1
|
Barrera-Vázquez OS, Escobar-Ramírez JL, Magos-Guerrero GA. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers. J Xenobiot 2024; 14:1519-1540. [PMID: 39449424 PMCID: PMC11503387 DOI: 10.3390/jox14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial.
Collapse
Affiliation(s)
| | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (J.L.E.-R.)
| |
Collapse
|
2
|
Zheng Y, Chen J. Voltage-gated potassium channels and genetic epilepsy. Front Neurol 2024; 15:1466075. [PMID: 39434833 PMCID: PMC11492950 DOI: 10.3389/fneur.2024.1466075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in exome and targeted sequencing have significantly improved the aetiological diagnosis of epilepsy, revealing an increasing number of epilepsy-related pathogenic genes. As a result, the diagnosis and treatment of epilepsy have become more accessible and more traceable. Voltage-gated potassium channels (Kv) regulate electrical excitability in neuron systems. Mutate Kv channels have been implicated in epilepsy as demonstrated in case reports and researches using gene-knockout mouse models. Both gain and loss-of-function of Kv channels lead to epilepsy with similar phenotypes through different mechanisms, bringing new challenges to the diagnosis and treatment of epilepsy. Research on genetic epilepsy is progressing rapidly, with several drug candidates targeting mutated genes or channels emerging. This article provides a brief overview of the symptoms and pathogenesis of epilepsy associated with voltage-gated potassium ion channels dysfunction and highlights recent progress in treatments. Here, we reviewed case reports of gene mutations related to epilepsy in recent years and summarized the proportion of Kv genes. Our focus is on the progress in precise treatments for specific voltage-gated potassium channel genes linked to epilepsy, including KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNH1, and KCNH5.
Collapse
Affiliation(s)
| | - Jing Chen
- Department of Neurology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Parkins EV, Gross C. Small Differences and Big Changes: The Many Variables of MicroRNA Expression and Function in the Brain. J Neurosci 2024; 44:e0365242024. [PMID: 39111834 PMCID: PMC11308354 DOI: 10.1523/jneurosci.0365-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs are emerging as crucial regulators within the complex, dynamic environment of the synapse, and they offer a promising new avenue for the treatment of neurological disease. These small noncoding RNAs modify gene expression in several ways, including posttranscriptional modulation via binding to complementary and semicomplementary sites on target mRNAs. This rapid, finely tuned regulation of gene expression is essential to meet the dynamic demands of the synapse. Here, we provide a detailed review of the multifaceted world of synaptic microRNA regulation. We discuss the many mechanisms by which microRNAs regulate gene expression at the synapse, particularly in the context of neuronal plasticity. We also describe the various factors, such as age, sex, and neurological disease, that can influence microRNA expression and activity in neurons. In summary, microRNAs play a crucial role in the intricate and quickly changing functional requirements of the synapse, and context is essential in the study of microRNAs and their potential therapeutic applications.
Collapse
Affiliation(s)
- Emma V Parkins
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, Ohio 45229
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Christina Gross
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, Ohio 45229
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| |
Collapse
|
4
|
Jeelani M. miRNAs in epilepsy: A review from molecular signatures to therapeutic intervention. Int J Biol Macromol 2024; 263:130468. [PMID: 38417757 DOI: 10.1016/j.ijbiomac.2024.130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/17/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Epilepsy is a medical disorder marked by sporadic seizures accompanied by alterations in consciousness. The molecular mechanisms responsible for epilepsy and the factors contributing to alterations in neuronal structure compromised apoptotic responses in neurons, and disturbances in regeneration pathways in glial cells remain unidentified. MicroRNAs (miRNAs) are short noncoding RNA that consist of a single strand. They typically contain 21 to 23 nucleotides. miRNAs participate in the process of RNA silencing and the regulation of gene expression after transcription by selectively binding to mRNA molecules that possess complementary sequences. The disruption of miRNA regulation has been associated with the development of epilepsy, and manipulating a single miRNA can impact various cellular processes, hence serving as a potent intervention approach. Despite existing obstacles in the delivery and safety of miRNA-based treatments, researchers are actively investigating the potential of miRNAs to operate as regulators of brain activity and as targets for treating and preventing epilepsy. Hence, the utilization of miRNA-based therapeutic intervention shows potential for future epilepsy management. The objective of our present investigation was to ascertain the involvement of miRNAs in the causation and advancement of epilepsy. Moreover, they have undergone scrutiny for their potential utilization in therapeutic intervention.
Collapse
Affiliation(s)
- Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
5
|
Wong JC. MicroRNA 335-5p: The Sodium Channel Silencer. Epilepsy Curr 2024; 24:50-52. [PMID: 38327537 PMCID: PMC10846517 DOI: 10.1177/15357597231212373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
MicroRNA-335-5p Suppresses Voltage-Gated Sodium Channel Expression and May Be a Target For Seizure Control Heiland M, Connolly NMC, Mamad O, Nguyen NT, Kesavan JC, Langa E, Fanning K, Sanfeliu A, Yan Y, Su J, Veno MT, Costard LS, Neubert V, Engel T, Hill TDM, Freiman TM, Mahesh A, Tiwari VK, Rosenow F, Bauer S, Kjems J, Morris G, Henshall DC. Proc Natl Acad Sci USA . 2023;120(30):e2216658120. doi:10.1073/pnas.2216658120 . PMID: 37463203 ; PMCID: PMC10372546 There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target—miR 335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.
Collapse
|
6
|
Parkins EV, Brager DH, Rymer JK, Burwinkel JM, Rojas D, Tiwari D, Hu YC, Gross C. Mir324 knockout regulates the structure of dendritic spines and impairs hippocampal long-term potentiation. Sci Rep 2023; 13:21919. [PMID: 38082035 PMCID: PMC10713680 DOI: 10.1038/s41598-023-49134-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
MicroRNAs are an emerging class of synaptic regulators. These small noncoding RNAs post-transcriptionally regulate gene expression, thereby altering neuronal pathways and shaping cell-to-cell communication. Their ability to rapidly alter gene expression and target multiple pathways makes them interesting candidates in the study of synaptic plasticity. Here, we demonstrate that the proconvulsive microRNA miR-324-5p regulates excitatory synapse structure and function in the hippocampus of mice. Both Mir324 knockout (KO) and miR-324-5p antagomir treatment significantly reduce dendritic spine density in the hippocampal CA1 subregion, and Mir324 KO, but not miR-324-5p antagomir treatment, shift dendritic spine morphology, reducing the proportion of thin, "unstable" spines. Western blot and quantitative Real-Time PCR revealed changes in protein and mRNA levels for potassium channels, cytoskeletal components, and synaptic markers, including MAP2 and Kv4.2, which are important for long-term potentiation (LTP). In line with these findings, slice electrophysiology revealed that LTP is severely impaired in Mir324 KO mice, while neurotransmitter release probability remains unchanged. Overall, this study demonstrates that miR-324-5p regulates dendritic spine density, morphology, and plasticity in the hippocampus, potentially via multiple cytoskeletal and synaptic modulators.
Collapse
Affiliation(s)
- Emma V Parkins
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Darrin H Brager
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, USA
| | - Jeffrey K Rymer
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - John M Burwinkel
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Diego Rojas
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Durgesh Tiwari
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Yueh-Chiang Hu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Transgenic Animal and Genome Editing Core Facility, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Christina Gross
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, OH, 45229, USA.
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
7
|
McGann AM, Westerkamp GC, Chalasani A, Danzer CSK, Parkins EV, Rajathi V, Horn PS, Pedapati EV, Tiwari D, Danzer SC, Gross C. MiR-324-5p inhibition after intrahippocampal kainic acid-induced status epilepticus does not prevent epileptogenesis in mice. Front Neurol 2023; 14:1280606. [PMID: 38033777 PMCID: PMC10687438 DOI: 10.3389/fneur.2023.1280606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
Background Acquired epilepsies are caused by an initial brain insult that is followed by epileptogenesis and finally the development of spontaneous recurrent seizures. The mechanisms underlying epileptogenesis are not fully understood. MicroRNAs regulate mRNA translation and stability and are frequently implicated in epilepsy. For example, antagonism of a specific microRNA, miR-324-5p, before brain insult and in a model of chronic epilepsy decreases seizure susceptibility and frequency, respectively. Here, we tested whether antagonism of miR-324-5p during epileptogenesis inhibits the development of epilepsy. Methods We used the intrahippocampal kainic acid (IHpKa) model to initiate epileptogenesis in male wild type C57BL/6 J mice aged 6-8 weeks. Twenty-four hours after IHpKa, we administered a miR-324-5p or scrambled control antagomir intracerebroventricularly and implanted cortical surface electrodes for EEG monitoring. EEG data was collected for 28 days and analyzed for seizure frequency and duration, interictal spike activity, and EEG power. Brains were collected for histological analysis. Results Histological analysis of brain tissue showed that IHpKa caused characteristic hippocampal damage in most mice regardless of treatment. Antagomir treatment did not affect latency to, frequency, or duration of spontaneous recurrent seizures or interictal spike activity but did alter the temporal development of frequency band-specific EEG power. Conclusion These results suggest that miR-324-5p inhibition during epileptogenesis induced by status epilepticus does not convey anti-epileptogenic effects despite having subtle effects on EEG frequency bands. Our results highlight the importance of timing of intervention across epilepsy development and suggest that miR-324-5p may act primarily as a proconvulsant rather than a pro-epileptogenic regulator.
Collapse
Affiliation(s)
- Amanda M. McGann
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Grace C. Westerkamp
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alisha Chalasani
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Cole S. K. Danzer
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Emma V. Parkins
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Valerine Rajathi
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Paul S. Horn
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve C. Danzer
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Anesthesia, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Christina Gross
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Taylor SR, Kobayashi M, Vilella A, Tiwari D, Zolboot N, Du JX, Spencer KR, Hartzell A, Girgiss C, Abaci YT, Shao Y, De Sanctis C, Bellenchi GC, Darnell RB, Gross C, Zoli M, Berg DK, Lippi G. MicroRNA-218 instructs proper assembly of hippocampal networks. eLife 2023; 12:e82729. [PMID: 37862092 PMCID: PMC10637775 DOI: 10.7554/elife.82729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.
Collapse
Affiliation(s)
- Seth R Taylor
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Mariko Kobayashi
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences; Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio EmiliaModenaItaly
| | - Durgesh Tiwari
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Norjin Zolboot
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Jessica X Du
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Kathryn R Spencer
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Andrea Hartzell
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Carol Girgiss
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yusuf T Abaci
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yufeng Shao
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | | | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics A Buzzati-TraversoNaplesItaly
- IRCCS Fondazione Santa LuciaRomeItaly
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - Christina Gross
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences; Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio EmiliaModenaItaly
| | - Darwin K Berg
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Giordano Lippi
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
9
|
Parkins EV, Burwinkel JM, Ranatunga R, Yaser S, Hu YC, Tiwari D, Gross C. Age-Dependent Regulation of Dendritic Spine Density and Protein Expression in Mir324 KO Mice. J Mol Neurosci 2023; 73:818-830. [PMID: 37773316 PMCID: PMC10793736 DOI: 10.1007/s12031-023-02157-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
Dendritic spines are small, dynamic protrusions along the dendrite that comprise more than 90% of excitatory connections in the brain, making them essential sites for neuronal communication. These synaptic sites change throughout the process of development, reducing in density and shifting morphology as synapses are refined. One important class of dendritic spine regulators is microRNA (miRNA), small-noncoding RNAs that post-transcriptionally regulate gene expression. Several studies suggest that miRNA-324-5p regulates dendritic spine formation. In addition, we have previously shown that miR-324-5p plays a role in seizure and long-term potentiation, both of which involve dendritic spine changes. In this study, we aimed to characterize the role of miRNA-324-5p in developmental spine regulation by assessing the effect of Mir324 knockout (KO) on dendritic spine density and expression of a subset of dendritic proteins at select developmental time points. We show that miR-324-5p expression is developmentally regulated and peaks at 4 weeks of age. We demonstrate that loss of miR-324-5p expression leads to differential changes in both target protein expression and spine density at different time points during development, disrupting the pattern of spine density changes and leading to a premature loss of dendritic spines in KO mice, which is compensated later. Our findings indicate that miR-324-5p plays a role in synaptic refinement across development. Additionally, our data illustrate the importance of context in the study of miRNA, as regulation by and/or of miRNA can vary dramatically across development and in disease.
Collapse
Affiliation(s)
- Emma V Parkins
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - John M Burwinkel
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ruvi Ranatunga
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sarah Yaser
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, OH, 45229, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yueh-Chiang Hu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Transgenic Animal and Genome Editing Core Facility, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Christina Gross
- University of Cincinnati Neuroscience Graduate Program, Cincinnati, OH, 45229, USA.
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
10
|
Parkins EV, Burwinkel JM, Ranatunga R, Yaser S, Hu YC, Tiwari D, Gross C. Age-dependent regulation of dendritic spine density and protein expression in Mir324 KO mice. RESEARCH SQUARE 2023:rs.3.rs-3221779. [PMID: 37609225 PMCID: PMC10441466 DOI: 10.21203/rs.3.rs-3221779/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Dendritic spines are small, dynamic protrusions along the dendrite that comprise more than 90% of excitatory connections in the brain, making them essential sites for neuronal communication. These synaptic sites change throughout the process of development, reducing in density and shifting morphology as synapses are refined. One important class of dendritic spine regulators is microRNA (miRNA), small noncoding RNAs that post-transcriptionally regulate gene expression. Several studies suggest that miRNA-324-5p regulates dendritic spine formation. In addition, we have previously shown that miR-324-5p plays a role in seizure and long-term potentiation, both of which involve dendritic spine changes. In this study, we aimed to characterize the role of miRNA-324-5p in developmental spine regulation by assessing the effect of Mir324 knockout (KO) on dendritic spine density and expression of a subset of dendritic proteins at select developmental time points. We show that miR-324-5p expression is developmentally regulated and peaks at four weeks of age. We demonstrate that loss of miR-324-5p expression leads to differential changes in both target protein expression and spine density at different time points during development, disrupting the pattern of spine density changes and leading to a premature loss of dendritic spines in KO mice, which is compensated later. Our findings indicate that miR-324-5p plays a role in synaptic refinement across development. Additionally, our data illustrate the importance of context in the study of miRNA, as regulation by and/or of miRNA can vary dramatically across development and in disease.
Collapse
Affiliation(s)
| | | | | | - Sarah Yaser
- Cincinnati Children's Hospital Medical Center
| | | | | | | |
Collapse
|
11
|
Jean G, Carton J, Haq K, Musto AE. The role of dendritic spines in epileptogenesis. Front Cell Neurosci 2023; 17:1173694. [PMID: 37601280 PMCID: PMC10433379 DOI: 10.3389/fncel.2023.1173694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Epilepsy is a chronic central nervous system (CNS) disease associated with high morbidity. To date, there is no known disease-modifying therapy for epilepsy. A leading hypothesis for a mechanism of epileptogenesis is the generation of aberrant neuronal networks. Although the underlying biological mechanism is not clear, scientific evidence indicates that it is associated with a hyperexcitable synchronous neuronal network and active dendritic spine plasticity. Changes in dendritic spine morphology are related to altered expression of synaptic cytoskeletal proteins, inflammatory molecules, neurotrophic factors, and extracellular matrix signaling. However, it remains to be determined if these aberrant dendritic spine formations lead to neuronal hyperexcitability and abnormal synaptic connections or whether they constitute an underlying mechanism of seizure susceptibility. Focusing on dendritic spine machinery as a potential target for medications could limit or reverse the development of epilepsy.
Collapse
Affiliation(s)
- Gary Jean
- Medical Program, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Joseph Carton
- Medical Program, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kaleem Haq
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Alberto E. Musto
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
12
|
Heiland M, Connolly NMC, Mamad O, Nguyen NT, Kesavan JC, Langa E, Fanning K, Sanfeliu A, Yan Y, Su J, Venø MT, Costard LS, Neubert V, Engel T, Hill TDM, Freiman TM, Mahesh A, Tiwari VK, Rosenow F, Bauer S, Kjems J, Morris G, Henshall DC. MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control. Proc Natl Acad Sci U S A 2023; 120:e2216658120. [PMID: 37463203 PMCID: PMC10372546 DOI: 10.1073/pnas.2216658120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.
Collapse
Affiliation(s)
- Mona Heiland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| | - Niamh M. C. Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| | - Omar Mamad
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| | - Ngoc T. Nguyen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| | - Jaideep C. Kesavan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| | - Kevin Fanning
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| | - Albert Sanfeliu
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| | - Yan Yan
- Interdisciplinary Nanoscience Centre, Aarhus University, 8000Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000Aarhus C, Denmark
- Omiics, 8200Aarhus N, Denmark
| | - Junyi Su
- Interdisciplinary Nanoscience Centre, Aarhus University, 8000Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000Aarhus C, Denmark
| | - Morten T. Venø
- Interdisciplinary Nanoscience Centre, Aarhus University, 8000Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000Aarhus C, Denmark
- Omiics, 8200Aarhus N, Denmark
| | - Lara S. Costard
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg35043, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt, Frankfurt a.M.60528, Germany
- Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Center for Personalized Translational Epilepsy Research, Goethe-University Frankfurt, Frankfurt a.M.60528, Germany
| | - Valentin Neubert
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg35043, Germany
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| | - Thomas D. M. Hill
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| | - Thomas M. Freiman
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt, Frankfurt a.M.60528, Germany
- Department of Neurosurgery, University of Rostock, Rostock18057, Germany
| | - Arun Mahesh
- Institute of Molecular Medicine, University of Southern Denmark, 5000Odense, Denmark
| | - Vijay K. Tiwari
- Institute of Molecular Medicine, University of Southern Denmark, 5000Odense, Denmark
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queens University, BelfastBT9 7BL, United Kingdom
- Danish Institute for Advanced Study, University of Southern Denmark, 5230Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000Odense, Denmark
| | - Felix Rosenow
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg35043, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt, Frankfurt a.M.60528, Germany
- Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Center for Personalized Translational Epilepsy Research, Goethe-University Frankfurt, Frankfurt a.M.60528, Germany
| | - Sebastian Bauer
- Epilepsy Center, Department of Neurology, Philipps University Marburg, Marburg35043, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, University Hospital Frankfurt, Frankfurt a.M.60528, Germany
- Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Center for Personalized Translational Epilepsy Research, Goethe-University Frankfurt, Frankfurt a.M.60528, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Aarhus University, 8000Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000Aarhus C, Denmark
| | - Gareth Morris
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- Department of Neuroscience, Physiology and Pharmacology, University College London, LondonWC1E 6BT, United Kingdom
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
- FutureNeuro Science Foundation Ireland Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, DublinD02 YN77, Ireland
| |
Collapse
|
13
|
Sun X, Lv Y, Lin J. The mechanism of sudden unexpected death in epilepsy: A mini review. Front Neurol 2023; 14:1137182. [PMID: 36815002 PMCID: PMC9939452 DOI: 10.3389/fneur.2023.1137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is defined as a sudden, unexpected, non-traumatic, non-drowning death in a person with epilepsy. SUDEP is generally considered to result from seizure-related cardiac dysfunction, respiratory depression, autonomic nervous dysfunction, or brain dysfunction. Frequency of generalized tonic clonic seizures (GTCS), prone posture, and refractory epilepsy are considered risk factors. SUDEP has also been associated with inherited cardiac ion channel disease and severe obstructive sleep apnea. Most previous studies of SUDEP mechanisms have focused on cardiac and respiratory dysfunction and imbalance of the neural regulatory system. Cardiac-related mechanisms include reduction in heart rate variability and prolongation of QT interval, which can lead to arrhythmias. Laryngospasm and amygdala activation may cause obstructive and central apnea, respectively. Neural mechanisms include impairment of 5-HT and adenosine neuromodulation. The research to date regarding molecular mechanisms of SUDEP is relatively limited. Most studies have focused on p-glycoprotein, catecholamines, potassium channels, and the renin-angiotensin system, all of which affect cardiac and respiratory function.
Collapse
Affiliation(s)
- Xinyi Sun
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yehui Lv
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China,Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Yehui Lv ✉
| | - Jian Lin
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China,Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
14
|
Stage- and Subfield-Associated Hippocampal miRNA Expression Patterns after Pilocarpine-Induced Status Epilepticus. Biomedicines 2022; 10:biomedicines10123012. [PMID: 36551767 PMCID: PMC9775180 DOI: 10.3390/biomedicines10123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To investigate microRNA (miRNA) expression profiles before and after pilocarpine-induced status epilepticus (SE) in the cornu ammonis (CA) and dentated gyrus (DG) areas of the mouse hippocampus, and to predict the downstream proteins and related pathways based on bioinformatic analysis. METHODS An epileptic mouse model was established using a pilocarpine injection. Brain tissues from the CA and DG were collected separately for miRNA analysis. The miRNAs were extracted using a kit, and the expression profiles were generated using the SurePrint G3 Mouse miRNA microarray and validated. The intersecting genes of TargetScan and miRanda were selected to predict the target genes of each miRNA. For gene ontology (GO) studies, the parent-child-intersection (pci) method was used for enrichment analysis, and Benjamini-Hochberg was used for multiple test correction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to detect disease-related pathways among the large list of miRNA-targeted genes. All analyses mentioned above were performed at the time points of control, days 3, 14, and 60 post-SE. RESULTS Control versus days 3, 14, and 60 post-SE: in the CA area, a total of 131 miRNAs were differentially expressed; 53, 49, and 26 miRNAs were upregulated and 54, 10, and 22 were downregulated, respectively. In the DG area, a total of 171 miRNAs were differentially expressed; furthermore, 36, 32, and 28 miRNAs were upregulated and 78, 58, and 44 were downregulated, respectively. Of these, 92 changed in both the CA and DG, 39 only in the CA, and 79 only in the DG area. The differentially expressed miRNAs target 11-1630 genes. Most of these proteins have multiple functions in epileptogenesis. There were 15 common pathways related to altered miRNAs: nine different pathways in the CA and seven in the DG area. CONCLUSIONS Stage- and subfield-associated hippocampal miRNA expression patterns are closely related to epileptogenesis, although the detailed mechanisms need to be explored in the future.
Collapse
|
15
|
Therapeutic Implications of microRNAs in Depressive Disorders: A Review. Int J Mol Sci 2022; 23:ijms232113530. [PMID: 36362315 PMCID: PMC9658840 DOI: 10.3390/ijms232113530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs are hidden players in complex psychophysical phenomena such as depression and anxiety related disorders though the activation and deactivation of multiple proteins in signaling cascades. Depression is classified as a mood disorder and described as feelings of sadness, loss, or anger that interfere with a person’s everyday activities. In this review, we have focused on exploration of the significant role of miRNAs in depression by affecting associated target proteins (cellular and synaptic) and their signaling pathways which can be controlled by the attachment of miRNAs at transcriptional and translational levels. Moreover, miRNAs have potential role as biomarkers and may help to cure depression through involvement and interactions with multiple pharmacological and physiological therapies. Taken together, miRNAs might be considered as promising novel therapy targets themselves and may interfere with currently available antidepressant treatments.
Collapse
|
16
|
Gao K, Lin Z, Wen S, Jiang Y. Potassium channels and epilepsy. Acta Neurol Scand 2022; 146:699-707. [PMID: 36225112 DOI: 10.1111/ane.13695] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023]
Abstract
With the development and application of next-generation sequencing technology, the aetiological diagnosis of genetic epilepsy is rapidly becoming easier and less expensive. Additionally, there is a growing body of research into precision therapy based on genetic diagnosis. The numerous genes in the potassium ion channel family constitute the largest family of ion channels: this family is divided into different subtypes. Potassium ion channels play a crucial role in the electrical activity of neurons and are directly involved in the mechanism of epileptic seizures. In China, scientific research on genetic diagnosis and studies of precision therapy for genetic epilepsy are progressing rapidly. Many cases of epilepsy caused by mutation of potassium channel genes have been identified, and several potassium channel gene targets and drug candidates have been discovered. The purpose of this review is to briefly summarize the progress of research on the precise diagnosis and treatment of potassium ion channel-related genetic epilepsy, especially the research conducted in China. Here in, we review several large cohort studies on the genetic diagnosis of epilepsy in China in recent years, summarized the proportion of potassium channel genes. We focus on the progress of precison therapy on some hot epilepsy related potassium channel genes: KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNMA1, and KCNT1.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Zehong Lin
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Sijia Wen
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
17
|
Zhang W, Ye F, Xiong J, He F, Yang L, Yin F, Peng J, Wang X. Silencing of miR-132-3p protects against neuronal injury following status epilepticus by inhibiting IL-1β-induced reactive astrocyte (A1) polarization. FASEB J 2022; 36:e22554. [PMID: 36111973 DOI: 10.1096/fj.202200110rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is one of the most common refractory epilepsies and is usually accompanied by a range of brain pathological changes, such as neuronal injury and astrocytosis. Naïve astrocytes are readily converted to cytotoxic reactive astrocytes (A1) in response to inflammatory stimulation, suppressing the polarization of A1 protects against neuronal death in early central nervous system injury. Our previous study found that pro-inflammatory cytokines and miR-132-3p (hereinafter referred to as "miR-132") expression were upregulated, but how miR-132 affected reactive astrocyte polarization and neuronal damage during epilepsy is not fully understood. Here, we aimed to explore the effect and mechanism of miR-132 on A1 polarization. Our results confirmed that A1 markers were significantly elevated in the hippocampus of MTLE rats and IL-1β-treated primary astrocytes. In vivo, knockdown of miR-132 by lateral ventricular injection reduced A1 astrocytes, neuronal loss, mossy fiber sprouting, and remitted the severity of status epilepticus and the recurrence of spontaneous recurrent seizures. In vitro, the neuronal cell viability and axon length were reduced by additional treatment with A1 astrocyte conditioned media (ACM), and downregulation of astrocyte miR-132 rescued the inhibition of cell activity by A1 ACM, while the length of axons was further inhibited. The regulation of miR-132 on A1 astrocytes may be related to its target gene expression. Our results show that interfering with astrocyte polarization may be a breakthrough in the treatment of refractory epilepsy, which may extend to the research of other astrocyte polarization-mediated brain injuries.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| | - Xiaole Wang
- Department of Pediatrics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
| |
Collapse
|
18
|
Investigation of MicroRNA-134 as a Target against Seizures and SUDEP in a Mouse Model of Dravet Syndrome. eNeuro 2022; 9:ENEURO.0112-22.2022. [PMID: 36240080 PMCID: PMC9522462 DOI: 10.1523/eneuro.0112-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dravet syndrome (DS) is a catastrophic form of pediatric epilepsy mainly caused by noninherited mutations in the SCN1A gene. DS patients suffer severe and life-threatening focal and generalized seizures which are often refractory to available anti-seizure medication. Antisense oligonucleotides (ASOs) based approaches may offer treatment opportunities in DS. MicroRNAs are short noncoding RNAs that play a key role in brain structure and function by post-transcriptionally regulating gene expression, including ion channels. Inhibiting miRNA-134 (miR-134) using an antimiR ASO (Ant-134) has been shown to reduce evoked seizures in juvenile and adult mice and reduce epilepsy development in models of focal epilepsy. The present study investigated the levels of miR-134 and whether Ant-134 could protect against hyperthermia-induced seizures, spontaneous seizures and mortality (SUDEP) in F1.Scn1a(+/-)tm1kea mice. At P17, animals were intracerebroventricular injected with 0.1-1 nmol of Ant-134 and subject to a hyperthermia challenge at postnatal day (P)18. A second cohort of P21 F1.Scn1a(+/-)tm1kea mice received Ant-134 and were followed by video and EEG monitoring until P28 to track the incidence of spontaneous seizures and SUDEP. Hippocampal and cortical levels of miR-134 were similar between wild-type (WT) and F1.Scn1a(+/-)tm1kea mice. Moreover, Ant-134 had no effect on hyperthermia-induced seizures, spontaneous seizures and SUDEP incidence were unchanged in Ant-134-treated DS mice. These findings suggest that targeting miR-134 does not have therapeutic applications in DS.
Collapse
|
19
|
Kadkhoda S, Hussen BM, Eslami S, Ghafouri-Fard S. A review on the role of miRNA-324 in various diseases. Front Genet 2022; 13:950162. [PMID: 36035118 PMCID: PMC9399342 DOI: 10.3389/fgene.2022.950162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Recent studies have revealed important functions of several microRNAs (miRNAs) in the pathogenesis of human diseases. miR-324 is an example of miRNAs with crucial impacts on the pathogenesis of a wide range of disorders. Gene ontology studies have indicated possible role of miR-324 in responses of cells to the leukemia inhibitory factor, long-term synaptic potentiation, positive regulation of cytokines production and sensory perception of sound. In human, miR-324 is encoded by MIR324 gene which resides on chromosome 17p13.1. In the current manuscript, we provide a concise review of the role of miR-324 in the pathogenesis of cancers as well as non-cancerous conditions such as aneurysmal subarachnoid hemorrhage, diabetic nephropathy, epilepsy, pulmonary/renal fibrosis, ischemic stroke and ischemia reperfusion injuries. Moreover, we summarize the role of this miRNA as a prognostic marker for malignant disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
20
|
Ünalp A, Coskunpinar E, Gunduz K, Pekuz S, Baysal BT, Edizer S, Hayretdag C, Gudeloglu E. Detection of Deregulated miRNAs in Childhood Epileptic Encephalopathies. J Mol Neurosci 2022; 72:1234-1242. [PMID: 35461401 DOI: 10.1007/s12031-022-02001-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/15/2022] [Indexed: 01/07/2023]
Abstract
The term "epileptic encephalopathy" is used to describe a possible relationship between epilepsy and developmental delay. The pathogenesis of developmental encephalopathies, independent of epilepsy, can be defined by genetic control mechanisms. The aim of this study was to investigate the use of miRNAs as serum biomarkers for the determination and discrimination of epileptic encephalopathies. Whole blood samples obtained from 54 individuals in 2 groups designated as epileptic encephalopathy patients' group (n = 24) and healthy controls (n = 30) were included in this study. The expression levels of 10 miRNAs were determined using qRT-PCR. After the determination of expression levels, the correlation of upregulated miRNA levels and Ki67 index was calculated using Pearson correlation test. The comparison of epileptic encephalopathy patients' group with healthy controls revealed the upregulation of one miRNAs (hsa-miR-324-5p) and downregulation of three miRNAs (hsa-miR-146a-5p, hsa-miR-138-5p, hsa-miR-187-3p). It has been determined that miRNAs with altered expression are an important factor in the formation of epileptic seizures and seizure-induced neuronal death. The fact that processes that play a key role in epiloptogenesis are under the control of miRNAs causes miRNAs to become meta-controllers of gene expression in the brain. We thought that further studies are needed to prove that especially hsa-miR-146a-5p, hsa-miR-138-5p, and hsa-miR-187-3p can be used as epileptic encephalopathy biomarkers. The detection of disease-specific miRNAs could contribute to the development of precision treatments.
Collapse
Affiliation(s)
- Aycan Ünalp
- Department of Pediatric Neurology, Izmir Faculty of Medicine, University of Health Sciences, Izmir, Turkey.
| | - Ender Coskunpinar
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Kubra Gunduz
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Serdar Pekuz
- Department of Pediatric Neurology, University of Health Sciences, Dr. Behcet Uz Children's Training and Research Hospital, Izmir, Turkey
| | - Bahar Toklu Baysal
- Department of Pediatric Neurology, University of Health Sciences, Dr. Behcet Uz Children's Training and Research Hospital, Izmir, Turkey
| | - Selvinaz Edizer
- Department of Pediatric Neurology, University of Health Sciences, Dr. Behcet Uz Children's Training and Research Hospital, Izmir, Turkey
| | - Ceyda Hayretdag
- Department of Neurology, School of Medicine, Beykent University, Istanbul, Turkey
| | - Elif Gudeloglu
- Department of Pediatric Neurology, University of Health Sciences, Dr. Behcet Uz Children's Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
21
|
Vu TA, Lema I, Hani I, Cheval L, Atger-Lallier L, Souvannarath V, Perrot J, Souvanheuane M, Marie Y, Fabrega S, Blanchard A, Bouligand J, Kamenickỷ P, Crambert G, Martinerie L, Lombès M, Viengchareun S. miR-324-5p and miR-30c-2-3p Alter Renal Mineralocorticoid Receptor Signaling under Hypertonicity. Cells 2022; 11:cells11091377. [PMID: 35563683 PMCID: PMC9104010 DOI: 10.3390/cells11091377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
The Mineralocorticoid Receptor (MR) mediates the sodium-retaining action of aldosterone in the distal nephron, but mechanisms regulating MR expression are still poorly understood. We previously showed that RNA Binding Proteins (RBPs) regulate MR expression at the post-transcriptional level in response to variations of extracellular tonicity. Herein, we highlight a novel regulatory mechanism involving the recruitment of microRNAs (miRNAs) under hypertonicity. RT-qPCR validated miRNAs candidates identified by high throughput screening approaches and transfection of a luciferase reporter construct together with miRNAs Mimics or Inhibitors demonstrated their functional interaction with target transcripts. Overexpression strategies using Mimics or lentivirus revealed the impact on MR expression and signaling in renal KC3AC1 cells. miR-324-5p and miR-30c-2-3p expression are increased under hypertonicity in KC3AC1 cells. These miRNAs directly affect Nr3c2 (MR) transcript stability, act with Tis11b to destabilize MR transcript but also repress Elavl1 (HuR) transcript, which enhances MR expression and signaling. Overexpression of miR-324-5p and miR-30c-2-3p alter MR expression and signaling in KC3AC1 cells with blunted responses in terms of aldosterone-regulated genes expression. We also confirm that their expression is increased by hypertonicity in vivo in the kidneys of mice treated with furosemide. These findings may have major implications for the pathogenesis of renal dysfunctions, sodium retention, and mineralocorticoid resistance.
Collapse
Affiliation(s)
- Thi An Vu
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Ingrid Lema
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Imene Hani
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, 75006 Paris, France; (L.C.); (G.C.)
| | - Laura Atger-Lallier
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Vilayvane Souvannarath
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Julie Perrot
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Mélanie Souvanheuane
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Yannick Marie
- Plateforme de Genotypage Séquençage (iGenSeq), Institut du Cerveau et de la Moelle Epinière, Hôpital Sapêtrière, 75013 Paris, France;
| | - Sylvie Fabrega
- Plateforme Vecteurs Viraux et Transfert de Gènes, Structure Federative de Recherche Necker, UMS 24, UMS 3633, Faculté de Santé, Université Paris Cité, 75015 Paris, France;
| | - Anne Blanchard
- Inserm, Centre d’Investigations Cliniques 9201, 75015 Paris, France;
| | - Jérôme Bouligand
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, 94275 Le Kremlin-Bicêtre, France
| | - Peter Kamenickỷ
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Assistance Publique-Hopitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, 94275 Le Kremlin-Bicêtre, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Inserm, Sorbonne Université, Université Paris Cité, 75006 Paris, France; (L.C.); (G.C.)
| | - Laetitia Martinerie
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Assistance-Publique Hôpitaux de Paris, Hôpital Robert Debré, Service d’Endocrinologie Pédiatrique, Université Paris Cité, 75019 Paris, France
| | - Marc Lombès
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
| | - Say Viengchareun
- Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Inserm, 94276 Le Kremlin-Bicêtre, France; (T.A.V.); (I.L.); (I.H.); (L.A.-L.); (V.S.); (J.P.); (M.S.); (J.B.); (P.K.); (L.M.); (M.L.)
- Correspondence:
| |
Collapse
|
22
|
Wang GH, Chuang AY, Lai YC, Chen HI, Hsueh SW, Yang YC. Pre- and post-synaptic A-type K + channels regulate glutamatergic transmission and switch of the network into epileptiform oscillations. Br J Pharmacol 2022; 179:3754-3777. [PMID: 35170022 DOI: 10.1111/bph.15818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/28/2021] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Anticonvulsants targeting K+ channels have not been clinically available, although neuronal hyperexcitability in seizures could be suppressed by activation of K+ channels. Voltage-gated A-type K+ channel (A-channel) inhibitors may be prescribed for diseases of neuromuscular junction but could cause seizures. Consistently, genetic loss of function of A-channels may also cause seizures. It is unclear why inhibition of A-channels, if compared with the other types of K+ channels, is particularly prone to seizure induction. This hinders the development of relevant therapeutic interventions. EXPERIMENTAL APPROACH The epileptogenic mechanisms of A-channel inhibition and antiepileptic actions of A-channel activation were investigated in electrophysiological and behavioral seizures with pharmacological and optogenetic maneuvers. KEY RESULTS Presynaptic Kv1.4 and postsynaptic Kv4.3 A-channels act synergistically to gate glutamatergic transmission and control rhythmogenesis in the amygdala. The interconnected neurons set into the oscillatory mode by A-channel inhibition would reverberate with regular paces and the same top frequency, demonstrating a spatiotemporally well-orchestrated system with built-in oscillatory rhythms normally curbed by A-channels. Accordingly, selective over-excitation of glutamatergic neurons or inhibition of A-channels suffices to induce behavioral seizures, which are effectively ameliorated by A-channel activators such as NS-5806 or AMPA receptor antagonists such as perampanel. CONCLUSION AND IMPLICATIONS Transsynaptic voltage-dependent A-channels serve as a biophysical-biochemical transducer responsible for a novel form of synaptic plasticity. Such a network-level switch into and out of the oscillatory mode may underlie a wide-scope of telencephalic information processing, or to its extreme, epileptic seizures. A-channels thus constitute a potential target of antiepileptic therapy.
Collapse
Affiliation(s)
- Guan-Hsun Wang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Ai-Yu Chuang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Hsin-I Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Shu-Wei Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| |
Collapse
|
23
|
Posttranscriptional modulation of KCNQ2 gene expression by the miR-106b microRNA family. Proc Natl Acad Sci U S A 2021; 118:2110200118. [PMID: 34785595 DOI: 10.1073/pnas.2110200118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) have recently emerged as important regulators of ion channel expression. We show here that select miR-106b family members repress the expression of the KCNQ2 K+ channel protein by binding to the 3'-untranslated region of KCNQ2 messenger RNA. During the first few weeks after birth, the expression of miR-106b family members rapidly decreases, whereas KCNQ2 protein level inversely increases. Overexpression of miR-106b mimics resulted in a reduction in KCNQ2 protein levels. Conversely, KCNQ2 levels were up-regulated in neurons transfected with antisense miRNA inhibitors. By constructing more specific and stable forms of miR-106b controlling systems, we further confirmed that overexpression of precursor-miR-106b-5p led to a decrease in KCNQ current density and an increase in firing frequency of hippocampal neurons, while tough decoy miR-106b-5p dramatically increased current density and decreased neuronal excitability. These results unmask a regulatory mechanism of KCNQ2 channel expression in early postnatal development and hint at a role for miR-106b up-regulation in the pathophysiology of epilepsy.
Collapse
|
24
|
Wang GY, Luan ZL, Che NW, Yan DB, Sun XW, Zhang C, Yin J. Inhibition of microRNA-129-2-3p protects against refractory temporal lobe epilepsy by regulating GABRA1. Brain Behav 2021; 11:e02195. [PMID: 34029007 PMCID: PMC8323041 DOI: 10.1002/brb3.2195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Accumulating evidence demonstrates that certain microRNAs play critical roles in epileptogenesis. Our previous studies found microRNA (miR)-129-2-3p was induced in patients with refractory temporal lobe epilepsy (TLE). In this study, we aimed to explore the role of miR-129-2-3p in TLE pathogenesis. METHOD By bioinformatics, we predicted miR-129-2-3p may target the gene GABRA1 encoding the GABA type A receptor subunit alpha 1. Luciferase assay was used to investigate the regulation of miR-129-2-3p on GABRA1 3'UTR. The dynamic expression of miR-129-2-3p and GABRA1 mRNA and protein levels were measured in primary hippocampal neurons and a rat kainic acid (KA)-induced seizure model by quantitative reverse transcription-polymerase chain reaction (qPCR), Western blotting, and immunostaining. MiR-129-2-3p agomir and antagomir were utilized to explore their role in determining GABRA1 expression. The effects of targeting miR-129-2-3p and GABRA1 on epilepsy were assessed by electroencephalography (EEG) and immunostaining. RESULTS Luciferase assay, qPCR, and Western blot results suggested GABRA1 as a direct target of miR-129-2-3p. MiR-129-2-3p level was significantly upregulated, whereas GABRA1 expression downregulated in KA-treated rat primary hippocampal neurons and KA-induced seizure model. In vivo knockdown of miR-129-2-3p by antagomir alleviated the seizure-like EEG findings in accordance with the upregulation of GABRA1. Furthermore, the seizure-suppressing effect of the antagomir was partly GABRA1 dependent. CONCLUSIONS The results suggested GABRA1 as a target of miR-129-2-3p in rat primary hippocampal neurons and a rat kainic acid (KA) seizure model. Silencing of miR-129-2-3p exerted a seizure-suppressing effect in rats. MiR-129-2-3p/GABRA1 pathway may represent a potential target for the prevention and treatment of refractory epilepsy.
Collapse
Affiliation(s)
- Guan-Yu Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Ning-Wei Che
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - De-Bin Yan
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao-Wan Sun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Jian Yin
- Department of Neurosurgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China.,Epileptic Center of Liaoning, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Wulsin AC, Kraus KL, Gaitonde KD, Suru V, Arafa SR, Packard BA, Herman JP, Danzer SC. The glucocorticoid receptor specific modulator CORT108297 reduces brain pathology following status epilepticus. Exp Neurol 2021; 341:113703. [PMID: 33745919 PMCID: PMC8169587 DOI: 10.1016/j.expneurol.2021.113703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Glucocorticoid levels rise rapidly following status epilepticus and remain elevated for weeks after the injury. To determine whether glucocorticoid receptor activation contributes to the pathological sequelae of status epilepticus, mice were treated with a novel glucocorticoid receptor modulator, C108297. METHODS Mice were treated with either C108297 or vehicle for 10 days beginning one day after pilocarpine-induced status epilepticus. Baseline and stress-induced glucocorticoid secretion were assessed to determine whether hypothalamic-pituitary-adrenal axis hyperreactivity could be controlled. Status epilepticus-induced pathology was assessed by quantifying ectopic hippocampal granule cell density, microglial density, astrocyte density and mossy cell loss. Neuronal network function was examined indirectly by determining the density of Fos immunoreactive neurons following restraint stress. RESULTS Treatment with C108297 attenuated corticosterone hypersecretion after status epilepticus. Treatment also decreased the density of hilar ectopic granule cells and reduced microglial proliferation. Mossy cell loss, on the other hand, was not prevented in treated mice. C108297 altered the cellular distribution of Fos protein but did not restore the normal pattern of expression. INTERPRETATION Results demonstrate that baseline corticosterone levels can be normalized with C108297, and implicate glucocorticoid signaling in the development of structural changes following status epilepticus. These findings support the further development of glucocorticoid receptor modulators as novel therapeutics for the prevention of brain pathology following status epilepticus.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kimberly L Kraus
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kevin D Gaitonde
- University of Cincinnati, Medical Scientist Training Program, USA
| | - Venkat Suru
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Salwa R Arafa
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Benjamin A Packard
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - James P Herman
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - Steve C Danzer
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA.
| |
Collapse
|
26
|
Wang C, Guo X, Wang Y, Wang H. Silencing of miR-324-5p alleviates rat spinal cord injury by Sirt1. Neurosci Res 2021; 173:34-43. [PMID: 34051279 DOI: 10.1016/j.neures.2021.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/24/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are implicated in the pathogenesis of spinal cord injury (SCI) as primary regulators. Previous studies have reported that miR-324-5p is involved in the modulation of neural injury, while the underlying mechanisms of miR-324-5p in SCI remain unclear. In a SCI rat model, miR-324-5p was significantly upregulated in the spinal cord tissues after SCI. Downregulation of miR-324-5p via injection of adeno-associated viruses (AAV) expressing miR-324-5p inhibitor relieved animal motor deficits and pathological changes in the tissues. Furthermore, downregulation of miR-324-5p significantly altered the expression of genes regulating neural growth, apoptosis, and the inflammatory and antioxidant response, which are implicated in SCI pathogenesis. In a H2O2-induced cell injury model, miR-324-5p silencing rescued the elevated apoptosis of PC12 cells. Finally, miR-324-5p directly targeted the 3'-untranslated region of NAD-dependent protein deacetylase sirtuin-1 (Sirt1) and negatively regulated the levels of Sirt1, an anti-inflammatory protein involved in SCI. Silencing of Sirt1 aggravated SCI and rescued the effects of miR-324-5p downregulation in rats. Overall, our findings indicated that silencing of miR-324-5p alleviates the loss of animal locomotion and concurrently mediates several degenerative processes relevant to the pathogenesis of SCI by Sirt1, which may provide clues for SCI treatment.
Collapse
Affiliation(s)
- Chuanbao Wang
- Department of Orthopedics, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China.
| | - Xiuli Guo
- Department of Gerontology, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China
| | - Ying Wang
- Department of Neurology, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China
| | - Hai Wang
- Department of Orthopedics, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China
| |
Collapse
|
27
|
Hayman DJ, Modebadze T, Charlton S, Cheung K, Soul J, Lin H, Hao Y, Miles CG, Tsompani D, Jackson RM, Briggs MD, Piróg KA, Clark IM, Barter MJ, Clowry GJ, LeBeau FEN, Young DA. Increased hippocampal excitability in miR-324-null mice. Sci Rep 2021; 11:10452. [PMID: 34001919 PMCID: PMC8129095 DOI: 10.1038/s41598-021-89874-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs are non-coding RNAs that act to downregulate the expression of target genes by translational repression and degradation of messenger RNA molecules. Individual microRNAs have the ability to specifically target a wide array of gene transcripts, therefore allowing each microRNA to play key roles in multiple biological pathways. miR-324 is a microRNA predicted to target thousands of RNA transcripts and is expressed far more highly in the brain than in any other tissue, suggesting that it may play a role in one or multiple neurological pathways. Here we present data from the first global miR-324-null mice, in which increased excitability and interictal discharges were identified in vitro in the hippocampus. RNA sequencing was used to identify differentially expressed genes in miR-324-null mice which may contribute to this increased hippocampal excitability, and 3'UTR luciferase assays and western blotting revealed that two of these, Suox and Cd300lf, are novel direct targets of miR-324. Characterisation of microRNAs that produce an effect on neurological activity, such as miR-324, and identification of the pathways they regulate will allow a better understanding of the processes involved in normal neurological function and in turn may present novel pharmaceutical targets in treating neurological disease.
Collapse
Affiliation(s)
- Dan J Hayman
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Tamara Modebadze
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Sarah Charlton
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Kat Cheung
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jamie Soul
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Hua Lin
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Yao Hao
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Orthopedics Department, First Hospital of Shanxi Medical University, Yingze District, Taiyuan, 030000, China
| | - Colin G Miles
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Dimitra Tsompani
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Robert M Jackson
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Michael D Briggs
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katarzyna A Piróg
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Matt J Barter
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Fiona E N LeBeau
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - David A Young
- Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
28
|
Opportunities and challenges for microRNA-targeting therapeutics for epilepsy. Trends Pharmacol Sci 2021; 42:605-616. [PMID: 33992468 DOI: 10.1016/j.tips.2021.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Epilepsy is a common and serious neurological disorder characterised by recurrent spontaneous seizures. Frontline pharmacotherapy includes small-molecule antiseizure drugs that typically target ion channels and neurotransmitter systems, but these fail in 30% of patients and do not prevent either the development or progression of epilepsy. An emerging therapeutic target is microRNA (miRNA), small noncoding RNAs that negatively regulate sets of proteins. Their multitargeting action offers unique advantages for certain forms of epilepsy with complex underlying pathophysiology, such as temporal lobe epilepsy (TLE). miRNA can be inhibited by designed antisense oligonucleotides (ASOs; e.g., antimiRs). Here, we outline the prospects for miRNA-based therapies. We review design considerations for nucleic acid-based approaches and the challenges and next steps in developing therapeutic miRNA-targeting molecules for epilepsy.
Collapse
|
29
|
Reschke CR, Silva LFA, Vangoor VR, Rosso M, David B, Cavanagh BL, Connolly NMC, Brennan GP, Sanz-Rodriguez A, Mooney C, Batool A, Greene C, Brennan M, Conroy RM, Rüber T, Prehn JHM, Campbell M, Pasterkamp RJ, Henshall DC. Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy. Mol Ther 2021; 29:2041-2052. [PMID: 33609732 PMCID: PMC8178478 DOI: 10.1016/j.ymthe.2021.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/18/2020] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
Oligonucleotide therapies offer precision treatments for a variety of neurological diseases, including epilepsy, but their deployment is hampered by the blood-brain barrier (BBB). Previous studies showed that intracerebroventricular injection of an antisense oligonucleotide (antagomir) targeting microRNA-134 (Ant-134) reduced evoked and spontaneous seizures in animal models of epilepsy. In this study, we used assays of serum protein and tracer extravasation to determine that BBB disruption occurring after status epilepticus in mice was sufficient to permit passage of systemically injected Ant-134 into the brain parenchyma. Intraperitoneal and intravenous injection of Ant-134 reached the hippocampus and blocked seizure-induced upregulation of miR-134. A single intraperitoneal injection of Ant-134 at 2 h after status epilepticus in mice resulted in potent suppression of spontaneous recurrent seizures, reaching a 99.5% reduction during recordings at 3 months. The duration of spontaneous seizures, when they occurred, was also reduced in Ant-134-treated mice. In vivo knockdown of LIM kinase-1 (Limk-1) increased seizure frequency in Ant-134-treated mice, implicating de-repression of Limk-1 in the antagomir mechanism. These studies indicate that systemic delivery of Ant-134 reaches the brain and produces long-lasting seizure-suppressive effects after systemic injection in mice when timed with BBB disruption and may be a clinically viable approach for this and other disease-modifying microRNA therapies.
Collapse
Affiliation(s)
- Cristina R Reschke
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Luiz F A Silva
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Vamshidhar R Vangoor
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Massimo Rosso
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Niamh M C Connolly
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Gary P Brennan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Catherine Mooney
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; School of Computer Science, University College Dublin, Dublin 4, Ireland
| | - Aasia Batool
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Chris Greene
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Marian Brennan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Ronan M Conroy
- Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany; Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany; Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Matthew Campbell
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland.
| |
Collapse
|
30
|
Yu Y, Hou K, Ji T, Wang X, Liu Y, Zheng Y, Xu J, Hou Y, Chi G. The role of exosomal microRNAs in central nervous system diseases. Mol Cell Biochem 2021; 476:2111-2124. [PMID: 33528706 DOI: 10.1007/s11010-021-04053-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNA), endogenous non-coding RNAs approximately 22 nucleotides long, regulate gene expression by mediating translational inhibition or mRNA degradation. Exosomes are a tool for intercellular transmission of information in which miRNA exchange plays an important role. Under pathophysiological conditions in the central nervous system (CNS), cellular transmission of exosomal miRNAs can regulate signaling pathways. Exosomal miRNAs are involved in the occurrence and development of diverse CNS diseases, such as traumatic brain injury, spinal cord injury, stroke, neurodegenerative diseases, epilepsy, and glioma. The use of exosomes as transport vehicles for certain miRNAs provides a novel therapeutic strategy for CNS diseases. Furthermore, the exosomes in body fluids change with the occurrence of diseases, indicating that subtle changes in physiological and pathological processes in vivo could be recognized by analyzing exosomes. Exosomal analysis is expected to act as a novel tool for diagnosis and prediction of neurological diseases. In this review, we present the current understanding of the implications of miRNAs in CNS diseases and summarize the role and mechanism of action of exosomal miRNA in nervous system disease models.
Collapse
Affiliation(s)
- Yifei Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Tong Ji
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Xishu Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yining Liu
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Yi Hou
- Department of Regeneration Medicine, School of Pharmaceutical Science of Jilin University, Changchun, 130000, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
31
|
Tiwari D, Schaefer TL, Schroeder-Carter LM, Krzeski JC, Bunk AT, Parkins EV, Snider A, Danzer R, Williams MT, Vorhees CV, Danzer SC, Gross C. The potassium channel Kv4.2 regulates dendritic spine morphology, electroencephalographic characteristics and seizure susceptibility in mice. Exp Neurol 2020; 334:113437. [PMID: 32822706 PMCID: PMC7642025 DOI: 10.1016/j.expneurol.2020.113437] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/21/2023]
Abstract
The voltage-gated potassium channel Kv4.2 is a critical regulator of dendritic excitability in the hippocampus and is crucial for dendritic signal integration. Kv4.2 mRNA and protein expression as well as function are reduced in several genetic and pharmacologically induced rodent models of epilepsy and autism. It is not known, however, whether reduced Kv4.2 is just an epiphenomenon or a disease-contributing cause of neuronal hyperexcitability and behavioral impairments in these neurological disorders. To address this question, we used male and female mice heterozygous for a Kv.2 deletion and adult-onset manipulation of hippocampal Kv4.2 expression in male mice to assess the role of Kv4.2 in regulating neuronal network excitability, morphology and anxiety-related behaviors. We observed a reduction in dendritic spine density and reduced proportions of thin and stubby spines but no changes in anxiety, overall activity, or retention of conditioned freezing memory in Kv4.2 heterozygous mice compared with wildtype littermates. Using EEG analyses, we showed elevated theta power and increased spike frequency in Kv4.2 heterozygous mice under basal conditions. In addition, the latency to onset of kainic acid-induced seizures was significantly shortened in Kv4.2 heterozygous mice compared with wildtype littermates, which was accompanied by a significant increase in theta power. By contrast, overexpressing Kv4.2 in wildtype mice through intrahippocampal injection of Kv4.2-expressing lentivirus delayed seizure onset and reduced EEG power. These results suggest that Kv4.2 is an important regulator of neuronal network excitability and dendritic spine morphology, but not anxiety-related behaviors. In the future, manipulation of Kv4.2 expression could be used to alter seizure susceptibility in epilepsy.
Collapse
Affiliation(s)
- Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Tori L Schaefer
- Division of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Joseph C Krzeski
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexander T Bunk
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Emma V Parkins
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew Snider
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Reese Danzer
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael T Williams
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Charles V Vorhees
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Steve C Danzer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
32
|
Reichenstein I, Eitan C, Diaz-Garcia S, Haim G, Magen I, Siany A, Hoye ML, Rivkin N, Olender T, Toth B, Ravid R, Mandelbaum AD, Yanowski E, Liang J, Rymer JK, Levy R, Beck G, Ainbinder E, Farhan SMK, Lennox KA, Bode NM, Behlke MA, Möller T, Saxena S, Moreno CAM, Costaguta G, van Eijk KR, Phatnani H, Al-Chalabi A, Başak AN, van den Berg LH, Hardiman O, Landers JE, Mora JS, Morrison KE, Shaw PJ, Veldink JH, Pfaff SL, Yizhar O, Gross C, Brown RH, Ravits JM, Harms MB, Miller TM, Hornstein E. Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. Sci Transl Med 2020; 11:11/523/eaav5264. [PMID: 31852800 DOI: 10.1126/scitranslmed.aav5264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 07/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.
Collapse
Affiliation(s)
- Irit Reichenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.,Project MinE ALS Sequencing Consortium
| | | | - Guy Haim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Iddo Magen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aviad Siany
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mariah L Hoye
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natali Rivkin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beata Toth
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Revital Ravid
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amitai D Mandelbaum
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eran Yanowski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jing Liang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeffrey K Rymer
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rivka Levy
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Beck
- Stem Cell Core and Advanced Cell Technologies Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Ainbinder
- Stem Cell Core and Advanced Cell Technologies Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kimberly A Lennox
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Nicole M Bode
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Mark A Behlke
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Thomas Möller
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, University of Bern, Freiburgstrasse 16, CH-3010 Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Murtenstrasse 40, CH-3008 Bern, Switzerland
| | | | - Giancarlo Costaguta
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kristel R van Eijk
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease (CGND) and New York Genome Center (NYGC) ALS Consortium, New York, NY 10013, USA
| | - Ammar Al-Chalabi
- Project MinE ALS Sequencing Consortium.,Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, Department of Basic and Clinical Neuroscience, Department of Neurology, King's College London, London SE5 9RX, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - A Nazli Başak
- Project MinE ALS Sequencing Consortium.,Koç University Translational Medicine Research Center, NDAL, Istanbul 34010, Turkey
| | - Leonard H van den Berg
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Orla Hardiman
- Project MinE ALS Sequencing Consortium.,Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Republic of Ireland.,Department of Neurology, Beaumont Hospital, Dublin 2, Republic of Ireland
| | - John E Landers
- Project MinE ALS Sequencing Consortium.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jesus S Mora
- Project MinE ALS Sequencing Consortium.,ALS Unit, Hospital San Rafael, Madrid 28016, Spain
| | - Karen E Morrison
- Project MinE ALS Sequencing Consortium.,Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Pamela J Shaw
- Project MinE ALS Sequencing Consortium.,Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Jan H Veldink
- Project MinE ALS Sequencing Consortium.,Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John M Ravits
- Department of Neurosciences, UC San Diego, La Jolla, CA 92093, USA
| | - Matthew B Harms
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel. .,Project MinE ALS Sequencing Consortium
| |
Collapse
|
33
|
Venø MT, Reschke CR, Morris G, Connolly NMC, Su J, Yan Y, Engel T, Jimenez-Mateos EM, Harder LM, Pultz D, Haunsberger SJ, Pal A, Heller JP, Campbell A, Langa E, Brennan GP, Conboy K, Richardson A, Norwood BA, Costard LS, Neubert V, Del Gallo F, Salvetti B, Vangoor VR, Sanz-Rodriguez A, Muilu J, Fabene PF, Pasterkamp RJ, Prehn JHM, Schorge S, Andersen JS, Rosenow F, Bauer S, Kjems J, Henshall DC. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc Natl Acad Sci U S A 2020; 117:15977-15988. [PMID: 32581127 PMCID: PMC7355001 DOI: 10.1073/pnas.1919313117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-β signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-β signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.
Collapse
Affiliation(s)
- Morten T Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Cristina R Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gareth Morris
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Niamh M C Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Junyi Su
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yan Yan
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Lea M Harder
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Dennis Pultz
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Stefan J Haunsberger
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ajay Pal
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Janosch P Heller
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Aoife Campbell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Karen Conboy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Amy Richardson
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Braxton A Norwood
- Department of Neuroscience, Expesicor Inc, Kalispell, MT 59901
- Diagnostics Development, FYR Diagnostics, Missoula, MT 59801
| | - Lara S Costard
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Valentin Neubert
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, 18051, Germany
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - Beatrice Salvetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - Vamshidhar R Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Juha Muilu
- Research and Development, BC Platforms, FI-02130, Espoo, Finland
| | - Paolo F Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - R Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
- UCL School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Jens S Andersen
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Felix Rosenow
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Sebastian Bauer
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland;
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| |
Collapse
|
34
|
MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 2020; 16:506-519. [DOI: 10.1038/s41582-020-0369-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
|
35
|
miRNAs-dependent regulation of synapse formation and function. Genes Genomics 2020; 42:837-845. [DOI: 10.1007/s13258-020-00940-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
|
36
|
van Loo KMJ, Becker AJ. Transcriptional Regulation of Channelopathies in Genetic and Acquired Epilepsies. Front Cell Neurosci 2020; 13:587. [PMID: 31992970 PMCID: PMC6971179 DOI: 10.3389/fncel.2019.00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by recurrent uncontrolled seizures and has an idiopathic “genetic” etiology or a symptomatic “acquired” component. Genetic studies have revealed that many epilepsy susceptibility genes encode ion channels, including voltage-gated sodium, potassium and calcium channels. The high prevalence of ion channels in epilepsy pathogenesis led to the causative concept of “ion channelopathies,” which can be elicited by specific mutations in the coding or promoter regions of genes in genetic epilepsies. Intriguingly, expression changes of the same ion channel genes by augmentation of specific transcription factors (TFs) early after an insult can underlie acquired epilepsies. In this study, we review how the transcriptional regulation of ion channels in both genetic and acquired epilepsies can be controlled, and compare these epilepsy “ion channelopathies” with other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Karen M J van Loo
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
37
|
Epigenetics and noncoding RNA: Recent developments and future therapeutic opportunities. Eur J Paediatr Neurol 2020; 24:30-34. [PMID: 31235424 DOI: 10.1016/j.ejpn.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 01/10/2023]
Abstract
Acquired and genetic forms of epilepsy are associated with dysregulation of gene expression within the brain. Identifying mechanisms controlling gene expression may provide novel opportunities for the development of disease-modifying therapies. Epigenetic processes influence the medium-to long-term readability and accessibility of the genome to transcription. The mediators include biochemical modifications to DNA and the histones around which DNA is wrapped, as well as non-coding RNAs. Here, the main epigenetic processes are briefly reviewed. Examples are provided of altered epigenetic processes and mutations in genes with epigenetic functions in experimental models and human epilepsy. The outcome of recent studies manipulating epigenetics to protect the brain or reduce seizures in preclinical models is considered, with specific focus on RNA therapies. Last, future applications of epigenetics research are appraised, including opportunities to map and change epigenetic marks and the prospects for therapies based on manipulation of epigenetics and noncoding RNAs. In summary, epigenetics and noncoding RNAs are important mechanisms and targets to modulate brain excitability which together provides novel insight into patho-mechanisms, biomarkers and novel therapies for epilepsy.
Collapse
|
38
|
Su ZJ, Wang XY, Zhou C, Chai Z. Down-regulation of miR-3068-3p enhances kcnip4-regulated A-type potassium current to protect against glutamate-induced excitotoxicity. J Neurochem 2019; 153:617-630. [PMID: 31792968 DOI: 10.1111/jnc.14932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022]
Abstract
The main cause of excitotoxic neuronal death in ischemic stroke is the massive release of glutamate. Recently, microRNAs (miRNAs) have been found to play an essential role in stroke pathology, although the molecular mechanisms remain to be investigated. Here, to identify potential candidate miRNAs involved in excitotoxicity, we treated rat primary cortical neurons with glutamate and found that miR-3068-3p, a novel miRNA, was up-regulated. We hypothesized that restoring miR-3068-3p expression might influence the neuronal injury outcomes. The inhibition of miR-3068-3p, using tough decoy lentiviruses, significantly attenuated the effects of glutamate on neuronal viability and intracellular calcium overload. To unravel the mechanisms, we employed bioinformatics analysis and RNA sequencing to identify downstream target genes. Additional luciferase assays and western blots validated kcnip4, a Kv4-mediated A-type potassium current (IA ) regulator, as a direct target of miR-3068-3p. The inhibition of miR-3068-3p increased kcnip4 expression and vice versa. In addition, the knockdown of kcnip4 by shRNA abolished the protective effect of miR-3068-3p, and over-expressing kcnip4 alone was sufficient to play a neuroprotective role in excitotoxicity. Moreover the inhibition of miR-3068-3p enhanced the IA density, and the pharmacological inhibition of IA abrogated the protective role of miR-3068-3p inhibition and kcnip4 over-expression. Therefore, we conclude that inhibition of miR-3068-3p protects against excitotoxicity via its target gene, kcnip4, and kcnip4-regulated IA . Our data suggest that the miR-3068-3p/kcnip4 axis may serve as a novel target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zi-Jun Su
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xu-Yi Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Chen Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Zhen Chai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
39
|
CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain. Nat Commun 2019; 10:4119. [PMID: 31511520 PMCID: PMC6739334 DOI: 10.1038/s41467-019-12049-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs are non-coding RNAs, and are enriched in the CNS. Dorsal horn neurons of the spinal cord contribute to pain-like hypersensitivity after nerve injury in rodents. Here we show that spinal nerve ligation is associated with an increase in expression of circAnks1a in dorsal horn neurons, in both the cytoplasm and the nucleus. Downregulation of circAnks1a by siRNA attenuates pain-like behaviour induced by nerve injury. In the cytoplasm, we show that circAnks1a promotes the interaction between transcription factor YBX1 and transportin-1, thus facilitating the nucleus translocation of YBX1. In the nucleus, circAnks1a binds directly to the Vegfb promoter, increases YBX1 recruitment to the Vegfb promoter, thereby facilitating transcription. Furthermore, cytoplasmic circAnks1a acts as a miRNA sponge in miR-324-3p-mediated posttranscriptional regulation of VEGFB expression. The upregulation of VEGFB contributes to increased excitability of dorsal horn neurons and pain behaviour induced by nerve injury. We propose that circAnks1a and VEGFB are regulators of neuropathic pain. Circular RNAs are non-coding RNAs that are enriched in the CNS, but their role in chronic pain is not known. Here the authors show that CircAnks1a in dorsal horn neurons contributes to pain-like hypersensitivity in a rodent model of neuropathic pain, via a VEGF mechanism.
Collapse
|
40
|
Kearney H, Byrne S, Cavalleri GL, Delanty N. Tackling Epilepsy With High-definition Precision Medicine. JAMA Neurol 2019; 76:1109-1116. [DOI: 10.1001/jamaneurol.2019.2384] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hugh Kearney
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Susan Byrne
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland
| | - Gianpiero L. Cavalleri
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
41
|
Tabor GT, Park JM, Murphy JG, Hu JH, Hoffman DA. A novel bungarotoxin binding site-tagged construct reveals MAPK-dependent Kv4.2 trafficking. Mol Cell Neurosci 2019; 98:121-130. [PMID: 31212013 DOI: 10.1016/j.mcn.2019.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Kv4.2 voltage-gated K+ channel subunits, the primary source of the somatodendritic A-type K+ current in CA1 pyramidal neurons of the hippocampus, play important roles in regulating dendritic excitability and plasticity. To better study the trafficking and subcellular distribution of Kv4.2, we created and characterized a novel Kv4.2 construct encoding a bungarotoxin binding site in the extracellular S3-S4 linker region of the α-subunit. When expressed, this construct can be visualized in living cells after staining with rhodamine-conjugated bungarotoxin. We validated the utility of this construct by visualizing the spontaneous internalization and insertion of Kv4.2 in HEK 293T cells. We further report that Kv4.2 colocalized with several endosome markers in HEK 293T cells. In addition, Kv4.2 internalization is significantly impaired by mitogen-activated protein kinase (MAPK) inhibitors in transfected primary hippocampal neurons. Therefore, this newly developed BBS-Kv4.2 construct provides a novel and powerful tool for studying surface Kv4.2 channel localization and trafficking.
Collapse
Affiliation(s)
- G Travis Tabor
- Section on Molecular Neurophysiology & Biophysics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States of America
| | - Jung M Park
- Section on Molecular Neurophysiology & Biophysics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States of America
| | - Jonathan G Murphy
- Section on Molecular Neurophysiology & Biophysics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States of America; National Institute of General Medical Sciences, NIH, Bethesda, MD 20892, United States of America
| | - Jia-Hua Hu
- Section on Molecular Neurophysiology & Biophysics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States of America.
| | - Dax A Hoffman
- Section on Molecular Neurophysiology & Biophysics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States of America.
| |
Collapse
|
42
|
Tiwari D, Brager DH, Rymer JK, Bunk AT, White AR, Elsayed NA, Krzeski JC, Snider A, Schroeder Carter LM, Danzer SC, Gross C. MicroRNA inhibition upregulates hippocampal A-type potassium current and reduces seizure frequency in a mouse model of epilepsy. Neurobiol Dis 2019; 130:104508. [PMID: 31212067 DOI: 10.1016/j.nbd.2019.104508] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is often associated with altered expression or function of ion channels. One example of such a channelopathy is the reduction of A-type potassium currents in the hippocampal CA1 region. The underlying mechanisms of reduced A-type channel function in epilepsy are unclear. Here, we show that inhibiting a single microRNA, miR-324-5p, which targets the pore-forming A-type potassium channel subunit Kv4.2, selectively increased A-type potassium currents in hippocampal CA1 pyramidal neurons in mice. Resting membrane potential, input resistance and other potassium currents were not altered. In a mouse model of acquired chronic epilepsy, inhibition of miR-324-5p reduced the frequency of spontaneous seizures and interictal epileptiform spikes supporting the physiological relevance of miR-324-5p-mediated control of A-type currents in regulating neuronal excitability. Mechanistic analyses demonstrated that microRNA-induced silencing of Kv4.2 mRNA is increased in epileptic mice leading to reduced Kv4.2 protein levels, which is mitigated by miR-324-5p inhibition. By contrast, other targets of miR-324-5p were unchanged. These results suggest a selective miR-324-5p-dependent mechanism in epilepsy regulating potassium channel function, hyperexcitability and seizures.
Collapse
Affiliation(s)
- Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Darrin H Brager
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey K Rymer
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexander T Bunk
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Angela R White
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nada A Elsayed
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph C Krzeski
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew Snider
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesia, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
43
|
Antagonizing Increased miR-135a Levels at the Chronic Stage of Experimental TLE Reduces Spontaneous Recurrent Seizures. J Neurosci 2019; 39:5064-5079. [PMID: 31015341 DOI: 10.1523/jneurosci.3014-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/31/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a chronic neurological disease characterized by recurrent seizures. The antiepileptic drugs currently available to treat mTLE are ineffective in one-third of patients and lack disease-modifying effects. miRNAs, a class of small noncoding RNAs which control gene expression at the post-transcriptional level, play a key role in the pathogenesis of mTLE and other epilepsies. Although manipulation of miRNAs at acute stages has been reported to reduce subsequent spontaneous seizures, it is uncertain whether targeting miRNAs at chronic stages of mTLE can also reduce seizures. Furthermore, the functional role and downstream targets of most epilepsy-associated miRNAs remain poorly understood. Here, we show that miR-135a is selectively upregulated within neurons in epileptic brain and report that targeting miR-135a in vivo using antagomirs after onset of spontaneous recurrent seizures can reduce seizure activity at the chronic stage of experimental mTLE in male mice. Further, by using an unbiased approach combining immunoprecipitation and RNA sequencing, we identify several novel neuronal targets of miR-135a, including Mef2a Mef2 proteins are key regulators of excitatory synapse density. Mef2a and miR-135a show reciprocal expression regulation in human (of both sexes) and experimental TLE, and miR-135a regulates dendritic spine number and type through Mef2. Together, our data show that miR-135a is target for reducing seizure activity in chronic epilepsy, and that deregulation of miR-135a in epilepsy may alter Mef2a expression and thereby affect synaptic function and plasticity.SIGNIFICANCE STATEMENT miRNAs are post-transcriptional regulators of gene expression with roles in the pathogenesis of epilepsy. However, the precise mechanism of action and therapeutic potential of most epilepsy-associated miRNAs remain poorly understood. Our study reveals dramatic upregulation of the key neuronal miRNA miR-135a in both experimental and human mesial temporal lobe epilepsy. Silencing miR-135a in experimental temporal lobe epilepsy reduces seizure activity at the spontaneous recurrent seizure stage. These data support the exciting possibility that miRNAs can be targeted to combat seizures after spontaneous seizure activity has been established. Further, by using unbiased approaches novel neuronal targets of miR-135a, including members of the Mef2 protein family, are identified that begin to explain how deregulation of miR-135a may contribute to epilepsy.
Collapse
|
44
|
Calcium Channel Subunit α2δ4 Is Regulated by Early Growth Response 1 and Facilitates Epileptogenesis. J Neurosci 2019; 39:3175-3187. [PMID: 30792272 DOI: 10.1523/jneurosci.1731-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/03/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Transient brain insults, including status epilepticus (SE), can trigger a period of epileptogenesis during which functional and structural reorganization of neuronal networks occurs resulting in the onset of focal epileptic seizures. In recent years, mechanisms that regulate the dynamic transcription of individual genes during epileptogenesis and thereby contribute to the development of a hyperexcitable neuronal network have been elucidated. Our own results have shown early growth response 1 (Egr1) to transiently increase expression of the T-type voltage-dependent Ca2+ channel (VDCC) subunit CaV3.2, a key proepileptogenic protein. However, epileptogenesis involves complex and dynamic transcriptomic alterations; and so far, our understanding of the transcriptional control mechanism of gene regulatory networks that act in the same processes is limited. Here, we have analyzed whether Egr1 acts as a key transcriptional regulator for genes contributing to the development of hyperexcitability during epileptogenesis. We found Egr1 to drive the expression of the VDCC subunit α2δ4, which was augmented early and persistently after pilocarpine-induced SE. Furthermore, we show that increasing levels of α2δ4 in the CA1 region of the hippocampus elevate seizure susceptibility of mice by slightly decreasing local network activity. Interestingly, we also detected increased expression levels of Egr1 and α2δ4 in human hippocampal biopsies obtained from epilepsy surgery. In conclusion, Egr1 controls the abundance of the VDCC subunits CaV3.2 and α2δ4, which act synergistically in epileptogenesis, and thereby contributes to a seizure-induced "transcriptional Ca2+ channelopathy."SIGNIFICANCE STATEMENT The onset of focal recurrent seizures often occurs after an epileptogenic process induced by transient insults to the brain. Recently, transcriptional control mechanisms for individual genes involved in converting neurons hyperexcitable have been identified, including early growth response 1 (Egr1), which activates transcription of the T-type Ca2+ channel subunit CaV3.2. Here, we find Egr1 to regulate also the expression of the voltage-dependent Ca2+ channel subunit α2δ4, which was augmented after pilocarpine- and kainic acid-induced status epilepticus. In addition, we observed that α2δ4 affected spontaneous network activity and the susceptibility for seizure induction. Furthermore, we detected corresponding dynamics in human biopsies from epilepsy patients. In conclusion, Egr1 orchestrates a seizure-induced "transcriptional Ca2+ channelopathy" consisting of CaV3.2 and α2δ4, which act synergistically in epileptogenesis.
Collapse
|
45
|
Zampa F, Hartzell AL, Zolboot N, Lippi G. Non-coding RNAs: the gatekeepers of neural network activity. Curr Opin Neurobiol 2019; 57:54-61. [PMID: 30743177 DOI: 10.1016/j.conb.2019.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Non-coding RNAs have emerged as potent regulators of numerous cellular processes. In neurons and circuits, these molecules serve especially critical functions that ensure neural activity is maintained within appropriate physiological parameters. Their targets include synaptic proteins, ion channels, neurotransmitter receptors, and components of essential signaling cascades. Here, we discuss how several species of non-coding RNAs (ncRNAs) regulate intrinsic excitability and synaptic transmission, both during development and in mature circuits. Furthermore, we present the relationships between aberrant ncRNA expression and psychiatric disorders. The research presented here demonstrates how ncRNAs can be useful tools for elucidating fundamental neurobiology mechanisms and identifying the key molecular players.
Collapse
Affiliation(s)
- Federico Zampa
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrea L Hartzell
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Norjin Zolboot
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Giordano Lippi
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
46
|
Peraza DA, Cercós P, Miaja P, Merinero YG, Lagartera L, Socuéllamos PG, Izquierdo García C, Sánchez SA, López-Hurtado A, Martín-Martínez M, Olivos-Oré LA, Naranjo JR, Artalejo AR, Gutiérrez-Rodríguez M, Valenzuela C. Identification of IQM-266, a Novel DREAM Ligand That Modulates K V4 Currents. Front Mol Neurosci 2019; 12:11. [PMID: 30787866 PMCID: PMC6373780 DOI: 10.3389/fnmol.2019.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/14/2019] [Indexed: 01/30/2023] Open
Abstract
Downstream Regulatory Element Antagonist Modulator (DREAM)/KChIP3/calsenilin is a neuronal calcium sensor (NCS) with multiple functions, including the regulation of A-type outward potassium currents (I A). This effect is mediated by the interaction between DREAM and KV4 potassium channels and it has been shown that small molecules that bind to DREAM modify channel function. A-type outward potassium current (I A) is responsible of the fast repolarization of neuron action potentials and frequency of firing. Using surface plasmon resonance (SPR) assays and electrophysiological recordings of KV4.3/DREAM channels, we have identified IQM-266 as a DREAM ligand. IQM-266 inhibited the KV4.3/DREAM current in a concentration-, voltage-, and time-dependent-manner. By decreasing the peak current and slowing the inactivation kinetics, IQM-266 led to an increase in the transmembrane charge ( Q K V 4.3 / DREAM ) at a certain range of concentrations. The slowing of the recovery process and the increase of the inactivation from the closed-state inactivation degree are consistent with a preferential binding of IQM-266 to a pre-activated closed state of KV4.3/DREAM channels. Finally, in rat dorsal root ganglion neurons, IQM-266 inhibited the peak amplitude and slowed the inactivation of I A. Overall, the results presented here identify IQM-266 as a new chemical tool that might allow a better understanding of DREAM physiological role as well as modulation of neuronal I A in pathological processes.
Collapse
Affiliation(s)
- Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Cercós
- Instituto de Química Médica (IQM), IQM-CSIC, Madrid, Spain
| | - Pablo Miaja
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Yaiza G Merinero
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica & Departamento de Farmacología y Toxicología, Facultad de Veterinaria, UCM, Madrid, Spain
| | | | - Sara A Sánchez
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Alejandro López-Hurtado
- Centro Nacional de Biotecnología (CNB), CNB-CSIC, Madrid, Spain.,Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luis A Olivos-Oré
- Instituto Universitario de Investigación en Neuroquímica & Departamento de Farmacología y Toxicología, Facultad de Veterinaria, UCM, Madrid, Spain
| | - José R Naranjo
- Centro Nacional de Biotecnología (CNB), CNB-CSIC, Madrid, Spain.,Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio R Artalejo
- Instituto Universitario de Investigación en Neuroquímica & Departamento de Farmacología y Toxicología, Facultad de Veterinaria, UCM, Madrid, Spain
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
47
|
Inhibition of Hsp70 Suppresses Neuronal Hyperexcitability and Attenuates Epilepsy by Enhancing A-Type Potassium Current. Cell Rep 2019; 26:168-181.e4. [DOI: 10.1016/j.celrep.2018.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/06/2018] [Accepted: 12/06/2018] [Indexed: 01/03/2023] Open
|
48
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
49
|
Kumar A, Kumar A, Ingle H, Kumar S, Mishra R, Verma MK, Biswas D, Kumar NS, Mishra A, Raut AA, Takaoka A, Kumar H. MicroRNA hsa-miR-324-5p Suppresses H5N1 Virus Replication by Targeting the Viral PB1 and Host CUEDC2. J Virol 2018; 92:JVI.01057-18. [PMID: 30045983 PMCID: PMC6146810 DOI: 10.1128/jvi.01057-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/12/2018] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are crucial posttranscriptional regulators for host mRNAs. Recent studies indicate that miRNAs may modulate host response during RNA virus infection. However, the role of miRNAs in immune response against H5N1 infection is not clearly understood. In this study, we showed that expression of cellular miRNA miR-324-5p was downregulated in A549 cells in response to infection with RNA viruses H5N1, A/PR8/H1N1, and Newcastle disease virus (NDV) and transfection with poly(I·C). We found that miR-324-5p inhibited H5N1 replication by targeting the PB1 viral RNA of H5N1 in host cells. In addition, transcriptome analysis revealed that miR-324-5p enhanced the expression of type I interferon, type III interferon, and interferon-inducible genes (ISGs) by targeting CUEDC2, the negative regulator of the JAK1-STAT3 pathway. Together, these findings highlight that the miR-324-5p plays a crucial role in host defense against H5N1 by targeting viral PB1 and host CUEDC2 to inhibit H5N1 replication.IMPORTANCE Highly pathogenic influenza A virus (HPAIV) continues to pose a pandemic threat globally. From 2003 to 2017, H5N1 HPAIV caused 453 human deaths, giving it a high mortality rate (52.74%). This work shows that miR-324-5p suppresses H5N1 HPAIV replication by directly targeting the viral genome (thereby inhibiting viral gene expression) and cellular CUEDC2 gene, the negative regulator of the interferon pathway (thereby enhancing antiviral genes). Our study enhances the knowledge of the role of microRNAs in the cellular response to viral infection. Also, the study provides help in understanding how the host cells utilize small RNAs in controlling the viral burden.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India
| | - Akhilesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India
| | - Harshad Ingle
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India
| | - Sushil Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India
| | - Richa Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India
| | - Mahendra Kumar Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India
| | - Debasis Biswas
- Department of Microbiology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | | | - Anamika Mishra
- Pathogenomics Lab, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Ashwin Ashok Raut
- Pathogenomics Lab, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Himanshu Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, Madhya Pradesh, India
- Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
50
|
Cava C, Manna I, Gambardella A, Bertoli G, Castiglioni I. Potential Role of miRNAs as Theranostic Biomarkers of Epilepsy. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:275-290. [PMID: 30321815 PMCID: PMC6197620 DOI: 10.1016/j.omtn.2018.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Epilepsy includes a group of disorders of the brain characterized by an enduring predisposition to generate epileptic seizures. Although familial epilepsy has a genetic component and heritability, the etiology of the majority of non-familial epilepsies has no known associated genetic mutations. In epilepsy, recent epigenetic profiles have highlighted a possible role of microRNAs in its pathophysiology. In particular, molecular profiling identifies a significant number of microRNAs (miRNAs) altered in epileptic hippocampus of both animal models and human tissues. In this review, analyzing molecular profiles of different animal models of epilepsy, we identified a group of 20 miRNAs commonly altered in different epilepsy-animal models. As emerging evidences highlighted the poor overlap between signatures of animal model tissues and human samples, we focused our analysis on miRNAs, circulating in human biofluids, with a principal role in epilepsy hallmarks, and we identified a group of 8 diagnostic circulating miRNAs. We discussed the functional role of these 8 miRNAs in the epilepsy hallmarks. A few of them have also been proposed as therapeutic molecules for epilepsy treatment, revealing a great potential for miRNAs as theranostic molecules in epilepsy.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| | - Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia," Germaneto, 88100 Catanzaro, Italy.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|