1
|
Yokota M. Analysis of dopaminergic neuron-specific mitochondrial morphology and function using tyrosine hydroxylase reporter iPSC lines. Anat Sci Int 2025; 100:155-162. [PMID: 39612053 DOI: 10.1007/s12565-024-00816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Changes in mitochondrial function and morphology contribute to the development of many neurological diseases. Parkinson's disease is one of the neurodegenerative diseases suspected to be associated with defects in mitochondrial function and quality control. The loss of dopaminergic neurons in the substantia nigra pars compacta is a well-known pathological feature of Parkinson's disease. It is important for elucidating the pathogenesis of Parkinson's disease to analyze mitochondrial function and morphology specific to dopaminergic neurons using live-cell imaging or electron microscopy. However, the cells differentiated into dopaminergic neurons from induced pluripotent stem cells generally comprise heterogeneous populations. We generated tyrosine hydroxylase (TH) reporter iPSC lines to distinguish dopaminergic neurons from other cells for live-cell imaging and electron microscopy. This review summarizes previous studies utilizing the TH reporter iPSC lines and discusses the importance of studying mitochondria specific to dopaminergic neurons. Additionally, it provides overviews of recent studies reporting changes in endoplasmic reticulum-mitochondrial contact sites in Parkinson's disease models.
Collapse
Affiliation(s)
- Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
2
|
Gomez Ramos B, Ohnmacht J, de Lange N, Valceschini E, Ginolhac A, Catillon M, Ferrante D, Rakovic A, Halder R, Massart F, Arena G, Antony P, Bolognin S, Klein C, Krause R, Schulz MH, Sauter T, Krüger R, Sinkkonen L. Multiomics analysis identifies novel facilitators of human dopaminergic neuron differentiation. EMBO Rep 2024; 25:254-285. [PMID: 38177910 PMCID: PMC10897179 DOI: 10.1038/s44319-023-00024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson's disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) human iPSC reporter line, we here generate time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicts novel regulators of mDAN differentiation and super-enhancers are used to identify key TFs. We find LBX1, NHLH1 and NR2F1/2 to promote mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. A more detailed investigation of TF targets reveals that NHLH1 promotes the induction of neuronal miR-124, LBX1 regulates cholesterol biosynthesis, and NR2F1/2 controls neuronal activity.
Collapse
Affiliation(s)
- Borja Gomez Ramos
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Jochen Ohnmacht
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Nikola de Lange
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Elena Valceschini
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Marie Catillon
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Daniele Ferrante
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Aleksandar Rakovic
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - François Massart
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23538, Lübeck, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt, Germany
- German Centre for Cardiovascular Research, Partner site Rhein-Main, 60590, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University, Frankfurt am Main, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), L-1210, Luxembourg, Luxembourg
- Luxembourg Institute of Health (LIH), L-1445, Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L-4362, Belvaux, Luxembourg.
| |
Collapse
|
3
|
Cardo LF, Monzón-Sandoval J, Li Z, Webber C, Li M. Single-Cell Transcriptomics and In Vitro Lineage Tracing Reveals Differential Susceptibility of Human iPSC-Derived Midbrain Dopaminergic Neurons in a Cellular Model of Parkinson's Disease. Cells 2023; 12:2860. [PMID: 38132179 PMCID: PMC10741976 DOI: 10.3390/cells12242860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Advances in stem cell technologies open up new avenues for modelling development and diseases. The success of these pursuits, however, relies on the use of cells most relevant to those targeted by the disease of interest, for example, midbrain dopaminergic neurons for Parkinson's disease. In the present study, we report the generation of a human induced pluripotent stem cell (iPSC) line capable of purifying and tracing nascent midbrain dopaminergic progenitors and their differentiated progeny via the expression of a Blue Fluorescent Protein (BFP). This was achieved by CRISPR/Cas9-assisted knock-in of BFP and Cre into the safe harbour locus AAVS1 and an early midbrain dopaminergic lineage marker gene LMX1A, respectively. Immunocytochemical analysis and single-cell RNA sequencing of iPSC-derived neural cultures confirm developmental recapitulation of the human fetal midbrain and high-quality midbrain cells. By modelling Parkinson's disease-related drug toxicity using 1-Methyl-4-phenylpyridinium (MPP+), we showed a preferential reduction of BFP+ cells, a finding demonstrated independently by cell death assays and single-cell transcriptomic analysis of MPP+ treated neural cultures. Together, these results highlight the importance of disease-relevant cell types in stem cell modelling.
Collapse
Affiliation(s)
- Lucia F. Cardo
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Jimena Monzón-Sandoval
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Zongze Li
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Caleb Webber
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Meng Li
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
4
|
Moon H, Kim B, Kwon I, Oh Y. Challenges involved in cell therapy for Parkinson's disease using human pluripotent stem cells. Front Cell Dev Biol 2023; 11:1288168. [PMID: 37886394 PMCID: PMC10598731 DOI: 10.3389/fcell.2023.1288168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Neurons derived from human pluripotent stem cells (hPSCs) provide a valuable tool for studying human neural development and neurodegenerative diseases. The investigation of hPSC-based cell therapy, involving the differentiation of hPSCs into target cells and their transplantation into affected regions, is of particular interest. One neurodegenerative disease that is being extensively studied for hPSC-based cell therapy is Parkinson's disease (PD), the second most common among humans. Various research groups are focused on differentiating hPSCs into ventral midbrain dopaminergic (vmDA) progenitors, which have the potential to further differentiate into neurons closely resembling DA neurons found in the substantia nigra pars compacta (SNpc) after transplantation, providing a promising treatment option for PD. In vivo experiments, where hPSC-derived vmDA progenitor cells were transplanted into the striatum or SNpc of animal PD models, the transplanted cells demonstrated stable engraftment and resulted in behavioral recovery in the transplanted animals. Several differentiation protocols have been developed for this specific cell therapy. However, the lack of a reliable live-cell lineage identification method presents a significant obstacle in confirming the precise lineage of the differentiated cells intended for transplantation, as well as identifying potential contamination by non-vmDA progenitors. This deficiency increases the risk of adverse effects such as dyskinesias and tumorigenicity, highlighting the importance of addressing this issue before proceeding with transplantation. Ensuring the differentiation of hPSCs into the target cell lineage is a crucial step to guarantee precise therapeutic effects in cell therapy. To underscore the significance of lineage identification, this review focuses on the differentiation protocols of hPSC-derived vmDA progenitors developed by various research groups for PD treatment. Moreover, in vivo experimental results following transplantation were carefully analyzed. The encouraging outcomes from these experiments demonstrate the potential efficacy and safety of hPSC-derived vmDA progenitors for PD cell therapy. Additionally, the results of clinical trials involving the use of hPSC-derived vmDA progenitors for PD treatment were briefly reviewed, shedding light on the progress and challenges faced in translating this promising therapy into clinical practice.
Collapse
Affiliation(s)
- Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bokwang Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Inbeom Kwon
- Department of Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Yoshimatsu S, Okahara J, Yoshie J, Igarashi Y, Nakajima R, Sanosaka T, Qian E, Sato T, Kobayashi H, Morimoto S, Kishi N, Pillis DM, Malik P, Noce T, Okano H. Generation of a tyrosine hydroxylase-2A-Cre knockin non-human primate model by homology-directed-repair-biased CRISPR genome editing. CELL REPORTS METHODS 2023; 3:100590. [PMID: 37714158 PMCID: PMC10545943 DOI: 10.1016/j.crmeth.2023.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
Non-human primates (NHPs) are the closest animal model to humans; thus, gene engineering technology in these species holds great promise for the elucidation of higher brain functions and human disease models. Knockin (KI) gene targeting is a versatile approach to modify gene(s) of interest; however, it generally suffers from the low efficiency of homology-directed repair (HDR) in mammalian cells, especially in non-expressed gene loci. In the current study, we generated a tyrosine hydroxylase (TH)-2A-Cre KI model of the common marmoset monkey (marmoset; Callithrix jacchus) using an HDR-biased CRISPR-Cas9 genome editing approach using Cas9-DN1S and RAD51. This model should enable labeling and modification of a specific neuronal lineage using the Cre-loxP system. Collectively, the current study paves the way for versatile gene engineering in NHPs, which may be a significant step toward further biomedical and preclinical applications.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Central Institute for Experimental Animals, Kawasaki City, Kanagawa 210-0821, Japan.
| | - Junko Yoshie
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Yoko Igarashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Ryusuke Nakajima
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Emi Qian
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tsukika Sato
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Hiroya Kobayashi
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Devin M Pillis
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute (CBDI), Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; Division of Hematology, CBDI, CCHMC, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan.
| |
Collapse
|
6
|
Cui J, Carey J, Reijo Pera RA. Identification of DOT1L inhibitor in a screen for factors that promote dopaminergic neuron survival. Front Aging Neurosci 2022; 14:1026468. [PMID: 36578445 PMCID: PMC9791259 DOI: 10.3389/fnagi.2022.1026468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra region of the midbrain. Diagnostic criteria for PD require that at least two of three motor signs are observed: tremor, rigidity, and/or bradykinesia. The most common and effective treatment for PD is Levodopa (L-DOPA) which is readily converted to DA and has been the primary treatment since the 1960's. Dopamine agonists have also been developed but are less effective than L-DOPA. Although the lack of a model system to study PD has hampered efforts to identify treatments, diverse screening strategies have been proposed for identification of new pharmaceutical candidates. Here, we describe a pilot screen to identify candidate molecules from a bioactive compound library, that might increase formation, maintenance and/or survival of DA neurons in vitro. The screen used a previously characterized reporter construct consisting of the luciferase gene inserted downstream of the endogenous tyrosine hydroxylase (TH) gene and neurons differentiated from human pluripotent stem cells for 18 days. The reporter mimics expression of TH and includes a secreted luciferase whose activity can be measured non-invasively over multiple timepoints. Screening of the bioactive compound library resulted in the identification of a single molecule, SGC0946, that is an inhibitor of DOT1L (Disruptor Of Telomeric silencing 1-Like) which encodes a widely-conserved histone H3K79 methyltransferase that is able to both activate and repress gene transcription. Our results indicate that SGC0946 increased reporter luciferase activity with a single treatment for 48-h post-plating being equivalent to continuous treatment. Moreover, data suggested that the total number of neurons differentiated in the assays was comparable from experiment to experiment under different SGC0946 treatments over time. In contrast, data suggested that the survival and/or maintenance of DA neurons might be specifically enhanced by SGC0946 treatment. These results document the feasibility of a set of tools for further exploration of small molecules that may impact DA neuron differentiation, maintenance and/or survival. Results provide evidence in support of other reports that indicate inhibition of DOT1L may play an important role in maintenance and survival of neural progenitor cells (NPCs) and their lineage-specific differentiation.
Collapse
Affiliation(s)
- Jun Cui
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Joseph Carey
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Renee A. Reijo Pera
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
- McLaughlin Research Institute, Great Falls, MT, United States
| |
Collapse
|
7
|
Sart S, Liu C, Zeng EZ, Xu C, Li Y. Downstream bioprocessing of human pluripotent stem cell-derived therapeutics. Eng Life Sci 2022; 22:667-680. [PMID: 36348655 PMCID: PMC9635003 DOI: 10.1002/elsc.202100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
With the advancement in lineage-specific differentiation from human pluripotent stem cells (hPSCs), downstream cell separation has now become a critical step to produce hPSC-derived products. Since differentiation procedures usually result in a heterogeneous cell population, cell separation needs to be performed either to enrich the desired cell population or remove the undesired cell population. This article summarizes recent advances in separation processes for hPSC-derived cells, including the standard separation technologies, such as magnetic-activated cell sorting, as well as the novel separation strategies, such as those based on adhesion strength and metabolic flux. Specifically, the downstream bioprocessing flow and the identification of surface markers for various cell lineages are discussed. While challenges remain for large-scale downstream bioprocessing of hPSC-derived cells, the rational quality-by-design approach should be implemented to enhance the understanding of the relationship between process and the product and to ensure the safety of the produced cells.
Collapse
Affiliation(s)
- Sebastien Sart
- Laboratory of Physical Microfluidics and BioengineeringDepartment of Genome and GeneticsInstitut PasteurParisFrance
| | - Chang Liu
- Department of Chemical and Biomedical EngineeringFAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFLUSA
| | - Eric Z. Zeng
- Department of Chemical and Biomedical EngineeringFAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFLUSA
| | - Chunhui Xu
- Department of PediatricsEmory University School of Medicine and Children's Healthcare of AtlantaAtlantaGAUSA
| | - Yan Li
- Department of Chemical and Biomedical EngineeringFAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFLUSA
| |
Collapse
|
8
|
Rakovic A, Voß D, Vulinovic F, Meier B, Hellberg AK, Nau C, Klein C, Leipold E. Electrophysiological Properties of Induced Pluripotent Stem Cell-Derived Midbrain Dopaminergic Neurons Correlate With Expression of Tyrosine Hydroxylase. Front Cell Neurosci 2022; 16:817198. [PMID: 35401116 PMCID: PMC8983830 DOI: 10.3389/fncel.2022.817198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-based generation of tyrosine hydroxylase-positive (TH+) dopaminergic neurons (DNs) is a powerful method for creating patient-specific in vitro models to elucidate mechanisms underlying Parkinson’s disease (PD) at the cellular and molecular level and to perform drug screening. However, currently available differentiation paradigms result in highly heterogeneous cell populations, often yielding a disappointing fraction (<50%) of the PD-relevant TH+ DNs. To facilitate the targeted analysis of this cell population and to characterize their electrophysiological properties, we employed CRISPR/Cas9 technology and generated an mCherry-based human TH reporter iPSC line. Subsequently, reporter iPSCs were subjected to dopaminergic differentiation using either a “floor plate protocol” generating DNs directly from iPSCs or an alternative method involving iPSC-derived neuronal precursors (NPC-derived DNs). To identify the strategy with the highest conversion efficiency to mature neurons, both cultures were examined for a period of 8 weeks after triggering neuronal differentiation by means of immunochemistry and single-cell electrophysiology. We confirmed that mCherry expression correlated with the expression of endogenous TH and that genetic editing did neither affect the differentiation process nor the endogenous TH expression in iPSC- and NPC-derived DNs. Although both cultures yielded identical proportions of TH+ cells (≈30%), whole-cell patch-clamp experiments revealed that iPSC-derived DNs gave rise to larger currents mediated by voltage-gated sodium and potassium channels, showed a higher degree of synaptic activity, and fired trains of mature spontaneous action potentials more frequently compared to NPC-derived DNs already after 2 weeks in differentiation. Moreover, spontaneous action potential firing was more frequently detected in TH+ neurons compared to the TH– cells, providing direct evidence that these two neuronal subpopulations exhibit different intrinsic electrophysiological properties. In summary, the data reveal substantial differences in the electrophysiological properties of iPSC-derived TH+ and TH– neuronal cell populations and that the “floor plate protocol” is particularly efficient in generating electrophysiologically mature TH+ DNs, which are the most vulnerable neuronal subtype in PD.
Collapse
Affiliation(s)
| | - Dorothea Voß
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Britta Meier
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ann-Katrin Hellberg
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Nau
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- *Correspondence: Enrico Leipold,
| |
Collapse
|
9
|
Fernandes HJR, Patikas N, Foskolou S, Field SF, Park JE, Byrne ML, Bassett AR, Metzakopian E. Single-Cell Transcriptomics of Parkinson's Disease Human In Vitro Models Reveals Dopamine Neuron-Specific Stress Responses. Cell Rep 2021; 33:108263. [PMID: 33053338 DOI: 10.1016/j.celrep.2020.108263] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The advent of induced pluripotent stem cell (iPSC)-derived neurons has revolutionized Parkinson's disease (PD) research, but single-cell transcriptomic analysis suggests unresolved cellular heterogeneity within these models. Here, we perform the largest single-cell transcriptomic study of human iPSC-derived dopaminergic neurons to elucidate gene expression dynamics in response to cytotoxic and genetic stressors. We identify multiple neuronal subtypes with transcriptionally distinct profiles and differential sensitivity to stress, highlighting cellular heterogeneity in dopamine in vitro models. We validate this disease model by showing robust expression of PD GWAS genes and overlap with postmortem adult substantia nigra neurons. Importantly, stress signatures are ameliorated using felodipine, an FDA-approved drug. Using isogenic SNCA-A53T mutants, we find perturbations in glycolysis, cholesterol metabolism, synaptic signaling, and ubiquitin-proteasomal degradation. Overall, our study reveals cell type-specific perturbations in human dopamine neurons, which will further our understanding of PD and have implications for cell replacement therapies.
Collapse
Affiliation(s)
- Hugo J R Fernandes
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Stefanie Foskolou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sarah F Field
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Meg L Byrne
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Andrew R Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
10
|
Laser Capture Microdissection of Single Neurons with Morphological Visualization Using Fluorescent Proteins Fused to Transmembrane Proteins. eNeuro 2021; 8:ENEURO.0275-20.2021. [PMID: 34400471 PMCID: PMC8422851 DOI: 10.1523/eneuro.0275-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Gene expression analysis in individual neuronal types helps in understanding brain function. Genetic methods expressing fluorescent proteins are widely used to label specific neuronal populations. However, because cell type specificity of genetic labeling is often limited, it is advantageous to combine genetic labeling with additional methods to select specific cell/neuronal types. Laser capture microdissection is one of such techniques with which one can select a specific cell/neuronal population based on morphological observation. However, a major issue is the disappearance of fluorescence signals during the tissue processing that is required for high-quality sample preparation. Here, we developed a simple, novel method in which fluorescence signals are preserved. We use genetic labeling with fluorescence proteins fused to transmembrane proteins, which shows highly stable fluorescence retention and allows for the selection of fluorescent neurons/cells based on morphology. Using this method in mice, we laser-captured neuronal somata and successfully isolated RNA. We determined that ∼100 cells are sufficient to obtain a sample required for downstream applications such as quantitative PCR. Capability to specifically microdissect targeted neurons was demonstrated by an ∼10-fold increase in mRNA for fluorescent proteins in visually identified neurons expressing the fluorescent proteins compared with neighboring cells not expressing it. We applied this method to validate virus-mediated single-cell knockout, which showed up to 92% reduction in knocked-out gene RNA compared with wild-type neurons. This method using fluorescent proteins fused to transmembrane proteins provides a new, simple solution to perform gene expression analysis in sparsely labeled neuronal/cellular populations, which is especially advantageous when genetic labeling has limited specificity.
Collapse
|
11
|
Yokota M, Kakuta S, Shiga T, Ishikawa KI, Okano H, Hattori N, Akamatsu W, Koike M. Establishment of an in vitro model for analyzing mitochondrial ultrastructure in PRKN-mutated patient iPSC-derived dopaminergic neurons. Mol Brain 2021; 14:58. [PMID: 33757554 PMCID: PMC7986497 DOI: 10.1186/s13041-021-00771-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/15/2021] [Indexed: 01/11/2023] Open
Abstract
Mitochondrial structural changes are associated with the regulation of mitochondrial function, apoptosis, and neurodegenerative diseases. PRKN is known to be involved with various mechanisms of mitochondrial quality control including mitochondrial structural changes. Parkinson's disease (PD) with PRKN mutations is characterized by the preferential degeneration of dopaminergic neurons in the substantia nigra pars compacta, which has been suggested to result from the accumulation of damaged mitochondria. However, ultrastructural changes of mitochondria specifically in dopaminergic neurons derived from iPSC have rarely been analyzed. The main reason for this would be that the dopaminergic neurons cannot be distinguished directly among a mixture of iPSC-derived differentiated cells under electron microscopy. To selectively label dopaminergic neurons and analyze mitochondrial morphology at the ultrastructural level, we generated control and PRKN-mutated patient tyrosine hydroxylase reporter (TH-GFP) induced pluripotent stem cell (iPSC) lines. Correlative light-electron microscopy analysis and live cell imaging of GFP-expressing dopaminergic neurons indicated that iPSC-derived dopaminergic neurons had smaller and less functional mitochondria than those in non-dopaminergic neurons. Furthermore, the formation of spheroid-shaped mitochondria, which was induced in control dopaminergic neurons by a mitochondrial uncoupler, was inhibited in the PRKN-mutated dopaminergic neurons. These results indicate that our established TH-GFP iPSC lines are useful for characterizing mitochondrial morphology, such as spheroid-shaped mitochondria, in dopaminergic neurons among a mixture of various cell types. Our in vitro model would provide insights into the vulnerability of dopaminergic neurons and the processes leading to the preferential loss of dopaminergic neurons in patients with PRKN mutations.
Collapse
Affiliation(s)
- Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takahiro Shiga
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Kei-Ichi Ishikawa
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Department of Neurology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo, Tokyo, 113-8421, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo, Tokyo, 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo, Tokyo, 113-8421, Japan.
| |
Collapse
|
12
|
Pons-Espinal M, Blasco-Agell L, Consiglio A. Dissecting the non-neuronal cell contribution to Parkinson's disease pathogenesis using induced pluripotent stem cells. Cell Mol Life Sci 2021; 78:2081-2094. [PMID: 33210214 PMCID: PMC7966189 DOI: 10.1007/s00018-020-03700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 10/10/2020] [Accepted: 10/31/2020] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is an incurable age-linked neurodegenerative disease with characteristic movement impairments that are caused by the progressive loss of dopamine-containing neurons (DAn) within the substantia nigra pars compacta. It has been suggested that misfolded protein aggregates together with neuroinflammation and glial reactivity, may impact nerve cell function, leading to neurodegeneration and diseases, such as PD. However, not many studies have been able to examine the role of human glial cells in the pathogenesis of PD. With the advent of induced pluripotent stem cell (iPSC) technology, it is now possible to reprogram human somatic cells to pluripotency and to generate viable human patient-specific DA neurons and glial cells, providing a tremendous opportunity for dissecting cellular and molecular pathological mechanisms occurring at early stages of PD. This reviews will report on recent work using human iPSC and 3D brain organoid models showing that iPSC technology can be used to recapitulate PD-relevant disease-associated phenotypes, including protein aggregation, cell death or loss of neurite complexity and deficient autophagic vacuoles clearance and focus on the recent co-culture systems that are revealing new insights into the complex interactions that occur between different brain cell types during neurodegeneration. Consequently, such advances are the key to improve our understanding of PD pathology and generate potential targets for new therapies aimed at curing PD patients.
Collapse
Affiliation(s)
- Meritxell Pons-Espinal
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain.
| | - Lucas Blasco-Agell
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain.
- Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato, 15, 25121, Brescia, BS, Italy.
| |
Collapse
|
13
|
Snowden SG, Fernandes HJ, Kent J, Foskolou S, Tate P, Field SF, Metzakopian E, Koulman A. Development and Application of High-Throughput Single Cell Lipid Profiling: A Study of SNCA-A53T Human Dopamine Neurons. iScience 2020; 23:101703. [PMID: 33196026 PMCID: PMC7644967 DOI: 10.1016/j.isci.2020.101703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 02/02/2023] Open
Abstract
Advances in single cell genomics and transcriptomics have shown that at tissue level there is complex cellular heterogeneity. To understand the effect of this inter-cell heterogeneity on metabolism it is essential to develop a single cell lipid profiling approach that allows the measurement of lipids in large numbers of single cells from a population. This will provide a functional readout of cell activity and membrane structure. Using liquid extraction surface analysis coupled with high-resolution mass spectrometry we have developed a high-throughput method for untargeted single cell lipid profiling. This technological advance highlighted the importance of cellular heterogeneity in the functional metabolism of individual human dopamine neurons, suggesting that A53T alpha-synuclein (SNCA) mutant neurons have impaired membrane function. These results demonstrate that this single cell lipid profiling platform can provide robust data that will expand the frontiers in biomedical research.
Collapse
Affiliation(s)
- Stuart G. Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK,Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey Tw20 0EX, UK
| | - Hugo J.R. Fernandes
- UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Josh Kent
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK,UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Stefanie Foskolou
- UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Peri Tate
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey Tw20 0EX, UK
| | - Sarah F. Field
- UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, University of Cambridge, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK,Corresponding author
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK,Corresponding author
| |
Collapse
|
14
|
Überbacher C, Obergasteiger J, Volta M, Venezia S, Müller S, Pesce I, Pizzi S, Lamonaca G, Picard A, Cattelan G, Malpeli G, Zoli M, Beccano-Kelly D, Flynn R, Wade-Martins R, Pramstaller PP, Hicks AA, Cowley SA, Corti C. Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons. Stem Cell Res 2019; 41:101656. [PMID: 31733438 PMCID: PMC7322529 DOI: 10.1016/j.scr.2019.101656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have become indispensable for disease modelling. They are an important resource to access patient cells harbouring disease-causing mutations. Derivation of midbrain dopaminergic (DAergic) neurons from hiPSCs of PD patients represents the only option to model physiological processes in a cell type that is not otherwise accessible from human patients. However, differentiation does not produce a homogenous population of DA neurons and contaminant cell types may interfere with the readout of the in vitro system. Here, we use CRISPR/Cas9 to generate novel knock-in reporter lines for DA neurons, engineered with an endogenous fluorescent tyrosine hydroxylase - enhanced green fluorescent protein (TH-eGFP) reporter. We present a reproducible knock-in strategy combined with a highly specific homologous directed repair (HDR) screening approach using digital droplet PCR (ddPCR). The knock-in cell lines that we created show a functioning fluorescent reporter system for DA neurons that are identifiable by flow cytometry.
Collapse
Affiliation(s)
- Christa Überbacher
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy; Department of Biomedical, Metabolic and Neural Sciences, Università di Modena e Reggio Emilia, Modena, Italy.
| | - Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Serena Venezia
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Stefan Müller
- Institute of Human Genetics, Munich University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Isabella Pesce
- CIBIO - Centre for Integrative Biology, Università degli Studi di Trento, Trento, Italy
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giulia Lamonaca
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giada Cattelan
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giorgio Malpeli
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, Section of Surgery, University of Verona, Verona, Italy; Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Università di Modena e Reggio Emilia, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Dayne Beccano-Kelly
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Rowan Flynn
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Sally A Cowley
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK; James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
15
|
Isolation of LMX1a Ventral Midbrain Progenitors Improves the Safety and Predictability of Human Pluripotent Stem Cell-Derived Neural Transplants in Parkinsonian Disease. J Neurosci 2019; 39:9521-9531. [PMID: 31641054 DOI: 10.1523/jneurosci.1160-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/29/2019] [Accepted: 10/13/2019] [Indexed: 12/23/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are a promising resource for the replacement of degenerated ventral midbrain dopaminergic (vmDA) neurons in Parkinson's disease. Despite recent advances in protocols for the in vitro generation of vmDA neurons, the asynchronous and heterogeneous nature of the differentiations results in transplants of surprisingly low vmDA neuron purity. As the field advances toward the clinic, it will be optimal, if not essential, to remove poorly specified and potentially proliferative cells from donor preparations to ensure safety and predictable efficacy. Here, we use two novel hPSC knock-in reporter lines expressing GFP under the LMX1A and PITX3 promoters, to selectively isolate vm progenitors and DA precursors, respectively. For each cell line, unsorted, GFP+, and GFP- cells were transplanted into male or female Parkinsonian rodents. Only rats receiving unsorted cells, LMX1A-eGFP+, or PITX3-eGFP- cell grafts showed improved motor function over 6 months. Postmortem analysis revealed small grafts from PITX3-eGFP+ cells, suggesting that these DA precursors were not compatible with cell survival and integration. In contrast, LMX1A-eGFP+ grafts were highly enriched for vmDA neurons, and importantly excluded expansive proliferative populations and serotonergic neurons. These LMX1A-eGFP+ progenitor grafts accelerated behavioral recovery and innervated developmentally appropriate forebrain targets, whereas LMX1A-eGFP- cell grafts failed to restore motor deficits, supported by increased fiber growth into nondopaminergic target nuclei. This is the first study to use an hPSC-derived reporter line to purify vm progenitors, resulting in improved safety, predictability of the graft composition, and enhanced motor function.SIGNIFICANCE STATEMENT Clinical trials have shown functional integration of transplanted fetal-derived dopamine progenitors in Parkinson's disease. Human pluripotent stem cell (hPSC)-derived midbrain progenitors are now being tested as an alternative cell source; however, despite current differentiation protocols generating >80% correctly specified cells for implantation, resultant grafts contain a small fraction of dopamine neurons. Cell-sorting approaches, to select for correctly patterned cells before implantation, are being explored yet have been suboptimal to date. This study provides the first evidence of using 2 hPSC reporter lines (LMX1A-GFP and PITX3-GFP) to isolate correctly specified cells for transplantation. We show LMX1A-GFP+, but not PITX3-GFP+, cell grafts are more predictable, with smaller grafts, enriched in dopamine neurons, showing appropriate integration and accelerated functional recovery in Parkinsonian rats.
Collapse
|
16
|
Calatayud C, Carola G, Fernández-Carasa I, Valtorta M, Jiménez-Delgado S, Díaz M, Soriano-Fradera J, Cappelletti G, García-Sancho J, Raya Á, Consiglio A. CRISPR/Cas9-mediated generation of a tyrosine hydroxylase reporter iPSC line for live imaging and isolation of dopaminergic neurons. Sci Rep 2019; 9:6811. [PMID: 31048719 PMCID: PMC6497635 DOI: 10.1038/s41598-019-43080-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/10/2019] [Indexed: 01/03/2023] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) are a powerful tool to investigate the molecular mechanisms underlying Parkinson’s disease (PD), and might provide novel platforms for systematic drug screening. Several strategies have been developed to generate iPSC-derived tyrosine hydroxylase (TH)-positive dopaminergic neurons (DAn), the clinically relevant cell type in PD; however, they often result in mixed neuronal cultures containing only a small proportion of TH-positive DAn. To overcome this limitation, we used CRISPR/Cas9-based editing to generate a human iPSC line expressing a fluorescent protein (mOrange) knocked-in at the last exon of the TH locus. After differentiation of the TH-mOrange reporter iPSC line, we confirmed that mOrange expression faithfully mimicked endogenous TH expression in iPSC-derived DAn. We also employed calcium imaging techniques to determine the intrinsic functional differences between dopaminergic and non-dopaminergic ventral midbrain neurons. Crucially, the brightness of mOrange allowed direct visualization of TH-expressing cells in heterogeneous cultures, and enabled us to isolate live mOrange-positive cells through fluorescence-activated cell sorting, for further differentiation. This technique, coupled to refined imaging and data processing tools, could advance the investigation of PD pathogenesis and might offer a platform to test potential new therapeutics for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain.,Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Giulia Carola
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain
| | - Marco Valtorta
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain.,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain.,Department of Bioscience, University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
| | - Senda Jiménez-Delgado
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospitalet de Llobregat, 08098, Barcelona, Spain
| | - Mònica Díaz
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain.,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospitalet de Llobregat, 08098, Barcelona, Spain
| | - Jordi Soriano-Fradera
- Department of Condensed Matter Physics, University of Barcelona, Avinguda de la Diagonal 645, 08028, Barcelona, Spain
| | - Graziella Cappelletti
- Department of Bioscience, University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid, Calle Sanz y Forés 3, 47003, Valladolid, Spain
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, 08908, Barcelona, Spain. .,Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Hospitalet de Llobregat, 08098, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, 08908, Hospitalet de Llobregat, Spain. .,Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028, Barcelona, Spain. .,Department of Molecular and Translational Medicine, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy.
| |
Collapse
|
17
|
Haenseler W, Rajendran L. Concise Review: Modeling Neurodegenerative Diseases with Human Pluripotent Stem Cell-Derived Microglia. Stem Cells 2019; 37:724-730. [PMID: 30801863 PMCID: PMC6849818 DOI: 10.1002/stem.2995] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
Inflammation of the brain and the consequential immunological responses play pivotal roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia (FTD). Microglia, the resident macrophage cells of the brain, have also emerged as key players in neuroinflammation. As primary human microglia from living subjects are normally not accessible to researchers, there is a pressing need for an alternative source of authentic human microglia which allows modeling of neurodegeneration in vitro. Several protocols for induced pluripotent stem cell (iPSC)‐derived microglia have recently been developed and provide unlimited access to patient‐derived material. In this present study, we give an overview of iPSC‐derived microglia models in monoculture and coculture systems, their advantages and limitations, and how they have already been used for disease phenotyping. Furthermore, we outline some of the gene engineering tools to generate isogenic controls, the creation of gene knockout iPSC lines, as well as covering reporter cell lines, which could help to elucidate complex cell interaction mechanisms in the microglia/neuron coculture system, for example, microglia‐induced synapse loss. Finally, we deliberate on how said cocultures could aid in personalized drug screening to identify patient‐specific therapies against neurodegeneration. stem cells2019;37:724–730
Collapse
Affiliation(s)
- Walther Haenseler
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland.,UK-Dementia Research Institute (UK-DRI), Maurice Wohl Basic & Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Apáti Á, Varga N, Berecz T, Erdei Z, Homolya L, Sarkadi B. Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:61-75. [PMID: 30526128 DOI: 10.1080/17425255.2019.1558207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human pluripotent stem cells (hPSCs) are capable of differentiating into all types of cells in the body and so provide suitable toxicology screening systems even for hard-to-obtain human tissues. Since hPSCs can also be generated from differentiated cells and current gene editing technologies allow targeted genome modifications, hPSCs can be applied for drug toxicity screening both in normal and disease-specific models. Targeted hPSC differentiation is still a challenge but cardiac, neuronal or liver cells, and complex cellular models are already available for practical applications. Areas covered: The authors review new gene-editing and cell-biology technologies to generate sensitive toxicity screening systems based on hPSCs. Then the authors present the use of undifferentiated hPSCs for examining embryonic toxicity and discuss drug screening possibilities in hPSC-derived models. The authors focus on the application of human cardiomyocytes, hepatocytes, and neural cultures in toxicity testing, and discuss the recent possibilities for drug screening in a 'body-on-a-chip' model system. Expert opinion: hPSCs and their genetically engineered derivatives provide new possibilities to investigate drug toxicity in human tissues. The key issues in this regard are still the selection and generation of proper model systems, and the interpretation of the results in understanding in vivo drug effects.
Collapse
Affiliation(s)
- Ágota Apáti
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Nóra Varga
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Tünde Berecz
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Zsuzsa Erdei
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - László Homolya
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Balázs Sarkadi
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| |
Collapse
|
19
|
Kujawska M, Jodynis-Liebert J. Polyphenols in Parkinson's Disease: A Systematic Review of In Vivo Studies. Nutrients 2018; 10:642. [PMID: 29783725 PMCID: PMC5986521 DOI: 10.3390/nu10050642] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. However, therapeutic options treating only its symptoms are very disappointing. Therefore there is an ongoing search for compounds capable of tackling the multi-dimensional features of PD. Recently natural polyphenols have gained great interest as potential therapeutic agents. Herein, we have attempted to summarize results obtained in different animal models demonstrating their neuroprotective effects. The in vivo findings presented below are supported by human subject data and reports regarding the ability of polyphenols to cross the blood-brain barrier. The beneficial effects of polyphenols are demonstrated by the results of behavioral examinations, mainly related to motor and cognitive capabilities, histopathological and immunohistochemical examination concerning the protection of dopaminergic neurons, analyses of dopamine and the concentration of its metabolites, as well as mechanistic studies regarding the modulation of oxidative stress, neuroinflammation, cellular iron management, proteinopathy, and additionally the regulation of signaling pathways. Importantly, data about brain distribution of the metabolic derivatives of the reviewed polyphenols are crucial for the justification of their nutritional intake in neuroprotective intervention, as well as for the identification of potential targets for a novel therapeutic approach to Parkinson's disease.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland.
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznań, Poland.
| |
Collapse
|
20
|
Mukherjee S, Zhang T, Lacko LA, Tan L, Xiang JZ, Butler JM, Chen S. Derivation and characterization of a UCP1 reporter human ES cell line. Stem Cell Res 2018; 30:12-21. [PMID: 29777802 PMCID: PMC7376882 DOI: 10.1016/j.scr.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
Interest in human brown fat as a novel therapeutic target to tackle the growing obesity and diabetes epidemic has increased dramatically in recent years. While much insight into brown fat biology has been gained from murine cell lines and models, few resources are available to study human brown fat in vitro, which makes the need for new ways to derive and study human brown adipocytes imperative. Human ES cell based reporter systems present an excellent tool to identify, mark, and purify cell populations of choice. In this study, we detail the derivation and characterization of a novel human ES UCP1 reporter cell line that marks UCP1 positive adipocytes in vitro. We targeted a mCherry reporter to the UCP1 stop codon via CRISPR-Cas9 based gene targeting. The brown adipocytes derived from reporter cells express UCP1, display high mitochondrial content, multi-locular lipid morphology, and exhibit functional properties such as lipolysis. The mCherry positive cells purified after cell sorting show elevated expression of brown fat marker genes and a high similarity to isolated human brown fat via RNA-seq analysis. Finally, we demonstrate the utility of this reporter to real time monitor UCP1 expression upon stimulation. This reporter cell line thus presents new opportunities to study human brown fat biology by enabling future work to understand early human brown fat development, perform disease modeling, and facilitate drug screening.
Collapse
Affiliation(s)
- Suranjit Mukherjee
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Program of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Tuo Zhang
- Genomic Core, Weill Cornell Medical College, New York, NY, USA
| | - Lauretta A Lacko
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Lei Tan
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | - Jason M Butler
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|