1
|
Fye M, Sangowdar P, Jayathilake A, Regan P, Gu G, Kaverina I. Directed insulin secretion from beta cells occurs at cortical sites devoid of microtubules at the edges of ELKS/LL5β patches. Mol Biol Cell 2025; 36:ar68. [PMID: 40366873 DOI: 10.1091/mbc.e24-10-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
To maintain normal blood glucose levels, pancreatic beta cells secrete insulin into the bloodstream at specialized regions at the cell periphery, often called secretion hot spots. While many secretory machinery components are located all over the cell membrane, directed secretion relies on distinct cortical patches of the scaffolding protein ELKS and the microtubule (MT)-anchoring protein LL5β. However, using total internal reflection fluorescence microscopy of intact mouse islets to precisely localize secretion events within ELKS/LL5β patches, we now show that secretion is restricted to only 5% of ELKS/LL5β patch area. Moreover, the majority of secretion occurs at the margins of ELKS patches. This suggests that additional factor(s) must be responsible for hot spot definition. Because the MT cytoskeleton plays a regulatory role in the insulin secretion process via both delivery and removal of secretory granules from the secretion sites, we test whether local MT organization defines secretory activity at hot spots. We find that the majority of secretion events occur at regions devoid of MTs. Based on our findings, we present a model in which local MT disassembly and optimal ELKS content are strong predictors of directed insulin secretion.
Collapse
Affiliation(s)
- Margret Fye
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212
| | - Pranoy Sangowdar
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212
| | - Anissa Jayathilake
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212
| | - Pi'ilani Regan
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212
| | - Guoqiang Gu
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212
| | - Irina Kaverina
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37212
| |
Collapse
|
2
|
Mencacci NE, Minakaki G, Maroofian R, De Pace R, Paimboeuf A, Shannon P, Chitayat D, Magrinelli F, Peng WJ, Chatterjee D, Eldessouky SH, Baptista J, Marton T, Vogt J, Ortigoza-Escobar JD, Martorell L, Gómez-Chiari M, Wentzensen IM, Kamsteeg EJ, Zaki MS, Scardamaglia A, Zifarelli G, Al-Hassnan ZN, Miller E, Shinar S, Matsa LS, Appikonda SHC, Schwake M, Severino M, Houlden H, Patten SA, Bonifacino JS, Bhatia KP, Krainc D. Pathogenic variants in BORCS5 Cause a Spectrum of Neurodevelopmental and Neurodegenerative Disorders with Lysosomal Dysfunction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.30.25326597. [PMID: 40385417 PMCID: PMC12083638 DOI: 10.1101/2025.04.30.25326597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/26/2025]
Abstract
BORCS5 encodes a subunit of the BLOC-one-related complex (BORC), which is known to mediate the kinesin-dependent anterograde movement of lysosomes. Using whole-exome sequencing, we identified 12 cases from seven families carrying bi-allelic BORCS5 variants, including four loss-of-function and two missense variants. Carriers of homozygous loss-of-function variants presented with prenatally lethal arthrogryposis multiplex congenita, brain malformations, and neuropathological evidence of diffuse neuroaxonal dystrophy. Individuals with missense variants presented differently, with microcephaly, developmental epileptic encephalopathy, intellectual disability, optic atrophy, spasticity, and progressive movement disorders. In this group, brain MRI showed diffuse hypomyelination and progressive global cerebral atrophy, consistent with neurodegeneration. Borcs5 knockout in zebrafish exhibited microcephaly, motor deficits, and seizures, mirroring the patients' clinical presentation. At the cellular level, BORCS5 loss-of-function but not missense variants, resulted in lower protein expression and impaired BORC assembly, paralleled by perinuclear lysosomal clustering. However, both loss-of-function and missense BORCS5 variants were associated with reduced total lysosomal proteolysis, reduced activity of the lysosomal hydrolases glucocerebrosidase and cathepsin B, and presence of multilamellar bodies, indicating lysosomal dysfunction. Our study reveals a novel role for BORCS5 in the regulation of lysosomal function, in addition to its known role in the anterograde movement of lysosomes, possibly underlying the diverse clinical manifestations in individuals with BORCS5-related disorders.
Collapse
Affiliation(s)
- Niccolò E. Mencacci
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, 60611, Illinois, USA
- These authors contributed equally
| | - Georgia Minakaki
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, 60611, Illinois, USA
- These authors contributed equally
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Raffaella De Pace
- Division of Neuroscience and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Adeline Paimboeuf
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Wesley J. Peng
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, 60611, Illinois, USA
| | - Diptaman Chatterjee
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, 60611, Illinois, USA
| | - Sara H. Eldessouky
- Prenatal Diagnosis & Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Julia Baptista
- King’s College Hospital, Synnovis, Denmark Hill, London, SE5 9RS and Department of Medical & Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, UK
| | - Tamas Marton
- Cellular Pathology Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, B15 2TG, United Kingdom
- Department of Obstetrics and Gynecology, Semmelweis University, Baross u. 27, Budapest, 1088, Hungary
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, B15 2TG, United Kingdom
| | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca, Sant Joan de Déu Barcelona Children’s Hospital, Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
- U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Loreto Martorell
- Department of Genetic, Sant Joan de Déu Barcelona Children’s Hospital, Esplugues de Llobregat, Spain
| | - Marta Gómez-Chiari
- Diagnostic Imaging Department, Sant Joan de Déu Barcelona Children’s Hospital, Esplugues de Llobregat, Spain
- Institut de Recerca Sant Joan de Déu, Sant Joan de Déu Barcelona Children’s Hospital, Esplugues de Llobregat, Spain
| | | | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maha S. Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Annarita Scardamaglia
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Zuhair Nasser Al-Hassnan
- Department of Medical Genomics, Genomic Medicine Centre of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Elka Miller
- Department of Diagnostic and Interventional Radiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Shiri Shinar
- Ontario Fetal Center, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lova S. Matsa
- Genomic Precision Diagnostic Dept., Igenomix FZ LLC, Dubai, UAE
| | | | - Michael Schwake
- Biochemistry III, Department of Chemistry, University of Bielefeld, Bielefeld, Germany
| | | | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Shunmoogum A. Patten
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
- These authors contributed equally
| | - Juan S. Bonifacino
- Division of Neuroscience and Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- These authors contributed equally
| | - Dimitri Krainc
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, 60611, Illinois, USA
| |
Collapse
|
3
|
Wang M, Guo S, Yi L, Li Z, Shi X, Fan Y, Luo M, He Y, Song W, Du Y, Dong Z. KIF9 Ameliorates Neuropathology and Cognitive Dysfunction by Promoting Macroautophagy in a Mouse Model of Alzheimer's Disease. Aging Cell 2025; 24:e14490. [PMID: 39829171 PMCID: PMC12073912 DOI: 10.1111/acel.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the elderly. The imbalance of protein production and degradation processes leads to the accumulation of misfolded and abnormally aggregated amyloid-beta (Aβ) in the extracellular space and forms senile plaques, which constitute one of the most critical pathological hallmarks of AD. KIF9, a member of the kinesin protein superfamily, mediates the anterograde transport of intracellular cargo along microtubules. However, the exact role of KIF9 in AD pathogenesis remains largely elusive. In this study, we reported that the expression of kinesin family member 9 (KIF9) in the hippocampus of APP23/PS45 double-transgenic AD model mice declined in an age-dependent manner, concurrent with macroautophagy dysfunction. Furthermore, we found that KIF9 mediated the transport of lysosomes through kinesin light chain 1 (KLC1), thereby participating in the degradation of amyloidogenic pathway-related proteins of Aβ precursor protein (APP) in AD model cells through promoting the macroautophagy pathway. Importantly, genetic upregulation of KIF9 via adeno-associated virus (AAV) diminished Aβ deposition and alleviated cognitive impairments in AD model mice by enhancing macroautophagy function. Collectively, our findings underscore the ability of KIF9 to promote macroautophagy through KLC1-mediated anterograde transport of lysosomes, effectively ameliorating cognitive dysfunction in AD model mice. These discoveries suggest that KIF9 may represent a novel therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Maoju Wang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Song Guo
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lilin Yi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhaolun Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiuyu Shi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - YePeng Fan
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Man Luo
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yan He
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Weihong Song
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
- Townsend Family Laboratories, Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Kangning HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Neto MV, Hall MJ, Charneca J, Escrevente C, Seabra MC, Barral DC. Photoprotective Melanin Is Maintained within Keratinocytes in Storage Lysosomes. J Invest Dermatol 2025; 145:1155-1165.e3. [PMID: 39303907 DOI: 10.1016/j.jid.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
In the skin, melanin is synthesized by melanocytes within melanosomes and transferred to keratinocytes. After being phagocytosed by keratinocytes, melanin polarizes to supranuclear caps that protect against the genotoxic effects of UVR. We provide evidence that melanin-containing phagosomes undergo a canonical maturation process, with the sequential acquisition of early and late endosomal markers. Subsequently, these phagosomes fuse with active lysosomes, leading to the formation of a melanin-containing phagolysosome that we named melanokerasome. Melanokerasomes achieve juxtanuclear positioning through lysosomal trafficking regulators Rab7 and RILP. Mature melanokerasomes exhibit lysosomal markers, elude connections with the endo/phagocytic pathway, are weakly degradative, retain undigested cargo, and are likely tethered to the nuclear membrane. We propose that they represent a lysosomal-derived storage compartment that has exited the lysosome cycle, akin to the formation of lipofuscin in aged cells and dysfunctional lysosomes in lysosomal storage and age-related diseases. This storage lysosome allows melanin to persist for long periods, where it can exert its photoprotective effect efficiently.
Collapse
Affiliation(s)
- Matilde V Neto
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Michael J Hall
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - João Charneca
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Cristina Escrevente
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Shen Y, Maxson R, McKenney RJ, Ori-McKenney KM. Microtubule acetylation is a biomarker of cytoplasmic health during cellular senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646469. [PMID: 40236247 PMCID: PMC11996481 DOI: 10.1101/2025.03.31.646469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cellular senescence is marked by cytoskeletal dysfunction, yet the role of microtubule post-translational modifications (PTMs) remains unclear. We demonstrate that microtubule acetylation increases during drug-induced senescence in human cells and during natural aging in Drosophila . Elevating acetylation via HDAC6 inhibition or α TAT1 overexpression in BEAS-2B cells disrupts anterograde Rab6A vesicle transport, but spares retrograde transport of Rab5 endosomes. Hyperacetylation results in slowed microtubule polymerization and decreased cytoplasmic fluidity, impeding diffusion of micron-sized condensates. These effects are distinct from enhanced detyrosination, and correlate with altered viscoelasticity and resistance to osmotic stress. Modulating cytoplasmic viscosity reciprocally perturbs microtubule dynamics, revealing bidirectional mechanical regulation. Senescent cells phenocopy hyperacetylated cells, exhibiting analogous effects on transport and microtubule polymerization. Our findings establish acetylation as a biomarker for cytoplasmic health and a potential driver of age-related cytoplasmic densification and organelle transport decline, linking microtubule PTMs to biomechanical feedback loops that exacerbate senescence. This work highlights the role of acetylation in bridging cytoskeletal changes to broader aging hallmarks.
Collapse
|
6
|
Ebner M, Fröhlich F, Haucke V. Mechanisms and functions of lysosomal lipid homeostasis. Cell Chem Biol 2025; 32:392-407. [PMID: 40054455 DOI: 10.1016/j.chembiol.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 03/23/2025]
Abstract
Lysosomes are the central degradative organelle of mammalian cells and have emerged as major intersections of cellular metabolite flux. Macromolecules derived from dietary and intracellular sources are delivered to the acidic lysosomal lumen where they are subjected to degradation by acid hydrolases. Lipids derived from lipoproteins, autophagy cargo, or autophagosomal membranes themselves constitute major lysosomal substrates. Dysregulation of lysosomal lipid processing, defective export of lipid catabolites, and lysosomal membrane permeabilization underly diseases ranging from neurodegeneration to metabolic syndromes and lysosomal storage disorders. Mammalian cells are equipped with sophisticated homeostatic control mechanisms that protect the lysosomal limiting membrane from excessive damage, prevent the spillage of luminal hydrolases into the cytoplasm, and preserve the lysosomal membrane composition in the face of constant fusion with heterotypic organelles such as endosomes and autophagosomes. In this review we discuss the molecular mechanisms that govern lysosomal lipid homeostasis and, thereby, lysosome function in health and disease.
Collapse
Affiliation(s)
- Michael Ebner
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Florian Fröhlich
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Volker Haucke
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195 Berlin, Germany.
| |
Collapse
|
7
|
Simoes-da-Silva MM, Barisic M. How does the tubulin code facilitate directed cell migration? Biochem Soc Trans 2025; 53:BST20240841. [PMID: 39998313 DOI: 10.1042/bst20240841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Besides being a component of the cytoskeleton that provides structural integrity to the cell, microtubules also serve as tracks for intracellular transport. As the building units of the mitotic spindle, microtubules distribute chromosomes during cell division. By distributing organelles, vesicles, and proteins, they play a pivotal role in diverse cellular processes, including cell migration, during which they reorganize to facilitate cell polarization. Structurally, microtubules are built up of α/β-tubulin dimers, which consist of various tubulin isotypes that undergo multiple post-translational modifications (PTMs). These PTMs allow microtubules to differentiate into functional subsets, influencing the associated processes. This text explores the current understanding of the roles of tubulin PTMs in cell migration, particularly detyrosination and acetylation, and their implications in human diseases.
Collapse
Affiliation(s)
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Sébastien M, Paquette AL, Prowse ENP, Hendricks AG, Brouhard GJ. Doublecortin restricts neuronal branching by regulating tubulin polyglutamylation. Nat Commun 2025; 16:1749. [PMID: 39966472 PMCID: PMC11836384 DOI: 10.1038/s41467-025-56951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Doublecortin is a neuronal microtubule-associated protein that regulates microtubule structure in neurons. Mutations in Doublecortin cause lissencephaly and subcortical band heterotopia by impairing neuronal migration. We use CRISPR/Cas9 to knock-out the Doublecortin gene in induced pluripotent stem cells and differentiate the cells into cortical neurons. DCX-KO neurons show reduced velocities of nuclear movements and an increased number of neurites early in neuronal development, consistent with previous findings. Neurite branching is regulated by a host of microtubule-associated proteins, as well as by microtubule polymerization dynamics. However, EB comet dynamics are unchanged in DCX-KO neurons. Rather, we observe a significant reduction in α-tubulin polyglutamylation in DCX-KO neurons. Polyglutamylation levels and neuronal branching are rescued by expression of Doublecortin or of TTLL11, an α-tubulin glutamylase. Using U2OS cells as an orthogonal model system, we show that DCX and TTLL11 act synergistically to promote polyglutamylation. We propose that Doublecortin acts as a positive regulator of α-tubulin polyglutamylation and restricts neurite branching. Our results indicate an unexpected role for Doublecortin in the homeostasis of the tubulin code.
Collapse
Affiliation(s)
- Muriel Sébastien
- Department of Biology, McGill University, Montréal, QC, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | | | - Emily N P Prowse
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Gary J Brouhard
- Department of Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
9
|
Ge X, Ren J, Gu K, Gong W, Shen K, Feng W. The structure and assembly of the hetero-octameric BLOC-one-related complex. Structure 2025; 33:234-246.e6. [PMID: 39740668 DOI: 10.1016/j.str.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
BORC (BLOC-one-related complex) is a hetero-octameric complex, consisting of eight coiled-coil proteins (BORCS1-8). BORC controls lysosomal and synaptic vesicle transport and positioning by recruiting ARL8. The structural mechanisms underlying BORC assembly and ARL8 activation remain unclear. Here, we reconstitute and construct the structural model of this hetero-octameric complex. We find that BORC adopts an extended, rod-like structure made of coiled coils. Two hemicomplexes, each containing four subunits, are joined end-to-end to form the holocomplex. Within each hemicomplex, BORCS1/4/6/8 or BORCS2/3/5/7 assembles into similar helical bundles. We further study how BORC is built and discover a hierarchical assembly process in which BORCS1/2/3/5 forms the core scaffold and recruits other subunits. Mutations in the inter-hemicomplex interfaces result in two hemicomplexes. The association of ARL8 may require the proper assembly of BORC and is primarily mediated by BORCS5. These results provide guidance for further understanding of the biology of BORC.
Collapse
Affiliation(s)
- Xuan Ge
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinqi Ren
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Kewei Gu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Gong
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Wei Feng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Andreu‐Carbó M, Egoldt C, Aumeier C. Microtubule shaft integrity emerges as a crucial determinant of the acetylation pattern. Cytoskeleton (Hoboken) 2025; 82:55-57. [PMID: 38923402 PMCID: PMC11748361 DOI: 10.1002/cm.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Mireia Andreu‐Carbó
- School of Pharmaceutical SciencesUniversity of GenevaGenevaSwitzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaGenevaSwitzerland
- Department of Cell Physiology and Metabolism, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Cornelia Egoldt
- Department of BiochemistryUniversity of GenevaGenevaSwitzerland
| | | |
Collapse
|
11
|
Li CH, Kersten N, Özkan N, Nguyen DTM, Koppers M, Post H, Altelaar M, Farias GG. Spatiotemporal proteomics reveals the biosynthetic lysosomal membrane protein interactome in neurons. Nat Commun 2024; 15:10829. [PMID: 40016183 PMCID: PMC11868546 DOI: 10.1038/s41467-024-55052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/26/2024] [Indexed: 03/01/2025] Open
Abstract
Lysosomes are membrane-bound organelles critical for maintaining cellular homeostasis. Delivery of biosynthetic lysosomal proteins to lysosomes is crucial to orchestrate proper lysosomal function. However, it remains unknown how the delivery of biosynthetic lysosomal proteins to lysosomes is ensured in neurons, which are highly polarized cells. Here, we developed Protein Origin, Trafficking And Targeting to Organelle Mapping (POTATOMap), by combining trafficking synchronization and proximity-labelling based proteomics, to unravel the trafficking routes and interactome of the biosynthetic lysosomal membrane protein LAMP1 at specified time points. This approach, combined with advanced microscopy, enables us to identify the neuronal domain-specific trafficking machineries of biosynthetic LAMP1. We reveal a role in replenishing axonal lysosomes, in delivery of newly synthesized axonal synaptic proteins, and interactions with RNA granules to facilitate hitchhiking in the axon. POTATOMap offers a robust approach to map out dynamic biosynthetic protein trafficking and interactome from their origin to destination.
Collapse
Affiliation(s)
- Chun Hei Li
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Noortje Kersten
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Nazmiye Özkan
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Dan T M Nguyen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Max Koppers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands
- Center for Neurogenomics and Cognitive Research, Department Functional Genomics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ginny G Farias
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, 3584 CH, The Netherlands.
| |
Collapse
|
12
|
Nam HY, Park SH, Lee GH, Kim EY, Lee S, Chang HW, Chang EJ, Choi KC, Kim SW. TIGAR coordinates senescence-associated secretory phenotype via lysosome repositioning and α-tubulin deacetylation. Exp Mol Med 2024; 56:2726-2738. [PMID: 39633033 DOI: 10.1038/s12276-024-01362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) regulates redox homeostasis and provides the intermediates necessary for cell growth by reducing the glycolytic rate. During cellular senescence, cells undergo metabolic rewiring towards the glycolytic pathway, along with the development of the senescence-associated secretory phenotype (SASP), also known as the secretome. We observed that TIGAR expression increased during replicative senescence following the in vitro expansion of human mesenchymal stromal cells (MSCs) and that TIGAR knockout (KO) decreased SASP factors and triggered premature senescence with decelerated progression. Additionally, TIGAR KO impaired flexible lysosomal movement to the perinuclear region and decreased the autophagic flux of MSCs. Research on the mechanism of lysosomal movement revealed that, while native senescent MSCs presented low levels of Ac-α-tubulin (lysine 40) and increased sirtuin 2 (SIRT2) activity compared with those in growing cells, TIGAR KO-MSCs maintained Ac-α-tubulin levels and exhibited decreased SIRT2 activity despite being in a senescent state. The overexpression of SIRT2 reduced Ac-α-tubulin as a protein target of SIRT2 and induced the positioning of lysosomes at the perinuclear region, restoring the cytokine secretion of TIGAR KO-MSCs. Furthermore, TIGAR expression was positively correlated with SIRT2 activity, indicating that TIGAR affects SIRT2 activity partly by modulating the NAD+ level. Thus, our study demonstrated that TIGAR provides a foundation that translates the regulation of energy metabolism into lysosome positioning, affecting the secretome for senescence development. Considering the functional value of the cell-secretome in aging-related diseases, these findings suggest the feasibility of TIGAR for the regulation of secretory phenotypes.
Collapse
Affiliation(s)
- Hae Yun Nam
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| | - Seung-Ho Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Geun-Hee Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Young Kim
- Department Hematology and Medical Oncology, Whinship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - SangEun Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hyo Won Chang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Kyung-Chul Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
13
|
Nturubika BD, Guardia CM, Gershlick DC, Logan JM, Martini C, Heatlie JK, Lazniewska J, Moore C, Lam GT, Li KL, Ung BSY, Brooks RD, Hickey SM, Bert AG, Gregory PA, Butler LM, O'Leary JJ, Brooks DA, Johnson IRD. Altered expression of vesicular trafficking machinery in prostate cancer affects lysosomal dynamics and provides insight into the underlying biology and disease progression. Br J Cancer 2024; 131:1263-1278. [PMID: 39217195 PMCID: PMC11473802 DOI: 10.1038/s41416-024-02829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study focuses on the role of lysosomal trafficking in prostate cancer, given the essential role of lysosomes in cellular homoeostasis. METHODS Lysosomal motility was evaluated using confocal laser scanning microscopy of LAMP-1-transfected prostate cells and spot-tracking analysis. Expression of lysosomal trafficking machinery was evaluated in patient cohort databases and through immunohistochemistry on tumour samples. The roles of vesicular trafficking machinery were evaluated through over-expression and siRNA. The effects of R1881 treatment on lysosome vesicular trafficking was evaluated by RNA sequencing, protein quantification and fixed- and live-cell microscopy. RESULTS Altered regulation of lysosomal trafficking genes/proteins was observed in prostate cancer tissue, with significant correlations for co-expression of vesicular trafficking machinery in Gleason patterns. The expression of trafficking machinery was associated with poorer patient outcomes. R1881 treatment induced changes in lysosomal distribution, number, and expression of lysosomal vesicular trafficking machinery in hormone-sensitive prostate cancer cells. Manipulation of genes involved in lysosomal trafficking events induced changes in lysosome positioning and cell phenotype, as well as differential effects on cell migration, in non-malignant and prostate cancer cells. CONCLUSIONS These findings provide novel insights into the altered regulation and functional impact of lysosomal vesicular trafficking in prostate cancer pathogenesis.
Collapse
Affiliation(s)
- Bukuru D Nturubika
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Carlos M Guardia
- Placental Cell Biology Group, National Institute of Environmental Health and Science, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Jessica M Logan
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Carmela Martini
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jessica K Heatlie
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Joanna Lazniewska
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Courtney Moore
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Giang T Lam
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ka L Li
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ben S-Y Ung
- Quality Use of Medicines and Pharmacy Research Centre, University of South Australia City East Campus, Frome Rd, Adelaide, SA, 5000, Australia
| | - Robert D Brooks
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Shane M Hickey
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Solid Tumour Program, Precision Cancer Medicine theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Dublin 8, Ireland
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Ian R D Johnson
- Mechanisms in Cell Biology and Diseases Research Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
14
|
Durairajan SSK, Selvarasu K, Singh AK, Patnaik S, Iyaswamy A, Jaiswal Y, Williams LL, Huang JD. Unraveling the interplay of kinesin-1, tau, and microtubules in neurodegeneration associated with Alzheimer's disease. Front Cell Neurosci 2024; 18:1432002. [PMID: 39507380 PMCID: PMC11537874 DOI: 10.3389/fncel.2024.1432002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is marked by the gradual and age-related deterioration of nerve cells in the central nervous system. The histopathological features observed in the brain affected by AD are the aberrant buildup of extracellular and intracellular amyloid-β and the formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Axonal transport is a fundamental process for cargo movement along axons and relies on molecular motors like kinesins and dyneins. Kinesin's responsibility for transporting crucial cargo within neurons implicates its dysfunction in the impaired axonal transport observed in AD. Impaired axonal transport and dysfunction of molecular motor proteins, along with dysregulated signaling pathways, contribute significantly to synaptic impairment and cognitive decline in AD. Dysregulation in tau, a microtubule-associated protein, emerges as a central player, destabilizing microtubules and disrupting the transport of kinesin-1. Kinesin-1 superfamily members, including kinesin family members 5A, 5B, and 5C, and the kinesin light chain, are intricately linked to AD pathology. However, inconsistencies in the abundance of kinesin family members in AD patients underline the necessity for further exploration into the mechanistic impact of these motor proteins on neurodegeneration and axonal transport disruptions across a spectrum of neurological conditions. This review underscores the significance of kinesin-1's anterograde transport in AD. It emphasizes the need for investigations into the underlying mechanisms of the impact of motor protein across various neurological conditions. Despite current limitations in scientific literature, our study advocates for targeting kinesin and autophagy dysfunctions as promising avenues for novel therapeutic interventions and diagnostics in AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Yogini Jaiswal
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Jian-Dong Huang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
15
|
Kolaczkowski OM, Goodson BA, Vazquez VM, Jia J, Bhat AQ, Kim TH, Pu J. Synergistic Role of Amino Acids in Enhancing mTOR Activation Through Lysosome Positioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618047. [PMID: 39416115 PMCID: PMC11482915 DOI: 10.1101/2024.10.12.618047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Lysosome positioning, or lysosome cellular distribution, is critical for lysosomal functions in response to both extracellular and intracellular cues. Amino acids, as essential nutrients, have been shown to promote lysosome movement toward the cell periphery. Peripheral lysosomes are involved in processes such as lysosomal exocytosis, cell migration, and metabolic signaling-functions that are particularly important for cancer cell motility and growth. However, the specific types of amino acids that regulate lysosome positioning, their underlying mechanisms, and their connection to amino acid-regulated metabolic signaling remain poorly understood. In this study, we developed a high-content imaging system for unbiased, quantitative analysis of lysosome positioning. We examined the 15 amino acids present in cell culture media and found that 10 promoted lysosome redistribution toward the cell periphery to varying extents, with aromatic amino acids showing the strongest effect. This redistribution was mediated by promoting outward transport through SLC38A9-BORC-kinesin 1/3 axis and simultaneously reducing inward transport via inhibiting the recruitment of Rab7 and JIP4 onto lysosomes. When examining the effects of amino acids on mTOR activation-a central regulator of cell metabolism-we found that the amino acids most strongly promoting lysosome dispersal, such as phenylalanine, did not activate mTOR on their own. However, combining phenylalanine with arginine, which activates mTOR without affecting lysosome positioning, synergistically enhanced mTOR activity. This synergy was lost when lysosomes failed to localize to the cell periphery, as observed in kinesin 1/3 knockout (KO) cells. Furthermore, breast cancer cells exhibited heightened sensitivity to phenylalanine-induced lysosome dispersal compared to noncancerous breast cells. Inhibition of LAT1, the amino acid transporter responsible for phenylalanine uptake, reduced peripheral lysosomes and impaired cancer cell migration and proliferation, highlighting the importance of lysosome positioning in these coordinated cellular activities. In summary, amino acid-regulated lysosome positioning and mTOR signaling depend on distinct sets of amino acids. Combining lysosome-dispersing amino acids with mTOR-activating amino acids synergistically enhances mTOR activation, which may be particularly relevant in cancer cells.
Collapse
Affiliation(s)
- Oralia M. Kolaczkowski
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Baley A. Goodson
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Valeria Montenegro Vazquez
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Jingyue Jia
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Aadil Qadir Bhat
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Tae-Hyung Kim
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
16
|
Saji T, Endo M, Okada Y, Minami Y, Nishita M. KIF1C facilitates retrograde transport of lysosomes through Hook3 and dynein. Commun Biol 2024; 7:1305. [PMID: 39394274 PMCID: PMC11470034 DOI: 10.1038/s42003-024-07023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Lysosomes, crucial cellular organelles, undergo bidirectional transport along microtubules, mediated by motor proteins such as cytoplasmic dynein-1 (dynein) and various kinesins. While the kinesin-3 family member KIF1C is established in mediating anterograde vesicle transport, its role in lysosomal transport remains unclear. Our study reveals that KIF1C unexpectedly supports the retrograde transport of lysosomes, driven by dynein, and contributes to their perinuclear localization. Notably, while KIF1C facilitates this perinuclear positioning, its motor activity is not required and, instead, exerts an inhibitory effect on this process. Mechanistically, KIF1C facilitates this process by interacting with the dynein-activating adaptor Hook3, which associates with the lysosome-anchored protein RUFY3. This regulatory mechanism is critical for the efficient degradation of cargo in autophagic and endocytic pathways. Our findings identify an unconventional, non-motor role for KIF1C in activating dynein-driven lysosomal transport, expanding our understanding of its functional diversity in cellular trafficking.
Collapse
Affiliation(s)
- Takeshi Saji
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
17
|
Niwa S, Watanabe T, Chiba K. The FHA domain is essential for autoinhibition of KIF1A/UNC-104 proteins. J Cell Sci 2024; 137:jcs262017. [PMID: 39239883 DOI: 10.1242/jcs.262017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
KIF1A/UNC-104 proteins, which are members of the kinesin superfamily of motor proteins, play a pivotal role in the axonal transport of synaptic vesicles and their precursors. Drosophila melanogaster UNC-104 (DmUNC-104) is a relatively recently discovered Drosophila kinesin. Although some point mutations that disrupt synapse formation have been identified, the biochemical properties of the DmUNC-104 protein have not been investigated. Here, we prepared recombinant full-length DmUNC-104 protein and determined its biochemical features. We analyzed the effect of a previously identified missense mutation in the forkhead-associated (FHA) domain, called bristly (bris). The bris mutation strongly promoted the dimerization of DmUNC-104 protein, whereas wild-type DmUNC-104 was a mixture of monomers and dimers. We further tested the G618R mutation near the FHA domain, which was previously shown to disrupt the autoinhibition of Caenorhabditis elegans UNC-104. The biochemical properties of the G618R mutant recapitulated those of the bris mutant. Finally, we found that disease-associated mutations also promote the dimerization of DmUNC-104. Collectively, our results suggest that the FHA domain is essential for autoinhibition of KIF1A/UNC-104 proteins, and that abnormal dimerization of KIF1A might be linked to human diseases.
Collapse
Affiliation(s)
- Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) , Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Department of Biology, Faculty of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Taisei Watanabe
- Department of Biology, Faculty of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) , Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
18
|
Iguchi R, Kita T, Watanabe T, Chiba K, Niwa S. Characterizing human KIF1Bβ motor activity by single-molecule motility assays and Caenorhabditis elegans genetics. J Cell Sci 2024; 137:jcs261783. [PMID: 39279507 DOI: 10.1242/jcs.261783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
The axonal transport of synaptic vesicle precursors relies on KIF1A and UNC-104 ortholog motors. In mammals, KIF1Bβ is also responsible for the axonal transport of synaptic vesicle precursors. Mutations in KIF1A and KIF1Bβ lead to a wide range of neuropathies. Although previous studies have revealed the biochemical, biophysical and cell biological properties of KIF1A, and its defects in neurological disorders, the fundamental properties of KIF1Bβ remain elusive. In this study, we determined the motile parameters of KIF1Bβ through single-molecule motility assays. We found that the C-terminal region of KIF1Bβ has an inhibitory role in motor activity. AlphaFold2 prediction suggests that the C-terminal region blocks the motor domain. Additionally, we established simple methods for testing the axonal transport activity of human KIF1Bβ using Caenorhabditis elegans genetics. Taking advantage of these methods, we demonstrated that these assays enable the detection of reduced KIF1Bβ activities, both in vitro and in vivo, caused by a Charcot-Marie-Tooth disease-associated Q98L mutation.
Collapse
Affiliation(s)
- Rei Iguchi
- Graduate School of Life Sciences , Tohoku University, Katahira 2-1, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tomoki Kita
- Graduate School of Life Sciences , Tohoku University, Katahira 2-1, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Taisei Watanabe
- Department of Biology, Faculty of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) , Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences , Tohoku University, Katahira 2-1, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Department of Biology, Faculty of Science, Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS) , Tohoku University, Aramaki-Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| |
Collapse
|
19
|
Eun SH, Noh SH, Lee MG. Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:435-447. [PMID: 39198224 PMCID: PMC11362002 DOI: 10.4196/kjpp.2024.28.5.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 09/01/2024]
Abstract
Secretory proteins, including plasma membrane proteins, are generally known to be transported to the plasma membrane through the endoplasmic reticulum- to-Golgi pathway. However, recent studies have revealed that several plasma membrane proteins and cytosolic proteins lacking a signal peptide are released via an unconventional protein secretion (UcPS) route, bypassing the Golgi during their journey to the cell surface. For instance, transmembrane proteins such as the misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein and the Spike protein of coronaviruses have been observed to reach the cell surface through a UcPS pathway under cell stress conditions. Nevertheless, the precise mechanisms of the UcPS pathway, particularly the molecular machineries involving cytosolic motor proteins, remain largely unknown. In this study, we identified specific kinesins, namely KIF1A and KIF5A, along with cytoplasmic dynein, as critical players in the unconventional trafficking of CFTR and the SARS-CoV-2 Spike protein. Gene silencing results demonstrated that knockdown of KIF1A, KIF5A, and the KIF-associated adaptor protein SKIP, FYCO1 significantly reduced the UcPS of △F508-CFTR. Moreover, gene silencing of these motor proteins impeded the UcPS of the SARS-CoV-2 Spike protein. However, the same gene silencing did not affect the conventional Golgimediated cell surface trafficking of wild-type CFTR and Spike protein. These findings suggest that specific motor proteins, distinct from those involved in conventional trafficking, are implicated in the stress-induced UcPS of transmembrane proteins.
Collapse
Affiliation(s)
- Sung Ho Eun
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
20
|
Gavrilova A, Boström A, Korabel N, Fedotov S, Poulin GB, Allan VJ. The role of kinesin-1 in neuronal dense core vesicle transport, locomotion and lifespan regulation in C. elegans. J Cell Sci 2024; 137:jcs262148. [PMID: 39171448 PMCID: PMC11423817 DOI: 10.1242/jcs.262148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Fast axonal transport is crucial for neuronal function and is driven by kinesins and cytoplasmic dynein. Here, we investigated the role of kinesin-1 in dense core vesicle (DCV) transport in C. elegans, using mutants in the kinesin light chains (klc-1 and klc-2) and the motor subunit (unc-116) expressing an ida-1::gfp transgene that labels DCVs. DCV transport in both directions was greatly impaired in an unc-116 mutant and had reduced velocity in a klc-2 mutant. In contrast, the speed of retrograde DCV transport was increased in a klc-1 mutant whereas anterograde transport was unaffected. We identified striking differences between the klc mutants in their effects on worm locomotion and responses to drugs affecting neuromuscular junction activity. We also determined lifespan, finding that unc-116 mutant was short-lived whereas the klc single mutant lifespan was wild type. The ida-1::gfp transgenic strain was also short-lived, but surprisingly, klc-1 and klc-2 extended the ida-1::gfp lifespan beyond that of wild type. Our findings suggest that kinesin-1 not only influences anterograde and retrograde DCV transport but is also involved in regulating lifespan and locomotion, with the two kinesin light chains playing distinct roles.
Collapse
Affiliation(s)
- Anna Gavrilova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Astrid Boström
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Nickolay Korabel
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Sergei Fedotov
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Gino B Poulin
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Victoria J Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| |
Collapse
|
21
|
Nagpal S, Swaminathan K, Beaudet D, Verdier M, Wang S, Berger CL, Berger F, Hendricks AG. Optogenetic control of kinesin-1, -2, -3 and dynein reveals their specific roles in vesicular transport. Cell Rep 2024; 43:114649. [PMID: 39159044 PMCID: PMC11416726 DOI: 10.1016/j.celrep.2024.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Each cargo in a cell employs a unique set of motor proteins for its transport. To dissect the roles of each type of motor, we developed optogenetic inhibitors of endogenous kinesin-1, -2, -3 and dynein motors and examined their effect on the transport of early endosomes, late endosomes, and lysosomes. While kinesin-1, -3, and dynein transport vesicles at all stages of endocytosis, kinesin-2 primarily drives late endosomes and lysosomes. Transient optogenetic inhibition of kinesin-1 or dynein causes both early and late endosomes to move more processively by relieving competition with opposing motors. Kinesin-2 and -3 support long-range transport, and optogenetic inhibition reduces the distances that their cargoes move. These results suggest that the directionality of transport is controlled through regulating kinesin-1 and dynein activity. On vesicles transported by several kinesin and dynein motors, modulating the activity of a single type of motor on the cargo is sufficient to direct motility.
Collapse
Affiliation(s)
- Sahil Nagpal
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | | | - Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Maud Verdier
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; Department of Biomedical Engineering and Health, Episen, Université Paris-Est Créteil, 94010 Créteil Cedex, France
| | - Samuel Wang
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405-0075, USA
| | - Florian Berger
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| |
Collapse
|
22
|
Trojani MC, Santucci-Darmanin S, Breuil V, Carle GF, Pierrefite-Carle V. Lysosomal exocytosis: From cell protection to protumoral functions. Cancer Lett 2024; 597:217024. [PMID: 38871244 DOI: 10.1016/j.canlet.2024.217024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Lysosomes are single membrane bounded group of acidic organelles that can be involved in a process called lysosomal exocytosis which leads to the extracellular release of their content. Lysosomal exocytosis is required for plasma membrane repair or remodeling events such as bone resorption, antigen presentation or mitosis, and for protection against toxic agents such as heavy metals. Recently, it has been showed that to fulfill this protective role, lysosomal exocytosis needs some autophagic proteins, in an autophagy-independent manner. In addition to these crucial physiological roles, lysosomal exocytosis plays a major protumoral role in various cancers. This effect is exerted through tumor microenvironment modifications, including extracellular matrix remodeling, acidosis, oncogenic and profibrogenic signals. This review provides a comprehensive overview of the different elements released in the microenvironment during lysosomal exocytosis, i.e. proteases, exosomes, and protons, and their effects in the context of tumor development and treatment.
Collapse
Affiliation(s)
- Marie-Charlotte Trojani
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; CNRS, Paris, France
| | - Véronique Breuil
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; Service de Rhumatologie, CHU de Nice, Nice, France
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; CNRS, Paris, France
| | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut Joliot, Université Côte d'Azur, Faculté de Médecine Nice, France; INSERM, Paris, France.
| |
Collapse
|
23
|
Robinson BP, Bass NR, Bhakt P, Spiliotis ET. Septin-coated microtubules promote maturation of multivesicular bodies by inhibiting their motility. J Cell Biol 2024; 223:e202308049. [PMID: 38668767 PMCID: PMC11046855 DOI: 10.1083/jcb.202308049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.
Collapse
Affiliation(s)
| | - Naomi R. Bass
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Elias T. Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
24
|
Zhao M, Wang J, Liu M, Xu Y, Huang J, Zhang Y, He J, Gu A, Liu M, Liu X. KIF1A, R1457Q, and P1688L Mutations Induce Protein Abnormal Aggregation and Autophagy Impairment in iPSC-Derived Motor Neurons. Biomedicines 2024; 12:1693. [PMID: 39200158 PMCID: PMC11351720 DOI: 10.3390/biomedicines12081693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/02/2024] Open
Abstract
Mutations in the C-terminal of KIF1A (Kinesin family member 1A) may lead to amyotrophic lateral sclerosis (ALS) through unknown mechanisms that are not yet understood. Using iPSC reprogramming technology and motor neuron differentiation techniques, we generated iPSCs from a healthy donor and two ALS patients with KIF1A mutations (R1457Q and P1688L) and differentiated them into spinal motor neurons (iPSC-MN) to investigate KIF1A-related ALS pathology. Our in vitro iPSC-iMN model faithfully recapitulated specific aspects of the disease, such as neurite fragmentation. Through this model, we observed that these mutations led to KIF1A aggregation at the proximal axon of motor neurons and abnormal accumulation of its transport cargo, LAMP1, resulting in autophagy dysfunction and cell death. RNAseq analysis also indicated that the functions of the extracellular matrix, structure, and cell adhesion were significantly disturbed. Notably, using rapamycin during motor neuron differentiation can effectively prevent motor neuron death.
Collapse
Affiliation(s)
- Mingri Zhao
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China;
| | - Miao Liu
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Yaoyao Xu
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Jiali Huang
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Yiti Zhang
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Jianfeng He
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Ao Gu
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410000, China
| | - Xionghao Liu
- MOE Key Lab. of Rare Pediatric Diseases, Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410000, China; (M.Z.); (M.L.); (Y.X.); (J.H.); (Y.Z.); (J.H.); (A.G.)
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410000, China
| |
Collapse
|
25
|
Beaudet D, Berger CL, Hendricks AG. The types and numbers of kinesins and dyneins transporting endocytic cargoes modulate their motility and response to tau. J Biol Chem 2024; 300:107323. [PMID: 38677516 PMCID: PMC11130734 DOI: 10.1016/j.jbc.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Organelles and vesicular cargoes are transported by teams of kinesin and dynein motors along microtubules. We isolated endocytic organelles from cells at different stages of maturation and reconstituted their motility along microtubules in vitro. We asked how the sets of motors transporting a cargo determine its motility and response to the microtubule-associated protein tau. Here, we find that phagosomes move in both directions along microtubules, but the directional bias changes during maturation. Early phagosomes exhibit retrograde-biased transport while late phagosomes are directionally unbiased. Correspondingly, early and late phagosomes are bound by different numbers and combinations of kinesins-1, -2, -3, and dynein. Tau stabilizes microtubules and directs transport within neurons. While single-molecule studies show that tau differentially regulates the motility of kinesins and dynein in vitro, less is known about its role in modulating the trafficking of endogenous cargoes transported by their native teams of motors. Previous studies showed that tau preferentially inhibits kinesin motors, which biases late phagosome transport towards the microtubule minus-end. Here, we show that tau strongly inhibits long-range, dynein-mediated motility of early phagosomes. Tau reduces forces generated by teams of dynein motors on early phagosomes and accelerates dynein unbinding under load. Thus, cargoes differentially respond to tau, where dynein complexes on early phagosomes are more sensitive to tau inhibition than those on late phagosomes. Mathematical modeling further explains how small changes in the number of kinesins and dynein on cargoes impact the net directionality but also that cargoes with different sets of motors respond differently to tau.
Collapse
Affiliation(s)
- Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
De Pace R, Ghosh S, Ryan VH, Sohn M, Jarnik M, Rezvan Sangsari P, Morgan NY, Dale RK, Ward ME, Bonifacino JS. Messenger RNA transport on lysosomal vesicles maintains axonal mitochondrial homeostasis and prevents axonal degeneration. Nat Neurosci 2024; 27:1087-1102. [PMID: 38600167 PMCID: PMC11156585 DOI: 10.1038/s41593-024-01619-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
In neurons, RNA granules are transported along the axon for local translation away from the soma. Recent studies indicate that some of this transport involves hitchhiking of RNA granules on lysosome-related vesicles. In the present study, we leveraged the ability to prevent transport of these vesicles into the axon by knockout of the lysosome-kinesin adaptor BLOC-one-related complex (BORC) to identify a subset of axonal mRNAs that depend on lysosome-related vesicles for transport. We found that BORC knockout causes depletion of a large group of axonal mRNAs mainly encoding ribosomal and mitochondrial/oxidative phosphorylation proteins. This depletion results in mitochondrial defects and eventually leads to axonal degeneration in human induced pluripotent stem cell (iPSC)-derived and mouse neurons. Pathway analyses of the depleted mRNAs revealed a mechanistic connection of BORC deficiency with common neurodegenerative disorders. These results demonstrate that mRNA transport on lysosome-related vesicles is critical for the maintenance of axonal homeostasis and that its failure causes axonal degeneration.
Collapse
Affiliation(s)
- Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Saikat Ghosh
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Veronica H Ryan
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal Jarnik
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Paniz Rezvan Sangsari
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Y Morgan
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michael E Ward
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Bak J, Brummelkamp TR, Perrakis A. Decoding microtubule detyrosination: enzyme families, structures, and functional implications. FEBS Lett 2024; 598:1453-1464. [PMID: 38811347 DOI: 10.1002/1873-3468.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
Microtubules are a major component of the cytoskeleton and can accumulate a plethora of modifications. The microtubule detyrosination cycle is one of these modifications; it involves the enzymatic removal of the C-terminal tyrosine of α-tubulin on assembled microtubules and the re-ligation of tyrosine on detyrosinated tubulin dimers. This modification cycle has been implicated in cardiac disease, neuronal development, and mitotic defects. The vasohibin and microtubule-associated tyrosine carboxypeptidase enzyme families are responsible for microtubule detyrosination. Their long-sought discovery allows to review and summarise differences and similarities between the two enzymes families and discuss how they interplay with other modifications and functions of the tubulin code.
Collapse
Affiliation(s)
- Jitske Bak
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
28
|
De Pace R, Maroofian R, Paimboeuf A, Zamani M, Zaki MS, Sadeghian S, Azizimalamiri R, Galehdari H, Zeighami J, Williamson CD, Fleming E, Zhou D, Gannon JL, Thiffault I, Roze E, Suri M, Zifarelli G, Bauer P, Houlden H, Severino M, Patten SA, Farrow E, Bonifacino JS. Biallelic BORCS8 variants cause an infantile-onset neurodegenerative disorder with altered lysosome dynamics. Brain 2024; 147:1751-1767. [PMID: 38128568 PMCID: PMC11068110 DOI: 10.1093/brain/awad427] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
BLOC-one-related complex (BORC) is a multiprotein complex composed of eight subunits named BORCS1-8. BORC associates with the cytosolic face of lysosomes, where it sequentially recruits the small GTPase ARL8 and kinesin-1 and -3 microtubule motors to promote anterograde transport of lysosomes toward the peripheral cytoplasm in non-neuronal cells and the distal axon in neurons. The physiological and pathological importance of BORC in humans, however, remains to be determined. Here, we report the identification of compound heterozygous variants [missense c.85T>C (p.Ser29Pro) and frameshift c.71-75dupTGGCC (p.Asn26Trpfs*51)] and homozygous variants [missense c.196A>C (p.Thr66Pro) and c.124T>C (p.Ser42Pro)] in BORCS8 in five children with a severe early-infantile neurodegenerative disorder from three unrelated families. The children exhibit global developmental delay, severe-to-profound intellectual disability, hypotonia, limb spasticity, muscle wasting, dysmorphic facies, optic atrophy, leuko-axonopathy with hypomyelination, and neurodegenerative features with prevalent supratentorial involvement. Cellular studies using a heterologous transfection system show that the BORCS8 missense variants p.Ser29Pro, p.Ser42Pro and p.Thr66Pro are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution toward the cell periphery. The BORCS8 frameshift variant p.Asn26Trpfs*51, on the other hand, is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution toward the cell periphery. Therefore, all the BORCS8 variants are partial or total loss-of-function alleles and are thus likely pathogenic. Knockout of the orthologous borcs8 in zebrafish causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. These findings thus identify BORCS8 as a novel genetic locus for an early-infantile neurodegenerative disorder and highlight the critical importance of BORC and lysosome dynamics for the development and function of the central nervous system.
Collapse
Affiliation(s)
- Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child, Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Adeline Paimboeuf
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
- Department of Molecular Genetics, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz 61556-89467, Iran
| | - Maha S Zaki
- Human Genetics and Genome Research Institute, Clinical Genetics Department, National Research Centre, Cairo 12622, Egypt
| | - Saeid Sadeghian
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran
| | - Reza Azizimalamiri
- Department of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-33184, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran
| | - Jawaher Zeighami
- Department of Molecular Genetics, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz 61556-89467, Iran
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child, Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Fleming
- Department of Genetics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Dihong Zhou
- Department of Genetics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Jennifer L Gannon
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Division of Clinical Genetics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Isabelle Thiffault
- Department of Genetics, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pathology, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Emmanuel Roze
- Sorbonne Université, CNRS, INSERM, Institut du Cerveau (ICM), and Assistance Publique-Hôpitaux de Paris, Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris 75013, France
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | | | | | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Shunmoogum A Patten
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Départementde Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Emily Farrow
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child, Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Bonet-Ponce L, Tegicho T, Beilina A, Kluss JH, Li Y, Cookson MR. Opposing actions of JIP4 and RILPL1 provide antagonistic motor force to dynamically regulate membrane reformation during lysosomal tubulation/sorting driven by LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587808. [PMID: 38903076 PMCID: PMC11188082 DOI: 10.1101/2024.04.02.587808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Lysosomes are dynamic cellular structures that adaptively remodel their membrane in response to stimuli, including membrane damage. We previously uncovered a process we term LYTL (LYsosomal Tubulation/sorting driven by Leucine-Rich Repeat Kinase 2 [LRRK2]), wherein damaged lysosomes generate tubules sorted into mobile vesicles. LYTL is orchestrated by the Parkinson's disease-associated kinase LRRK2 that recruits the motor adaptor protein and RHD family member JIP4 to lysosomes via phosphorylated RAB proteins. To identify new players involved in LYTL, we performed unbiased proteomics on isolated lysosomes after LRRK2 kinase inhibition. Our results demonstrate that there is recruitment of RILPL1 to ruptured lysosomes via LRRK2 activity to promote phosphorylation of RAB proteins at the lysosomal surface. RILPL1, which is also a member of the RHD family, enhances the clustering of LRRK2-positive lysosomes in the perinuclear area and causes retraction of LYTL tubules, in contrast to JIP4 which promotes LYTL tubule extension. Mechanistically, RILPL1 binds to p150Glued, a dynactin subunit, facilitating the transport of lysosomes and tubules to the minus end of microtubules. Further characterization of the tubulation process revealed that LYTL tubules move along tyrosinated microtubules, with tubulin tyrosination proving essential for tubule elongation. In summary, our findings emphasize the dynamic regulation of LYTL tubules by two distinct RHD proteins and pRAB effectors, serving as opposing motor adaptor proteins: JIP4, promoting tubulation via kinesin, and RILPL1, facilitating tubule retraction through dynein/dynactin. We infer that the two opposing processes generate a metastable lysosomal membrane deformation that facilitates dynamic tubulation events.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Tsion Tegicho
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jillian H. Kluss
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
30
|
Andreu-Carbó M, Egoldt C, Velluz MC, Aumeier C. Microtubule damage shapes the acetylation gradient. Nat Commun 2024; 15:2029. [PMID: 38448418 PMCID: PMC10918088 DOI: 10.1038/s41467-024-46379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
The properties of single microtubules within the microtubule network can be modulated through post-translational modifications (PTMs), including acetylation within the lumen of microtubules. To access the lumen, the enzymes could enter through the microtubule ends and at damage sites along the microtubule shaft. Here we show that the acetylation profile depends on damage sites, which can be caused by the motor protein kinesin-1. Indeed, the entry of the deacetylase HDAC6 into the microtubule lumen can be modulated by kinesin-1-induced damage sites. In contrast, activity of the microtubule acetylase αTAT1 is independent of kinesin-1-caused shaft damage. On a cellular level, our results show that microtubule acetylation distributes in an exponential gradient. This gradient results from tight regulation of microtubule (de)acetylation and scales with the size of the cells. The control of shaft damage represents a mechanism to regulate PTMs inside the microtubule by giving access to the lumen.
Collapse
Affiliation(s)
| | - Cornelia Egoldt
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | | | - Charlotte Aumeier
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
31
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 PMCID: PMC10930463 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden;
| | | |
Collapse
|
32
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
33
|
Kumar R, Khan M, Francis V, Aguila A, Kulasekaran G, Banks E, McPherson PS. DENND6A links Arl8b to a Rab34/RILP/dynein complex, regulating lysosomal positioning and autophagy. Nat Commun 2024; 15:919. [PMID: 38296963 PMCID: PMC10830484 DOI: 10.1038/s41467-024-44957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Lysosomes help maintain cellular proteostasis, and defects in lysosomal positioning and function can cause disease, including neurodegenerative disorders. The spatiotemporal distribution of lysosomes is regulated by small GTPases including Rabs, which are activated by guanine nucleotide exchange factors (GEFs). DENN domain proteins are the largest family of Rab GEFs. Using a cell-based assay, we screened DENND6A, a member of the DENN domain protein family against all known Rabs and identified it as a potential GEF for 20 Rabs, including Rab34. Here, we demonstrate that DENND6A activates Rab34, which recruits a RILP/dynein complex to lysosomes, promoting lysosome retrograde transport. Further, we identify DENND6A as an effector of Arl8b, a major regulatory GTPase on lysosomes. We demonstrate that Arl8b recruits DENND6A to peripheral lysosomes to activate Rab34 and initiate retrograde transport, regulating nutrient-dependent lysosomal juxtanuclear repositioning. Loss of DENND6A impairs autophagic flux. Our findings support a model whereby Arl8b/DENND6A/Rab34-dependent lysosomal retrograde trafficking controls autophagy.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada.
| | - Maleeha Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (the Neuro), McGill University, Montreal, QC, Canada.
| |
Collapse
|
34
|
Kita T, Chiba K, Wang J, Nakagawa A, Niwa S. Comparative analysis of two Caenorhabditis elegans kinesins KLP-6 and UNC-104 reveals a common and distinct activation mechanism in kinesin-3. eLife 2024; 12:RP89040. [PMID: 38206323 PMCID: PMC10945585 DOI: 10.7554/elife.89040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Kinesin-3 is a family of microtubule-dependent motor proteins that transport various cargos within the cell. However, the mechanism underlying kinesin-3 activations remains largely elusive. In this study, we compared the biochemical properties of two Caenorhabditis elegans kinesin-3 family proteins, KLP-6 and UNC-104. Both KLP-6 and UNC-104 are predominantly monomeric in solution. As previously shown for UNC-104, non-processive KLP-6 monomer is converted to a processive motor when artificially dimerized. We present evidence that releasing the autoinhibition is sufficient to trigger dimerization of monomeric UNC-104 at nanomolar concentrations, which results in processive movement of UNC-104 on microtubules, although it has long been thought that enrichment in the phospholipid microdomain on cargo vesicles is required for the dimerization and processive movement of UNC-104. In contrast, KLP-6 remains to be a non-processive monomer even when its autoinhibition is unlocked, suggesting a requirement of other factors for full activation. By examining the differences between KLP-6 and UNC-104, we identified a coiled-coil domain called coiled-coil 2 (CC2) that is required for the efficient dimerization and processive movement of UNC-104. Our results suggest a common activation mechanism for kinesin-3 family members, while also highlighting their diversification.
Collapse
Affiliation(s)
- Tomoki Kita
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku UniversitySendaiJapan
| | - Jiye Wang
- Institute for Protein Research, Osaka UniversityOsakaJapan
| | | | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku UniversitySendaiJapan
| |
Collapse
|
35
|
Bagalkot T, Sorkin A. Amphetamine Induces Sex-Dependent Loss of the Striatal Dopamine Transporter in Sensitized Mice. eNeuro 2024; 11:ENEURO.0491-23.2023. [PMID: 38164591 PMCID: PMC10849026 DOI: 10.1523/eneuro.0491-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Dopamine transporter (DAT) controls dopamine signaling in the brain through the reuptake of synaptically released dopamine. DAT is a target of abused psychostimulants such as amphetamine (Amph). Acute Amph administration induces transient DAT endocytosis, which, among other Amph effects on dopaminergic neurons, elevates extracellular dopamine. However, the effects of repeated Amph abuse, leading to behavioral sensitization and drug addiction, on DAT are unknown. Hence, we developed a 14 d Amph-sensitization protocol in knock-in mice expressing HA-epitope-tagged DAT (HA-DAT) and investigated the effects of Amph challenge on sensitized HA-DAT animals. The Amph challenge resulted in the highest locomotor activity on Day 14 in both sexes, which was sustained for 1 h in male but not female mice. Strikingly, significant (by 30-60%) loss of the HA-DAT protein in the striatum was caused by the Amph challenge of sensitized males but not females. Amph also reduced V max of dopamine transport in the striatal synaptosomes of males without changing K m values. Consistently, immunofluorescence microscopy revealed a significant increase of HA-DAT colocalization with the endosomal protein VPS35 only in Amph-challenged males. Amph-induced loss of striatal HA-DAT in sensitized mice was blocked by chloroquine, vacuolin-1, and inhibitor of Rho-associated kinases ROCK1/2, indicative of the involvement of endocytic trafficking in the DAT protein loss. Interestingly, an apparent degradation of HA-DAT protein was observed in the nucleus accumbens and not in the dorsal striatum. We propose that Amph challenge in sensitized mice triggers Rho-mediated endocytosis and post-endocytic trafficking of DAT in a brain-region-specific and sex-dependent manner.
Collapse
Affiliation(s)
- Tarique Bagalkot
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15261, Pennsylvania
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15261, Pennsylvania
| |
Collapse
|
36
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
37
|
Cason SE, Holzbaur EL. Axonal transport of autophagosomes is regulated by dynein activators JIP3/JIP4 and ARF/RAB GTPases. J Cell Biol 2023; 222:e202301084. [PMID: 37909920 PMCID: PMC10620608 DOI: 10.1083/jcb.202301084] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Neuronal autophagosomes form and engulf cargos at presynaptic sites in the axon and are then transported to the soma to recycle their cargo. Autophagic vacuoles (AVs) mature en route via fusion with lysosomes to become degradatively competent organelles; transport is driven by the microtubule motor protein cytoplasmic dynein, with motor activity regulated by a sequential series of adaptors. Using lysate-based single-molecule motility assays and live-cell imaging in primary neurons, we show that JNK-interacting proteins 3 (JIP3) and 4 (JIP4) are activating adaptors for dynein that are regulated on autophagosomes and lysosomes by the small GTPases ARF6 and RAB10. GTP-bound ARF6 promotes formation of the JIP3/4-dynein-dynactin complex. Either knockdown or overexpression of RAB10 stalls transport, suggesting that this GTPase is also required to coordinate the opposing activities of bound dynein and kinesin motors. These findings highlight the complex coordination of motor regulation during organelle transport in neurons.
Collapse
Affiliation(s)
- Sydney E. Cason
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika L.F. Holzbaur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Ebner M, Puchkov D, López-Ortega O, Muthukottiappan P, Su Y, Schmied C, Zillmann S, Nikonenko I, Koddebusch J, Dornan GL, Lucht MT, Koka V, Jang W, Koch PA, Wallroth A, Lehmann M, Brügger B, Pende M, Winter D, Haucke V. Nutrient-regulated control of lysosome function by signaling lipid conversion. Cell 2023; 186:5328-5346.e26. [PMID: 37883971 DOI: 10.1016/j.cell.2023.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.
Collapse
Affiliation(s)
- Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany
| | - Yanwei Su
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Silke Zillmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Iryna Nikonenko
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jochen Koddebusch
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Max T Lucht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Vonda Koka
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Alexander Wallroth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mario Pende
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
39
|
Lee D, Hong JH. Niemann-Pick Disease Type C (NPDC) by Mutation of NPC1 and NPC2: Aberrant Lysosomal Cholesterol Trafficking and Oxidative Stress. Antioxidants (Basel) 2023; 12:2021. [PMID: 38136141 PMCID: PMC10740957 DOI: 10.3390/antiox12122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol trafficking is initiated by the endocytic pathway and transported from endo/lysosomes to other intracellular organelles. Deficiencies in cholesterol-sensing and binding proteins NPC1 and NPC2 induce accumulation in lysosomes and the malfunction of trafficking to other organelles. Each organelle possesses regulatory factors to induce cholesterol trafficking. The mutation of NPC1 and NPC2 genes induces Niemann-Pick disease type C (NPDC), which is a hereditary disease and causes progressive neurodegeneration, developmental disability, hypotonia, and ataxia. Oxidative stress induces damage in NPDC-related intracellular organelles. Although studies on the relationship between NPDC and oxidation are relatively rare, several studies have reported the therapeutic potential of antioxidants in treating NPDC. Investigating antioxidant drugs to relieve oxidative stress and cholesterol accumulation is suggested to be a powerful tool for developing treatments for NPDC. Understanding NPDC provides challenging issues in understanding the oxidative stress-lysosome metabolism of the lipid axis. Thus, we elucidated the relationship between complexes of intracellular organelles and NPDC to develop our knowledge and suggested potential antioxidant reagents for NPDC therapy.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Health Sciences & Technology, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
40
|
Xu W, Ma X, Wang Q, Ye J, Wang N, Ye Z, Chen T. GCN5L1 regulates pulmonary surfactant production by modulating lamellar body biogenesis and trafficking in mouse alveolar epithelial cells. Cell Mol Biol Lett 2023; 28:90. [PMID: 37936104 PMCID: PMC10631113 DOI: 10.1186/s11658-023-00506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND The pulmonary surfactant that lines the air-liquid surface within alveoli is a protein-lipid mixture essential for gas exchange. Surfactant lipids and proteins are synthesized and stored in the lamellar body (LB) before being secreted from alveolar type II (AT2) cells. The molecular and cellular mechanisms that regulate these processes are incompletely understood. We previously identified an essential role of general control of amino acid synthesis 5 like 1 (GCN5L1) and the biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1) in surfactant system development in zebrafish. Here, we explored the role of GCN5L1 in pulmonary surfactant regulation. METHOD GCN5L1 knockout cell lines were generated with the CRISPR/Cas9 system. Cell viability was analyzed by MTT assay. Released surfactant proteins were measured by ELISA. Released surfactant lipids were measured based on coupled enzymatic reactions. Gene overexpression was mediated through lentivirus. The RNA levels were detected through RNA-sequencing (RNA-seq) and quantitative reverse transcription (qRT)- polymerase chain reaction (PCR). The protein levels were detected through western blotting. The cellular localization was analyzed by immunofluorescence. Morphology of the lamellar body was analyzed through transmission electron microscopy (TEM), Lysotracker staining, and BODIPY phosphatidylcholine labeling. RESULTS Knocking out GCN5L1 in MLE-12 significantly decreased the release of surfactant proteins and lipids. We detected the downregulation of some surfactant-related genes and misregulation of the ROS-Erk-Foxo1-Cebpα axis in mutant cells. Modulating the activity of the axis or reconstructing the mitochondrial expression of GCN5L1 could partially restore the expression of these surfactant-related genes. We further showed that MLE-12 cells contained many LB-like organelles that were lipid enriched and positive for multiple LB markers. These organelles were smaller in size and accumulated in the absence of GCN5L1, indicating both biogenesis and trafficking defects. Accumulated endogenous surfactant protein (SP)-B or exogenously expressed SP-B/SP-C in adenosine triphosphate-binding cassette transporterA3 (ABCA3)-positive organelles was detected in mutant cells. GCN5L1 localized to the mitochondria and LBs. Reconstruction of mitochondrial GCN5L1 expression rescued the organelle morphology but failed to restore the trafficking defect and surfactant release, indicating specific roles associated with different subcellular localizations. CONCLUSIONS In summary, our study identified GCN5L1 as a new regulator of pulmonary surfactant that plays a role in the biogenesis and positioning/trafficking of surfactant-containing LBs.
Collapse
Affiliation(s)
- Wenqin Xu
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
| | - Xiaocui Ma
- Henan Clinical Research Center of Childhood Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Qing Wang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
| | - Jingjing Ye
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
| | - Nengqian Wang
- Department of Pediatrics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhenzhen Ye
- Department of Pediatrics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Tianbing Chen
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China.
| |
Collapse
|
41
|
Rizalar FS, Lucht MT, Petzoldt A, Kong S, Sun J, Vines JH, Telugu NS, Diecke S, Kaas T, Bullmann T, Schmied C, Löwe D, King JS, Cho W, Hallermann S, Puchkov D, Sigrist SJ, Haucke V. Phosphatidylinositol 3,5-bisphosphate facilitates axonal vesicle transport and presynapse assembly. Science 2023; 382:223-230. [PMID: 37824668 PMCID: PMC10938084 DOI: 10.1126/science.adg1075] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/16/2023] [Indexed: 10/14/2023]
Abstract
Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Max T. Lucht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Astrid Petzoldt
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Shuhan Kong
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jiachen Sun
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - James H. Vines
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Narasimha Swamy Telugu
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Technology Platform Pluripotent Stem Cells, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Technology Platform Pluripotent Stem Cells, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Thomas Kaas
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Torsten Bullmann
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Delia Löwe
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jason S. King
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Stefan Hallermann
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Stephan J. Sigrist
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
42
|
Pierga A, Matusiak R, Cauhapé M, Branchu J, Danglot L, Boutry M, Darios F. Spatacsin regulates directionality of lysosome trafficking by promoting the degradation of its partner AP5Z1. PLoS Biol 2023; 21:e3002337. [PMID: 37871017 PMCID: PMC10621996 DOI: 10.1371/journal.pbio.3002337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 11/02/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
The endoplasmic reticulum (ER) forms contacts with the lysosomal compartment, regulating lysosome positioning and motility. The movements of lysosomes are controlled by the attachment of molecular motors to their surface. However, the molecular mechanisms by which ER controls lysosome dynamics are still elusive. Here, using mouse brain extracts and mouse embryonic fibroblasts, we demonstrate that spatacsin is an ER-resident protein regulating the formation of tubular lysosomes, which are highly dynamic. Screening for spatacsin partners required for tubular lysosome formation showed spatacsin to act by regulating protein degradation. We demonstrate that spatacsin promotes the degradation of its partner AP5Z1, which regulates the relative amount of spastizin and AP5Z1 at lysosomes. Spastizin and AP5Z1 contribute to regulate tubular lysosome formation, as well as their trafficking by interacting with anterograde and retrograde motor proteins, kinesin KIF13A and dynein/dynactin subunit p150Glued, respectively. Ultimately, investigations in polarized mouse cortical neurons in culture demonstrated that spatacsin-regulated degradation of AP5Z1 controls the directionality of lysosomes trafficking. Collectively, our results identify spatacsin as a protein regulating the directionality of lysosome trafficking.
Collapse
Affiliation(s)
- Alexandre Pierga
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Raphaël Matusiak
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Margaux Cauhapé
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Julien Branchu
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Lydia Danglot
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Université Paris Cité, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Scientific director of NeurImag facility, Université Paris Cité, Paris, France
| | - Maxime Boutry
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Frédéric Darios
- Sorbonne Université, Paris, France
- Paris Brain Institute, ICM, Paris, France
- Inserm, U1127, Paris, France
- CNRS, UMR 7225, Paris, France
| |
Collapse
|
43
|
Petzoldt AG. Presynaptic Precursor Vesicles-Cargo, Biogenesis, and Kinesin-Based Transport across Species. Cells 2023; 12:2248. [PMID: 37759474 PMCID: PMC10527734 DOI: 10.3390/cells12182248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The faithful formation and, consequently, function of a synapse requires continuous and tightly controlled delivery of synaptic material. At the presynapse, a variety of proteins with unequal molecular properties are indispensable to compose and control the molecular machinery concerting neurotransmitter release through synaptic vesicle fusion with the presynaptic membrane. As presynaptic proteins are produced mainly in the neuronal soma, they are obliged to traffic along microtubules through the axon to reach the consuming presynapse. This anterograde transport is performed by highly specialised and diverse presynaptic precursor vesicles, membranous organelles able to transport as different proteins such as synaptic vesicle membrane and membrane-associated proteins, cytosolic active zone proteins, ion-channels, and presynaptic membrane proteins, coordinating synaptic vesicle exo- and endocytosis. This review aims to summarise and categorise the diverse and numerous findings describing presynaptic precursor cargo, mode of trafficking, kinesin-based axonal transport and the molecular mechanisms of presynaptic precursor vesicles biogenesis in both vertebrate and invertebrate model systems.
Collapse
Affiliation(s)
- Astrid G Petzoldt
- Institute for Biology and Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
44
|
Liu Y, Lyu X, Tan S, Zhang X. Research Progress of Exosomal Non-Coding RNAs in Cardiac Remodeling. Int J Med Sci 2023; 20:1469-1478. [PMID: 37790853 PMCID: PMC10542190 DOI: 10.7150/ijms.83808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/18/2023] [Indexed: 10/05/2023] Open
Abstract
Exosomes are vesicles with a size range of 50 to 200 nm and released by different cells, which are essential for the exchange of information between cells. They have attracted a lot of interest from medical researchers. Exosomal non-coding RNAs play an important part in pathological cardiac remodelings, such as cardiomyocyte hypertrophy, cardiomyocyte apoptosis, and cardiac fibrosis. This review summarizes the origins and functions of exosomes, the role of exosomal non-coding RNAs in the process of pathological cardiac remodeling, as well as their theoretical basis for clinical application.
Collapse
Affiliation(s)
- Yang Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xing Lyu
- Department of Clinical laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shengyu Tan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Clinical Medical Research Center for Geriatric Syndrome, Changsha, Hunan 410011, China
| |
Collapse
|
45
|
Fan X, McKenney RJ. Control of motor landing and processivity by the CAP-Gly domain in the KIF13B tail. Nat Commun 2023; 14:4715. [PMID: 37543636 PMCID: PMC10404244 DOI: 10.1038/s41467-023-40425-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Microtubules are major components of the eukaryotic cytoskeleton. Posttranslational modifications (PTMs) of tubulin regulates interactions with microtubule-associated proteins (MAPs). One unique PTM is the cyclical removal and re-addition of the C-terminal tyrosine of α-tubulin and MAPs containing CAP-Gly domains specifically recognize tyrosinated microtubules. KIF13B, a long-distance transport kinesin, contains a conserved CAP-Gly domain, but the role of the CAP-Gly domain in KIF13B's motility along microtubules remains unknown. To address this, we investigate the interaction between KIF13B's CAP-Gly domain, and tyrosinated microtubules. We find that KIF13B's CAP-Gly domain influences the initial motor-microtubule interaction, as well as processive motility along microtubules. The effect of the CAP-Gly domain is enhanced when the motor domain is in the ADP state, suggesting an interplay between the N-terminal motor domain and C-terminal CAP-Gly domain. These results reveal that specialized kinesin tail domains play active roles in the initiation and continuation of motor movement.
Collapse
Affiliation(s)
- Xiangyu Fan
- Department of Molecular and Cellular Biology, University of California - Davis, 145 Briggs Hall, Davis, CA, 95616, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California - Davis, 145 Briggs Hall, Davis, CA, 95616, USA.
| |
Collapse
|
46
|
Char R, Liu Z, Jacqueline C, Davieau M, Delgado MG, Soufflet C, Fallet M, Chasson L, Chapuy R, Camosseto V, Strock E, Rua R, Almeida CR, Su B, Lennon-Duménil AM, Nal B, Roquilly A, Liang Y, Méresse S, Gatti E, Pierre P. RUFY3 regulates endolysosomes perinuclear positioning, antigen presentation and migration in activated phagocytes. Nat Commun 2023; 14:4290. [PMID: 37463962 PMCID: PMC10354229 DOI: 10.1038/s41467-023-40062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Endo-lysosomes transport along microtubules and clustering in the perinuclear area are two necessary steps for microbes to activate specialized phagocyte functions. We report that RUN and FYVE domain-containing protein 3 (RUFY3) exists as two alternative isoforms distinguishable by the presence of a C-terminal FYVE domain and by their affinity for phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE domain-bearing isoform (iRUFY3) is preferentially expressed in primary immune cells and up-regulated upon activation by microbes and Interferons. iRUFY3 is necessary for ARL8b + /LAMP1+ endo-lysosomes positioning in the pericentriolar organelles cloud of LPS-activated macrophages. We show that iRUFY3 controls macrophages migration, MHC II presentation and responses to Interferon-γ, while being important for intracellular Salmonella replication. Specific inactivation of rufy3 in phagocytes leads to aggravated pathologies in mouse upon LPS injection or bacterial pneumonia. This study highlights the role of iRUFY3 in controlling endo-lysosomal dynamics, which contributes to phagocyte activation and immune response regulation.
Collapse
Affiliation(s)
- Rémy Char
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Zhuangzhuang Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Cédric Jacqueline
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Marion Davieau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Maria-Graciela Delgado
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043, Paris, France
| | - Clara Soufflet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Mathieu Fallet
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Raphael Chapuy
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Voahirana Camosseto
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Eva Strock
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Rejane Rua
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Catarina R Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | | | - Beatrice Nal
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR1064, F-44000, Nantes, France
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, PR China
| | - Stéphane Méresse
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France
| | - Evelina Gatti
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, 13288, Marseille, cedex 9, France.
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
47
|
Martinello C, Panza E, Orlacchio A. Hereditary spastic paraplegias proteome: common pathways and pathogenetic mechanisms. Expert Rev Proteomics 2023; 20:171-188. [PMID: 37788157 DOI: 10.1080/14789450.2023.2260952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation. AREAS COVERED This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease. EXPERT OPINION Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.
Collapse
Affiliation(s)
- Chiara Martinello
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- Unità di Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
48
|
Patel S, Bhatt AM, Bhansali P, Setty SRG. Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress. Traffic 2023; 24:254-269. [PMID: 37198709 DOI: 10.1111/tra.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.
Collapse
Affiliation(s)
- Saloni Patel
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anshul Milap Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
49
|
Domingues N, Marques ARA, Calado RDA, Ferreira IS, Ramos C, Ramalho J, Soares MIL, Pereira T, Oliveira L, Vicente JR, Wong LH, Simões ICM, Pinho E Melo TMVD, Peden A, Almeida CG, Futter CE, Puertollano R, Vaz WLC, Vieira OV. Oxidized cholesteryl ester induces exocytosis of dysfunctional lysosomes in lipidotic macrophages. Traffic 2023; 24:284-307. [PMID: 37129279 DOI: 10.1111/tra.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Neuza Domingues
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - André R A Marques
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Rita Diogo Almeida Calado
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Inês S Ferreira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cristiano Ramos
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria I L Soares
- CQC and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Telmo Pereira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Luís Oliveira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José R Vicente
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Louise H Wong
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Inês C M Simões
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Andrew Peden
- Department of Biomedical Science & Center for Membrane Interactions and Dynamics, University of Sheffield, UK
| | - Cláudia Guimas Almeida
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Clare E Futter
- Department of Cell Biology, UCL Institute of Ophthalmology, London, UK
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Winchil L C Vaz
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Otília V Vieira
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
50
|
Fu G, Yan S, Khoo CJ, Chao VC, Liu Z, Mukhi M, Hervas R, Li XD, Ti SC. Integrated regulation of tubulin tyrosination and microtubule stability by human α-tubulin isotypes. Cell Rep 2023; 42:112653. [PMID: 37379209 DOI: 10.1016/j.celrep.2023.112653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
Tubulin isotypes are critical for the functions of cellular microtubules, which exhibit different stability and harbor various post-translational modifications. However, how tubulin isotypes determine the activities of regulators for microtubule stability and modifications remains unknown. Here, we show that human α4A-tubulin, a conserved genetically detyrosinated α-tubulin isotype, is a poor substrate for enzymatic tyrosination. To examine the stability of microtubules reconstituted with defined tubulin compositions, we develop a strategy to site-specifically label recombinant human tubulin for single-molecule TIRF microscopy-based in vitro assays. The incorporation of α4A-tubulin into the microtubule lattice stabilizes the polymers from passive and MCAK-stimulated depolymerization. Further characterization reveals that the compositions of α-tubulin isotypes and tyrosination/detyrosination states allow graded control for the microtubule binding and the depolymerization activities of MCAK. Together, our results uncover the tubulin isotype-dependent enzyme activity for an integrated regulation of α-tubulin tyrosination/detyrosination states and microtubule stability, two well-correlated features of cellular microtubules.
Collapse
Affiliation(s)
- Guoling Fu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Shan Yan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chen Jing Khoo
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Victor C Chao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mayur Mukhi
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Rubén Hervas
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shih-Chieh Ti
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|