1
|
Cadena-Cruz C, De-Avila-Arias M, Costello HM, Hurtado-Gomez L, Martínez-De-La-Rosa W, Macchia-Ceballos G, Rosales-Rada W, Valencia-Villa G, Villalba-Amarís P, Kararoudi MN, Peeples ME, San-Juan-Vergara H. Respiratory syncytial virus fuses with plasma membrane to infect primary cultures of bronchial epithelial cells. Front Microbiol 2025; 16:1498955. [PMID: 40099186 PMCID: PMC11911548 DOI: 10.3389/fmicb.2025.1498955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Background Respiratory syncytial virus (RSV) is a common cause of bronchiolitis in children under the age of five. RSV infection proceeds by fusion of the viral envelope with the target cell membrane, but it is unclear whether fusion occurs with plasma or endosomal membranes. Methods Entry and/or infection was studied in undifferentiated primary cultures of human bronchial epithelial cells. Synchronization of viral entry or infection was achieved by attaching the virus to the plasma membrane at temperatures of 4°C or 22°C. Cells in which entry events had occurred were identified by the enzymatic action of beta-lactamase M (BlaM) fused to the RSV P protein (BlaM-P) carried by rgRSV virions. BlaM cleaves the beta-lactam ring of CCF2 loaded into the cells, disrupting FRET and allowing blue light to be emitted. Green fluorescent protein (GFP) expression, encoded by the rgRSV genome, was used to identify infected cells. Results We found that adsorption of RSV at 4°C favors entry via endocytosis, whereas binding of the virus to the membrane at 22°C favors RSV entry via the plasma membrane. The induction of endocytosis by synchronization at 4°C is, therefore, an artifact. In addition, we found that all drugs that interfered with RSV infection reduced cell membrane deformations such as filopodia and lamellipodia, suggesting a mechanism by which they may interfere with RSV fusion with the cell membrane. Discussion In conclusion, RSV enters the cell by direct fusion of its envelope with the plasma membrane.
Collapse
Affiliation(s)
- Christian Cadena-Cruz
- Departamento de Medicina, Universidad del Norte, Barranquilla, Colombia
- Programa de Bacteriología, Universidad Libre Seccional, Barranquilla, Colombia
| | | | - Heather M Costello
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | | | | | | | - Wendy Rosales-Rada
- Departamento de Medicina, Universidad del Norte, Barranquilla, Colombia
- Grupo de Investigación Avanzada en Biomedicina, Programa de Microbiología, Universidad Libre de Colombia, Barranquilla, Atlántico, Colombia
| | | | | | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Infectious Disease Institute, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
2
|
Padilla-Parra S. Time-resolved single virus tracking and spectral imaging to understand HIV-1 entry and fusion. Biol Cell 2023; 115:e2200082. [PMID: 36440600 DOI: 10.1111/boc.202200082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Single Virus Tracking (SVT) is a key technique to understand how individual viral particles evolve during the infection cycle. In the case of the human immunodeficiency virus (HIV-1), this technology, which can be employed using a simple and affordable wide-field microscope, has proven to be very useful in the first steps of infection, such as the kinetics of the fusion reaction or the point of fusion within live cells. Here, we describe how SVT in combination with other spectral imaging approaches is a powerful technique to illuminate crucial mechanistic aspects of the HIV-1 fusion reaction. We also stress the role of our laboratory in elucidating a few mechanistic aspects of retroviral fusion employing SVT such as: (i) the role of dynamin, (ii) how metabolism modulates membrane composition and cholesterol and its impact in fusion, (iii) the importance of envelope glycoprotein (Env) intra- and inter-molecular dynamics for neutralization, or (iv) the time-resolved fusion stoichiometry in three characteristic steps for the HIV-1 prefusion step. These observations constitute a good testimony of the complexity of retroviral fusion and show the strength of SVT when applied to live cells and combined with quantitative spectral approaches. Finally, we propose several crucial remaining questions around HIV-1 fusion and how the combined use of these technologies, always in live cells, will be able to shed light into the intricacies of arguably the most important step of the HIV-1 infection cycle.
Collapse
Affiliation(s)
- Sergi Padilla-Parra
- Faculty of Life Sciences & Medicine, Department of Infectious Diseases, King's College London, London, UK.,Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
3
|
Baker JR, O'Brien NS, Prichard KL, Robinson PJ, McCluskey A, Russell CC. Dynole 34-2 and Acrylo-Dyn 2-30, Novel Dynamin GTPase Chemical Biology Probes. Methods Mol Biol 2022; 2417:221-238. [PMID: 35099803 DOI: 10.1007/978-1-0716-1916-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This protocol describes the chemical synthesis of the dynamin inhibitors Dynole 34-2 and Acrylo-Dyn 2-30, and their chemical scaffold matched partner inactive compounds. The chosen active and inactive paired compounds represent potent dynamin inhibitors and very closely related dynamin-inactive compounds, with the synthesis of three of the four compounds readily possible via a common intermediate. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas S O'Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Kate L Prichard
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
4
|
Ruiz-Rivera MB, Gómez-Icazbalceta G, Lamoyi E, Huerta L. Host membrane proteins in the HIV-induced membrane fusion: Role in pathogenesis and therapeutic potential of autoantibodies. Curr Opin Pharmacol 2021; 60:241-248. [PMID: 34481334 DOI: 10.1016/j.coph.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/11/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
Host proteins such as receptors, adhesion and signaling molecules, promote virus-cell fusion, virus cell-cell transmission, and formation of multinucleated cells with outstanding properties. These events are implicated in virus dissemination and the induction of pathological effects such as the infection of the gut-associated lymphoid tissue, placenta infection, and neurological complications. Antibodies directed to the host membrane proteins are produced during the natural HIV infection and may contribute significantly to virus inhibition. Antibodies against the HIV receptor have been approved for therapy and others targeting additional host membrane proteins are currently under evaluation. This review emphasizes the relevance of the different pathways of HIV spreading between cells and of antibodies directed to host membrane components in the development of broad-range therapeutics against HIV.
Collapse
Affiliation(s)
- Mirna B Ruiz-Rivera
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Edmundo Lamoyi
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Leonor Huerta
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
5
|
HIV-1 entry: Duels between Env and host antiviral transmembrane proteins on the surface of virus particles. Curr Opin Virol 2021; 50:59-68. [PMID: 34390925 DOI: 10.1016/j.coviro.2021.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) is the causative agent of AIDS. Its entry step is mediated by the envelope glycoprotein (Env). During the entry process, Env vastly changes its conformation. While non-liganded Env tends to have a closed structure, receptor-binding of Env opens its conformation, which leads to virus-cell membrane fusion. Single-molecule fluorescence resonance energy transfer (smFRET) imaging allows observation of these conformational changes on the virion surface. Nascent HIV-1 particles incorporate multiple host transmembrane proteins, some of which inhibit the entry process. The Env structure or its dynamics may determine the effectiveness of these antiviral mechanisms. Here, we review recent findings about the Env conformation changes on virus particles and inhibition of Env activities by virion-incorporated host transmembrane proteins.
Collapse
|
6
|
Tavares LA, Januário YC, daSilva LLP. HIV-1 Hijacking of Host ATPases and GTPases That Control Protein Trafficking. Front Cell Dev Biol 2021; 9:622610. [PMID: 34307340 PMCID: PMC8295591 DOI: 10.3389/fcell.2021.622610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) modifies the host cell environment to ensure efficient and sustained viral replication. Key to these processes is the capacity of the virus to hijack ATPases, GTPases and the associated proteins that control intracellular protein trafficking. The functions of these energy-harnessing enzymes can be seized by HIV-1 to allow the intracellular transport of viral components within the host cell or to change the subcellular distribution of antiviral factors, leading to immune evasion. Here, we summarize how energy-related proteins deviate from their normal functions in host protein trafficking to aid the virus in different phases of its replicative cycle. Recent discoveries regarding the interplay among HIV-1 and host ATPases and GTPases may shed light on potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Lucas A Tavares
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yunan C Januário
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Bernabé-Rubio M, Bosch-Fortea M, Alonso MA, Bernardino de la Serna J. Multi-dimensional and spatiotemporal correlative imaging at the plasma membrane of live cells to determine the continuum nano-to-micro scale lipid adaptation and collective motion. Methods 2021; 193:136-147. [PMID: 34126167 DOI: 10.1016/j.ymeth.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
The primary cilium is a specialized plasma membrane protrusion with important receptors for signalling pathways. In polarized epithelial cells, the primary cilium assembles after the midbody remnant (MBR) encounters the centrosome at the apical surface. The membrane surrounding the MBR, namely remnant-associated membrane patch (RAMP), once situated next to the centrosome, releases some of its lipid components to form a centrosome-associated membrane patch (CAMP) from which the ciliary membrane stems. The RAMP undergoes a spatiotemporal membrane refinement during the formation of the CAMP, which becomes highly enriched in condensed membranes with low lateral mobility. To better understand this process, we have developed a correlative imaging approach that yields quantitative information about the lipid lateral packing, its mobility and collective assembly at the plasma membrane at different spatial scales over time. Our work paves the way towards a quantitative understanding of the spatiotemporal lipid collective assembly at the plasma membrane as a functional determinant in cell biology and its direct correlation with the membrane physicochemical state. These findings allowed us to gain a deeper insight into the mechanisms behind the biogenesis of the ciliary membrane of polarized epithelial cells.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28049, Spain; King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Minerva Bosch-Fortea
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28049, Spain; Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jorge Bernardino de la Serna
- Central Laser Facility, Rutherford Appleton Laboratory, MRC-Research Complex at Harwell, Science and Technology Facilities Council, Harwell OX11 0QX, UK; National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; NIHR Imperial Biomedical Research Centre, London SW7 2AZ, UK.
| |
Collapse
|
8
|
Xu YF, Chen X, Yang Z, Xiao P, Liu CH, Li KS, Yang XZ, Wang YJ, Zhu ZL, Xu ZG, Zhang S, Wang C, Song YC, Zhao WD, Wang CH, Ji ZL, Zhang ZY, Cui M, Sun JP, Yu X. PTP-MEG2 regulates quantal size and fusion pore opening through two distinct structural bases and substrates. EMBO Rep 2021; 22:e52141. [PMID: 33764618 DOI: 10.15252/embr.202052141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 02/02/2023] Open
Abstract
Tyrosine phosphorylation of secretion machinery proteins is a crucial regulatory mechanism for exocytosis. However, the participation of protein tyrosine phosphatases (PTPs) in different exocytosis stages has not been defined. Here we demonstrate that PTP-MEG2 controls multiple steps of catecholamine secretion. Biochemical and crystallographic analyses reveal key residues that govern the interaction between PTP-MEG2 and its substrate, a peptide containing the phosphorylated NSF-pY83 site, specify PTP-MEG2 substrate selectivity, and modulate the fusion of catecholamine-containing vesicles. Unexpectedly, delineation of PTP-MEG2 mutants along with the NSF binding interface reveals that PTP-MEG2 controls the fusion pore opening through NSF independent mechanisms. Utilizing bioinformatics search and biochemical and electrochemical screening approaches, we uncover that PTP-MEG2 regulates the opening and extension of the fusion pore by dephosphorylating the DYNAMIN2-pY125 and MUNC18-1-pY145 sites. Further structural and biochemical analyses confirmed the interaction of PTP-MEG2 with MUNC18-1-pY145 or DYNAMIN2-pY125 through a distinct structural basis compared with that of the NSF-pY83 site. Our studies thus provide mechanistic insights in complex exocytosis processes.
Collapse
Affiliation(s)
- Yun-Fei Xu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China.,Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xu Chen
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Zhao Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Chun-Hua Liu
- Department of Physiology, Shandong First Medical University, Taian, China
| | - Kang-Shuai Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China.,Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Zhen Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yi-Jing Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Zhong-Liang Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhi-Gang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | - Sheng Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - You-Chen Song
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Chang-He Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhong-Yin Zhang
- Departments of Medicinal Chemistry and Molecular Pharmacology and of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Min Cui
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW The utilization of genetically modified T cells to therapeutically target to various previously incurable diseases such, as cancer, has expanded exponentially in recent years. This success now provides the motivating force in applying the same technology for incurable infectious diseases including HIV. The common bottleneck in gene therapy continues to be at the level of gene delivery. Although present approaches adapt the cell to the delivery technology, emerging techniques now focus on leaving cells in their phenotypically resting state. In doing so, engraftment and proliferation potential are retained and in turn increase the efficacy of this approach at a lowered cost. This review will outline the main efforts of gene delivery using viral vectors or nonviral vectors and challenges moving forward not only in resting T cells, but also in other resting immune cells including hematopoietic stem cells. RECENT FINDINGS In focusing on HIV cure efforts using gene therapy, progress on solving the challenges of gene delivery will be described for both viral and nonviral vectors. Advances in the basic virology of lentiviruses have led to the proposal of many next generation lentiviral vector platforms for resting immune cells. Moreover, we will also highlight the progress made in nonviral approaches using nanotechnology as alternatives and/or synergistic technologies to be used alongside lentiviral platforms. SUMMARY The innovative approaches described in these recent studies, particularly those using the natural mechanisms employed by HIV to enhance for example virus entry or virus latency, will enable future optimization of gene delivery platforms and therapeutics, which will importantly, provide a pathway toward translation into clinical practice.
Collapse
|
10
|
Carravilla P, Nieva JL, Eggeling C. Fluorescence Microscopy of the HIV-1 Envelope. Viruses 2020; 12:E348. [PMID: 32245254 PMCID: PMC7150788 DOI: 10.3390/v12030348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection constitutes a major health and social issue worldwide. HIV infects cells by fusing its envelope with the target cell plasma membrane. This process is mediated by the viral Env glycoprotein and depends on the envelope lipid composition. Fluorescent microscopy has been employed to investigate the envelope properties, and the processes of viral assembly and fusion, but the application of this technique to the study of HIV is still limited by a number of factors, such as the small size of HIV virions or the difficulty to label the envelope components. Here, we review fluorescence imaging studies of the envelope lipids and proteins, focusing on labelling strategies and model systems.
Collapse
Affiliation(s)
- Pablo Carravilla
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany;
- Leibniz Institute of Photonic Technology, Albert Einstein Strasse 9, 07743 Jena, Germany
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain;
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, E-48940 Leioa, Spain
| | - José L. Nieva
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain;
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, E-48940 Leioa, Spain
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany;
- Leibniz Institute of Photonic Technology, Albert Einstein Strasse 9, 07743 Jena, Germany
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
11
|
Coomer CA, Carlon-Andres I, Iliopoulou M, Dustin ML, Compeer EB, Compton AA, Padilla-Parra S. Single-cell glycolytic activity regulates membrane tension and HIV-1 fusion. PLoS Pathog 2020; 16:e1008359. [PMID: 32084246 PMCID: PMC7055913 DOI: 10.1371/journal.ppat.1008359] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/04/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
There has been resurgence in determining the role of host metabolism in viral infection yet deciphering how the metabolic state of single cells affects viral entry and fusion remains unknown. Here, we have developed a novel assay multiplexing genetically-encoded biosensors with single virus tracking (SVT) to evaluate the influence of global metabolic processes on the success rate of virus entry in single cells. We found that cells with a lower ATP:ADP ratio prior to virus addition were less permissive to virus fusion and infection. These results indicated a relationship between host metabolic state and the likelihood for virus-cell fusion to occur. SVT revealed that HIV-1 virions were arrested at hemifusion in glycolytically-inactive cells. Interestingly, cells acutely treated with glycolysis inhibitor 2-deoxyglucose (2-DG) become resistant to virus infection and also display less surface membrane cholesterol. Addition of cholesterol in these in glycolytically-inactive cells rescued the virus entry block at hemifusion and enabled completion of HIV-1 fusion. Further investigation with FRET-based membrane tension and membrane order reporters revealed a link between host cell glycolytic activity and host membrane order and tension. Indeed, cells treated with 2-DG possessed lower plasma membrane lipid order and higher tension values, respectively. Our novel imaging approach that combines lifetime imaging (FLIM) and SVT revealed not only changes in plasma membrane tension at the point of viral fusion, but also that HIV is less likely to enter cells at areas of higher membrane tension. We therefore have identified a connection between host cell glycolytic activity and membrane tension that influences HIV-1 fusion in real-time at the single-virus fusion level in live cells.
Collapse
Affiliation(s)
- Charles A. Coomer
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
- University of Kentucky, College of Medicine, Lexington, Kentucky, United States of America
- Division of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, United Kingdom
| | - Irene Carlon-Andres
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
- Division of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, United Kingdom
| | - Maro Iliopoulou
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ewoud B. Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Alex A. Compton
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Sergi Padilla-Parra
- Cellular Imaging Group, Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
- Division of Structural Biology, Wellcome Centre Human Genetics, University of Oxford, United Kingdom
| |
Collapse
|
12
|
Herold N. Overexpression of the Interferon-Inducible Isoform 4 of NCOA7 Dissects the Entry Route of Enveloped Viruses and Demonstrates that HIV Enters Cells via Fusion at the Plasma Membrane. Viruses 2019; 11:v11020121. [PMID: 30700004 PMCID: PMC6410169 DOI: 10.3390/v11020121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 11/16/2022] Open
Abstract
The HIV-1 entry-route is a matter of ongoing controversy, and there is evidence for fusion either at the cell surface or from within endosomes. A recent report demonstrated that isoform 4 of nuclear receptor coactivator 7 (NCOA7iso4) interacts with endolysosomal vacuolar-type H+-ATPase (V-ATPase), increasing lytic activity and thereby severely affecting the entry of vesicular stomatitis virus glycoprotein (VSV-G)-mediated, but not HIV-Env-mediated, entry and infection. As basal expression of NCOA7iso4 is low in the absence of type-1 interferons, its overexpression is a novel tool to study viral entry.
Collapse
Affiliation(s)
- Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden.
- Paediatric Oncology, Theme Women's and Children's Health, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| |
Collapse
|
13
|
A dynamic three-step mechanism drives the HIV-1 pre-fusion reaction. Nat Struct Mol Biol 2018; 25:814-822. [PMID: 30150645 DOI: 10.1038/s41594-018-0113-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
Little is known about the intermolecular dynamics and stoichiometry of the interactions of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) protein with its receptors and co-receptors on the host cell surface. Here we analyze time-resolved HIV-1 Env interactions with T-cell surface glycoprotein CD4 (CD4) and C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) on the surface of cells, by combining multicolor super-resolution localization microscopy (direct stochastic optical reconstruction microscopy) with fluorescence fluctuation spectroscopy imaging. Utilizing the primary isolate JR-FL and laboratory HXB2 strains, we reveal the time-resolved stoichiometry of CD4 and CCR5 or CXCR4 in the pre-fusion complex with HIV-1 Env. The HIV-1 Env pre-fusion dynamics for both R5- and X4-tropic strains consists of a three-step mechanism, which seems to differ in stoichiometry. Analyses with the monoclonal HIV-1-neutralizing antibody b12 indicate that the mechanism of inhibition differs between JR-FL and HXB2 Env. The molecular insights obtained here identify assemblies of HIV-1 Env with receptors and co-receptors as potential novel targets for inhibitor design.
Collapse
|
14
|
Live-Cell Imaging of Early Steps of Single HIV-1 Infection. Viruses 2018; 10:v10050275. [PMID: 29783762 PMCID: PMC5977268 DOI: 10.3390/v10050275] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/10/2023] Open
Abstract
Live-cell imaging of single HIV-1 entry offers a unique opportunity to delineate the spatio-temporal regulation of infection. Novel virus labeling and imaging approaches enable the visualization of key steps of HIV-1 entry leading to nuclear import, integration into the host genome, and viral protein expression. Here, we discuss single virus imaging strategies, focusing on live-cell imaging of single virus fusion and productive uncoating that culminates in HIV-1 infection.
Collapse
|
15
|
Garcia E, Bernardino de la Serna J. Dissecting single-cell molecular spatiotemporal mobility and clustering at focal adhesions in polarised cells by fluorescence fluctuation spectroscopy methods. Methods 2018; 140-141:85-96. [PMID: 29605734 DOI: 10.1016/j.ymeth.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/21/2022] Open
Abstract
Quantitative fluorescence fluctuation spectroscopy from optical microscopy datasets is a very powerful tool to resolve multiple spatiotemporal cellular and subcellular processes at the molecular level. In particular, raster image correlation spectroscopy (RICS) and number and brightness analyses (N&B) yield molecular mobility and clustering dynamic information extracted from real-time cellular processes. This quantitative information can be inferred in a highly flexible and detailed manner, i.e. 1) at the localisation level: from full-frame datasets and multiple regions of interest within; and 2) at the temporal level: not only from full-frame and multiple regions, but also intermediate temporal events. Here we build on previous research in deciphering the molecular dynamics of paxillin, a main component of focal adhesions. Cells use focal adhesions to attach to the extracellular matrix and interact with their local environment. Through focal adhesions and other adhesion structures, cells sense their local environment and respond accordingly; due to this continuous communication, these structures can be highly dynamic depending on the extracellular characteristics. By using a previously well-characterised model like paxillin, we examine the powerful sensitivity and some limitations of RICS and N&B analyses. We show that cells upon contact to different surfaces show differential self-assembly dynamics in terms of molecular diffusion and oligomerisation. In addition, single-cell studies show that these dynamics change gradually following an antero-posterior gradient.
Collapse
Affiliation(s)
- Esther Garcia
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Research Complex at Harwell, Harwell-Oxford, UK
| | - Jorge Bernardino de la Serna
- Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Research Complex at Harwell, Harwell-Oxford, UK; Department of Physics, King's College London, London, UK.
| |
Collapse
|
16
|
Witte R, Andriasyan V, Georgi F, Yakimovich A, Greber UF. Concepts in Light Microscopy of Viruses. Viruses 2018; 10:E202. [PMID: 29670029 PMCID: PMC5923496 DOI: 10.3390/v10040202] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Viruses threaten humans, livestock, and plants, and are difficult to combat. Imaging of viruses by light microscopy is key to uncover the nature of known and emerging viruses in the quest for finding new ways to treat viral disease and deepening the understanding of virus–host interactions. Here, we provide an overview of recent technology for imaging cells and viruses by light microscopy, in particular fluorescence microscopy in static and live-cell modes. The review lays out guidelines for how novel fluorescent chemical probes and proteins can be used in light microscopy to illuminate cells, and how they can be used to study virus infections. We discuss advantages and opportunities of confocal and multi-photon microscopy, selective plane illumination microscopy, and super-resolution microscopy. We emphasize the prevalent concepts in image processing and data analyses, and provide an outlook into label-free digital holographic microscopy for virus research.
Collapse
Affiliation(s)
- Robert Witte
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Fanny Georgi
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Artur Yakimovich
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK.
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
17
|
Fukushima R, Yamamoto J, Ishikawa H, Kinjo M. Two-detector number and brightness analysis reveals spatio-temporal oligomerization of proteins in living cells. Methods 2018; 140-141:161-171. [PMID: 29572069 DOI: 10.1016/j.ymeth.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 01/10/2023] Open
Abstract
Number and brightness analysis (N&B) is a useful tool for the simultaneous visualization of protein oligomers and their localization, with single-molecule sensitivity. N&B determines particle brightness (fluorescence intensity per particle) and maps the spatial distribution of fluorescently labeled proteins by performing statistical analyses of the image series obtained using laser scanning microscopy. The brightness map reveals presence of the oligomers of the targeted protein and their distribution in living cells. However, even when corrections are applied, conventional N&B is affected by afterpulsing, shot noise, thermal noise, dead time, and overestimation of particle brightness when the concentration of the fluorescent particles changes during measurement. The drawbacks of conventional N&B can be circumvented by using two detectors, a novel approach that we henceforth call two-detector number and brightness analysis (TD-N&B), and introducing a linear regression of fluorescence intensity. This statistically eliminates the effect of noise from the detectors, and ensures that the correct particle brightness is obtained. Our method was theoretically assessed by numerical simulations and experimentally validated using a dilution series of purified enhanced green fluorescent protein (EGFP), EGFP tandem oligomers in cell lysate, and EGFP tandem oligomers in living cells. Furthermore, this method was used to characterize the complex process of ligand-induced glucocorticoid receptor dimerization and their translocation to the cell nucleus in live cells. Our method can be applied to other oligomer-forming proteins in cell signaling, or to aggregations of proteins such as those that cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Ryosuke Fukushima
- Laboratory of Molecular Cell Dynamics, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Johtaro Yamamoto
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hideto Ishikawa
- Laboratory of Molecular Cell Dynamics, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
18
|
Foster TL, Pickering S, Neil SJD. Inhibiting the Ins and Outs of HIV Replication: Cell-Intrinsic Antiretroviral Restrictions at the Plasma Membrane. Front Immunol 2018; 8:1853. [PMID: 29354117 PMCID: PMC5758531 DOI: 10.3389/fimmu.2017.01853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Like all viruses, human immunodeficiency viruses (HIVs) and their primate lentivirus relatives must enter cells in order to replicate and, once produced, new virions need to exit to spread to new targets. These processes require the virus to cross the plasma membrane of the cell twice: once via fusion mediated by the envelope glycoprotein to deliver the viral core into the cytosol; and secondly by ESCRT-mediated scission of budding virions during release. This physical barrier thus presents a perfect location for host antiviral restrictions that target enveloped viruses in general. In this review we will examine the current understanding of innate host antiviral defences that inhibit these essential replicative steps of primate lentiviruses associated with the plasma membrane, the mechanism by which these viruses have adapted to evade such defences, and the role that this virus/host battleground plays in the transmission and pathogenesis of HIV/AIDS.
Collapse
Affiliation(s)
- Toshana L Foster
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Suzanne Pickering
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Nolan R, Iliopoulou M, Alvarez L, Padilla-Parra S. Detecting protein aggregation and interaction in live cells: A guide to number and brightness. Methods 2017; 140-141:172-177. [PMID: 29221925 DOI: 10.1016/j.ymeth.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/31/2022] Open
Abstract
The possibility to detect and quantify protein-protein interactions with good spatial and temporal resolutions in live cells is crucial in biology. Number and brightness is a powerful approach to detect both protein aggregation/desegregation dynamics and stoichiometry in live cells. Importantly, this technique can be applied in commercial set ups: both camera based and laser scanning microscopes. It provides pixel-by-pixel information on protein oligomeric states. If performed with two colours, the technique can retrieve the stoichiometry of the reaction under study. In this review, we discuss the strengths and weaknesses of the technique, stressing which are the correct acquisition parameters for a given microscope, the main challenges in analysis, and the limitations of the technique.
Collapse
Affiliation(s)
- Rory Nolan
- Wellcome Centre Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Maro Iliopoulou
- Wellcome Centre Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Luis Alvarez
- Wellcome Centre Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Sergi Padilla-Parra
- Wellcome Centre Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.
| |
Collapse
|
20
|
Jakobsdottir GM, Iliopoulou M, Nolan R, Alvarez L, Compton AA, Padilla-Parra S. On the Whereabouts of HIV-1 Cellular Entry and Its Fusion Ports. Trends Mol Med 2017; 23:932-944. [PMID: 28899754 DOI: 10.1016/j.molmed.2017.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 01/06/2023]
Abstract
HIV-1 disseminates to diverse tissues through different cell types and establishes long-lived reservoirs. The exact cellular compartment where fusion occurs differs depending on the cell type and mode of viral transmission. This implies that HIV-1 may modulate a number of common host cell factors in different cell types. In this review, we evaluate recent advances on the host cell factors that play an important role in HIV-1 entry and fusion. New insights from restriction factors inhibiting virus-cell fusion in vitro may contribute to the development of future therapeutic interventions. Collectively, novel findings underline the need for potent, host-directed therapies that disrupt the earliest stages of the virus life cycle and preclude the emergence of resistant viral variants.
Collapse
Affiliation(s)
- G Maria Jakobsdottir
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Maro Iliopoulou
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Rory Nolan
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Luis Alvarez
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK
| | - Alex A Compton
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Sergi Padilla-Parra
- Wellcome Trust Centre for Human Genetics, Cellular Imaging, University of Oxford, Oxford, UK; Division of Structural Biology, University of Oxford,The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.
| |
Collapse
|
21
|
Aggarwal A, Hitchen TL, Ootes L, McAllery S, Wong A, Nguyen K, McCluskey A, Robinson PJ, Turville SG. HIV infection is influenced by dynamin at 3 independent points in the viral life cycle. Traffic 2017; 18:392-410. [PMID: 28321960 DOI: 10.1111/tra.12481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/19/2022]
Abstract
CD4 T cells are important cellular targets for HIV-1, yet the primary site of HIV fusion remains unresolved. Candidate fusion sites are either the plasma membrane or from within endosomes. One area of investigation compounding the controversy of this field, is the role of the protein dynamin in the HIV life cycle. To understand the role of dynamin in primary CD4 T cells we combined dynamin inhibition with a series of complementary assays based on single particle tracking, HIV fusion, detection of HIV DNA products and active viral transcription. We identify 3 levels of dynamin influence on the HIV life cycle. Firstly, dynamin influences productive infection by preventing cell cycle progression. Secondly, dynamin influences endocytosis rates and increases the probability of endosomal fusion. Finally, we provide evidence in resting CD4 T cells that dynamin directly regulates the HIV fusion reaction at the plasma membrane. We confirm this latter observation using 2 divergent dynamin modulating compounds, one that enhances dynamin conformations associated with dynamin ring formation (ryngo-1-23) and the other that preferentially targets dynamin conformations that appear in helices (dyngo-4a). This in-depth understanding of dynamin's roles in HIV infection clarifies recent controversies and furthermore provides evidence for dynamin regulation specifically in the HIV fusion reaction.
Collapse
Affiliation(s)
- Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Tina L Hitchen
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Lars Ootes
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Samantha McAllery
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Andrew Wong
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Khanh Nguyen
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| | - Adam McCluskey
- Centre for Chemical Biology, Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Phillip J Robinson
- Children's Medical Research Institute, The University of Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, New South Wales, Australia
| |
Collapse
|