1
|
Jonsson WO, Margolies NS, Anthony TG. Dietary Sulfur Amino Acid Restriction and the Integrated Stress Response: Mechanistic Insights. Nutrients 2019; 11:nu11061349. [PMID: 31208042 PMCID: PMC6627990 DOI: 10.3390/nu11061349] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Dietary sulfur amino acid restriction, also referred to as methionine restriction, increases food intake and energy expenditure and alters body composition in rodents, resulting in improved metabolic health and a longer lifespan. Among the known nutrient-responsive signaling pathways, the evolutionary conserved integrated stress response (ISR) is a lesser-understood candidate in mediating the hormetic effects of dietary sulfur amino acid restriction (SAAR). A key feature of the ISR is the concept that a family of protein kinases phosphorylates eukaryotic initiation factor 2 (eIF2), dampening general protein synthesis to conserve cellular resources. This slowed translation simultaneously allows for preferential translation of genes with special sequence features in the 5' leader. Among this class of mRNAs is activating transcription factor 4 (ATF4), an orchestrator of transcriptional control during nutrient stress. Several ATF4 gene targets help execute key processes affected by SAAR such as lipid metabolism, the transsulfuration pathway, and antioxidant defenses. Exploration of the canonical ISR demonstrates that eIF2 phosphorylation is not necessary for ATF4-driven changes in the transcriptome during SAAR. Additional research is needed to clarify the regulation of ATF4 and its gene targets during SAAR.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Nicholas S Margolies
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
2
|
Patel S, Alvarez-Guaita A, Melvin A, Rimmington D, Dattilo A, Miedzybrodzka EL, Cimino I, Maurin AC, Roberts GP, Meek CL, Virtue S, Sparks LM, Parsons SA, Redman LM, Bray GA, Liou AP, Woods RM, Parry SA, Jeppesen PB, Kolnes AJ, Harding HP, Ron D, Vidal-Puig A, Reimann F, Gribble FM, Hulston CJ, Farooqi IS, Fafournoux P, Smith SR, Jensen J, Breen D, Wu Z, Zhang BB, Coll AP, Savage DB, O'Rahilly S. GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans. Cell Metab 2019; 29:707-718.e8. [PMID: 30639358 PMCID: PMC6408327 DOI: 10.1016/j.cmet.2018.12.016] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 01/07/2023]
Abstract
GDF15 is an established biomarker of cellular stress. The fact that it signals via a specific hindbrain receptor, GFRAL, and that mice lacking GDF15 manifest diet-induced obesity suggest that GDF15 may play a physiological role in energy balance. We performed experiments in humans, mice, and cells to determine if and how nutritional perturbations modify GDF15 expression. Circulating GDF15 levels manifest very modest changes in response to moderate caloric surpluses or deficits in mice or humans, differentiating it from classical intestinally derived satiety hormones and leptin. However, GDF15 levels do increase following sustained high-fat feeding or dietary amino acid imbalance in mice. We demonstrate that GDF15 expression is regulated by the integrated stress response and is induced in selected tissues in mice in these settings. Finally, we show that pharmacological GDF15 administration to mice can trigger conditioned taste aversion, suggesting that GDF15 may induce an aversive response to nutritional stress.
Collapse
Affiliation(s)
- Satish Patel
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anna Alvarez-Guaita
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Audrey Melvin
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Debra Rimmington
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alessia Dattilo
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Emily L Miedzybrodzka
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Irene Cimino
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anne-Catherine Maurin
- INRA, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Geoffrey P Roberts
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Claire L Meek
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Samuel Virtue
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Stephanie A Parsons
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | | | - George A Bray
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Alice P Liou
- Internal Medicine Research Unit, Pfizer Global R&D, 1 Portland Street, Cambridge, MA, USA
| | - Rachel M Woods
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Sion A Parry
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Anders J Kolnes
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Heather P Harding
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - David Ron
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Carl J Hulston
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Pierre Fafournoux
- INRA, Unité de Nutrition Humaine, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Jorgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Danna Breen
- Internal Medicine Research Unit, Pfizer Global R&D, 1 Portland Street, Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Global R&D, 1 Portland Street, Cambridge, MA, USA
| | - Bei B Zhang
- Internal Medicine Research Unit, Pfizer Global R&D, 1 Portland Street, Cambridge, MA, USA
| | - Anthony P Coll
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Stephen O'Rahilly
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
3
|
Yang Z, Huang R, Fu X, Wang G, Qi W, Mao D, Shi Z, Shen WL, Wang L. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res 2018; 28:1013-1025. [PMID: 30209352 PMCID: PMC6170445 DOI: 10.1038/s41422-018-0084-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/19/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022] Open
Abstract
Adequate protein intake is crucial for the survival and well-being of animals. How animals assess prospective protein sources and ensure dietary amino acid intake plays a critical role in protein homeostasis. By using a quantitative feeding assay, we show that three amino acids, L-glutamate (L-Glu), L-alanine (L-Ala) and L-aspartate (L-Asp), but not their D-enantiomers or the other 17 natural L-amino acids combined, rapidly promote food consumption in the fruit fly Drosophila melanogaster. This feeding-promoting effect of dietary amino acids is independent of mating experience and internal nutritional status. In vivo and ex vivo calcium imagings show that six brain neurons expressing diuretic hormone 44 (DH44) can be rapidly and directly activated by these amino acids, suggesting that these neurons are an amino acid sensor. Genetic inactivation of DH44+ neurons abolishes the increase in food consumption induced by dietary amino acids, whereas genetic activation of these neurons is sufficient to promote feeding, suggesting that DH44+ neurons mediate the effect of dietary amino acids to promote food consumption. Single-cell transcriptome analysis and immunostaining reveal that a putative amino acid transporter, CG13248, is enriched in DH44+ neurons. Knocking down CG13248 expression in DH44+ neurons blocks the increase in food consumption and eliminates calcium responses induced by dietary amino acids. Therefore, these data identify DH44+ neuron as a key sensor to detect amino acids and to enhance food intake via a putative transporter CG13248. These results shed critical light on the regulation of protein homeostasis at organismal levels by the nervous system.
Collapse
Affiliation(s)
- Zhe Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Rui Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing, 400030, China.,Medical School, Chongqing University, 400030, China
| | - Xin Fu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaohang Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Qi
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Decai Mao
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhaomei Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Liming Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
4
|
Corsetti G, Pasini E, Romano C, Calvani R, Picca A, Marzetti E, Flati V, Dioguardi FS. Body Weight Loss and Tissue Wasting in Late Middle-Aged Mice on Slightly Imbalanced Essential/Non-essential Amino Acids Diet. Front Med (Lausanne) 2018; 5:136. [PMID: 29868589 PMCID: PMC5966530 DOI: 10.3389/fmed.2018.00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Objective: Inadequate protein intake can impair protein balance thus leading to skeletal muscle atrophy, impaired body growth, and functional decline. Foods provide both non-essential (NEAAs) and essential amino acids (EAAs) that may convey different metabolic stimuli to specific organs and tissues. In this study, we sought to evaluate the impact of six diets, with various EAA/NEAA blends, on body composition and the risk of developing tissue wasting in late middle-aged male mice. Methods: Six groups of late middle-aged male mice were fed for 35 days with iso-nutrients, iso-caloric, and iso-nitrogenous special diets containing different EAA/NEAA ratios ranging from 100/0% to 0/100%. One group fed with standard laboratory rodent diet (StD) served as control. Preliminarily, we verified the palatability of the diets by recording the mice preference, and by making accessible all diets simultaneously, in comparison to StD. Body weight, food and water consumption were measured every 3 days. Blood and urine samples, as well as heart, kidneys, liver, spleen, triceps surae, retroperitoneal WAT, and BAT were harvested and weighed. Results: Mice consuming NEAA-based diets, although showing increased food and calorie intake, suffered the most severe weight loss. Interestingly, the diet containing a EAA/NEAA-imbalance, with moderate NEAAs prevalence, was able to induce catabolic stimuli, generalized body wasting, and systemic metabolic alterations comparable to those observed with diet containing NEAA alone. In addition, complete depletion of retroperitoneal white adipose tissue and a severe loss (>75%) of brown adipose tissue were observed together with muscle wasting. Conversely, EAA-containing diets induced significant decreases in body weight by reducing primarily fat reserves, but at the same time they improved the clinical parameters. On these basis we can deduce that tissue wasting was caused by altered AA quality, independent of reduced nitrogen or caloric intake. Conclusion: Our results indicate that diets containing an optimized balance of AA composition is necessary for preserving overall body energy status. These findings are particularly relevant in the context of aging and may be exploited for contrasting its negative correlates, including body wasting.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Evasio Pasini
- Cardiac Rehabilitation Division, IRCCS Istituti Clinici Scientifici Maugeri (ICS Maugeri), Lumezzane, Italy
| | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco S Dioguardi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
5
|
|
6
|
Wan X, Wang S, Xu J, Zhuang L, Xing K, Zhang M, Zhu X, Wang L, Gao P, Xi Q, Sun J, Zhang Y, Li T, Shu G, Jiang Q. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation. PLoS One 2017; 12:e0173174. [PMID: 28257428 PMCID: PMC5336265 DOI: 10.1371/journal.pone.0173174] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/16/2017] [Indexed: 02/07/2023] Open
Abstract
Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms “oxidative phosphorylation”, “ribosome”, “gap junction”, “PPAR signaling pathway”, and “focal adhesion” were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.
Collapse
Affiliation(s)
- Xiaojuan Wan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jingren Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Lu Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Kongping Xing
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Mengyuan Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Tiejun Li
- Key Laboratory of Subtropical Agro-ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, PR China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
7
|
Heeley N, Blouet C. Central Amino Acid Sensing in the Control of Feeding Behavior. Front Endocrinol (Lausanne) 2016; 7:148. [PMID: 27933033 PMCID: PMC5120084 DOI: 10.3389/fendo.2016.00148] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/03/2016] [Indexed: 11/13/2022] Open
Abstract
Dietary protein quantity and quality greatly impact metabolic health via evolutionary-conserved mechanisms that ensure avoidance of amino acid imbalanced food sources, promote hyperphagia when dietary protein density is low, and conversely produce satiety when dietary protein density is high. Growing evidence supports the emerging concept of protein homeostasis in mammals, where protein intake is maintained within a tight range independently of energy intake to reach a target protein intake. The behavioral and neuroendocrine mechanisms underlying these adaptations are unclear. While peripheral factors are able to signal amino acid deficiency and abundance to the brain, the brain itself is exposed to and can detect changes in amino acid concentrations, and subsequently engages acute and chronic responses modulating feeding behavior and food preferences. In this review, we will examine the literature describing the mechanisms by which the brain senses changes in amino acids concentrations, and how these changes modulate feeding behavior.
Collapse
Affiliation(s)
- Nicholas Heeley
- Medical Research Council Metabolic Disease Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Clemence Blouet
- Medical Research Council Metabolic Disease Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- *Correspondence: Clemence Blouet,
| |
Collapse
|