), a severe motor disease, spinal motoneurons receive less excitation from glutamatergic sensory fibers and interneurons and are electrically hyperexcitable. Currently, the origin and relationship among these alterations are not completely established. In this study, we investigated whether Survival of Motor Neuron (SMN), the ubiquitous protein defective in SMA, regulates the excitability of motoneurons before and after the establishment of the synaptic contacts. To this end, we performed patch-clamp recordings in embryonic spinal motoneurons forming complex synaptic networks in primary cultures, and in differentiated NSC-34 motoneuron-like cells in the absence of synaptic contacts. Our results show that in both conditions, Smn-deficient cells displayed lower action potential threshold, greater action potential amplitudes, and larger density of voltage-dependent sodium currents than cells with normal Smn-levels. These results indicate that Smn participates in the regulation of the cell-autonomous excitability of motoneurons at an early stage of development. This finding may contribute to a better understanding of motoneuron excitability in SMA during the development of the disease.
Collapse
Affiliation(s)
- Saravanan Arumugam
- Department of Medical Physiology and Biophysics, School of Medicine University of SevilleSeville, Spain
| | - Ana Garcera
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Universitat de Lleida-IRBLLEIDALleida, Spain
| | - Rosa M Soler
- Unitat de Senyalització Neuronal, Departament de Medicina Experimental, Universitat de Lleida-IRBLLEIDALleida, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine University of SevilleSeville, Spain
| |
Collapse
|