1
|
Maldutyte J, Li XH, Gomez-Navarro N, Robertson EG, Miller EA. ER export via SURF4 uses diverse mechanisms of both client and coat engagement. J Cell Biol 2025; 224:e202406103. [PMID: 39531033 PMCID: PMC11557686 DOI: 10.1083/jcb.202406103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Protein secretion is an essential process that drives cell growth and communication. Enrichment of soluble secretory proteins into ER-derived transport carriers occurs via transmembrane cargo receptors that connect lumenal cargo to the cytosolic COPII coat. Here, we find that the cargo receptor, SURF4, recruits different SEC24 cargo adaptor paralogs of the COPII coat to export different cargoes. The secreted protease, PCSK9, requires both SURF4 and a co-receptor, TMED10, for export via SEC24A. In contrast, secretion of Cab45 and NUCB1 requires SEC24C/D. We further show that ER export signals of Cab45 and NUCB1 bind co-translationally to SURF4 via a lumenal pocket, contrasting prevailing models of receptor engagement only upon protein folding/maturation. Bioinformatics analyses suggest that strong SURF4-binding motifs are features of proteases, receptor-binding ligands, and Ca2+-binding proteins. We propose that certain classes of proteins are fast-tracked for rapid export to protect the health of the ER lumen.
Collapse
Affiliation(s)
| | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Evan G. Robertson
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Elizabeth A. Miller
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Wahaab A, Mustafa BE, Hameed M, Batool H, Tran Nguyen Minh H, Tawaab A, Shoaib A, Wei J, Rasgon JL. An Overview of Zika Virus and Zika Virus Induced Neuropathies. Int J Mol Sci 2024; 26:47. [PMID: 39795906 PMCID: PMC11719530 DOI: 10.3390/ijms26010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Flaviviruses pose a major public health concern across the globe. Among them, Zika virus (ZIKV) is an emerging and reemerging arthropod-borne flavivirus that has become a major international public health problem following multiple large outbreaks over the past two decades. The majority of infections caused by ZIKV exhibit mild symptoms. However, the virus has been found to be associated with a variety of congenital neural abnormalities, including microcephaly in children and Guillain-Barre syndrome in adults. The exact prediction of the potential of ZIKV transmission is still enigmatic and underlines the significance of routine detection of the virus in suspected areas. ZIKV transmission from mother to fetus (including fetal abnormalities), viral presence in immune-privileged areas, and sexual transmission demonstrate the challenges in understanding the factors governing viral persistence and pathogenesis. This review illustrates the transmission patterns, epidemiology, control strategies (through vaccines, antivirals, and vectors), oncolytic aspects, molecular insights into neuro-immunopathogenesis, and other neuropathies caused by ZIKV. Additionally, we summarize in vivo and in vitro models that could provide an important platform to study ZIKV pathogenesis and the underlying governing cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Abdul Wahaab
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Bahar E Mustafa
- School of Veterinary Science, Faculty of Science, The University of Melbourne, Melbourne, VIC 3030, Australia;
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
- Center for Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Department of Otolaryngology-Head and Neck Surgery, Department of Pathology and Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hira Batool
- Chughtai Lab, Head Office, 7-Jail Road, Main Gulberg, Lahore 54000, Pakistan;
| | - Hieu Tran Nguyen Minh
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Abdul Tawaab
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Anam Shoaib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (A.W.); (H.T.N.M.)
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Verhaegen M, Vermeire K. The endoplasmic reticulum (ER): a crucial cellular hub in flavivirus infection and potential target site for antiviral interventions. NPJ VIRUSES 2024; 2:24. [PMID: 40295816 PMCID: PMC11721386 DOI: 10.1038/s44298-024-00031-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/23/2024] [Indexed: 04/30/2025]
Abstract
Dengue virus (DENV) is the most prevalent arthropod-borne flavivirus and imposes a significant healthcare threat worldwide. At present no FDA-approved specific antiviral treatment is available, and the safety of a vaccine against DENV is still on debate. Following its entry into the host cell, DENV takes advantage of the cellular secretory pathway to produce new infectious particles. The key organelle of the host cell in DENV infections is the endoplasmic reticulum (ER) which supports various stages throughout the entire life cycle of flaviviruses. This review delves into the intricate interplay between flaviviruses and the ER during their life cycle with a focus on the molecular mechanisms underlying viral replication, protein processing and virion assembly. Emphasizing the significance of the ER in the flavivirus life cycle, we highlight potential antiviral targets in ER-related steps during DENV replication and summarize the current antiviral drugs that are in (pre)clinical developmental stage. Insights into the exploitation of the ER by DENV offer promising avenues for the development of targeted antiviral strategies, providing a foundation for future research and therapeutic interventions against flaviviruses.
Collapse
Affiliation(s)
- Marijke Verhaegen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Dulloo I, Tellier M, Levet C, Chikh A, Zhang B, Blaydon DC, Webb CM, Kelsell DP, Freeman M. Cleavage of the pseudoprotease iRhom2 by the signal peptidase complex reveals an ER-to-nucleus signaling pathway. Mol Cell 2024; 84:277-292.e9. [PMID: 38183983 DOI: 10.1016/j.molcel.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/18/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
iRhoms are pseudoprotease members of the rhomboid-like superfamily and are cardinal regulators of inflammatory and growth factor signaling; they function primarily by recognizing transmembrane domains of their clients. Here, we report a mechanistically distinct nuclear function of iRhoms, showing that both human and mouse iRhom2 are non-canonical substrates of signal peptidase complex (SPC), the protease that removes signal peptides from secreted proteins. Cleavage of iRhom2 generates an N-terminal fragment that enters the nucleus and modifies the transcriptome, in part by binding C-terminal binding proteins (CtBPs). The biological significance of nuclear iRhom2 is indicated by elevated levels in skin biopsies of patients with psoriasis, tylosis with oesophageal cancer (TOC), and non-epidermolytic palmoplantar keratoderma (NEPPK); increased iRhom2 cleavage in a keratinocyte model of psoriasis; and nuclear iRhom2 promoting proliferation of keratinocytes. Overall, this work identifies an unexpected SPC-dependent ER-to-nucleus signaling pathway and demonstrates that iRhoms can mediate nuclear signaling.
Collapse
Affiliation(s)
- Iqbal Dulloo
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Michael Tellier
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Clémence Levet
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Anissa Chikh
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Boyan Zhang
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Diana C Blaydon
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Catherine M Webb
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - David P Kelsell
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
6
|
Ashraf-Uz-Zaman M, Li X, Yao Y, Mishra CB, Moku BK, Song Y. Quinazolinone Compounds Have Potent Antiviral Activity against Zika and Dengue Virus. J Med Chem 2023; 66:10746-10760. [PMID: 37506506 PMCID: PMC10463567 DOI: 10.1021/acs.jmedchem.3c00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Dengue (DENV) and Zika (ZIKV) viruses are important human pathogens, causing ∼100 million symptomatic infections each year. These infections carry a 20-fold increased incidence of serious neurological diseases, such as microcephaly in newborns (for ZIKV) and Guillain-Barré syndrome. Moreover, DENV can develop serious and possibly life-threatening dengue hemorrhagic fever in certain patients. Patients recovered from one of the four serotypes of DENV are still susceptible to other serotypes with a higher likelihood of serious disease because of antibody-dependent enhancement. Except for mosquito control, there have been no antiviral drugs to prevent and treat ZIKV/DENV infections. Phenotypic screening found that 2,3,6-trisubstituted quinazolinone compounds are novel inhibitors of ZIKV replication. Fifty-four analogues were synthesized, and their structure-activity relationships are discussed. Additional testing shows that compounds 22, 27, and 47 exhibited broad and potent activities against ZIKV and DENV with EC50 values as low as 86 nM with no significant cytotoxicity to mammalian cells.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Yuan Yao
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Chandra Bhushan Mishra
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Bala Krishna Moku
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
7
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
8
|
Saivish MV, Menezes GDL, da Silva RA, Fontoura MA, Shimizu JF, da Silva GCD, Teixeira IDS, Mistrão NFB, Hernandes VM, Rahal P, Sacchetto L, Pacca CC, Marques RE, Nogueira ML. Antiviral Activity of Quercetin Hydrate against Zika Virus. Int J Mol Sci 2023; 24:7504. [PMID: 37108665 PMCID: PMC10144977 DOI: 10.3390/ijms24087504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/29/2023] Open
Abstract
Zika virus (ZIKV) has re-emerged in recent decades, leading to outbreaks of Zika fever in Africa, Asia, and Central and South America. Despite its drastic re-emergence and clinical impact, no vaccines or antiviral compounds are available to prevent or control ZIKV infection. This study evaluated the potential antiviral activity of quercetin hydrate against ZIKV infection and demonstrated that this substance inhibits virus particle production in A549 and Vero cells under different treatment conditions. In vitro antiviral activity was long-lasting (still observed 72 h post-infection), suggesting that quercetin hydrate affects multiple rounds of ZIKV replication. Molecular docking indicates that quercetin hydrate can efficiently interact with the specific allosteric binding site cavity of the NS2B-NS3 proteases and NS1-dimer. These results identify quercetin as a potential compound to combat ZIKV infection in vitro.
Collapse
Affiliation(s)
- Marielena Vogel Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Gabriela de Lima Menezes
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, RN, Brazil
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | | | - Marina Alves Fontoura
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Gislaine Celestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Igor da Silva Teixeira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Natalia Franco Bueno Mistrão
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Victor Miranda Hernandes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
- Departamento de Microbiologia, Faceres Medical School, São José do Rio Preto 15090-000, SP, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
9
|
Sadeer NB, El Kalamouni C, Khalid A, Abdalla AN, Zengin G, Khoa Bao LV, Mahomoodally MF. Secondary metabolites as potential drug candidates against Zika virus, an emerging looming human threat: Current landscape, molecular mechanism and challenges ahead. J Infect Public Health 2023; 16:754-770. [PMID: 36958171 DOI: 10.1016/j.jiph.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Nature has given us yet another wild card in the form of Zika virus (ZIKV). It was found in 1947, but has only recently become an important public health risk, predominantly to pregnant women and their unborn offspring. Currently, no specific therapeutic agent exists for ZIKV and treatment is mainly supportive. Natural products (NPs) can serve as a major source of potent antiviral drugs. To create this review, a comprehensive search was conducted from different databases (PubMed, ScienceDirect, Google scholar). A statistical analysis on the number of publications related to NPs and ZIKV was conducted to analyse the trend in research covering the period 1980-2020. From the data collated in this review, a number of NPs have been found to be inhibitive towards different stages of the ZIKV lifecycle in in vitro studies. For instance, baicalin, (-)-epigallocatechin gallate, curcumin, nanchangmycin, gossypol, cephaeline, emetine, resveratrol, berberine, amongst others, can prevent viral entry by attacking ZIKV E protein. Compounds luteolin, myricetin, astragalin, rutin, (-)-epigallocatechin gallate, carnosine, pedalitin, amongst others, inhibited NS2B-NS3 protease activity which consequently hamper replication. Interestingly, a few NPs had the ability to arrest both viral entry and replication, namely baicalin, (-)-epigallocatechin gallate, curcumin, cephaeline, emetine, and resveratrol. To the best of our knowledge, we obtained only one in vivo study conducted on emetine and results showed that it decreased the levels of circulating ZIKV by approximately 10-fold. Our understanding on NPs exhibiting anti-ZIKV effects in in vivo testing as well as clinical trials is limited. Our trend analysis showed that interest in searching for a cure or prevention against Zika in NPs is negligible and there are no publications yet covering the clinical evaluation. NPs with anti-ZIKV property can a winning strategy in controlling the bio-burden of an epidemic or pandemic. We therefore opine that in the future, more research should be devoted to ZIKV. This review attempts to provide baseline data and roadmap to pursuit detailed investigations for developing potent and novel therapeutic agents to prevent and cure ZIKV infection.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, the Republic of the Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, 42250 Konya, Turkey
| | - Le Van Khoa Bao
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius; Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 600077, India
| |
Collapse
|
10
|
Zanotti A, Coelho JPL, Kaylani D, Singh G, Tauber M, Hitzenberger M, Avci D, Zacharias M, Russell RB, Lemberg MK, Feige MJ. The human signal peptidase complex acts as a quality control enzyme for membrane proteins. Science 2022; 378:996-1000. [DOI: 10.1126/science.abo5672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cells need to detect and degrade faulty membrane proteins to maintain homeostasis. In this study, we identify a previously unknown function of the human signal peptidase complex (SPC)—the enzyme that removes endoplasmic reticulum (ER) signal peptides—as a membrane protein quality control factor. We show that the SPC cleaves membrane proteins that fail to correctly fold or assemble into their native complexes at otherwise hidden cleavage sites, which our study reveals to be abundant in the human membrane proteome. This posttranslocational cleavage synergizes with ER-associated degradation to sustain membrane protein homeostasis and contributes to cellular fitness. Cryptic SPC cleavage sites thus serve as predetermined breaking points that, when exposed, help to target misfolded or surplus proteins for degradation, thereby maintaining a healthy membrane proteome.
Collapse
Affiliation(s)
- Andrea Zanotti
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - João P. L. Coelho
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dinah Kaylani
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Gurdeep Singh
- BioQuant and Biochemistry Center (BZH), Heidelberg University, 69120 Heidelberg, Germany
| | - Marina Tauber
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Manuel Hitzenberger
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dönem Avci
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Robert B. Russell
- BioQuant and Biochemistry Center (BZH), Heidelberg University, 69120 Heidelberg, Germany
| | - Marius K. Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Matthias J. Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
11
|
Espinoza MF, Nguyen KK, Sycks MM, Lyu Z, Quanrud GM, Montoya MR, Genereux JC. Heat shock protein Hspa13 regulates endoplasmic reticulum and cytosolic proteostasis through modulation of protein translocation. J Biol Chem 2022; 298:102597. [PMID: 36244454 PMCID: PMC9691929 DOI: 10.1016/j.jbc.2022.102597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Most eukaryotic secretory proteins are cotranslationally translocated through Sec61 into the endoplasmic reticulum (ER). Because these proteins have evolved to fold in the ER, their mistargeting is associated with toxicity. Genetic experiments have implicated the ER heat shock protein 70 (Hsp70) Hspa13/STCH as involved in processing of nascent secretory proteins. Herein, we evaluate the role of Hspa13 in protein import and the maintenance of cellular proteostasis in human cells, primarily using the human embryonic kidney 293T cell line. We find that Hspa13 interacts primarily with the Sec61 translocon and its associated factors. Hspa13 overexpression inhibits translocation of the secreted protein transthyretin, leading to accumulation and aggregation of immature transthyretin in the cytosol. ATPase-inactive mutants of Hspa13 further inhibit translocation and maturation of secretory proteins. While Hspa13 overexpression inhibits cell growth and ER quality control, we demonstrate that HSPA13 knockout destabilizes proteostasis and increases sensitivity to ER disruption. Thus, we propose that Hspa13 regulates import through the translocon to maintain both ER and cytosolic protein homeostasis. The raw mass spectrometry data associated with this article have been deposited in the PRIDE archive and can be accessed at PXD033498.
Collapse
Affiliation(s)
- Mateo F Espinoza
- Graduate Program in Microbiology, University of California, Riverside, California, USA
| | - Khanh K Nguyen
- Department of Chemistry, University of California, Riverside, California, USA
| | - Melody M Sycks
- Department of Chemistry, University of California, Riverside, California, USA
| | - Ziqi Lyu
- Department of Chemistry, University of California, Riverside, California, USA
| | - Guy M Quanrud
- Department of Chemistry, University of California, Riverside, California, USA
| | - Maureen R Montoya
- Department of Chemistry, University of California, Riverside, California, USA
| | - Joseph C Genereux
- Graduate Program in Microbiology, University of California, Riverside, California, USA; Department of Chemistry, University of California, Riverside, California, USA.
| |
Collapse
|
12
|
Zika Virus Infection and Development of Drug Therapeutics. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) is an emerging flavivirus that is associated with neurological complications, such as neuroinflammatory Guillain Barré Syndrome in adults and microcephaly in newborns, and remains a potentially significant and international public health concern. The World Health Organization is urging the development of novel antiviral therapeutic strategies against ZIKV, as there are no clinically approved vaccines or drugs against this virus. Given the public health crisis that is related to ZIKV cases in the last decade, efficient strategies should be identified rapidly to combat or treat ZIKV infection. Several promising strategies have been reported through drug repurposing studies, de novo design, and the high-throughput screening of compound libraries in only a few years. This review summarizes the genome and structure of ZIKV, viral life cycle, transmission cycle, clinical manifestations, cellular and animal models, and antiviral drug developments, with the goal of increasing our understanding of ZIKV and ultimately defeating it.
Collapse
|
13
|
Fong YD, Chu JJH. Natural products as Zika antivirals. Med Res Rev 2022; 42:1739-1780. [PMID: 35593443 PMCID: PMC9540820 DOI: 10.1002/med.21891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the flavivirus genus and is transmitted in Aedes mosquito vectors. Since its discovery in humans in 1952 in Uganda, ZIKV has been responsible for many outbreaks in South America, Africa, and Asia. Patients infected with ZIKV are usually asymptomatic; mild symptoms include fever, joint and muscle pain, and fatigue. However, severe infections may have neurological implications, such as Guillain-Barré syndrome and fetal microcephaly. To date, there are no existing approved therapeutic drugs or vaccines against ZIKV infections; treatments mainly target the symptoms of infection. Preventive measures against mosquito breeding are the main strategy for limiting the spread of the virus. Antiviral drug research for the treatment of ZIKV infection has been rapidly developing, with many drug candidates emerging from drug repurposing studies, and compound screening. In particular, several studies have demonstrated the potential of natural products as antivirals for ZIKV infection. Hence, this paper will review recent advances in natural products in ZIKV antiviral drug discovery.
Collapse
Affiliation(s)
- Yuhui Deborah Fong
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Justin Jang Hann Chu
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
14
|
Muema JM, Bargul JL, Obonyo MA, Njeru SN, Matoke-Muhia D, Mutunga JM. Contemporary exploitation of natural products for arthropod-borne pathogen transmission-blocking interventions. Parasit Vectors 2022; 15:298. [PMID: 36002857 PMCID: PMC9404607 DOI: 10.1186/s13071-022-05367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
An integrated approach to innovatively counter the transmission of various arthropod-borne diseases to humans would benefit from strategies that sustainably limit onward passage of infective life cycle stages of pathogens and parasites to the insect vectors and vice versa. Aiming to accelerate the impetus towards a disease-free world amid the challenges posed by climate change, discovery, mindful exploitation and integration of active natural products in design of pathogen transmission-blocking interventions is of high priority. Herein, we provide a review of natural compounds endowed with blockade potential against transmissible forms of human pathogens reported in the last 2 decades from 2000 to 2021. Finally, we propose various translational strategies that can exploit these pathogen transmission-blocking natural products into design of novel and sustainable disease control interventions. In summary, tapping these compounds will potentially aid in integrated combat mission to reduce disease transmission trends.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi, 00200, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi, 00200, Kenya.,International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| | - Meshack A Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton, 20115, Kenya
| | - Sospeter N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, 00200, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, 00200, Kenya
| | - James M Mutunga
- Department of Biological Sciences, Mount Kenya University (MKU), P.O. Box 54, Thika, 01000, Kenya.,School of Engineering Design, Technology and Professional Programs, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
15
|
The Key Role of Lysosomal Protease Cathepsins in Viral Infections. Int J Mol Sci 2022; 23:ijms23169089. [PMID: 36012353 PMCID: PMC9409221 DOI: 10.3390/ijms23169089] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins encompass a family of lysosomal proteases that mediate protein degradation and turnover. Although mainly localized in the endolysosomal compartment, cathepsins are also found in the cytoplasm, nucleus, and extracellular space, where they are involved in cell signaling, extracellular matrix assembly/disassembly, and protein processing and trafficking through the plasma and nuclear membrane and between intracellular organelles. Ubiquitously expressed in the body, cathepsins play regulatory roles in a wide range of physiological processes including coagulation, hormone secretion, immune responses, and others. A dysregulation of cathepsin expression and/or activity has been associated with many human diseases, including cancer, diabetes, obesity, cardiovascular and inflammatory diseases, kidney dysfunctions, and neurodegenerative disorders, as well as infectious diseases. In viral infections, cathepsins may promote (1) activation of the viral attachment glycoproteins and entry of the virus into target cells; (2) antigen processing and presentation, enabling the virus to replicate in infected cells; (3) up-regulation and processing of heparanase that facilitates the release of viral progeny and the spread of infection; and (4) activation of cell death that may either favor viral clearance or assist viral propagation. In this review, we report the most relevant findings on the molecular mechanisms underlying cathepsin involvement in viral infection physiopathology, and we discuss the potential of cathepsin inhibitors for therapeutical applications in viral infectious diseases.
Collapse
|
16
|
Common computational tools for analyzing CRISPR screens. Emerg Top Life Sci 2021; 5:779-788. [PMID: 34881774 PMCID: PMC8786280 DOI: 10.1042/etls20210222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
CRISPR–Cas technology offers a versatile toolbox for genome editing, with applications in various cancer-related fields such as functional genomics, immunotherapy, synthetic lethality and drug resistance, metastasis, genome regulation, chromatic accessibility and RNA-targeting. The variety of screening platforms and questions in which they are used have caused the development of a wide array of analytical methods for CRISPR analysis. In this review, we focus on the algorithms and frameworks used in the computational analysis of pooled CRISPR knockout (KO) screens and highlight some of the most significant target discoveries made using these methods. Lastly, we offer perspectives on the design and analysis of state-of-art multiplex screening for genetic interactions.
Collapse
|
17
|
Matsumoto K, Yoshida M. Mammalian Chemical Genomics towards Identifying Targets and Elucidating Modes-of-Action of Bioactive Compounds. Chembiochem 2021; 23:e202100561. [PMID: 34813140 DOI: 10.1002/cbic.202100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/22/2021] [Indexed: 11/08/2022]
Abstract
The step of identifying target molecules and elucidating the mode of action of bioactive compounds is a major bottleneck for drug discovery from phenotypic screening. Genetic screening for genes that affect drug sensitivity or phenotypes of mammalian cultured cells is a powerful tool to obtain clues to their modes of action. Chemical genomic screening systems for comprehensively identifying such genes or genetic pathways have been established using shRNA libraries for RNA interference-mediated mRNA knockdown or sgRNA libraries for CRISPR/Cas9-mediated gene knockout. The combination of chemical genomic screening in mammalian cells with other approaches such as biochemical searches for target molecules, phenotypic profiling, and yeast genetics provides a systematic way to elucidate the mode of action by converging various pieces of information regarding target molecules, target pathways, and synthetic lethal pathways.
Collapse
Affiliation(s)
- Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Seed Compounds Exploratory Unit for Drug Discovery Platform, Drug Discovery Platforms Cooperation Division, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Tokyo, 113-8657, Japan
| |
Collapse
|
18
|
Feng J, Lee T, Schiessl K, Oldroyd GED. Processing of NODULE INCEPTION controls the transition to nitrogen fixation in root nodules. Science 2021; 374:629-632. [PMID: 34709900 DOI: 10.1126/science.abg2804] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jian Feng
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Tak Lee
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Katharina Schiessl
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.,Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| |
Collapse
|
19
|
Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research? Pathogens 2021; 10:pathogens10101233. [PMID: 34684182 PMCID: PMC8537471 DOI: 10.3390/pathogens10101233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
In order to prevent new pathogen outbreaks and avoid possible new global health threats, it is important to study the mechanisms of microbial pathogenesis, screen new antiviral agents and test new vaccines using the best methods. In the last decade, organoids have provided a groundbreaking opportunity for modeling pathogen infections in human brains, including Zika virus (ZIKV) infection. ZIKV is a member of the Flavivirus genus, and it is recognized as an emerging infectious agent and a serious threat to global health. Organoids are 3D complex cellular models that offer an in-scale organ that is physiologically alike to the original one, useful for exploring the mechanisms behind pathogens infection; additionally, organoids integrate data generated in vitro with traditional tools and often support those obtained in vivo with animal model. In this mini-review the value of organoids for ZIKV research is examined and sustained by the most recent literature. Within a 3D viewpoint, tissue engineered models are proposed as future biological systems to help in deciphering pathogenic processes and evaluate preventive and therapeutic strategies against ZIKV. The next steps in this field constitute a challenge that may protect people and future generations from severe brain defects.
Collapse
|
20
|
Takahashi JA, Barbosa BVR, Lima MTNS, Cardoso PG, Contigli C, Pimenta LPS. Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic. Bioorg Med Chem 2021; 46:116366. [PMID: 34438338 PMCID: PMC8363177 DOI: 10.1016/j.bmc.2021.116366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, which started in late 2019, drove the scientific community to conduct innovative research to contain the spread of the pandemic and to care for those already affected. Since then, the search for new drugs that are effective against the virus has been strengthened. Featuring a relatively low cost of production under well-defined methods of cultivation, fungi have been providing a diversity of antiviral metabolites with unprecedented chemical structures. In this review, we present viral RNA infections highlighting SARS-CoV-2 morphogenesis and the infectious cycle, the targets of known antiviral drugs, and current developments in this area such as drug repurposing. We also explored the metabolic adaptability of fungi during fermentation to produce metabolites active against RNA viruses, along with their chemical structures, and mechanisms of action. Finally, the state of the art of research on SARS-CoV-2 inhibitors of fungal origin is reported, highlighting the metabolites selected by docking studies.
Collapse
Affiliation(s)
- Jacqueline Aparecida Takahashi
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Bianca Vianna Rodrigues Barbosa
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Matheus Thomaz Nogueira Silva Lima
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Patrícia Gomes Cardoso
- Department of Biology, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, CEP 37200-900 Lavras, MG, Brazil.
| | - Christiane Contigli
- Cell Biology Service, Research and Development Department, Fundação Ezequiel Dias, R. Conde Pereira Carneiro, 80, CEP 30510-010 Belo Horizonte, MG, Brazil
| | - Lúcia Pinheiro Santos Pimenta
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
21
|
Liaci AM, Steigenberger B, Telles de Souza PC, Tamara S, Gröllers-Mulderij M, Ogrissek P, Marrink SJ, Scheltema RA, Förster F. Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage. Mol Cell 2021; 81:3934-3948.e11. [PMID: 34388369 DOI: 10.1016/j.molcel.2021.07.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
The signal peptidase complex (SPC) is an essential membrane complex in the endoplasmic reticulum (ER), where it removes signal peptides (SPs) from a large variety of secretory pre-proteins with exquisite specificity. Although the determinants of this process have been established empirically, the molecular details of SP recognition and removal remain elusive. Here, we show that the human SPC exists in two functional paralogs with distinct proteolytic subunits. We determined the atomic structures of both paralogs using electron cryo-microscopy and structural proteomics. The active site is formed by a catalytic triad and abuts the ER membrane, where a transmembrane window collectively formed by all subunits locally thins the bilayer. Molecular dynamics simulations indicate that this unique architecture generates specificity for SPs based on the length of their hydrophobic segments.
Collapse
Affiliation(s)
- A Manuel Liaci
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Barbara Steigenberger
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Paulo Cesar Telles de Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands; Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS and University of Lyon, Lyon, France
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Mariska Gröllers-Mulderij
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Patrick Ogrissek
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands; Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Material, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
22
|
Wichit S, Gumpangseth N, Hamel R, Yainoy S, Arikit S, Punsawad C, Missé D. Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors. Pathogens 2021; 10:448. [PMID: 33918691 PMCID: PMC8068860 DOI: 10.3390/pathogens10040448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chikungunya and Zika viruses, both transmitted by mosquito vectors, have globally re-emerged over for the last 60 years and resulted in crucial social and economic concerns. Presently, there is no specific antiviral agent or vaccine against these debilitating viruses. Understanding viral-host interactions is needed to develop targeted therapeutics. However, there is presently limited information in this area. In this review, we start with the updated virology and replication cycle of each virus. Transmission by similar mosquito vectors, frequent co-circulation, and occurrence of co-infection are summarized. Finally, the targeted host proteins/factors used by the viruses are discussed. There is an urgent need to better understand the virus-host interactions that will facilitate antiviral drug development and thus reduce the global burden of infections caused by arboviruses.
Collapse
Affiliation(s)
- Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Nuttamonpat Gumpangseth
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
| | - Rodolphe Hamel
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; (R.H.); (D.M.)
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; (R.H.); (D.M.)
| |
Collapse
|
23
|
Christy MP, Uekusa Y, Gerwick L, Gerwick WH. Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. JOURNAL OF NATURAL PRODUCTS 2021; 84:161-182. [PMID: 33352046 PMCID: PMC7771248 DOI: 10.1021/acs.jnatprod.0c00968] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 05/03/2023]
Abstract
Three families of RNA viruses, the Coronaviridae, Flaviviridae, and Filoviridae, collectively have great potential to cause epidemic disease in human populations. The current SARS-CoV-2 (Coronaviridae) responsible for the COVID-19 pandemic underscores the lack of effective medications currently available to treat these classes of viral pathogens. Similarly, the Flaviviridae, which includes such viruses as Dengue, West Nile, and Zika, and the Filoviridae, with the Ebola-type viruses, as examples, all lack effective therapeutics. In this review, we present fundamental information concerning the biology of these three virus families, including their genomic makeup, mode of infection of human cells, and key proteins that may offer targeted therapies. Further, we present the natural products and their derivatives that have documented activities to these viral and host proteins, offering hope for future mechanism-based antiviral therapeutics. By arranging these potential protein targets and their natural product inhibitors by target type across these three families of virus, new insights are developed, and crossover treatment strategies are suggested. Hence, natural products, as is the case for other therapeutic areas, continue to be a promising source of structurally diverse new anti-RNA virus therapeutics.
Collapse
Affiliation(s)
- Mitchell P. Christy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Yoshinori Uekusa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
24
|
Syzdykova LR, Binke S, Keyer VV, Shevtsov AB, Zaripov MM, Zhylkibayev AA, Ramanculov EM, Shustov AV. Fluorescent tagging the NS1 protein in yellow fever virus: Replication-capable viruses which produce the secretory GFP-NS1 fusion protein. Virus Res 2020; 294:198291. [PMID: 33388393 DOI: 10.1016/j.virusres.2020.198291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/18/2020] [Accepted: 12/25/2020] [Indexed: 12/29/2022]
Abstract
Yellow fever virus, the prototype in the genus Flavivirus, was used to develop viruses in which the nonstructural protein NS1 is genetically fused to GFP in the context of viruses capable of autonomous replication. The GFP-tagging of NS1 at the amino-terminus appeared possible despite the presence of a small and functionally important domain at the NS1's amino-terminus which can be distorted by such fusing. GFP-tagged NS1 viruses were rescued from DNA-launched molecular clones. The initially produced GFP-tagged NS1 virus was capable of only poor replication. Sequential passages of the virus in cell cultures resulted in the appearance of mutations in GFP, NS4A, NS4B and NS5. The mutations which change amino acid sequences of GFP, NS4A and NS5 have the adaptive effect on the replication of GFP-tagged NS1 viruses. The pattern of GFP-fluorescence indicates that the GFP-NS1 fusion protein is produced into the endoplasmic reticulum. The intracellular GFP-NS1 fusion protein colocalizes with dsRNA. The discovered forms of extracellular GFP-NS1 possibly include tetramers and hexamers.
Collapse
Affiliation(s)
- Laura R Syzdykova
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Stephan Binke
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Viktoriya V Keyer
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Alexandr B Shevtsov
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Mikhail M Zaripov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Russian Federation.
| | | | - Erlan M Ramanculov
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| | - Alexandr V Shustov
- National Center for Biotechnology, Korgalzhin Hwy 13/5, 010000, Nur-Sultan, Kazakhstan.
| |
Collapse
|
25
|
Pasquer QTL, Tsakoumagkos IA, Hoogendoorn S. From Phenotypic Hit to Chemical Probe: Chemical Biology Approaches to Elucidate Small Molecule Action in Complex Biological Systems. Molecules 2020; 25:E5702. [PMID: 33287212 PMCID: PMC7730769 DOI: 10.3390/molecules25235702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023] Open
Abstract
Biologically active small molecules have a central role in drug development, and as chemical probes and tool compounds to perturb and elucidate biological processes. Small molecules can be rationally designed for a given target, or a library of molecules can be screened against a target or phenotype of interest. Especially in the case of phenotypic screening approaches, a major challenge is to translate the compound-induced phenotype into a well-defined cellular target and mode of action of the hit compound. There is no "one size fits all" approach, and recent years have seen an increase in available target deconvolution strategies, rooted in organic chemistry, proteomics, and genetics. This review provides an overview of advances in target identification and mechanism of action studies, describes the strengths and weaknesses of the different approaches, and illustrates the need for chemical biologists to integrate and expand the existing tools to increase the probability of evolving screen hits to robust chemical probes.
Collapse
Affiliation(s)
| | | | - Sascha Hoogendoorn
- Department of Organic Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Genève, Switzerland; (Q.T.L.P.); (I.A.T.)
| |
Collapse
|
26
|
Kuo YT, Liu CH, Li JW, Lin CJ, Jassey A, Wu HN, Perng GC, Yen MH, Lin LT. Identification of the phytobioactive Polygonum cuspidatum as an antiviral source for restricting dengue virus entry. Sci Rep 2020; 10:16378. [PMID: 33009425 PMCID: PMC7532532 DOI: 10.1038/s41598-020-71849-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/18/2020] [Indexed: 11/09/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne pathogen that is becoming a serious global threat, owing to its rising incidence in inter-tropical regions that yield over 50 million annual infections. There are currently no approved antiviral agents for the management of dengue, and recent shortcomings in its immunization called for immediate action to develop effective drugs with prophylactic ability to better manage its infection. In an attempt to discover novel antiviral sources, we identified the medicinal herb Polygonum cuspidatum (PC) as a bioactive botanical material against DENV infectivity. Specifically, the methanolic extract from PC rhizomes (PCME) potently inhibited DENV infection without causing significant cytotoxicity. Further examination on the viral life cycle demonstrated that PCME particularly targeted the initial stages of DENV infection, while pre- and post-infection treatments had no effect. More importantly, the PCME could efficiently inactivate DENV free virus particles and block the viral attachment and entry/fusion events without apparently influencing viral replication, egress, and cell-to-cell spread. The antiviral effect of PCME was also recapitulated in infection analysis using DENV pseudoparticles displaying viral structural proteins that mediate DENV particle entry. Besides, PCME treatment also inhibited direct DENV entry into several cell types relevant to its infection and reduced viral infectivity of other members of the Flaviviridae family, including the hepatitis C virus (HCV) and Zika virus (ZIKV). Due to its potency against DENV entry, we suggest that the phytobioactive extract from PC is an excellent starting point as an antiviral source material for further development of therapeutic strategies in the prophylactic management of DENV infection.
Collapse
Affiliation(s)
- Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Hsuan Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jin-Wei Li
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alagie Jassey
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Huey-Nan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Guey Chuen Perng
- Department of Microbiology and Immunology & Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
Troost B, Smit JM. Recent advances in antiviral drug development towards dengue virus. Curr Opin Virol 2020; 43:9-21. [PMID: 32795907 DOI: 10.1016/j.coviro.2020.07.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 01/29/2023]
Abstract
Despite the high disease burden of dengue virus, there is no approved antiviral treatment or broadly applicable vaccine to treat or prevent dengue virus infection. In the last decade, many antiviral compounds have been identified but only few have been further evaluated in pre-clinical or clinical trials. This review will give an overview of the direct-acting and host-directed antivirals identified to date. Furthermore, important parameters for further development that is, drug properties including efficacy, specificity and stability, pre-clinical animal testing, and combinational drug therapy will be discussed.
Collapse
Affiliation(s)
- Berit Troost
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
28
|
Zwick CR, Renata H. Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis. Nat Prod Rep 2020; 37:1065-1079. [PMID: 32055818 PMCID: PMC7426249 DOI: 10.1039/c9np00075e] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to the end of 2019Iron- and α-ketoglutarate-dependent dioxygenases (Fe/αKGs) represent a versatile and intriguing enzyme family by virtue of their ability to directly functionalize unactivated C-H bonds at the cost of αKG and O2. Fe/αKGs play an important role in the biosynthesis of natural products, valuable biologically active secondary metabolites frequently pursued as drug leads. The field of natural product total synthesis seeks to contruct these molecules as effeciently as possible, although natural products continue to challenge chemists due to their intricate structural complexity. Chemoenzymatic approaches seek to remedy the shortcomings of traditional synthetic methodology by combining Nature's biosynthetic machinery with traditional chemical methods to efficiently construct natural products. Although other oxygenase families have been widely employed for this purpose, Fe/αKGs remain underutilized. The following review will cover recent chemoenzymatic total syntheses involving Fe/αKG enzymes. Additionally, related information involving natural product biosynthesis, methods development, and non-chemoenzymatic total syntheses will be discussed to inform retrosynthetic logic and synthetic design.
Collapse
Affiliation(s)
- Christian R Zwick
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
29
|
Luesch H, Paavilainen VO. Natural products as modulators of eukaryotic protein secretion. Nat Prod Rep 2020; 37:717-736. [PMID: 32067014 DOI: 10.1039/c9np00066f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to the end of 2019Diverse natural product small molecules have allowed critical insights into processes that govern eukaryotic cells' ability to secrete cytosolically synthesized secretory proteins into their surroundings or to insert newly synthesized integral membrane proteins into the lipid bilayer of the endoplasmic reticulum. In addition, many components of the endoplasmic reticulum, required for protein homeostasis or other processes such as lipid metabolism or maintenance of calcium homeostasis, are being investigated for their potential in modulating human disease conditions such as cancer, neurodegenerative conditions and diabetes. In this review, we cover recent findings up to the end of 2019 on natural products that influence protein secretion or impact ER protein homeostasis, and serve as powerful chemical tools to understand protein flux through the mammalian secretory pathway and as leads for the discovery of new therapeutics.
Collapse
Affiliation(s)
- Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, P.O. Box 100485, Gainesville, Florida 32610, USA.
| | | |
Collapse
|
30
|
Aldholmi M, Marchand P, Ourliac-Garnier I, Le Pape P, Ganesan A. A Decade of Antifungal Leads from Natural Products: 2010-2019. Pharmaceuticals (Basel) 2019; 12:ph12040182. [PMID: 31842280 PMCID: PMC6958371 DOI: 10.3390/ph12040182] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
In this review, we discuss novel natural products discovered within the last decade that are reported to have antifungal activity against pathogenic species. Nearly a hundred natural products were identified that originate from bacteria, algae, fungi, sponges, and plants. Fungi were the most prolific source of antifungal compounds discovered during the period of review. The structural diversity of these antifungal leads encompasses all the major classes of natural products including polyketides, shikimate metabolites, terpenoids, alkaloids, and peptides.
Collapse
Affiliation(s)
- Mohammed Aldholmi
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France; (P.M.); (I.O.-G.); (P.L.P.)
| | - Isabelle Ourliac-Garnier
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France; (P.M.); (I.O.-G.); (P.L.P.)
| | - Patrice Le Pape
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France; (P.M.); (I.O.-G.); (P.L.P.)
| | - A. Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Correspondence:
| |
Collapse
|
31
|
Wang L, Liang R, Gao Y, Li Y, Deng X, Xiang R, Zhang Y, Ying T, Jiang S, Yu F. Development of Small-Molecule Inhibitors Against Zika Virus Infection. Front Microbiol 2019; 10:2725. [PMID: 31866959 PMCID: PMC6909824 DOI: 10.3389/fmicb.2019.02725] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years, the outbreak of infectious disease caused by Zika virus (ZIKV) has posed a major threat to global public health, calling for the development of therapeutics to treat ZIKV disease. Here, we have described the different stages of the ZIKV life cycle and summarized the latest progress in the development of small-molecule inhibitors against ZIKV infection. We have also discussed some general strategies for the discovery of small-molecule ZIKV inhibitors.
Collapse
Affiliation(s)
- Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Ruiying Liang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yaning Gao
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yanbai Li
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Rong Xiang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Yina Zhang
- College of Life and Science, Hebei Agricultural University, Baoding, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shibo Jiang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Yu
- College of Life and Science, Hebei Agricultural University, Baoding, China
| |
Collapse
|
32
|
Colic M, Hart T. Chemogenetic interactions in human cancer cells. Comput Struct Biotechnol J 2019; 17:1318-1325. [PMID: 31921397 PMCID: PMC6945272 DOI: 10.1016/j.csbj.2019.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022] Open
Abstract
Chemogenetic profiling enables the identification of genes that enhance or suppress the phenotypic effect of chemical compounds. Using this approach in cancer therapies could improve our ability to predict the response of specific tumor genotypes to chemotherapeutic agents, thus accelerating the development of personalized drug therapy. In the not so distant past, this strategy was only applied in model organisms because there was no feasible technology to thoroughly exploit desired genetic mutations and their impact on drug efficacy in human cells. Today, with the advent of CRISPR gene-editing technology and its application to pooled library screens in mammalian cells, chemogenetic screens are performed directly in human cell lines with high sensitivity and specificity. Chemogenetic profiling provides insights into drug mechanism-of-action, genetic vulnerabilities, and resistance mechanisms, all of which will help to accurately deliver the right drug to the right target in the right patient while minimizing side effects.
Collapse
Affiliation(s)
- Medina Colic
- Department of Bioinformatics and Computational Biology and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Bernatchez JA, Tran LT, Li J, Luan Y, Siqueira-Neto JL, Li R. Drugs for the Treatment of Zika Virus Infection. J Med Chem 2019; 63:470-489. [PMID: 31549836 DOI: 10.1021/acs.jmedchem.9b00775] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zika virus is an emerging flavivirus that causes the neurodevelopmental congenital Zika syndrome and that has been linked to the neuroinflammatory Guillain-Barré syndrome. The absence of a vaccine or a clinically approved drug to treat the disease combined with the likelihood that another outbreak will occur in the future defines an unmet medical need. Several promising drug candidate molecules have been reported via repurposing studies, high-throughput compound library screening, and de novo design in the short span of a few years. Intense research activity in this area has occurred in response to the World Health Organization declaration of a Public Health Emergency of International Concern on February 1, 2016. In this Perspective, the authors review the emergence of Zika virus, the biology of its replication, targets for therapeutic intervention, target product profile, and current drug development initiatives.
Collapse
Affiliation(s)
| | - Lana T Tran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | | | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China
| | | | - Rongshi Li
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China.,UNMC Center for Drug Discovery, Department of Pharmaceutical Sciences, College of Pharmacy, Fred and Pamela Buffett Cancer Center, and Center for Staphylococcal Research , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
34
|
Mohd A, Zainal N, Tan KK, AbuBakar S. Resveratrol affects Zika virus replication in vitro. Sci Rep 2019; 9:14336. [PMID: 31586088 PMCID: PMC6778103 DOI: 10.1038/s41598-019-50674-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023] Open
Abstract
Zika virus (ZIKV) infection is a serious public health concern. ZIKV infection has been associated with increased occurrences of microcephaly among newborns and incidences of Guillain-Barré syndrome among adults. No specific therapeutics or vaccines are currently available to treat and protect against ZIKV infection. Here, a plant-secreted phytoalexin, resveratrol (RES), was investigated for its ability to inhibit ZIKV replication in vitro. Several RES treatment regimens were used. The ZIKV titers of mock- and RES-treated infected cell cultures were determined using the focus-forming assay and the Zika mRNA copy number as determined using qRT-PCR. Our results suggested that RES treatment reduced ZIKV titers in a dose-dependent manner. A reduction of >90% of virus titer and ZIKV mRNA copy number was achieved when infected cells were treated with 80 µM of RES post-infection. Pre-incubation of the virus with 80 µM RES showed >30% reduction in ZIKV titers and ZIKV mRNA copy number, implying potential direct virucidal effects of RES against the virus. The RES treatment reduced >70% virus titer in the anti-adsorption assay, suggesting the possibility that RES also interferes with ZIKV binding. However, there was no significant decrease in ZIKV titer when a short-period of RES treatment was applied to cells before ZIKV infection (pre-infection) and after the virus bound to the cells (virus internalization inhibition), implying that RES acts through its continuous presence in the cell cultures after virus infection. Overall, our results suggested that RES exhibited direct virucidal activity against ZIKV and possessed anti-ZIKV replication properties, highlighting the need for further exploration of RES as a potential antiviral molecule against ZIKV infection.
Collapse
Affiliation(s)
- Azirah Mohd
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nurhafiza Zainal
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.,Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia. .,Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia. .,Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
35
|
Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals (Basel) 2019; 12:ph12030127. [PMID: 31480297 PMCID: PMC6789873 DOI: 10.3390/ph12030127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that spread throughout the American continent in 2015 causing considerable worldwide social and health alarm due to its association with ocular lesions and microcephaly in newborns, and Guillain-Barré syndrome (GBS) cases in adults. Nowadays, no licensed vaccines or antivirals are available against ZIKV, and thus, in this very short time, the scientific community has conducted enormous efforts to develop vaccines and antivirals. So that, different platforms (purified inactivated and live attenuated viruses, DNA and RNA nucleic acid based candidates, virus-like particles, subunit elements, and recombinant viruses) have been evaluated as vaccine candidates. Overall, these vaccines have shown the induction of vigorous humoral and cellular responses, the decrease of viremia and viral RNA levels in natural target organs, the prevention of vertical and sexual transmission, as well as that of ZIKV-associated malformations, and the protection of experimental animal models. Some of these vaccine candidates have already been assayed in clinical trials. Likewise, the search for antivirals have also been the focus of recent investigations, with dozens of compounds tested in cell culture and a few in animal models. Both direct acting antivirals (DAAs), directed to viral structural proteins and enzymes, and host acting antivirals (HAAs), directed to cellular factors affecting all steps of the viral life cycle (binding, entry, fusion, transcription, translation, replication, maturation, and egress), have been evaluated. It is expected that this huge collaborative effort will produce affordable and effective therapeutic and prophylactic tools to combat ZIKV and other related still unknown or nowadays neglected flaviviruses. Here, a comprehensive overview of the advances made in the development of therapeutic measures against ZIKV and the questions that still have to be faced are summarized.
Collapse
|
36
|
Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol 2019; 16:125-142. [PMID: 29430005 PMCID: PMC7097628 DOI: 10.1038/nrmicro.2017.170] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the Flaviviridae virus family comprise a large group of enveloped viruses with a single-strand RNA genome of positive polarity. Several genera belong to this family, including the Hepacivirus genus, of which hepatitis C virus (HCV) is the prototype member, and the Flavivirus genus, which contains both dengue virus and Zika virus. Viruses of these genera differ in many respects, such as the mode of transmission or the course of infection, which is either predominantly persistent in the case of HCV or acutely self-limiting in the case of flaviviruses. Although the fundamental replication strategy of Flaviviridae members is similar, during the past few years, important differences have been discovered, including the way in which these viruses exploit cellular resources to facilitate viral propagation. These differences might be responsible, at least in part, for the various biological properties of these viruses, thus offering the possibility to learn from comparisons. In this Review, we discuss the current understanding of how Flaviviridae viruses manipulate and usurp cellular pathways in infected cells. Specifically, we focus on comparing strategies employed by flaviviruses with those employed by hepaciviruses, and we discuss the importance of these interactions in the context of viral replication and antiviral therapies.
Collapse
Affiliation(s)
- Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Eliana G Acosta
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Colic M, Wang G, Zimmermann M, Mascall K, McLaughlin M, Bertolet L, Lenoir WF, Moffat J, Angers S, Durocher D, Hart T. Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Med 2019; 11:52. [PMID: 31439014 PMCID: PMC6706933 DOI: 10.1186/s13073-019-0665-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chemogenetic profiling enables the identification of gene mutations that enhance or suppress the activity of chemical compounds. This knowledge provides insights into drug mechanism of action, genetic vulnerabilities, and resistance mechanisms, all of which may help stratify patient populations and improve drug efficacy. CRISPR-based screening enables sensitive detection of drug-gene interactions directly in human cells, but until recently has primarily been used to screen only for resistance mechanisms. RESULTS We present drugZ, an algorithm for identifying both synergistic and suppressor chemogenetic interactions from CRISPR screens. DrugZ identifies synthetic lethal interactions between PARP inhibitors and both known and novel members of the DNA damage repair pathway, confirms KEAP1 loss as a resistance factor for ERK inhibitors in oncogenic KRAS backgrounds, and defines the genetic context for temozolomide activity. CONCLUSIONS DrugZ is an open-source Python software for the analysis of genome-scale drug modifier screens. The software accurately identifies genetic perturbations that enhance or suppress drug activity. Interestingly, analysis of new and previously published data reveals tumor suppressor genes are drug-agnostic resistance genes in drug modifier screens. The software is available at github.com/hart-lab/drugz .
Collapse
Affiliation(s)
- Medina Colic
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michal Zimmermann
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Keith Mascall
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Megan McLaughlin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lori Bertolet
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Frank Lenoir
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Sun ZG, Zhao TT, Lu N, Yang YA, Zhu HL. Research Progress of Glycyrrhizic Acid on Antiviral Activity. Mini Rev Med Chem 2019; 19:826-832. [PMID: 30659537 DOI: 10.2174/1389557519666190119111125] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/29/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
Glycyrrhizic acid (GA), a triterpene isolated from the roots and rhizomes of licorice, named Glycyrrhiza glabra, is the principal bioactive ingredient of anti-viral, anti-inflammatory and hepatoprotective effects. GA has been used in the clinical treatment of hepatitis, bronchitis, gastric ulcer, AIDS (acquired immunodeficiency syndrome), certain cancers and skin diseases. It has a direct effect on anti-HBV (hepatitis B virus) via affecting the HBsAg (hepatitis B surface antigen) to extracellular secretion, improving liver dysfunction in patients with chronic hepatitis B, and ultimately improving the immune status of HBV. GA can significantly inhibit the proliferation of HIV, showing an immune activation. The clinical application of GA on the prevention and treatments of various diseases may derive from its numerous pharmacological properties. This review provides the summary of the antiviral effects of GA on research progress and mechanism in recent years.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No. 17 Jiankang Road, Linyi 276400, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| | - Ting-Ting Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| | - Na Lu
- Linyi Food and Drug Inspection and Testing Center, No. 309 Yizhou Road, Linyi 276000, China
| | - Yong-An Yang
- Elion Nature Bio Tech Co. Ltd. Nanjing 210038, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No. 163 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
39
|
Koizumi Y, Fukushima J, Kobayashi Y, Kadowaki A, Natsui M, Yamaguchi T, Imai Y, Sugiyama T, Kuba K. Genome-Scale CRISPR/Cas9 Screening Reveals Squalene Epoxidase as a Susceptibility Factor for Cytotoxicity of Malformin A1. Chembiochem 2019; 20:1563-1568. [PMID: 30734978 PMCID: PMC6618319 DOI: 10.1002/cbic.201800769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Indexed: 01/23/2023]
Abstract
Malformin A1 (MA1) is a fungus-produced cyclic pentapeptide. MA1 exhibits teratogenicity to plants, fibrinolysis-enhancing activity, and cytotoxicity to mammalian cells. To clarify the cytotoxic mechanism of MA1, we screened for the genes involved in the cytotoxicity of MA1 in monocytoid U937 cells by using a CRISPR/Cas9-based genome-wide knockout library. Screening was performed by positive selection for cells that were resistant to MA1 treatment, and single guide RNAs (sgRNAs) integrated into MA1-resistant cells were analyzed by high-throughput sequencing. As a result of the evaluation of sgRNAs that were enriched in MA1-resistant cells, SQLE, which encodes squalene epoxidase, was identified as a candidate gene. SQLE-depleted U937 cells were viable in the presence of MA1, and squalene epoxidase inhibitor conferred MA1 resistance to wild-type cells. These results indicate that squalene epoxidase is implicated in the cytotoxicity of MA1. This finding represents a new insight into applications of MA1 for treating ischemic diseases.
Collapse
Affiliation(s)
- Yukio Koizumi
- Department of Biochemistry and Metabolic ScienceAkita University Graduate School of Medicine1-1-1 HondoAkita 010-8543Japan
| | - Jun Fukushima
- Department of BiotechnologyFaculty of Bioresource SciencesAkita Prefectural University241–438 Kaidobata-Nishi, Shimoshinjo-NakanoAkita010–0195Japan
| | - Yayoi Kobayashi
- Department of BiotechnologyFaculty of Bioresource SciencesAkita Prefectural University241–438 Kaidobata-Nishi, Shimoshinjo-NakanoAkita010–0195Japan
| | - Ayumi Kadowaki
- Department of Biochemistry and Metabolic ScienceAkita University Graduate School of Medicine1-1-1 HondoAkita 010-8543Japan
| | - Miyuki Natsui
- Department of Biochemistry and Metabolic ScienceAkita University Graduate School of Medicine1-1-1 HondoAkita 010-8543Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic ScienceAkita University Graduate School of Medicine1-1-1 HondoAkita 010-8543Japan
| | - Yumiko Imai
- Laboratory of Regulation of Intractable Infectious DiseasesNational Institutes of Biomedical Innovation, Health and Nutrition7-6-8 Saito-AsagiIbaraki, Osaka567-0085Japan
| | - Toshihiro Sugiyama
- Department of Biochemistry and Metabolic ScienceAkita University Graduate School of Medicine1-1-1 HondoAkita 010-8543Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic ScienceAkita University Graduate School of Medicine1-1-1 HondoAkita 010-8543Japan
| |
Collapse
|
40
|
Zhao P, Xue Y, Li X, Li J, Zhao Z, Quan C, Gao W, Zu X, Bai X, Feng S. Fungi-derived lipopeptide antibiotics developed since 2000. Peptides 2019; 113:52-65. [PMID: 30738838 DOI: 10.1016/j.peptides.2019.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
Lipopeptide antibiotics have linear or cyclic structures with one or more hydrocarbon tails linked to the N-terminus of a short oligopeptide that may be chemically modified and/or contain unusual amino acid residues in their structures. They possess huge potential as pharmaceutical drugs and biocontrol agents, and ˜30 representative genera of fungi are known to produce them. Some chemically synthesised derivatives have already been developed into commercial products or subjected to clinical trials, including cilofungin, caspofungin, micafungin, anidulafungin, rezafungin, emodepside, fusafungine and destruxins. This review summarizes 200 fungi-derived compounds reported since 2000, including 95 cyclic depsipeptides, 67 peptaibiotics (including 35 peptaibols, eight lipoaminopeptides, and five lipopeptaibols), and 38 non-depsipeptide and non-peptaibiotic lipopeptides. Their sources, structural sequences, antibiotic activities (e.g. antibacterial, antifungal, antiviral, antimycobacterial, antimycoplasmal, antimalarial, antileishmanial, insecticidal, antitrypanosomal and nematicidal), structure-activity relationships, mechanisms of action, and specific relevance are discussed. These compounds have attracted considerable interest within the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Xin Li
- Life Science College, Yuncheng University, Yuncheng, 044000, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhanqin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
41
|
Abstract
C–H functionalization is a chemically challenging but highly desirable transformation. 2-oxoglutarate-dependent oxygenases (2OGXs) are remarkably versatile biocatalysts for the activation of C–H bonds. In nature, they have been shown to accept both small and large molecules carrying out a plethora of reactions, including hydroxylations, demethylations, ring formations, rearrangements, desaturations, and halogenations, making them promising candidates for industrial manufacture. In this review, we describe the current status of 2OGX use in biocatalytic applications concentrating on 2OGX-catalyzed oxyfunctionalization of amino acids and synthesis of antibiotics. Looking forward, continued bioinformatic sourcing will help identify additional, practical useful members of this intriguing enzyme family, while enzyme engineering will pave the way to enhance 2OGX reactivity for non-native substrates.
Collapse
|
42
|
Gorshkov K, Shiryaev SA, Fertel S, Lin YW, Huang CT, Pinto A, Farhy C, Strongin AY, Zheng W, Terskikh AV. Zika Virus: Origins, Pathological Action, and Treatment Strategies. Front Microbiol 2019; 9:3252. [PMID: 30666246 PMCID: PMC6330993 DOI: 10.3389/fmicb.2018.03252] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/14/2018] [Indexed: 01/05/2023] Open
Abstract
The Zika virus (ZIKV) global epidemic prompted the World Health Organization to declare it a 2016 Public Health Emergency of International Concern. The overwhelming experience over the past several years teaches us that ZIKV and the associated neurological complications represent a long-term world-wide challenge to public health. Although the number of ZIKV cases in the Western Hemisphere has dropped since 2016, the need for basic research and anti-ZIKV drug development remains strong. Re-emerging viruses like ZIKV are an ever-present threat in the 21st century where fast transcontinental travel lends itself to viral epidemics. Here, we first present the origin story for ZIKV and review the rapid progress researchers have made toward understanding of the ZIKV pathology and in the design, re-purposing, and testing–particularly in vivo–drug candidates for ZIKV prophylaxis and therapy ZIKV. Quite remarkably, a short, but intensive, drug-repurposing effort has already resulted in several readily available FDA-approved drugs that are capable of effectively combating the virus in infected adult mouse models and, most importantly, in both preventing maternal-fetal transmission and severe microcephaly in newborns in pregnant mouse models.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Sergey A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Sophie Fertel
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Yi-Wen Lin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Chun-Teng Huang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Antonella Pinto
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Chen Farhy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alex Y Strongin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Alexey V Terskikh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
43
|
Hoepfner D, McAllister G, Hoffman GR. CRISPR/Cas9-Based Chemogenomic Profiling in Mammalian Cells. Methods Mol Biol 2019; 1888:153-174. [PMID: 30519946 DOI: 10.1007/978-1-4939-8891-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Chemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. It is based on identifying cellular hypersensitivity and resistance caused by individual gene modulations with genome-wide coverage. Due to the requirement of bar-coded, genome-wide deletion collections, high-resolution experiments of this nature have historically been limited to fungal systems. Pooled RNAi reagents have enabled similar attempts in mammalian cells but efforts have been hampered by significant off-target effects and experimental noise. The CRISPR/Cas9 system for the first time enables precise DNA editing at defined loci in a genome-wide fashion. Here we present the detailed protocol that leverages the CRISPR/Cas9 system for chemogenomic profiling and target identification of diverse chemical probes.
Collapse
Affiliation(s)
- Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| | | | | |
Collapse
|
44
|
Han Y, Mesplède T. Investigational drugs for the treatment of Zika virus infection: a preclinical and clinical update. Expert Opin Investig Drugs 2018; 27:951-962. [PMID: 30430882 DOI: 10.1080/13543784.2018.1548609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The Zika virus (ZIKV) infection results in severe neurological complications and has emerged as a threat to public health worldwide. No drugs or vaccines are available for use in the clinic and the need for novel and effective therapeutic agents is urgent. AREAS COVERED This review describes the latest progress of antiviral development for the treatment of ZIKV infection; it primarily focuses on the literature describing 20 potential anti-ZIKV drugs/agents currently being tested in vivo or in clinical trials. The paper also discusses the need for novel ZIKV inhibitors and the critical issues for successful antiviral drug development. EXPERT OPINION So far, 20 compounds have been tested in vivo and three in the clinical trials; progressing these compounds to the clinic is a challenge. Novel ZIKV inhibitors that target virus or host factors are urgently needed. Knowledge-driven drug repurposing, structure-based discovery, RNA interference, long noncoding RNAs, miRNAs, and peptide inhibitors may pave the way for the discovery of such novel agents.
Collapse
Affiliation(s)
- Yingshan Han
- a McGill University AIDS Centre , Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal , Canada
| | - Thibault Mesplède
- a McGill University AIDS Centre , Lady Davis Institute for Medical Research, Jewish General Hospital , Montreal , Canada
| |
Collapse
|
45
|
A one-pot chemoenzymatic synthesis of (2S, 4R)-4-methylproline enables the first total synthesis of antiviral lipopeptide cavinafungin B. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Chen WC, Tseng CK, Lin CK, Wang SN, Wang WH, Hsu SH, Wu YH, Hung LC, Chen YH, Lee JC. Lucidone suppresses dengue viral replication through the induction of heme oxygenase-1. Virulence 2018; 9:588-603. [PMID: 29338543 PMCID: PMC5955471 DOI: 10.1080/21505594.2017.1421893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) infection causes life-threatening diseases such as dengue hemorrhagic fever and dengue shock syndrome. Currently, there is no effective therapeutic agent or vaccine against DENV infection; hence, there is an urgent need to discover anti-DENV agents. The potential therapeutic efficacy of lucidone was first evaluated in vivo using a DENV-infected Institute of Cancer Research (ICR) suckling mouse model by monitoring body weight, clinical score, survival rate, and viral titer. We found that lucidone effectively protected mice from DENV infection by sustaining survival rate and reducing viral titers in DENV-infected ICR suckling mice. Then, the anti-DENV activity of lucidone was confirmed by western blotting and quantitative-reverse-transcription-polymerase chain reaction analysis, with an EC50 value of 25 ± 3 μM. Lucidone significantly induced heme oxygenase-1 (HO-1) production against DENV replication by inhibiting DENV NS2B/3 protease activity to induce the DENV-suppressed antiviral interferon response. The inhibitory effect of lucidone on DENV replication was attenuated by silencing of HO-1 gene expression or blocking HO-1 activity. In addition, lucidone-stimulated nuclear factor erythroid 2-related factor 2 (Nrf2), which is involved in transactivation of HO-1 expression for its anti-DENV activity. Taken together, the mechanistic investigations revealed that lucidone exhibits significant anti-DENV activity in in vivo and in vitro by inducing Nrf2-mediated HO-1 expression, leading to blockage of viral protease activity to induce the anti-viral interferon (IFN) response. These results suggest that lucidone is a promising candidate for drug development.
Collapse
Affiliation(s)
- Wei-Chun Chen
- a Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Chin-Kai Tseng
- b Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan , Taiwan.,c Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Chun-Kuang Lin
- d Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University , Kaohsiung , Taiwan
| | - Shen-Nien Wang
- e Division of Hepatobiliary Surgery , Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung Taiwan.,f Department of Surgery , Faculty of Medicine, Kaohsiung Medical University Hospital , Kaohsiung Taiwan
| | - Wen-Hung Wang
- g Department of Internal Medicine , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Shih-Hsien Hsu
- a Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yu-Hsuan Wu
- b Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan , Taiwan.,c Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | - Ling-Chien Hung
- h Division of Infectious Diseases , Department of Internal Medicine, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan.,i School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yen-Hsu Chen
- h Division of Infectious Diseases , Department of Internal Medicine, Kaohsiung Medical University Hospital , Kaohsiung , Taiwan.,i School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University , Kaohsiung , Taiwan.,j Department of Biological Science and Technology , College of Biological Science and Technology, National Chiao Tung University , HsinChu , Taiwan.,k Center for Infectious Disease and Cancer Research, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Jin-Ching Lee
- a Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan.,l Department of Biotechnology , College of Life Science, Kaohsiung Medical University , Kaohsiung , Taiwan.,m Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung , Taiwan.,n Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung , Taiwan.,o Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| |
Collapse
|
47
|
Saiz JC, Oya NJD, Blázquez AB, Escribano-Romero E, Martín-Acebes MA. Host-Directed Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses 2018; 10:v10090453. [PMID: 30149598 PMCID: PMC6163279 DOI: 10.3390/v10090453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, was an almost neglected pathogen until its introduction in the Americas in 2015, where it has been responsible for a threat to global health, causing a great social and sanitary alarm due to its increased virulence, rapid spread, and an association with severe neurological and ophthalmological complications. Currently, no specific antiviral therapy against ZIKV is available, and treatments are palliative and mainly directed toward the relief of symptoms, such as fever and rash, by administering antipyretics, anti-histamines, and fluids for dehydration. Nevertheless, lately, search for antivirals has been a major aim in ZIKV investigations. To do so, screening of libraries from different sources, testing of natural compounds, and repurposing of drugs with known antiviral activity have allowed the identification of several antiviral candidates directed to both viral (structural proteins and enzymes) and cellular elements. Here, we present an updated review of current knowledge about anti-ZIKV strategies, focusing on host-directed antivirals as a realistic alternative to combat ZIKV infection.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Nereida Jiménez de Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Estela Escribano-Romero
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| |
Collapse
|
48
|
Arora N, Banerjee AK, Narasu ML. Zika outbreak aftermath: status, progress, concerns and new insights. Future Virol 2018. [DOI: 10.2217/fvl-2018-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zika, a neurotrophic virus belonging to Flaviviridae family of viruses and transmitted by vector mosquitoes of Aedes species, took the world by storm during its recent outbreak. Its spread to newer territories, unprecedented pace of transmission, lack of existing therapeutic agents and vaccines and an empty drug pipeline raised an alarm. Uncertainty about full spectrum of diseases and its long-term consequences, newly discovered modes of transmission and controversies over vector status of mosquito species like Culex quinquefasciatus led to layers of complexity and presented new hurdles and challenges in Zika virus research. This review summarizes the progress and updates of efforts, concerns, financial burden and available resources in light of newly acquired knowledge in Zika virus research.
Collapse
Affiliation(s)
- Neelima Arora
- Centre for Biotechnology, Institute of Science & Technology (Autonomous), Jawaharlal Nehru Technological University-Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| | - Amit K Banerjee
- Biology Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Mangamoori L Narasu
- Centre for Biotechnology, Institute of Science & Technology (Autonomous), Jawaharlal Nehru Technological University-Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| |
Collapse
|
49
|
A Small-Molecule Oligosaccharyltransferase Inhibitor with Pan-flaviviral Activity. Cell Rep 2018; 21:3032-3039. [PMID: 29241533 DOI: 10.1016/j.celrep.2017.11.054] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 11/15/2017] [Indexed: 01/04/2023] Open
Abstract
The mosquito-borne flaviviruses include important human pathogens such as dengue, Zika, West Nile, and yellow fever viruses, which pose a serious threat for global health. Recent genetic screens identified endoplasmic reticulum (ER)-membrane multiprotein complexes, including the oligosaccharyltransferase (OST) complex, as critical flavivirus host factors. Here, we show that a chemical modulator of the OST complex termed NGI-1 has promising antiviral activity against flavivirus infections. We demonstrate that NGI-1 blocks viral RNA replication and that antiviral activity does not depend on inhibition of the N-glycosylation function of the OST. Viral mutants adapted to replicate in cells deficient of the OST complex showed resistance to NGI-1 treatment, reinforcing the on-target activity of NGI-1. Lastly, we show that NGI-1 also has strong antiviral activity in primary and disease-relevant cell types. This study provides an example for advancing from the identification of genetic determinants of infection to a host-directed antiviral compound with broad activity against flaviviruses.
Collapse
|
50
|
Clain E, Sinigaglia L, Koishi AC, Gorgette O, Gadea G, Viranaicken W, Krejbich-Trotot P, Mavingui P, Desprès P, Nunes Duarte Dos Santos C, Guiraud P, Jouvenet N, El Kalamouni C. Extract from Aphloia theiformis, an edible indigenous plant from Reunion Island, impairs Zika virus attachment to the host cell surface. Sci Rep 2018; 8:10856. [PMID: 30022045 PMCID: PMC6052117 DOI: 10.1038/s41598-018-29183-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/06/2018] [Indexed: 01/05/2023] Open
Abstract
The mosquito-borne Zika virus (ZIKV) belongs to the flavivirus genus of the Flaviviridae family. Contemporary epidemic strains of ZIKV are associated with congenital malformations in infants, including microcephaly, as well as Guillain-Barré syndrome in adults. A risk of human-to-human transmission of ZIKV is also well documented. A worldwide research effort has been undertaken to identify safe and effective strategies to prevent or treat ZIKV infection. We show here that extract from Aphloia theiformis, an edible endemic plant from Indian Ocean islands, exerts a potent antiviral effect against ZIKV strains of African and Asian lineages, including epidemic strains. The antiviral effect of A. theiformis extract was extended to clinical isolates of dengue virus (DENV) of the four serotypes in human hepatocytes. A. theiformis inhibited virus entry in host cells by acting directly on viral particles, thus impairing their attachment to the cell surface. Electron microscopic observations revealed that organization of ZIKV particles was severely affected by A. theiformis. We propose a model of antiviral action for A. theiformis against flaviviruses that highlights the potential of medicinal plants as promising sources of naturally-derived antiviral compounds to prevent ZIKV and DENV infections.
Collapse
Affiliation(s)
- Elodie Clain
- Université de La Réunion, UM134 Processus Infectieux Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 97490, Sainte, Clotilde, France
| | - Laura Sinigaglia
- UMR CNRS 3569, Viral Genomics and Vaccination Unit, Pasteur Institute, 75724, Paris, France
| | - Andrea Cristine Koishi
- Laboratorio de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba, Parana, Brazil
| | - Olivier Gorgette
- Ultrastructural BioImaging (UTechsUBI), Pasteur Institute, 75724, Paris, France
| | - Gilles Gadea
- Université de La Réunion, UM134 Processus Infectieux Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 97490, Sainte, Clotilde, France
| | - Wildriss Viranaicken
- Université de La Réunion, UM134 Processus Infectieux Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 97490, Sainte, Clotilde, France
| | - Pascale Krejbich-Trotot
- Université de La Réunion, UM134 Processus Infectieux Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 97490, Sainte, Clotilde, France
| | - Patrick Mavingui
- Université de La Réunion, UM134 Processus Infectieux Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 97490, Sainte, Clotilde, France
| | - Philippe Desprès
- Université de La Réunion, UM134 Processus Infectieux Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 97490, Sainte, Clotilde, France
| | | | - Pascale Guiraud
- Université de La Réunion, UM134 Processus Infectieux Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 97490, Sainte, Clotilde, France
| | - Nolwenn Jouvenet
- UMR CNRS 3569, Viral Genomics and Vaccination Unit, Pasteur Institute, 75724, Paris, France
| | - Chaker El Kalamouni
- Université de La Réunion, UM134 Processus Infectieux Insulaire Tropical (PIMIT), INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 97490, Sainte, Clotilde, France.
| |
Collapse
|