1
|
Madhubala D, Mahato R, Saikia K, Patra A, Fernandes PA, Kumar A, Khan MR, Mukherjee AK. Snake Venom-Inspired Novel Peptides Protect Caenorhabditis elegans against Paraquat-Induced Parkinson's Pathology. ACS Chem Neurosci 2025; 16:1275-1296. [PMID: 40096006 DOI: 10.1021/acschemneuro.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
The in vivo protective mechanisms of two low-molecular-mass (∼1.4 kDa) novel custom peptides (CPs) against paraquat-induced neurodegenerative dysfunction in the Caenorhabditis elegans model were deciphered. CPs prevented the paraquat from binding to the nerve ring adjacent to the pharynx in C. elegans (wild-type) by stable and high-affinity binding to the tyrosine-protein kinase receptor CAM-1, resulting in significant inhibition of paraquat-induced toxicity by reducing the production of reactive oxygen species, mitochondrial membrane depolarization, and chemosensory dysfunction. The CPs inhibited paraquat-induced dopaminergic neuron degeneration and alpha-synuclein protein expression, the hallmarks of Parkinson's disease, in transgenic BZ555 and NL5901 strains of C. elegans. Transcriptomic, functional proteomics, and quantitative reverse transcription-polymerase chain reaction analyses show that CPs prevented the increased expression of the genes involved in the skn-1 downstream pathway, thereby restoring paraquat-mediated oxidative stress, apoptosis, and neuronal damage in C. elegans. The ability of CPs to repair paraquat-induced damage was demonstrated by a network of gene expression profiles, illustrating the molecular relationships between the regulatory proteins.
Collapse
Affiliation(s)
- Dev Madhubala
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam 784028, India
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Rosy Mahato
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
- Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Kangkon Saikia
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Aparup Patra
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, Porto 4169-007, Portugal
| | - Arun Kumar
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Mojibur R Khan
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam 784028, India
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| |
Collapse
|
2
|
Afridi MI, Tu H. The Roles of Distinct Transcriptional Factors in the Innate Immunity of C. elegans. Cells 2025; 14:327. [PMID: 40072056 PMCID: PMC11899719 DOI: 10.3390/cells14050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Deleterious molecules or factors produced by pathogens can hinder the normal physiological functioning of organisms. In response to these survival challenges, organisms rely on innate immune signaling as their first line of defense, which regulates immune-responsive genes and antimicrobial peptides to protect against pathogenic infections. These genes are under the control of transcription factors, which are known to regulate the transcriptional activity of genes after binding to their regulatory sequences. Previous studies have employed Caenorhabditis elegans as a host-pathogen interaction model to demonstrate the essential role of different transcription factors in the innate immunity of worms. In this review, we summarize the advances made regarding the functioning of distinct transcription factors in the innate immune response upon pathogen infection. Finally, we discuss the open questions in the field, whose resolutions have the potential to expand our understanding of the mechanisms underlying the innate immunity of organisms.
Collapse
Affiliation(s)
- Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China;
| | - Haijun Tu
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
3
|
Huayta J, Seay S, Laster J, Rivera NA, Joyce AS, Ferguson PL, Hsu-Kim H, Meyer JN. Assessment of developmental neurotoxicology-associated alterations in neuronal architecture and function using Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632560. [PMID: 39868199 PMCID: PMC11761668 DOI: 10.1101/2025.01.11.632560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment. Caenorhabditis elegans is a nematode that has been extensively studied by neurobiologists and developmental biologists, and to a lesser extent by neurotoxicologists. The developmental trajectory of the nervous system in C. elegans is easily visualized, normally entirely invariant, and fully mapped. Therefore, we hypothesized that C. elegans could be a powerful in vivo model to test chemicals for the potential to alter developmental patterning of neuronal architecture. To test whether this might be true, we developed a novel C. elegans DNT testing paradigm that includes exposure throughout development, examines all major neurotransmitter neuronal types for architectural alterations, and tests behaviors specific to dopaminergic, cholinergic, and glutamatergic functions. We used this paradigm to characterize the effects of early-life exposures to the developmental neurotoxicants lead, cadmium, and benzo(a)pyrene (BaP) on dopaminergic, cholinergic, and glutamatergic architecture. We also assessed whether exposures would alter neuronal specification as assessed by expression of reporter genes diagnostic of specific neurotransmitters. We identified no cases in which the apparent neurotransmitter type of the neurons we examined changed, but many in which neuronal morphology was altered. We also found that neuron-specific behaviors were altered during C. elegans mid-adulthood for populations with measured morphological neurodegeneration in earlier stages. The functional changes were consistent with the morphological changes we observed in terms of type of neuron affected. We identified changes consistent with those reported in the mammalian DNT literature, strengthening the case for C. elegans as a DNT model, and made novel observations that should be followed up in future studies.
Collapse
Affiliation(s)
- Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Sarah Seay
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Joseph Laster
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Nelson A Rivera
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Abigail S Joyce
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - P Lee Ferguson
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Heileen Hsu-Kim
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Ranasinghe T, Seo Y, Park HC, Choe SK, Cha SH. Rotenone exposure causes features of Parkinson`s disease pathology linked with muscle atrophy in developing zebrafish embryo. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136215. [PMID: 39461288 DOI: 10.1016/j.jhazmat.2024.136215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Parkinson's disease (PD) is associated with both genetic and environmental factors; however, sporadic forms of PD account for > 90 % of cases, and PD prevalence has doubled in the past 25 years. Depending on the importance of the environmental factors, various neurotoxins are used to induce PD both in vivo and in vitro. Unlike other neurodegenerative diseases, PD can be induced in vivo using specific neurotoxic chemicals. However, no chemically induced PD model is available because of the sporadic nature of PD. Rotenone is a pesticide that accelerates the induction of PD and exhibits the highest toxicity in fish, unlike other pesticides. Therefore, in this study, we aimed to establish a model exhibiting PD pathologies such as dysfunction of DArgic neuron, aggregation of ɑ-synuclein, and behavioral abnormalities, which are known features of PD pathology, by rotenone exposure at an environmentally relevant concentration (30 nM) in developing zebrafish embryos. Our results provide direct evidence for the association between PD and muscle degeneration by confirming rotenone-induced muscle atrophy. Therefore, we conclude that the rotenone-induced model presents non-motor and motor defects with extensive studies related to muscle atrophy.
Collapse
Affiliation(s)
- Thilini Ranasinghe
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea
| | - Yongbo Seo
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan 15328, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea; Sacopenia Total Solution Center, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea; Department of Aquatic Life Medicine, Hanseo University, Seosan-si 31962, Republic of Korea; Institute for International Fisheries Science, Hanseo University, Seosan-si 31962, Republic of Korea.
| |
Collapse
|
5
|
Gaviraghi A, Barletta ABF, Silva TLAE, Oliveira MP, Sorgine MHF, Oliveira MF. Activation of innate immunity selectively compromises mitochondrial complex I, proline oxidation, and flight activity in the major arbovirus vector Aedes aegypti. Mol Microbiol 2024; 122:683-703. [PMID: 38720451 DOI: 10.1111/mmi.15269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 11/26/2024]
Abstract
Aedes aegypti females are natural vectors of important arboviruses such as dengue, zika, and yellow fever. Mosquitoes activate innate immune response signaling pathways upon infection, as a resistance mechanism to fight pathogens and limit their propagation. Despite the beneficial effects of immune activation for insect vectors, phenotypic costs ultimately affect their fitness. However, the underlying mechanisms that mediate these fitness costs remain poorly understood. Given the high energy required to mount a proper immune response, we hypothesized that systemic activation of innate immunity would impair flight muscle mitochondrial function, compromising tissue energy demand and flight activity. Here, we investigated the dynamic effects of activation of innate immunity by intra-thoracic zymosan injection on A. aegypti flight muscle mitochondrial metabolism. Zymosan injection significantly increased defensin A expression in fat bodies in a time-dependent manner that compromised flight activity. Although oxidant levels in flight muscle were hardly altered, ATP-linked respiratory rates driven by mitochondrial pyruvate+proline oxidation were significantly reduced at 24 h upon zymosan injection. Oxidative phosphorylation coupling was preserved regardless of innate immune response activation along 24 h. Importantly, rotenone-sensitive respiration and complex I-III activity were specifically reduced 24 h upon zymosan injection. Also, loss of complex I activity compromised ATP-linked and maximal respiratory rates mediated by mitochondrial proline oxidation. Finally, the magnitude of innate immune response activation negatively correlated with respiratory rates, regardless of the metabolic states. Collectively, we demonstrate that activation of innate immunity is strongly associated with reduced flight muscle complex I activity with direct consequences to mitochondrial proline oxidation and flight activity. Remarkably, our results indicate a trade-off between dispersal and immunity exists in an insect vector, underscoring the potential consequences of disrupted flight muscle mitochondrial energy metabolism to arbovirus transmission.
Collapse
Affiliation(s)
- Alessandro Gaviraghi
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Ana Beatriz F Barletta
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Luiz Alves E Silva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcos H F Sorgine
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus F Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
7
|
Li W, McIntyre RL, Schomakers BV, Kamble R, Luesink AH, van Weeghel M, Houtkooper RH, Gao AW, Janssens GE. Low-dose naltrexone extends healthspan and lifespan in C. elegans via SKN-1 activation. iScience 2024; 27:109949. [PMID: 38799567 PMCID: PMC11126937 DOI: 10.1016/j.isci.2024.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
As the global aging population rises, finding effective interventions to improve aging health is crucial. Drug repurposing, utilizing existing drugs for new purposes, presents a promising strategy for rapid implementation. We explored naltrexone from the Library of Integrated Network-based Cellular Signatures (LINCS) based on several selection criteria. Low-dose naltrexone (LDN) has gained attention for treating various diseases, yet its impact on longevity remains underexplored. Our study on C. elegans demonstrated that a low dose, but not high dose, of naltrexone extended the healthspan and lifespan. This effect was mediated through SKN-1 (NRF2 in mammals) signaling, influencing innate immune gene expression and upregulating oxidative stress responses. With LDN's low side effects profile, our findings underscore its potential as a geroprotector, suggesting further exploration for promoting healthy aging in humans is warranted.
Collapse
Affiliation(s)
- Weisha Li
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rebecca L. McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Rashmi Kamble
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anne H.G. Luesink
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Arwen W. Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Georges E. Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Onraet T, Zuryn S. C. elegans as a model to study mitochondrial biology and disease. Semin Cell Dev Biol 2024; 154:48-58. [PMID: 37149409 DOI: 10.1016/j.semcdb.2023.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Mitochondria perform a myriad of essential functions that ensure organismal homeostasis, including maintaining bioenergetic capacity, sensing and signalling the presence of pathogenic threats, and determining cell fate. Their function is highly dependent on mitochondrial quality control and the appropriate regulation of mitochondrial size, shape, and distribution during an entire lifetime, as well as their inheritance across generations. The roundworm Caenorhabditis elegans has emerged as an ideal model organism through which to study mitochondria. The remarkable conservation of mitochondrial biology has allowed C. elegans researchers to investigate complex processes that are challenging to study in higher organisms. In this review, we explore the key recent contributions of C. elegans to mitochondrial biology through the lens of mitochondrial dynamics, organellar removal, and mitochondrial inheritance, as well as their involvement in immune responses, various types of stress, and transgenerational signalling.
Collapse
Affiliation(s)
- Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
9
|
Chen L, Zhang S, Liu S, Gao S. Amyotrophic Lateral Sclerosis Mechanism: Insights from the Caenorhabditis elegans Models. Cells 2024; 13:99. [PMID: 38201303 PMCID: PMC10778397 DOI: 10.3390/cells13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a debilitating neurodegenerative condition characterized by the progressive degeneration of motor neurons. Despite extensive research in various model animals, the cellular signal mechanisms of ALS remain elusive, impeding the development of efficacious treatments. Among these models, a well-characterized and diminutive organism, Caenorhabditis elegans (C. elegans), has emerged as a potent tool for investigating the molecular and cellular dimensions of ALS pathogenesis. This review summarizes the contributions of C. elegans models to our comprehension of ALS, emphasizing pivotal findings pertaining to genetics, protein aggregation, cellular pathways, and potential therapeutic strategies. We analyze both the merits and constraints of the C. elegans system in the realm of ALS research and point towards future investigations that could bridge the chasm between C. elegans foundational discoveries and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.C.); (S.Z.); (S.L.)
| |
Collapse
|
10
|
Trevisan R, Mello DF. Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radic Biol Med 2024; 210:85-106. [PMID: 37952585 DOI: 10.1016/j.freeradbiomed.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.
Collapse
Affiliation(s)
- Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Danielle F Mello
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France.
| |
Collapse
|
11
|
Ye P, Fang Q, Hu X, Zou W, Huang M, Ke M, Li Y, Liu M, Cai X, Zhang C, Hua N, Al-Sheikh U, Liu X, Yu P, Jiang P, Pan PY, Luo J, Jiang LH, Xu S, Fang EF, Su H, Kang L, Yang W. TRPM2 as a conserved gatekeeper determines the vulnerability of DA neurons by mediating ROS sensing and calcium dyshomeostasis. Prog Neurobiol 2023; 231:102530. [PMID: 37739206 DOI: 10.1016/j.pneurobio.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Different dopaminergic (DA) neuronal subgroups exhibit distinct vulnerability to stress, while the underlying mechanisms are elusive. Here we report that the transient receptor potential melastatin 2 (TRPM2) channel is preferentially expressed in vulnerable DA neuronal subgroups, which correlates positively with aging in Parkinson's Disease (PD) patients. Overexpression of human TRPM2 in the DA neurons of C. elegans resulted in selective death of ADE but not CEP neurons in aged worms. Mechanistically, TRPM2 activation mediates FZO-1/CED-9-dependent mitochondrial hyperfusion and mitochondrial permeability transition (MPT), leading to ADE death. In mice, TRPM2 knockout reduced vulnerable substantia nigra pars compacta (SNc) DA neuronal death induced by stress. Moreover, the TRPM2-mediated vulnerable DA neuronal death pathway is conserved from C. elegans to toxin-treated mice model and PD patient iPSC-derived DA neurons. The vulnerable SNc DA neuronal loss is the major symptom and cause of PD, and therefore the TRPM2-mediated pathway serves as a promising therapeutic target against PD.
Collapse
Affiliation(s)
- Peiwu Ye
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiuyuan Fang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xupang Hu
- Second Clinical Medical College, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310011, China
| | - Wenjuan Zou
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Miaodan Huang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Minjing Ke
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yunhao Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Min Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaobo Cai
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Congyi Zhang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ning Hua
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Umar Al-Sheikh
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Xingyu Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peilin Yu
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Peiran Jiang
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jianhong Luo
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; Sino-UK Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453000, China; University of Leeds, Leeds LS2 9JT, UK
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Huanxing Su
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lijun Kang
- Second Clinical Medical College, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310011, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Wei Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
12
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
13
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
14
|
Staphylococcus aureus induces mitophagy to promote its survival within bovine mammary epithelial cells. Vet Microbiol 2023; 280:109697. [PMID: 36827937 DOI: 10.1016/j.vetmic.2023.109697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Mitophagy occurs in a variety of pathogenic infections. However, the role of mitophagy in the intracellular survival of Staphylococcus aureus (S.aureus) within bovine mammary epithelial cells (BMECs) and which molecules specifically mediate the induction of mitophagy remains unclear. Therefore, this study aims to investigate the role and mechanism of mitophagy in the intracellular survival of S.aureus. Here, we reported that S.aureus induced complete mitophagy to promote its survival within BMECs. The further mechanistic study showed that S. aureus induced mitophagy by activating the p38-PINK1-Parkin signaling pathway. These findings expand our knowledge of the intracellular survival mechanism of S.aureus in the host and provide a desirable therapeutic strategy against S.aureus and other intracellular infections.
Collapse
|
15
|
Srivastava V, Zelmanovich V, Shukla V, Abergel R, Cohen I, Ben-Sasson SA, Gross E. Distinct designer diamines promote mitophagy, and thereby enhance healthspan in C. elegans and protect human cells against oxidative damage. Autophagy 2023; 19:474-504. [PMID: 35579620 PMCID: PMC9851263 DOI: 10.1080/15548627.2022.2078069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Impaired mitophagy is a primary pathogenic event underlying diverse aging-associated diseases such as Alzheimer and Parkinson diseases and sarcopenia. Therefore, augmentation of mitophagy, the process by which defective mitochondria are removed, then replaced by new ones, is an emerging strategy for preventing the evolvement of multiple morbidities in the elderly population. Based on the scaffold of spermidine (Spd), a known mitophagy-promoting agent, we designed and tested a family of structurally related compounds. A prototypic member, 1,8-diaminooctane (VL-004), exceeds Spd in its ability to induce mitophagy and protect against oxidative stress. VL-004 activity is mediated by canonical aging genes and promotes lifespan and healthspan in C. elegans. Moreover, it enhances mitophagy and protects against oxidative injury in rodent and human cells. Initial structural characterization suggests simple rules for the design of compounds with improved bioactivity, opening the way for a new generation of agents with a potential to promote healthy aging.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Veronica Zelmanovich
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Virendra Shukla
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Abergel
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Cohen
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel A. Ben-Sasson
- Department Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Gross
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel,CONTACT Einav Gross Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, the Hebrew University of Jerusalem, Ein Kerem. PO Box 12271, Jerusalem9112102, Israel
| |
Collapse
|
16
|
Miles J, Townend S, Milonaitytė D, Smith W, Hodge F, Westhead DR, van Oosten-Hawle P. Transcellular chaperone signaling is an intercellular stress-response distinct from the HSF-1-mediated heat shock response. PLoS Biol 2023; 21:e3001605. [PMID: 36780563 PMCID: PMC9956597 DOI: 10.1371/journal.pbio.3001605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/24/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Organismal proteostasis is maintained by intercellular signaling processes including cell nonautonomous stress responses such as transcellular chaperone signaling (TCS). When TCS is activated upon tissue-specific knockdown of hsp-90 in the Caenorhabditis elegans intestine, heat-inducible hsp-70 is induced in muscle cells at the permissive temperature resulting in increased heat stress resistance and lifespan extension. However, our understanding of the molecular mechanism and signaling factors mediating transcellular activation of hsp-70 expression from one tissue to another is still in its infancy. Here, we conducted a combinatorial approach using transcriptome RNA-Seq profiling and a forward genetic mutagenesis screen to elucidate how stress signaling from the intestine to the muscle is regulated. We find that the TCS-mediated "gut-to-muscle" induction of hsp-70 expression is suppressed by HSF-1 and instead relies on transcellular-X-cross-tissue (txt) genes. We identify a key role for the PDZ-domain guanylate cyclase txt-1 and the homeobox transcription factor ceh-58 as signaling hubs in the stress receiving muscle cells to initiate hsp-70 expression and facilitate TCS-mediated heat stress resistance and lifespan extension. Our results provide a new view on cell-nonautonomous regulation of "inter-tissue" stress responses in an organism that highlight a key role for the gut. Our data suggest that the HSF-1-mediated heat shock response is switched off upon TCS activation, in favor of an intercellular stress-signaling route to safeguard survival.
Collapse
Affiliation(s)
- Jay Miles
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sarah Townend
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Dovilė Milonaitytė
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - William Smith
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Francesca Hodge
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David R. Westhead
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Zhang H, Li X, Fan W, Pandovski S, Tian Y, Dillin A. Inter-tissue communication of mitochondrial stress and metabolic health. LIFE METABOLISM 2023; 2:load001. [PMID: 37538245 PMCID: PMC10399134 DOI: 10.1093/lifemeta/load001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Mitochondria function as a hub of the cellular metabolic network. Mitochondrial stress is closely associated with aging and a variety of diseases, including neurodegeneration and cancer. Cells autonomously elicit specific stress responses to cope with mitochondrial stress to maintain mitochondrial homeostasis. Interestingly, mitochondrial stress responses may also be induced in a non-autonomous manner in cells or tissues that are not directly experiencing such stress. Such non-autonomous mitochondrial stress responses are mediated by secreted molecules called mitokines. Due to their significant translational potential in improving human metabolic health, there has been a surge in mitokine-focused research. In this review, we summarize the findings regarding inter-tissue communication of mitochondrial stress in animal models. In addition, we discuss the possibility of mitokine-mediated intercellular mitochondrial communication originating from bacterial quorum sensing.
Collapse
Affiliation(s)
- Hanlin Zhang
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Wudi Fan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sentibel Pandovski
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Tjahjono E, Kirienko DR, Kirienko NV. The emergent role of mitochondrial surveillance in cellular health. Aging Cell 2022; 21:e13710. [PMID: 36088658 PMCID: PMC9649602 DOI: 10.1111/acel.13710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial dysfunction is one of the primary causatives for many pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and aging. Decline in mitochondrial functions leads to the loss of proteostasis, accumulation of ROS, and mitochondrial DNA damage, which further exacerbates mitochondrial deterioration in a vicious cycle. Surveillance mechanisms, in which mitochondrial functions are closely monitored for any sign of perturbations, exist to anticipate possible havoc within these multifunctional organelles with primitive origin. Various indicators of unhealthy mitochondria, including halted protein import, dissipated membrane potential, and increased loads of oxidative damage, are on the top of the lists for close monitoring. Recent research also indicates a possibility of reductive stress being monitored as part of a mitochondrial surveillance program. Upon detection of mitochondrial stress, multiple mitochondrial stress-responsive pathways are activated to promote the transcription of numerous nuclear genes to ameliorate mitochondrial damage and restore compromised cellular functions. Co-expression occurs through functionalization of transcription factors, allowing their binding to promoter elements to initiate transcription of target genes. This review provides a comprehensive summary of the intricacy of mitochondrial surveillance programs and highlights their roles in our cellular life. Ultimately, a better understanding of these surveillance mechanisms is expected to improve healthspan.
Collapse
|
19
|
Ma L, Li X, Liu C, Yan W, Ma J, Petersen RB, Peng A, Huang K. Modelling Parkinson's Disease in C. elegans: Strengths and Limitations. Curr Pharm Des 2022; 28:3033-3048. [PMID: 36111767 DOI: 10.2174/1381612828666220915103502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that affects the motor system and progressively worsens with age. Current treatment options for PD mainly target symptoms, due to our limited understanding of the etiology and pathophysiology of PD. A variety of preclinical models have been developed to study different aspects of the disease. The models have been used to elucidate the pathogenesis and for testing new treatments. These models include cell models, non-mammalian models, rodent models, and non-human primate models. Over the past few decades, Caenorhabditis elegans (C. elegans) has been widely adopted as a model system due to its small size, transparent body, short generation time and life cycle, fully sequenced genome, the tractability of genetic manipulation and suitability for large scale screening for disease modifiers. Here, we review studies using C. elegans as a model for PD and highlight the strengths and limitations of the C. elegans model. Various C. elegans PD models, including neurotoxin-induced models and genetic models, are described in detail. Moreover, met.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China.,Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyao Yan
- Department of Pharmacy, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlu Ma
- Human Resources Department, Wuhan Mental Health Center, Wuhan, China.,Human Resources Department, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Savu DI, Moisoi N. Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148588. [PMID: 35780856 DOI: 10.1016/j.bbabio.2022.148588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions.
Collapse
Affiliation(s)
- Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH Leicester, UK.
| |
Collapse
|
21
|
Li J, Cui J, Tian Y. Neuron-periphery mitochondrial stress communication in aging and diseases. LIFE MEDICINE 2022; 1:168-178. [PMID: 39871928 PMCID: PMC11749785 DOI: 10.1093/lifemedi/lnac051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/10/2022] [Indexed: 01/29/2025]
Abstract
The nervous system is the central hub of the body, detecting environmental and internal stimuli to regulate organismal metabolism via communications to the peripheral tissues. Mitochondria play an essential role in neuronal activity by supplying energy, maintaining cellular metabolism, and buffering calcium levels. A variety of mitochondrial conditions are associated with aging and age-related neurological disorders. Beyond regulating individual neuron cells, mitochondria also coordinate signaling in tissues and organs during stress conditions to mediate systemic metabolism and enable organisms to adapt to such stresses. In addition, peripheral organs and immune cells can also produce signaling molecules to modulate neuronal function. Recent studies have found that mitokines released upon mitochondrial stresses affect metabolism and the physiology of different tissues and organs at a distance. Here, we summarize recent advances in understanding neuron-periphery mitochondrial stress communication and how mitokine signals contribute to the systemic regulation of metabolism and aging with potential implications for therapeutic strategies.
Collapse
Affiliation(s)
- Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Jimeng Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
22
|
Guha S, Cheng A, Carroll T, King D, Koren SA, Swords S, Nehrke K, Johnson GVW. Selective disruption of Drp1-independent mitophagy and mitolysosome trafficking by an Alzheimer's disease relevant tau modification in a novel Caenorhabditis elegans model. Genetics 2022; 222:iyac104. [PMID: 35916724 PMCID: PMC9434186 DOI: 10.1093/genetics/iyac104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
Accumulation of inappropriately phosphorylated tau into neurofibrillary tangles is a defining feature of Alzheimer's disease, with Tau pT231 being an early harbinger of tau pathology. Previously, we demonstrated that expressing a single genomic copy of human phosphomimetic mutant tau (T231E) in Caenorhabditis elegans drove age-dependent neurodegeneration. A critical finding was that T231E, unlike wild-type tau, completely and selectively suppressed oxidative stress-induced mitophagy. Here, we used dynamic imaging approaches to analyze T231E-associated changes in mitochondria and mitolysosome morphology, abundance, trafficking, and stress-induced mitophagy as a function of mitochondrial fission mediator dynamin-related protein 1, which has been demonstrated to interact with hyper phosphorylated tau and contribute to Alzheimer's disease pathogenesis, as well as Pink1, a well-recognized mediator of mitochondrial quality control that works together with Parkin to support stress-induced mitophagy. T231E impacted both mitophagy and mitolysosome neurite trafficking with exquisite selectivity, sparing macroautophagy as well as lysosome and autolysosome trafficking. Both oxidative-stress-induced mitophagy and the ability of T231E to suppress it were independent of drp-1, but at least partially dependent on pink-1. Organelle trafficking was more complicated, with drp-1 and pink-1 mutants exerting independent effects, but generally supported the idea that the mitophagy phenotype is of greater physiologic impact in T231E. Collectively, our results refine the mechanistic pathway through which T231E causes neurodegeneration, demonstrating pathologic selectivity for mutations that mimic tauopathy-associated post-translational modifications, physiologic selectivity for organelles that contain damaged mitochondria, and molecular selectivity for dynamin-related protein 1-independent, Pink1-dependent, perhaps adaptive, and mitophagy.
Collapse
Affiliation(s)
- Sanjib Guha
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Anson Cheng
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Trae Carroll
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Dennisha King
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Shon A Koren
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| | - Sierra Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, New Brunswick, NJ 08901, USA
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester, Rochester, NY 14642, USA
| | - Gail V W Johnson
- Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
23
|
Shi Y, Qin L, Wu M, Zheng J, Xie T, Shao Z. Gut neuroendocrine signaling regulates synaptic assembly in C. elegans. EMBO Rep 2022; 23:e53267. [PMID: 35748387 DOI: 10.15252/embr.202153267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Synaptic connections are essential to build a functional brain. How synapses are formed during development is a fundamental question in neuroscience. Recent studies provided evidence that the gut plays an important role in neuronal development through processing signals derived from gut microbes or nutrients. Defects in gut-brain communication can lead to various neurological disorders. Although the roles of the gut in communicating signals from its internal environment to the brain are well known, it remains unclear whether the gut plays a genetically encoded role in neuronal development. Using C. elegans as a model, we uncover that a Wnt-endocrine signaling pathway in the gut regulates synaptic development in the brain. A canonical Wnt signaling pathway promotes synapse formation through regulating the expression of the neuropeptides encoding gene nlp-40 in the gut, which functions through the neuronally expressed GPCR/AEX-2 receptor during development. Wnt-NLP-40-AEX-2 signaling likely acts to modulate neuronal activity. Our study reveals a genetic role of the gut in synaptic development and identifies a novel contribution of the gut-brain axis.
Collapse
Affiliation(s)
- Yanjun Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Qin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengting Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junyu Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Sammi SR, Jameson LE, Conrow KD, Leung MCK, Cannon JR. Caenorhabditis elegans Neurotoxicity Testing: Novel Applications in the Adverse Outcome Pathway Framework. FRONTIERS IN TOXICOLOGY 2022; 4:826488. [PMID: 35373186 PMCID: PMC8966687 DOI: 10.3389/ftox.2022.826488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurological hazard assessment of industrial and pesticidal chemicals demands a substantial amount of time and resources. Caenorhabditis elegans is an established model organism in developmental biology and neuroscience. It presents an ideal test system with relatively fewer neurons (302 in hermaphrodites) versus higher-order species, a transparent body, short lifespan, making it easier to perform neurotoxic assessment in a time and cost-effective manner. Yet, no regulatory testing guidelines have been developed for C. elegans in the field of developmental and adult neurotoxicity. Here, we describe a set of morphological and behavioral assessment protocols to examine neurotoxicity in C. elegans with relevance to cholinergic and dopaminergic systems. We discuss the homology of human genes and associated proteins in these two signaling pathways and evaluate the morphological and behavioral endpoints of C. elegans in the context of published adverse outcome pathways of neurodegenerative diseases. We conclude that C. elegans neurotoxicity testing will not only be instrumental to eliminating mammalian testing in neurological hazard assessment but also lead to new knowledge and mechanistic validation in the adverse outcome pathway framework.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
| | - Laura E. Jameson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Kendra D. Conrow
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Maxwell C. K. Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
- *Correspondence: Maxwell C. K. Leung, ; Jason R. Cannon,
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
- *Correspondence: Maxwell C. K. Leung, ; Jason R. Cannon,
| |
Collapse
|
25
|
Mello DF, Bergemann CM, Fisher K, Chitrakar R, Bijwadia SR, Wang Y, Caldwell A, Baugh LR, Meyer JN. Rotenone Modulates Caenorhabditis elegans Immunometabolism and Pathogen Susceptibility. Front Immunol 2022; 13:840272. [PMID: 35273616 PMCID: PMC8902048 DOI: 10.3389/fimmu.2022.840272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are central players in host immunometabolism as they function not only as metabolic hubs but also as signaling platforms regulating innate immunity. Environmental exposures to mitochondrial toxicants occur widely and are increasingly frequent. Exposures to these mitotoxicants may pose a serious threat to organismal health and the onset of diseases by disrupting immunometabolic pathways. In this study, we investigated whether the Complex I inhibitor rotenone could alter C. elegans immunometabolism and disease susceptibility. C. elegans embryos were exposed to rotenone (0.5 µM) or DMSO (0.125%) until they reached the L4 larval stage. Inhibition of mitochondrial respiration by rotenone and disruption of mitochondrial metabolism were evidenced by rotenone-induced detrimental effects on mitochondrial efficiency and nematode growth and development. Next, through transcriptomic analysis, we investigated if this specific but mild mitochondrial stress that we detected would lead to the modulation of immunometabolic pathways. We found 179 differentially expressed genes (DEG), which were mostly involved in detoxification, energy metabolism, and pathogen defense. Interestingly, among the down-regulated DEG, most of the known genes were involved in immune defense, and most of these were identified as commonly upregulated during P. aeruginosa infection. Furthermore, rotenone increased susceptibility to the pathogen Pseudomonas aeruginosa (PA14). However, it increased resistance to Salmonella enterica (SL1344). To shed light on potential mechanisms related to these divergent effects on pathogen resistance, we assessed the activation of the mitochondrial unfolded protein response (UPRmt), a well-known immunometabolic pathway in C. elegans which links mitochondria and immunity and provides resistance to pathogen infection. The UPRmt pathway was activated in rotenone-treated nematodes further exposed for 24 h to the pathogenic bacteria P. aeruginosa and S. enterica or the common bacterial food source Escherichia coli (OP50). However, P. aeruginosa alone suppressed UPRmt activation and rotenone treatment rescued its activation only to the level of DMSO-exposed nematodes fed with E. coli. Module-weighted annotation bioinformatics analysis was also consistent with UPRmt activation in rotenone-exposed nematodes consistent with the UPR being involved in the increased resistance to S. enterica. Together, our results demonstrate that the mitotoxicant rotenone can disrupt C. elegans immunometabolism in ways likely protective against some pathogen species but sensitizing against others.
Collapse
Affiliation(s)
- Danielle F. Mello
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | | | - Kinsey Fisher
- Department of Biology, Duke University, Durham, NC, United States
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC, United States
| | - Shefali R. Bijwadia
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Yang Wang
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Alexis Caldwell
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Larry Ryan Baugh
- Department of Biology, Duke University, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| |
Collapse
|
26
|
Thirugnanam T, Santhakumar K. Chemically induced models of Parkinson's disease. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109213. [PMID: 34673252 DOI: 10.1016/j.cbpc.2021.109213] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Environmental toxins are harmful substances detrimental to humans. Constant exposure to these fatal neurotoxins can cause various neurodegenerative disorders. Although poisonous, specific neurotoxins at optimal concentrations mimic the clinical features of neurodegenerative diseases in several animal models. Such chemically-induced model systems are beneficial in deciphering the molecular mechanisms of neurodegeneration and drug screening for these disorders. One such neurotoxin is 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a widely used chemical that recapitulates Parkinsonian features in various animal models. Apart from MPTP, other neurotoxins like 6-hydroxydopamine (6-OHDA), paraquat, rotenone also induce specific clinical features of Parkinson's disease in animal models. These chemically-induced Parkinson's disease models are playing a crucial role in understanding Parkinson's disease onset, pathology, and novel therapeutics. In this review, we provide a concise overview of various neurotoxins that can recapitulate Parkinsonian features in different in vivo and in vitro model systems specifically focusing on the different treatment methodologies of neurotoxins.
Collapse
Affiliation(s)
- Thilaga Thirugnanam
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kirankumar Santhakumar
- Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
27
|
Das S, Min S, Prahlad V. Gene bookmarking by the heat shock transcription factor programs the insulin-like signaling pathway. Mol Cell 2021; 81:4843-4860.e8. [PMID: 34648748 PMCID: PMC8642288 DOI: 10.1016/j.molcel.2021.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Maternal stress can have long-lasting epigenetic effects on offspring. To examine how epigenetic changes are triggered by stress, we examined the effects of activating the universal stress-responsive heat shock transcription factor HSF-1 in the germline of Caenorhabditis elegans. We show that, when activated in germ cells, HSF-1 recruits MET-2, the putative histone 3 lysine 9 (H3K9) methyltransferase responsible for repressive H3K9me2 (H3K9 dimethyl) marks in chromatin, and negatively bookmarks the insulin receptor daf-2 and other HSF-1 target genes. Increased H3K9me2 at these genes persists in adult progeny and shifts their stress response strategy away from inducible chaperone expression as a mechanism to survive stress and instead rely on decreased insulin/insulin growth factor (IGF-1)-like signaling (IIS). Depending on the duration of maternal heat stress exposure, this epigenetic memory is inherited by the next generation. Thus, paradoxically, HSF-1 recruits the germline machinery normally responsible for erasing transcriptional memory but, instead, establishes a heritable epigenetic memory of prior stress exposure.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Sehee Min
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA; Department of Biology, 143 Biology Building, Iowa City, IA 52242-1324, USA; Iowa Neuroscience Institute, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA.
| |
Collapse
|
28
|
Campos JC, Wu Z, Rudich PD, Soo SK, Mistry M, Ferreira JC, Blackwell TK, Van Raamsdonk JM. Mild mitochondrial impairment enhances innate immunity and longevity through ATFS-1 and p38 signaling. EMBO Rep 2021; 22:e52964. [PMID: 34617666 PMCID: PMC8647147 DOI: 10.15252/embr.202152964] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
While mitochondrial function is essential for life in all multicellular organisms, a mild impairment of mitochondrial function can extend longevity in model organisms. By understanding the molecular mechanisms involved, these pathways might be targeted to promote healthy aging. In studying two long-lived mitochondrial mutants in C. elegans, we found that disrupting subunits of the mitochondrial electron transport chain results in upregulation of genes involved in innate immunity, which is driven by the mitochondrial unfolded protein response (mitoUPR) but also dependent on the canonical p38-mediated innate immune signaling pathway. Both of these pathways are required for the increased resistance to bacterial pathogens and extended longevity of the long-lived mitochondrial mutants, as is the FOXO transcription factor DAF-16. This work demonstrates that both the p38-mediated innate immune signaling pathway and the mitoUPR act in concert on the same innate immunity genes to promote pathogen resistance and longevity and that input from the mitochondria can extend longevity by signaling through these pathways. This indicates that multiple evolutionarily conserved genetic pathways controlling innate immunity also function to modulate lifespan.
Collapse
Affiliation(s)
- Juliane C Campos
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.,Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.,Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Meeta Mistry
- Bioinformatics Core, Harvard School of Public Health, Harvard Medical School, Boston, MA, USA
| | - Julio Cb Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - T Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy M Van Raamsdonk
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Matilainen O, Ribeiro ARS, Verbeeren J, Cetinbas M, Sood H, Sadreyev RI, Garcia SMDA. Loss of muscleblind splicing factor shortens Caenorhabditis elegans lifespan by reducing the activity of p38 MAPK/PMK-1 and transcription factors ATF-7 and Nrf/SKN-1. Genetics 2021; 219:6325509. [PMID: 34849877 PMCID: PMC8633093 DOI: 10.1093/genetics/iyab114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Muscleblind-like splicing regulators (MBNLs) are RNA-binding factors that have an important role in developmental processes. Dysfunction of these factors is a key contributor of different neuromuscular degenerative disorders, including Myotonic Dystrophy type 1 (DM1). Since DM1 is a multisystemic disease characterized by symptoms resembling accelerated aging, we asked which cellular processes do MBNLs regulate that make them necessary for normal lifespan. By utilizing the model organism Caenorhabditis elegans, we found that loss of MBL-1 (the sole ortholog of mammalian MBNLs), which is known to be required for normal lifespan, shortens lifespan by decreasing the activity of p38 MAPK/PMK-1 as well as the function of transcription factors ATF-7 and SKN-1. Furthermore, we show that mitochondrial stress caused by the knockdown of mitochondrial electron transport chain components promotes the longevity of mbl-1 mutants in a partially PMK-1-dependent manner. Together, the data establish a mechanism of how DM1-associated loss of muscleblind affects lifespan. Furthermore, this study suggests that mitochondrial stress could alleviate symptoms caused by the dysfunction of muscleblind splicing factor, creating a potential approach to investigate for therapy.
Collapse
Affiliation(s)
- Olli Matilainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Ana R S Ribeiro
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Jens Verbeeren
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Heini Sood
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Susana M D A Garcia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| |
Collapse
|
30
|
Walker AC, Bhargava R, Vaziriyan-Sani AS, Pourciau C, Donahue ET, Dove AS, Gebhardt MJ, Ellward GL, Romeo T, Czyż DM. Colonization of the Caenorhabditis elegans gut with human enteric bacterial pathogens leads to proteostasis disruption that is rescued by butyrate. PLoS Pathog 2021; 17:e1009510. [PMID: 33956916 PMCID: PMC8101752 DOI: 10.1371/journal.ppat.1009510] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Protein conformational diseases are characterized by misfolding and toxic aggregation of metastable proteins, often culminating in neurodegeneration. Enteric bacteria influence the pathogenesis of neurodegenerative diseases; however, the complexity of the human microbiome hinders our understanding of how individual microbes influence these diseases. Disruption of host protein homeostasis, or proteostasis, affects the onset and progression of these diseases. To investigate the effect of bacteria on host proteostasis, we used Caenorhabditis elegans expressing tissue-specific polyglutamine reporters that detect changes in the protein folding environment. We found that colonization of the C. elegans gut with enteric bacterial pathogens disrupted proteostasis in the intestine, muscle, neurons, and the gonad, while the presence of bacteria that conditionally synthesize butyrate, a molecule previously shown to be beneficial in neurodegenerative disease models, suppressed aggregation and the associated proteotoxicity. Co-colonization with this butyrogenic strain suppressed bacteria-induced protein aggregation, emphasizing the importance of microbial interaction and its impact on host proteostasis. Further experiments demonstrated that the beneficial effect of butyrate depended on the bacteria that colonized the gut and that this protective effect required SKN-1/Nrf2 and DAF-16/FOXO transcription factors. We also found that bacteria-derived protein aggregates contribute to the observed disruption of host proteostasis. Together, these results reveal the significance of enteric infection and gut dysbiosis on the pathogenesis of protein conformational diseases and demonstrate the potential of using butyrate-producing microbes as a preventative and treatment strategy for neurodegenerative disease.
Collapse
Affiliation(s)
- Alyssa C. Walker
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Rohan Bhargava
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Alfonso S. Vaziriyan-Sani
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Christine Pourciau
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Emily T. Donahue
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Autumn S. Dove
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Michael J. Gebhardt
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Garrett L. Ellward
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Tony Romeo
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Daniel M. Czyż
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
31
|
Gonzalez-Hunt CP, Luz AL, Ryde IT, Turner EA, Ilkayeva OR, Bhatt DP, Hirschey MD, Meyer JN. Multiple metabolic changes mediate the response of Caenorhabditis elegans to the complex I inhibitor rotenone. Toxicology 2021; 447:152630. [PMID: 33188857 PMCID: PMC7750303 DOI: 10.1016/j.tox.2020.152630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022]
Abstract
Rotenone, a mitochondrial complex I inhibitor, has been widely used to study the effects of mitochondrial dysfunction on dopaminergic neurons in the context of Parkinson's disease. Although the deleterious effects of rotenone are well documented, we found that young adult Caenorhabditis elegans showed resistance to 24 and 48 h rotenone exposures. To better understand the response to rotenone in C. elegans, we evaluated mitochondrial bioenergetic parameters after 24 and 48 h exposures to 1 μM or 5 μM rotenone. Results suggested upregulation of mitochondrial complexes II and V following rotenone exposure, without major changes in oxygen consumption or steady-state ATP levels after rotenone treatment at the tested concentrations. We found evidence that the glyoxylate pathway (an alternate pathway not present in higher metazoans) was induced by rotenone exposure; gene expression measurements showed increases in mRNA levels for two complex II subunits and for isocitrate lyase, the key glyoxylate pathway enzyme. Targeted metabolomics analyses showed alterations in the levels of organic acids, amino acids, and acylcarnitines, consistent with the metabolic restructuring of cellular bioenergetic pathways including activation of complex II, the glyoxylate pathway, glycolysis, and fatty acid oxidation. This expanded understanding of how C. elegans responds metabolically to complex I inhibition via multiple bioenergetic adaptations, including the glyoxylate pathway, will be useful in interrogating the effects of mitochondrial and bioenergetic stressors and toxicants.
Collapse
Affiliation(s)
- Claudia P Gonzalez-Hunt
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Anthony L Luz
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Ian T Ryde
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Elena A Turner
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Durham, NC, 27710, United States; Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, 27710, United States
| | - Dhaval P Bhatt
- Duke Molecular Physiology Institute, Durham, NC, 27710, United States
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute, Durham, NC, 27710, United States; Sarah W. Stedman Nutrition and Metabolism Center, Durham, NC, 27710, United States; Departments of Medicine and Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, United States
| | - Joel N Meyer
- Department of Nicholas School of the Environment, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
32
|
Luckhart S, Riehle MA. Midgut Mitochondrial Function as a Gatekeeper for Malaria Parasite Infection and Development in the Mosquito Host. Front Cell Infect Microbiol 2020; 10:593159. [PMID: 33363053 PMCID: PMC7759495 DOI: 10.3389/fcimb.2020.593159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Across diverse organisms, various physiologies are profoundly regulated by mitochondrial function, which is defined by mitochondrial fusion, biogenesis, oxidative phosphorylation (OXPHOS), and mitophagy. Based on our data and significant published studies from Caenorhabditis elegans, Drosophila melanogaster and mammals, we propose that midgut mitochondria control midgut health and the health of other tissues in vector mosquitoes. Specifically, we argue that trade-offs among resistance to infection, metabolism, lifespan, and reproduction in vector mosquitoes are fundamentally controlled both locally and systemically by midgut mitochondrial function.
Collapse
Affiliation(s)
- Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States.,Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Michael A Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
33
|
Prahlad V. The discovery and consequences of the central role of the nervous system in the control of protein homeostasis. J Neurogenet 2020; 34:489-499. [PMID: 32527175 PMCID: PMC7736053 DOI: 10.1080/01677063.2020.1771333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
Organisms function despite wide fluctuations in their environment through the maintenance of homeostasis. At the cellular level, the maintenance of proteins as functional entities at target expression levels is called protein homeostasis (or proteostasis). Cells implement proteostasis through universal and conserved quality control mechanisms that surveil and monitor protein conformation. Recent studies that exploit the powerful ability to genetically manipulate specific neurons in C. elegans have shown that cells within this metazoan lose their autonomy over this fundamental survival mechanism. These studies have uncovered novel roles for the nervous system in controlling how and when cells activate their protein quality control mechanisms. Here we discuss the conceptual underpinnings, experimental evidence and the possible consequences of such a control mechanism. PRELUDE: Whether the detailed examination of parts of the nervous system and their selective perturbation is sufficient to reconstruct how the brain generates behavior, mental disease, music and religion remains an open question. Yet, Sydney Brenner's development of C. elegans as an experimental organism and his faith in the bold reductionist approach that 'the understanding of wild-type behavior comes best after the discovery and analysis of mutations that alter it', has led to discoveries of unexpected roles for neurons in the biology of organisms.
Collapse
Affiliation(s)
- Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
34
|
Das S, Ooi FK, Cruz Corchado J, Fuller LC, Weiner JA, Prahlad V. Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife 2020; 9:e55246. [PMID: 32324136 PMCID: PMC7237211 DOI: 10.7554/elife.55246] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Germ cells are vulnerable to stress. Therefore, how organisms protect their future progeny from damage in a fluctuating environment is a fundamental question in biology. We show that in Caenorhabditis elegans, serotonin released by maternal neurons during stress ensures the viability and stress resilience of future offspring. Serotonin acts through a signal transduction pathway conserved between C. elegans and mammalian cells to enable the transcription factor HSF1 to alter chromatin in soon-to-be fertilized germ cells by recruiting the histone chaperone FACT, displacing histones, and initiating protective gene expression. Without serotonin release by maternal neurons, FACT is not recruited by HSF1 in germ cells, transcription occurs but is delayed, and progeny of stressed C. elegans mothers fail to complete development. These studies uncover a novel mechanism by which stress sensing by neurons is coupled to transcription response times of germ cells to protect future offspring.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
| | | | | | - Joshua A Weiner
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain InitiativeIowa CityUnited States
- Department of BiologyIowa CityUnited States
- Iowa Neuroscience InstituteIowa CityUnited States
| |
Collapse
|
35
|
O'Brien D, Jones LM, Good S, Miles J, Vijayabaskar MS, Aston R, Smith CE, Westhead DR, van Oosten-Hawle P. A PQM-1-Mediated Response Triggers Transcellular Chaperone Signaling and Regulates Organismal Proteostasis. Cell Rep 2019; 23:3905-3919. [PMID: 29949773 PMCID: PMC6045774 DOI: 10.1016/j.celrep.2018.05.093] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/04/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
In metazoans, tissues experiencing proteotoxic stress induce "transcellular chaperone signaling" (TCS) that activates molecular chaperones, such as hsp-90, in distal tissues. How this form of inter-tissue communication is mediated to upregulate systemic chaperone expression and whether it can be utilized to protect against protein misfolding diseases remain open questions. Using C. elegans, we identified key components of a systemic stress signaling pathway that links the innate immune response with proteostasis maintenance. We show that mild perturbation of proteostasis in the neurons or the intestine activates TCS via the GATA zinc-finger transcription factor PQM-1. PQM-1 coordinates neuron-activated TCS via the innate immunity-associated transmembrane protein CLEC-41, whereas intestine-activated TCS depends on the aspartic protease ASP-12. Both TCS pathways can induce hsp-90 in muscle cells and facilitate amelioration of Aβ3-42-associated toxicity. This may have powerful implications for the treatment of diseases related to proteostasis dysfunction.
Collapse
Affiliation(s)
- Daniel O'Brien
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Laura M Jones
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Sarah Good
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Jo Miles
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - M S Vijayabaskar
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca Aston
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Catrin E Smith
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - David R Westhead
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Patricija van Oosten-Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
36
|
Sammi SR, Foguth RM, Nieves CS, De Perre C, Wipf P, McMurray CT, Lee LS, Cannon JR. Perfluorooctane Sulfonate (PFOS) Produces Dopaminergic Neuropathology in Caenorhabditis elegans. Toxicol Sci 2019; 172:417-434. [PMID: 31428778 PMCID: PMC6876260 DOI: 10.1093/toxsci/kfz191] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Perfluorooctane sulfonate (PFOS) has been widely utilized in numerous industries. Due to long environmental and biological half-lives, PFOS is a major public health concern. Although the literature suggests that PFOS may induce neurotoxicity, neurotoxic mechanisms, and neuropathology are poorly understood. Thus, the primary goal of this study was to determine if PFOS is selectively neurotoxic and potentially relevant to specific neurological diseases. Nematodes (Caenorhabditis elegans) were exposed to PFOS or related per- and polyfluoroalkyl substances (PFAS) for 72 h and tested for evidence of neuropathology through examination of cholinergic, dopaminergic, gamma-amino butyric acid (GABA)ergic, and serotoninergic neuronal morphologies. Dopaminergic and cholinergic functional analyses were assessed through 1-nonanol and Aldicarb assay. Mechanistic studies assessed total reactive oxygen species, superoxide ions, and mitochondrial content. Finally, therapeutic approaches were utilized to further examine pathogenic mechanisms. Dopaminergic neuropathology occurred at lower exposure levels (25 ppm, approximately 50 µM) than required to produce neuropathology in GABAergic, serotonergic, and cholinergic neurons (100 ppm, approximately 200 µM). Further, PFOS exposure led to dopamine-dependent functional deficits, without altering acetylcholine-dependent paralysis. Mitochondrial content was affected by PFOS at far lower exposure level than required to induce pathology (≥1 ppm, approximately 2 µM). Perfluorooctane sulfonate exposure also enhanced oxidative stress. Further, mutation in mitochondrial superoxide dismutase rendered animals more vulnerable. Neuroprotective approaches such as antioxidants, PFAS-protein dissociation, and targeted (mitochondrial) radical and electron scavenging were neuroprotective, suggesting specific mechanisms of action. In general, other tested PFAS were less neurotoxic. The primary impact is to prompt research into potential adverse outcomes related to PFAS-induced dopaminergic neurotoxicity in humans.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| | - Rachel M Foguth
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| | | | - Chloe De Perre
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Peter Wipf
- Departments of Chemistry, Pharmaceutical Sciences, and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Cynthia T McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Jason R Cannon
- School of Health Sciences
- Purdue Institute for Integrative Neurosciences
| |
Collapse
|
37
|
Kong Y, Liu H, Li W, Wang D. Intestine-specific activity of insulin signaling pathway in response to microgravity stress in Caenorhabditis elegans. Biochem Biophys Res Commun 2019; 517:278-284. [DOI: 10.1016/j.bbrc.2019.07.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 07/19/2019] [Indexed: 12/25/2022]
|
38
|
Pandey T, Sammi SR, Nooreen Z, Mishra A, Ahmad A, Bhatta RS, Pandey R. Anti-ageing and anti-Parkinsonian effects of natural flavonol, tambulin from Zanthoxyllum aramatum promotes longevity in Caenorhabditis elegans. Exp Gerontol 2019; 120:50-61. [DOI: 10.1016/j.exger.2019.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/12/2019] [Accepted: 02/25/2019] [Indexed: 12/01/2022]
|
39
|
Dietary Restriction Extends Lifespan through Metabolic Regulation of Innate Immunity. Cell Metab 2019; 29:1192-1205.e8. [PMID: 30905669 PMCID: PMC6506407 DOI: 10.1016/j.cmet.2019.02.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/13/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
Chronic inflammation predisposes to aging-associated disease, but it is unknown whether immunity regulation might be important for extending healthy lifespan. Here we show that in C. elegans, dietary restriction (DR) extends lifespan by modulating a conserved innate immunity pathway that is regulated by p38 signaling and the transcription factor ATF-7. Longevity from DR depends upon p38-ATF-7 immunity being intact but downregulated to a basal level. p38-ATF-7 immunity accelerates aging when hyperactive, influences lifespan independently of pathogen exposure, and is activated by nutrients independently of mTORC1, a major DR mediator. Longevity from reduced insulin/IGF-1 signaling (rIIS) also involves p38-ATF-7 downregulation, with signals from DAF-16/FOXO reducing food intake. We conclude that p38-ATF-7 is an immunometabolic pathway that senses bacterial and nutrient signals, that immunity modulation is critical for DR, and that DAF-16/FOXO couples appetite to growth regulation. These conserved mechanisms may influence aging in more complex organisms.
Collapse
|
40
|
Singh J, Aballay A. Microbial Colonization Activates an Immune Fight-and-Flight Response via Neuroendocrine Signaling. Dev Cell 2019; 49:89-99.e4. [PMID: 30827896 DOI: 10.1016/j.devcel.2019.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/26/2018] [Accepted: 01/31/2019] [Indexed: 01/01/2023]
Abstract
The ability to distinguish harmful and beneficial microbes is critical for the survival of an organism. Here, we show that bloating of the intestinal lumen of Caenorhabditis elegans caused by microbial colonization elicits a microbial aversion behavior. Bloating of the intestinal lumen also activates a broad innate immune response, even in the absence of bacterial pathogens or live bacteria. Neuroendocrine pathway genes are upregulated by intestinal bloating and are required for microbial aversion behavior. We propose that microbial colonization and bloating of the intestine may be perceived as a danger signal that activates an immune fight-and-flight response. These results reveal how inputs from the intestine can aid in the recognition of a broad range of microbes and modulate host behavior via neuroendocrine signaling.
Collapse
Affiliation(s)
- Jogender Singh
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
41
|
Fletcher M, Tillman EJ, Butty VL, Levine SS, Kim DH. Global transcriptional regulation of innate immunity by ATF-7 in C. elegans. PLoS Genet 2019; 15:e1007830. [PMID: 30789901 PMCID: PMC6400416 DOI: 10.1371/journal.pgen.1007830] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
The nematode Caenorhabditis elegans has emerged as a genetically tractable animal host in which to study evolutionarily conserved mechanisms of innate immune signaling. We previously showed that the PMK-1 p38 mitogen-activated protein kinase (MAPK) pathway regulates innate immunity of C. elegans through phosphorylation of the CREB/ATF bZIP transcription factor, ATF-7. Here, we have undertaken a genomic analysis of the transcriptional response of C. elegans to infection by Pseudomonas aeruginosa, combining genome-wide expression analysis by RNA-seq with ATF-7 chromatin immunoprecipitation followed by sequencing (ChIP-Seq). We observe that PMK-1-ATF-7 activity regulates a majority of all genes induced by pathogen infection, and observe ATF-7 occupancy in regulatory regions of pathogen-induced genes in a PMK-1-dependent manner. Moreover, functional analysis of a subset of these ATF-7-regulated pathogen-induced target genes supports a direct role for this transcriptional response in host defense. The genome-wide regulation through PMK-1- ATF-7 signaling reveals a striking level of control over the innate immune response to infection through a single transcriptional regulator.
Collapse
Affiliation(s)
- Marissa Fletcher
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Erik J. Tillman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stuart S. Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dennis H. Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
42
|
Sammi SR, Agim ZS, Cannon JR. From the Cover: Harmane-Induced Selective Dopaminergic Neurotoxicity in Caenorhabditis elegans. Toxicol Sci 2019; 161:335-348. [PMID: 29069497 DOI: 10.1093/toxsci/kfx223] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease. Although numerous exposures have been linked to PD etiology, causative factors for most cases remain largely unknown. Emerging data on the neurotoxicity of heterocyclic amines suggest that this class of compounds should be examined for relevance to PD. Here, using Caenorhabditis elegans as a model system, we tested whether harmane exposure produced selective toxicity to dopamine neurons that is potentially relevant to PD. Harmane is a known tremorigenic β-carboline (a type of heterocyclic amine) found in cooked meat, roasted coffee beans, and tobacco. Thus, this compound represents a potentially important exposure. In the nematode model, we observed dopaminergic neurons to be selectively vulnerable, showing significant loss in terms of structure and function at lower doses than other neuronal populations. In examining mechanisms of toxicity, we observed significant harmane-induced decreases in mitochondrial viability and increased reactive oxygen species levels. Blocking transport through the dopamine transporter (DAT) was not neuroprotective, suggesting that harmane is unlikely to enter the cell through DAT. However, a mitochondrial complex I activator did partially ameliorate neurodegeneration. Further, mitochondrial complex I activator treatment reduced harmane-induced dopamine depletion, measured by the 1-nonanol assay. In summary, we have shown that harmane exposure in C. elegans produces selective dopaminergic neurotoxicity that may bear relevance to PD, and that neurotoxicity may be mediated through mitochondrial mechanisms.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- School of Health Sciences.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907
| | - Zeynep Sena Agim
- School of Health Sciences.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907
| | - Jason R Cannon
- School of Health Sciences.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
43
|
Hernando-Rodríguez B, Artal-Sanz M. Mitochondrial Quality Control Mechanisms and the PHB (Prohibitin) Complex. Cells 2018; 7:cells7120238. [PMID: 30501123 PMCID: PMC6315423 DOI: 10.3390/cells7120238] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial functions are essential for life, critical for development, maintenance of stem cells, adaptation to physiological changes, responses to stress, and aging. The complexity of mitochondrial biogenesis requires coordinated nuclear and mitochondrial gene expression, owing to the need of stoichiometrically assemble the oxidative phosphorylation (OXPHOS) system for ATP production. It requires, in addition, the import of a large number of proteins from the cytosol to keep optimal mitochondrial function and metabolism. Moreover, mitochondria require lipid supply for membrane biogenesis, while it is itself essential for the synthesis of membrane lipids. To achieve mitochondrial homeostasis, multiple mechanisms of quality control have evolved to ensure that mitochondrial function meets cell, tissue, and organismal demands. Herein, we give an overview of mitochondrial mechanisms that are activated in response to stress, including mitochondrial dynamics, mitophagy and the mitochondrial unfolded protein response (UPRmt). We then discuss the role of these stress responses in aging, with particular focus on Caenorhabditis elegans. Finally, we review observations that point to the mitochondrial prohibitin (PHB) complex as a key player in mitochondrial homeostasis, being essential for mitochondrial biogenesis and degradation, and responding to mitochondrial stress. Understanding how mitochondria responds to stress and how such responses are regulated is pivotal to combat aging and disease.
Collapse
Affiliation(s)
- Blanca Hernando-Rodríguez
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41013 Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41013 Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
44
|
Lee SH, Omi S, Thakur N, Taffoni C, Belougne J, Engelmann I, Ewbank JJ, Pujol N. Modulatory upregulation of an insulin peptide gene by different pathogens in C. elegans. Virulence 2018; 9:648-658. [PMID: 29405821 PMCID: PMC5955453 DOI: 10.1080/21505594.2018.1433969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When an animal is infected, its innate immune response needs to be tightly regulated across tissues and coordinated with other aspects of organismal physiology. Previous studies with Caenorhabditis elegans have demonstrated that insulin-like peptide genes are differentially expressed in response to different pathogens. They represent prime candidates for conveying signals between tissues upon infection. Here, we focused on one such gene, ins-11 and its potential role in mediating cross-tissue regulation of innate immune genes. While diverse bacterial intestinal infections can trigger the up-regulation of ins-11 in the intestine, we show that epidermal infection with the fungus Drechmeria coniospora triggers an upregulation of ins-11 in the epidermis. Using the Shigella virulence factor OpsF, a MAP kinase inhibitor, we found that in both cases, ins-11 expression is controlled cell autonomously by p38 MAPK, but via distinct transcription factors, STA-2/STAT in the epidermis and HLH-30/TFEB in the intestine. We established that ins-11, and the insulin signaling pathway more generally, are not involved in the regulation of antimicrobial peptide gene expression in the epidermis. The up-regulation of ins-11 in the epidermis does, however, affect intestinal gene expression in a complex manner, and has a deleterious effect on longevity. These results support a model in which insulin signaling, via ins-11, contributes to the coordination of the organismal response to infection, influencing the allocation of resources in an infected animal.
Collapse
Affiliation(s)
- Song-Hua Lee
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Shizue Omi
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Nishant Thakur
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Clara Taffoni
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Jérôme Belougne
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Ilka Engelmann
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Jonathan J Ewbank
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| | - Nathalie Pujol
- a CIML , Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , INSERM CNRS UMR, Marseille , France
| |
Collapse
|
45
|
Lee K, Mylonakis E. An Intestine-Derived Neuropeptide Controls Avoidance Behavior in Caenorhabditis elegans. Cell Rep 2018; 20:2501-2512. [PMID: 28877481 DOI: 10.1016/j.celrep.2017.08.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Adjusting to a continuously changing environment is a key feature of life. For metazoans, environmental changes include alterations in the gut microbiota, which can affect both memory and behavior. The bacteriovorous nematode Caenorhabditis elegans discriminates between pathogenic and non-pathogenic food sources, avoiding the consumption of pathogens. Here, we demonstrate the role of the intestine in regulating C. elegans avoidance to Pseudomonas aeruginosa by an insulin-like neuropeptide encoded by ins-11. The transcriptional expression of ins-11 is controlled through transcription factor hlh-30 and the p38 mitogen-activated protein kinase (MAPK) pathway. ins-11 negatively controls signal pathways in neurons that regulate aversive learning behavior. Attenuation of ins-11 increased avoidance behavior and survival on pathogenic bacteria but decreased opportunities to find a food source as well as lowered energy storage and the number of viable progeny. Our findings support a role for the intestine in avoidance and identify an advantageous role for negative feedback that allows C. elegans to actively balance noxious and favorable environments.
Collapse
Affiliation(s)
- Kiho Lee
- Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Eleftherios Mylonakis
- Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA.
| |
Collapse
|
46
|
Abstract
Recent decades have seen a rapid increase in reported toxic effects of drugs and pollutants on mitochondria. Researchers have also documented many genetic differences leading to mitochondrial diseases, currently reported to affect ∼1 person in 4,300, creating a large number of potential gene-environment interactions in mitochondrial toxicity. We briefly review this history, and then highlight cutting-edge areas of mitochondrial research including the role of mitochondrial reactive oxygen species in signaling; increased understanding of fundamental biological processes involved in mitochondrial homeostasis (DNA maintenance and mutagenesis, mitochondrial stress response pathways, fusion and fission, autophagy and biogenesis, and exocytosis); systemic effects resulting from mitochondrial stresses in specific cell types; mitochondrial involvement in immune function; the growing evidence of long-term effects of mitochondrial toxicity; mitochondrial-epigenetic cross-talk; and newer approaches to test chemicals for mitochondrial toxicity. We also discuss the potential importance of hormetic effects of mitochondrial stressors. Finally, we comment on future areas of research we consider critical for mitochondrial toxicology, including increased integration of clinical, experimental laboratory, and epidemiological (human and wildlife) studies; improved understanding of biomarkers in the human population; and incorporation of other factors that affect mitochondria, such as diet, exercise, age, and nonchemical stressors.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina 27708-0328
| | - Jessica H Hartman
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina 27708-0328
| | - Danielle F Mello
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina 27708-0328
| |
Collapse
|
47
|
To be or not to be cell autonomous? Autophagy says both. Essays Biochem 2017; 61:649-661. [PMID: 29233875 DOI: 10.1042/ebc20170025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
Although cells are a part of the whole organism, classical dogma emphasizes that individual cells function autonomously. Many physiological and pathological conditions, including cancer, and metabolic and neurodegenerative diseases, have been considered mechanistically as cell-autonomous pathologies, meaning those that damage or defect within a selective population of affected cells suffice to produce disease. It is becoming clear, however, that cells and cellular processes cannot be considered in isolation. Best known for shuttling cytoplasmic content to the lysosome for degradation and repurposing of recycled building blocks such as amino acids, nucleotides, and fatty acids, autophagy serves a housekeeping function in every cell and plays key roles in cell development, immunity, tissue remodeling, and homeostasis with the surrounding environment and the distant organs. In this review, we underscore the importance of taking interactions with the microenvironment into consideration while addressing the cell autonomous and non-autonomous functions of autophagy between cells of the same and different types and in physiological and pathophysiological situations.
Collapse
|
48
|
Dysregulation of the Mitochondrial Unfolded Protein Response Induces Non-Apoptotic Dopaminergic Neurodegeneration in C. elegans Models of Parkinson's Disease. J Neurosci 2017; 37:11085-11100. [PMID: 29030433 DOI: 10.1523/jneurosci.1294-17.2017] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/16/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023] Open
Abstract
Due to environmental insult or innate genetic deficiency, protein folding environments of the mitochondrial matrix are prone to dysregulation, prompting the activation of a specific organellar stress-response mechanism, the mitochondrial unfolded protein response (UPRMT). In Caenorhabditis elegans, mitochondrial damage leads to nuclear translocation of the ATFS-1 transcription factor to activate the UPRMT After short-term acute stress has been mitigated, the UPRMT is eventually suppressed to restore homeostasis to C. elegans hermaphrodites. In contrast, and reflective of the more chronic nature of progressive neurodegenerative disorders such as Parkinson's disease (PD), here, we report the consequences of prolonged, cell-autonomous activation of the UPRMT in C. elegans dopaminergic neurons. We reveal that neuronal function and integrity decline rapidly with age, culminating in activity-dependent, non-apoptotic cell death. In a PD-like context wherein transgenic nematodes express the Lewy body constituent protein α-synuclein (αS), we not only find that this protein and its PD-associated disease variants have the capacity to induce the UPRMT, but also that coexpression of αS and ATFS-1-associated dysregulation of the UPRMT synergistically potentiate dopaminergic neurotoxicity. This genetic interaction is in parallel to mitophagic pathways dependent on the C. elegans PINK1 homolog, which is necessary for cellular resistance to chronic malfunction of the UPRMT Given the increasingly recognized role of mitochondrial quality control in neurodegenerative diseases, these studies illustrate, for the first time, an insidious aspect of mitochondrial signaling in which the UPRMT pathway, under disease-associated, context-specific dysregulation, exacerbates disruption of dopaminergic neurons in vivo, resulting in the neurodegeneration characteristic of PD.SIGNIFICANCE STATEMENT Disruptions or alterations in the activation of pathways that regulate mitochondrial quality control have been linked to neurodegenerative diseases due in part to the central role of mitochondria in metabolism, ROS regulation, and proteostasis. The extent to which these pathways, including the mitochondrial unfolded protein response (UPRMT) and mitophagy, are active may predict severity and progression of these disorders, as well as sensitivity to compounding stressors. Furthermore, therapeutic strategies that aim to induce these pathways may benefit from increased study into cellular responses that arise from long-term or ectopic stimulation, especially in neuronal compartments. By demonstrating the detrimental consequences of prolonged cellular activation of the UPRMT, we provide evidence that this pathway is not a universally beneficial mechanism because dysregulation has neurotoxic consequences.
Collapse
|
49
|
Wang J, Wang P, Gui S, Li Y, Chen R, Zeng R, Zhao P, Wu H, Huang Z, Wu J. Hydroxysafflor Yellow A Attenuates the Apoptosis of Peripheral Blood CD4 + T Lymphocytes in a Murine Model of Sepsis. Front Pharmacol 2017; 8:613. [PMID: 28932195 PMCID: PMC5592278 DOI: 10.3389/fphar.2017.00613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/23/2017] [Indexed: 01/12/2023] Open
Abstract
Sepsis is generally considered as a severe condition of inflammation that leads to lymphocyte apoptosis and multiple organ dysfunction. Hydroxysafflor yellow A (HSYA) exerts anti-inflammatory and anti-apoptotic effects in infectious diseases. However, the therapeutic effect of HSYA on polymicrobial sepsis remains unknown. This study was undertaken to investigate the therapeutic effects and the mechanisms of action of HSYA on immunosuppression in a murine model of sepsis induced by cecal ligation and puncture (CLP). NIH mice were randomly divided into four groups: control group, sham group, CLP group, and CLP+HSYA group. HSYA (120 mg/kg) was intravenously injected into experimental mice at 12 h before CLP, concurrent with CLP and 12 h after CLP. The levels of circulating inflammatory cytokines, the apoptosis of CD4+ and CD8+ T lymphocytes, and protein expression of cytochrome C (Cytc), Bax, Bcl-2, cleaved caspase-9, and cleaved caspase-3 were examined. Plasma levels of IL-6, IL-10 and TNF-alpha as well as the apoptosis of CD4+ T lymphocytes were increased compared with sham group. These changes were accompanied by increases of pro-apoptotic proteins including Cytc, Bax, cleaved caspase-9, and cleaved caspase-3 and decreases of anti-apoptotic protein Bcl-2 in CD4+ T lymphocytes from mice undergoing CLP. In contrast, we fail to observe significant effect of HSYA on the apoptosis of CD8+ T lymphocytes in CLP-treated group. Of note, HSYA treatment reversed all above changes observed in CD4+ T lymphocytes, and significantly increased the ratio of CD4+:CD8+ T lymphocytes in CLP-treated mice. In conclusion, HSYA was an effective therapeutic agent in ameliorating sepsis-induced apoptosis of CD4+ T lymphocytes probably through its anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Pharmacy, Shenzhen Second People's HospitalShenzhen, China
| | - Ping Wang
- Department of Pharmacology and Toxicology, Shenzhen Institute for Drug ControlShenzhen, China
| | - Shuiqing Gui
- Department of Intensive Care Unit, Shenzhen Second People's HospitalShenzhen, China
| | - Yun Li
- The Central Laboratory, Shenzhen Second People's HospitalShenzhen, China
| | - Runhua Chen
- Department of Pharmacology and Toxicology, Shenzhen Institute for Drug ControlShenzhen, China
| | - Renqing Zeng
- Department of Pharmacy, Shenzhen Second People's HospitalShenzhen, China
| | - Peiyan Zhao
- The Central Laboratory, Shenzhen Second People's HospitalShenzhen, China
| | - Hanwei Wu
- The Central Laboratory, Shenzhen Second People's HospitalShenzhen, China
| | - Zheyu Huang
- Department of Pharmacology and Toxicology, Shenzhen Institute for Drug ControlShenzhen, China
| | - Jianlong Wu
- Department of Pharmacy, Shenzhen Second People's HospitalShenzhen, China
| |
Collapse
|
50
|
Zheng H, Cao N, Yin Y, Feng W. Stroke recovery and rehabilitation in 2016: a year in review of basic science and clinical science. Stroke Vasc Neurol 2017; 2:222-229. [PMID: 29507783 PMCID: PMC5829939 DOI: 10.1136/svn-2017-000069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/28/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Cao
- Department of Physical Medicine and Rehabilitation, MosRehab, Elkins Park, Pennsylvania, USA
| | - Yu Yin
- Department of Rehabilitation Medicine, Hebei Provincial General Hospital, Shijiazhuang, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|