1
|
Liu Z, Bartolomei MS. Overcoming gene dosage barriers in mammalian development: An imprinting balancing act. Cell Stem Cell 2025; 32:333-335. [PMID: 40054450 DOI: 10.1016/j.stem.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 05/13/2025]
Abstract
Genomic imprinting ensures parent-of-origin gene expression and prevents uniparental development. In this issue of Cell Stem Cell, Li et al.1 extensively engineered androgenic haploid embryonic stem cells to overcome imprinting barriers, producing adult bi-paternal mice, albeit with low efficiency, and providing insights into roles of imprinted genes in development.
Collapse
Affiliation(s)
- Zhengfeng Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Li ZK, Wang LB, Wang LY, Sun XH, Ren ZH, Ma SN, Zhao YL, Liu C, Feng GH, Liu T, Pan TS, Shan QT, Xu K, Luo GZ, Zhou Q, Li W. Adult bi-paternal offspring generated through direct modification of imprinted genes in mammals. Cell Stem Cell 2025; 32:361-374.e6. [PMID: 39879989 DOI: 10.1016/j.stem.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Imprinting abnormalities pose a significant challenge in applications involving embryonic stem cells, induced pluripotent stem cells, and animal cloning, with no universal correction method owing to their complexity and stochastic nature. In this study, we targeted these defects at their source-embryos from same-sex parents-aiming to establish a stable, maintainable imprinting pattern de novo in mammalian cells. Using bi-paternal mouse embryos, which exhibit severe imprinting defects and are typically non-viable, we introduced frameshift mutations, gene deletions, and regulatory edits at 20 key imprinted loci, ultimately achieving the development of fully adult animals, albeit with a relatively low survival rate. The findings provide strong evidence that imprinting abnormalities are a primary barrier to unisexual reproduction in mammals. Moreover, this approach can significantly improve developmental outcomes for embryonic stem cells and cloned animals, opening promising avenues for advancements in regenerative medicine.
Collapse
Affiliation(s)
- Zhi-Kun Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Li-Bin Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Le-Yun Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xue-Han Sun
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Hui Ren
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Si-Nan Ma
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu-Long Zhao
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Gui-Hai Feng
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tao Liu
- Beijing SeqWisdom Biotechnology Co., Ltd., Beijing 100176, China
| | - Tian-Shi Pan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qing-Tong Shan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kai Xu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guan-Zheng Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qi Zhou
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Wei Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
3
|
Saint-Ruf C, Boumerdassi Y, Kouakou F, Wolf JP, Eustache F, Vaiman D, Miralles F. Blastocyst exposure to plastic during mice in vitro fertilization impacts placental development. Reprod Toxicol 2025; 132:108856. [PMID: 39952332 DOI: 10.1016/j.reprotox.2025.108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/28/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Pregnancies from Assisted Reproductive Technologies (ARTs) are associated with a significant prevalence of maternal, neonatal and long-term adverse health issues. These anomalies are generally attributed to the in vitro manipulations involved in these procedures. Concerns have been raised on the quality of the culture media, however the potential influence of the chemical composition of the devices used in the in vitro fertilization (IVF) has been poorly analysed. By comparing the transcriptomes of placentas from mouse blastocysts obtained by IVF on plasticware, glassware and naturally conceived, we have previously established that plasticware profoundly impacts placental development. METHODS Transcriptomics, transcriptome deconvolution analysis, Gene Set Enrichment Analysis. RESULTS Plasticware alters placental gene expression mostly in the trophoblast compartment, and alters cell composition favouring Glycogen Cells. These modifications correlate with alterations of epigenetic mechanisms (alterations of imprinted genes, microRNAs expression, methylation alterations). Also, sex-stratified analysis reveals that these effects are more drastic in female than male placentas. The effect of glassware on the transcriptome and cellular composition of the placenta is milder, and in particular has lower impact on the imprinted gene or microRNAs expression. CONCLUSION In vitro culture in plasticware during IVF procedures sex-specifically alters gene expression and/or cell composition in the placenta, possibly through factors released by the plasticware having an action on epigenetic actors (imprinted genes, miRNAs and DNA methylation).
Collapse
Affiliation(s)
- Claude Saint-Ruf
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France
| | | | - Franck Kouakou
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France
| | - Jean-Philippe Wolf
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France
| | - Florence Eustache
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France
| | - Daniel Vaiman
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France
| | - Francisco Miralles
- Institut Cochin U1016 INSERM, UMR 8134 CNRS, Université de Paris, France.
| |
Collapse
|
4
|
Sati L, Varela L, Horvath TL, McGrath J. Creation of true interspecies hybrids: Rescue of hybrid class with hybrid cytoplasm affecting growth and metabolism. SCIENCE ADVANCES 2024; 10:eadq4339. [PMID: 39441922 PMCID: PMC11498210 DOI: 10.1126/sciadv.adq4339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Interspecies hybrids have nuclear contributions from two species but oocyte cytoplasm from only one. Species discordance may lead to altered nuclear reprogramming of the foreign paternal genome. We reasoned that initial reprogramming in same species cytoplasm plus creation of hybrids with zygote cytoplasm from both species, which we describe here, might enhance nuclear reprogramming and promote hybrid development. We report in Mus species that (i) mammalian nuclear/cytoplasmic hybrids can be created, (ii) they allow development and viability of a previously missing and uncharacterized hybrid class, (iii) different oocyte cytoplasm environments lead to different phenotypes of same nuclear hybrid genotype, and (iv) the novel hybrids exhibit sex ratio distortion with the absence of female progeny and represent a mammalian exception to Haldane's rule. Our results emphasize that interspecies hybrid phenotypes are not only the result of nuclear gene epistatic interactions but also cytonuclear interactions and that the latter have major impacts on fetal and placental growth and development.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, 07070 Antalya, Turkey
| | - Luis Varela
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - James McGrath
- Departments of Comparative Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Jeyarajah MJ, Patterson VS, Jaju Bhattad G, Zhao L, Whitehead SN, Renaud SJ. Placental extracellular vesicles promote cardiomyocyte maturation and fetal heart development. Commun Biol 2024; 7:1254. [PMID: 39363116 PMCID: PMC11450004 DOI: 10.1038/s42003-024-06938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Congenital heart defects are leading causes of neonatal mortality and are often associated with placental abnormalities, but mechanisms linking placenta and heart development are poorly understood. Herein, we investigated a potential signaling network connecting the placenta and nascent heart in mice. We found that fetal hearts exposed to media conditioned by placental tissue or differentiated wild-type trophoblast stem (TS) cells, but not undifferentiated TS cells, showed increased heart rate and epicardial cell outgrowth. This effect was not observed when hearts were exposed to media from TS cells lacking OVO-Like 2, a transcription factor required for trophoblast differentiation and placental development. Trophoblasts released abundant extracellular vesicles into media, and these vesicles were sufficient to mediate cardio-promoting effects. Our findings provide a potential mechanism whereby the placenta communicates with the fetal heart to promote cardiac morphogenesis, and offers insight into the link between poor placentation and a higher incidence of heart defects.
Collapse
Affiliation(s)
- Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Violet S Patterson
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Lin Zhao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
- Children's Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
6
|
Shi CY, Elcavage LE, Chivukula RR, Stefano J, Kleaveland B, Bartel DP. ZSWIM8 destabilizes many murine microRNAs and is required for proper embryonic growth and development. Genome Res 2023; 33:1482-1496. [PMID: 37532519 PMCID: PMC10620050 DOI: 10.1101/gr.278073.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
MicroRNAs (miRNAs) pair to sites in mRNAs to direct the degradation of these RNA transcripts. Conversely, certain RNA transcripts can direct the degradation of particular miRNAs. This target-directed miRNA degradation (TDMD) requires the ZSWIM8 E3 ubiquitin ligase. Here, we report the function of ZSWIM8 in the mouse embryo. Zswim8 -/- embryos were smaller than their littermates and died near the time of birth. This highly penetrant perinatal lethality was apparently caused by a lung sacculation defect attributed to failed maturation of alveolar epithelial cells. Some mutant individuals also had heart ventricular septal defects. These developmental abnormalities were accompanied by aberrant accumulation of more than 50 miRNAs observed across 12 tissues, which often led to enhanced repression of their mRNA targets. These ZSWIM8-sensitive miRNAs were preferentially produced from genomic miRNA clusters, and in some cases, ZSWIM8 caused a switch in the dominant strand or isoform that accumulated from a miRNA hairpin-observations suggesting that TDMD provides a mechanism to uncouple coproduced miRNAs from each other. Overall, our findings indicate that the regulatory influence of ZSWIM8, and presumably TDMD, in mammalian biology is widespread and consequential, and posit the existence of many yet-unidentified transcripts that trigger miRNA degradation.
Collapse
Affiliation(s)
- Charlie Y Shi
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Lara E Elcavage
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Raghu R Chivukula
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Joanna Stefano
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Benjamin Kleaveland
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA;
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Wickramage I, VanWye J, Max K, Lockhart JH, Hortu I, Mong EF, Canfield J, Lamabadu Warnakulasuriya Patabendige HM, Guzeloglu-Kayisli O, Inoue K, Ogura A, Lockwood CJ, Akat KM, Tuschl T, Kayisli UA, Totary-Jain H. SINE RNA of the imprinted miRNA clusters mediates constitutive type III interferon expression and antiviral protection in hemochorial placentas. Cell Host Microbe 2023; 31:1185-1199.e10. [PMID: 37315561 PMCID: PMC10524649 DOI: 10.1016/j.chom.2023.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Hemochorial placentas have evolved defense mechanisms to prevent the vertical transmission of viruses to the immunologically underdeveloped fetus. Unlike somatic cells that require pathogen-associated molecular patterns to stimulate interferon production, placental trophoblasts constitutively produce type III interferons (IFNL) through an unknown mechanism. We demonstrate that transcripts of short interspersed nuclear elements (SINEs) embedded in miRNA clusters within the placenta trigger a viral mimicry response that induces IFNL and confers antiviral protection. Alu SINEs within primate-specific chromosome 19 (C19MC) and B1 SINEs within rodent-specific microRNA cluster on chromosome 2 (C2MC) produce dsRNAs that activate RIG-I-like receptors (RLRs) and downstream IFNL production. Homozygous C2MC knockout mouse trophoblast stem (mTS) cells and placentas lose intrinsic IFN expression and antiviral protection, whereas B1 RNA overexpression restores C2MCΔ/Δ mTS cell viral resistance. Our results uncover a convergently evolved mechanism whereby SINE RNAs drive antiviral resistance in hemochorial placentas, placing SINEs as integral players in innate immunity.
Collapse
Affiliation(s)
- Ishani Wickramage
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jeffrey VanWye
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Klaas Max
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - John H Lockhart
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ismet Hortu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ezinne F Mong
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - John Canfield
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kimiko Inoue
- Bioresource Engineering Division, BioResource Research Center, RIKEN, Tsukuba 305-0074, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, BioResource Research Center, RIKEN, Tsukuba 305-0074, Ibaraki, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kemal M Akat
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA; Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Tuschl
- Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Hana Totary-Jain
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Heart Institute, University of South Florida, Tampa, FL 33602, USA.
| |
Collapse
|
8
|
Tan X, Zhu T, Zhang L, Fu L, Hu Y, Li H, Li C, Zhang J, Liang B, Liu J. miR-669a-5p promotes adipogenic differentiation and induces browning in preadipocytes. Adipocyte 2022; 11:120-132. [PMID: 35094659 PMCID: PMC8803067 DOI: 10.1080/21623945.2022.2030570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major global health issue that contributes to the occurrence of metabolic disorders. Based on this fact, understanding the underlying mechanisms and to uncover promising therapeutic approaches for obesity have attracted intense investigation. Brown adipose tissue (BAT) can help burns excess calories. Therefore, promoting White adipose tissue (WAT) browning and BAT activation is an attractive strategy for obesity treatment. MicroRNAs (miRNAs) are small, non-coding RNAs, which are involved in regulation of adipogenic processes and metabolic functions. Evidence is accumulating that miRNAs are important regulators for both brown adipocyte differentiation and white adipocyte browning. Here we report that the expression of miR-669a-5p increases during the adipogenic differentiation of 3T3-L1 and C3H10T1/2 adipocytes. miR-669a-5p supplementation promotes adipogenic differentiation and causes browning of 3T3-L1 and C3H10T1/2 cells. Moreover, the expression of miR-669a-5p is upregulated in iWAT of mice exposed to cold. These data demonstrate that miR-669a-5p plays a role in regulating adipocyte differentiation and fat browning.Abbreviations: Acadl: long-chain acyl-Coenzyme A dehydrogenase; Acadm: medium-chain acyl-Coenzyme A dehydrogenase; Acadvl: very long-chain acyl-Coenzyme A dehydrogenase, very long chain; Aco2: mitochondrial aconitase 2; BAT: brown adipose tissue; Bmper: BMP-binding endothelial regulator; Cpt1-b:carnitine palmitoyltransferase 1b; Cpt2: carnitine palmitoyltransferase 2; Crat: carnitine acetyltransferase; Cs: citrate synthase; C2MC: Chromosome 2 miRNA cluster; DMEM: Dulbecco's modified Eagle medium; eWAT: epididymal white adipose tissue; ETC: electron transport chain; FAO: fatty acid oxidation; Fabp4:fatty acid binding protein 4; FBS: fetal bovine serum; Hadha: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha; Hadhb: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta; HFD: high fat diet; Idh3a: isocitrate dehydrogenase 3 alpha; iWAT: inguinal subcutaneous white adipose tissue; Lpl: lipoprotein lipase; Mdh2: malate dehydrogenase 2; NBCS: NewBorn Calf Serum; mt-Nd1: mitochondrial NADH dehydrogenase 1; Ndufb8:ubiquinone oxidoreductase subunit B8; Nrf1: nuclear respiratory factor 1; Pgc1α: peroxisome proliferative activated receptor gamma coactivator 1 alpha; Pgc1b: peroxisome proliferative activated receptor, gamma, coactivator 1 beta; Pparγ: peroxisome proliferator activated receptor gamma; Prdm16: PR domain containing 16; Rgs4: regulator of G-protein signaling 4; Sdhb: succinate dehydrogenase complex, subunit B; Sdhc: succinate dehydrogenase complex, subunit C; Sdhd: succinate dehydrogenase complex, subunit D; Sh3d21: SH3 domain containing 21; Sfmbt2: Scm-like with four mbt domains 2; TG: triglyceride; TCA: tricarboxylic acid cycle; Tfam: transcription factor A, mitochondrial; TMRE: tetramethylrhodamine, methyl ester; Ucp1: uncoupling protein 1; Uqcrc2: ubiquinol cytochrome c reductase core protein 2; WAT: White adipose tissue.
Collapse
Affiliation(s)
- Xiaoqiong Tan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Ying Hu
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Chengbin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jing Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
9
|
Wu X, He X, Liu Q, Li H. The developmental miR-17-92 cluster and the Sfmbt2 miRNA cluster cannot rescue the abnormal embryonic development generated using obstructive epididymal environment-producing sperm in C57BL/6 J mice. Reprod Biol Endocrinol 2022; 20:164. [PMID: 36451157 PMCID: PMC9710060 DOI: 10.1186/s12958-022-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/16/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sperm, during epididymal transit, acquires microRNAs(miRNAs), which are crucial for embryonic development. However, whether sperm miRNAs influenced by an obstructive epididymal environment affect embryonic development remains unknown. METHOD The sham operation and vasectomy were performed in C57BL/6 J mice to create the control group (CON) and the obstructive epididymal environment group(OEE) group, respectively. The morphology of the testis and epididymis was observed using hematoxylin and eosin staining (HE staining) to establish the OEE mice model. The sperm quality test, intracytoplasmic sperm injection (ICSI), and epididymosomes fusion were employed to observe the effect of the obstructive epididymal environment on sperm and resultant embryonic development. The alteration of the sperm small RNA (sRNA) profile was analyzed by sRNA sequencing. RT-qPCR and DNA methylation were applied to observe the effect of obstructive epididymis on the expression of sperm miRNAs. The miRNAs microinjection was used to explore the impacts of sperm miRNAs on embryonic development. RESULTS We confirmed postoperative 8-week mice as the OEE mice model by examining the morphology of the testis and epididymis. In the OEE group, we observed that sperm quality degraded and the development potential of embryos was reduced, which can be saved by the normal epididymal environment. The sperm sRNA sequencing revealed that the expression of the developmental miR-17-92 cluster and the Sfmbt2 miRNA cluster was downregulated in the OEE group. The expression of these two miRNA clusters in epididymis was also downregulated and regulated by DNA methylation. However, the downregulation of either the miR-17-92 cluster or the Sfmbt2 miRNA cluster in normal zygotes did not impair embryonic development. CONCLUSION The obstructive epididymal environment influences sperm quality and resultant embryonic development, as well as the abundance of the developmental miR-17-92 cluster and the Sfmbt2 miRNA cluster in sperm, but these miRNA clusters are not the cause of abnormal embryonic development. It implies that epididymis is important in early embryonic development and may play a potential role in sperm epigenome.
Collapse
Affiliation(s)
- Xunwei Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaomei He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Honggang Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
10
|
Li Y, Sun Q. Epigenetic manipulation to improve mouse SCNT embryonic development. Front Genet 2022; 13:932867. [PMID: 36110221 PMCID: PMC9468881 DOI: 10.3389/fgene.2022.932867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Cloned mammals can be achieved through somatic cell nuclear transfer (SCNT), which involves reprogramming of differentiated somatic cells into a totipotent state. However, low cloning efficiency hampers its application severely. Cloned embryos have the same DNA as donor somatic cells. Therefore, incomplete epigenetic reprogramming accounts for low development of cloned embryos. In this review, we describe recent epigenetic barriers in SCNT embryos and strategies to correct these epigenetic defects and avoid the occurrence of abnormalities in cloned animals.
Collapse
Affiliation(s)
- Yamei Li
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Qiang Sun
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- *Correspondence: Qiang Sun,
| |
Collapse
|
11
|
Matoba S, Kozuka C, Miura K, Inoue K, Kumon M, Hayashi R, Ohhata T, Ogura A, Inoue A. Noncanonical imprinting sustains embryonic development and restrains placental overgrowth. Genes Dev 2022; 36:483-494. [PMID: 35483741 PMCID: PMC9067403 DOI: 10.1101/gad.349390.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/08/2022] [Indexed: 01/23/2023]
Abstract
In this study, Matoba et al. use a combinatorial maternal KO of Xist, a noncanonical imprinted gene whose LOI causes aberrant transient maternal X-chromosome inactivation (XCI) at preimplantation, and show that prevention of the transient maternal XCI greatly restores the development of Eed matKO embryos. Their findings provide evidence that Xist imprinting sustains embryonic development and that autosomal noncanonical imprinting restrains placental overgrowth. Genomic imprinting regulates parental origin-dependent monoallelic gene expression. It is mediated by either germline differential methylation of DNA (canonical imprinting) or oocyte-derived H3K27me3 (noncanonical imprinting) in mice. Depletion of Eed, an essential component of Polycomb repressive complex 2, results in genome-wide loss of H3K27me3 in oocytes, which causes loss of noncanonical imprinting (LOI) in embryos. Although Eed maternal KO (matKO) embryos show partial lethality after implantation, it is unknown whether LOI itself contributes to the developmental phenotypes of these embryos, which makes it unclear whether noncanonical imprinting is developmentally relevant. Here, by combinatorial matKO of Xist, a noncanonical imprinted gene whose LOI causes aberrant transient maternal X-chromosome inactivation (XCI) at preimplantation, we show that prevention of the transient maternal XCI greatly restores the development of Eed matKO embryos. Moreover, we found that the placentae of Eed matKO embryos are remarkably enlarged in a manner independent of Xist LOI. Heterozygous deletion screening of individual autosomal noncanonical imprinted genes suggests that LOI of the Sfmbt2 miRNA cluster chromosome 2 miRNA cluster (C2MC), solute carrier family 38 member 4 (Slc38a4), and Gm32885 contributes to the placental enlargement. Taken together, our study provides evidence that Xist imprinting sustains embryonic development and that autosomal noncanonical imprinting restrains placental overgrowth.
Collapse
Affiliation(s)
- Shogo Matoba
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba 305-0074, Japan.,Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Chisayo Kozuka
- Young Chief Investigator (YCI) Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kento Miura
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba 305-0074, Japan.,Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba 305-0074, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mami Kumon
- Young Chief Investigator (YCI) Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Ryoya Hayashi
- Young Chief Investigator (YCI) Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN Bioresource Research Center, Tsukuba 305-0074, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.,The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan.,RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Azusa Inoue
- Young Chief Investigator (YCI) Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Tokyo Metropolitan University, Hachioji 192-0397, Japan
| |
Collapse
|
12
|
Xie Z, Zhang W, Zhang Y. Loss of Slc38a4 imprinting is a major cause of mouse placenta hyperplasia in somatic cell nuclear transferred embryos at late gestation. Cell Rep 2022; 38:110407. [PMID: 35196486 PMCID: PMC8919768 DOI: 10.1016/j.celrep.2022.110407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/02/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Placenta hyperplasia is commonly observed in cloned animals and is believed to impede the proper development of cloned embryos. However, the mechanism underlying this phenomenon is largely unknown. Here, we show that placenta hyperplasia of cloned mouse embryos occurs in both middle and late gestation. Interestingly, restoring paternal-specific expression of an amino acid transporter Slc38a4, which loses maternal H3K27me3-dependent imprinting and becomes biallelically expressed in cloned placentae, rescues the overgrowth of cloned placentae at late gestation. Molecular analyses reveal that loss of Slc38a4 imprinting leads to over-activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in cloned placentae, which is likely due to the increased amino acids transport by SLC38A4. Collectively, our study not only reveals loss of Slc38a4 imprinting is responsible for overgrowth of cloned placentae at late gestation but also suggests the underlying mechanism involves increased amino acid transport and over-activation of mTORC1.
Collapse
Affiliation(s)
- Zhenfei Xie
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Wenhao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Kodama M, Shimura H, Tien JC, Newberg JY, Kodama T, Wei Z, Rangel R, Yoshihara K, Kuruma A, Nakae A, Hashimoto K, Sawada K, Kimura T, Jenkins NA, Copeland NG. Sleeping Beauty Transposon Mutagenesis Identifies Genes Driving the Initiation and Metastasis of Uterine Leiomyosarcoma. Cancer Res 2021; 81:5413-5424. [PMID: 34475109 DOI: 10.1158/0008-5472.can-21-0356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Uterine leiomyosarcoma (ULMS) is a malignancy, which arises from the uterine smooth muscle. Because of its rarity, aggressive nature, and extremely poor prognosis, the molecular mechanisms driving ULMS remain elusive. To identify candidate cancer genes (CCG) driving ULMS, we conducted an in vivo Sleeping Beauty (SB) transposon mutagenesis screen in uterine myometrium-specific, PTEN knockout, KRAS mutant (PTEN KO/KRAS) mice. ULMS quickly developed in SB PTEN KO/KRAS mice, but not in PTEN KO/KRAS mice, demonstrating the critical importance of SB mutagenesis for driving ULMS in this model. Subsequent sequencing of SB insertion sites in these tumors identified 19 ULMS CCGs that were significantly enriched in known cancer genes. Among them, Zfp217 and Sfmbt2 functioned at early stages of tumor initiation and appeared to be oncogenes. Expression of ZNF217, the human homolog of ZFP217, was shown to be elevated in human ULMS compared with paired normal uterine smooth muscle, where it negatively correlated with patient prognosis. Inhibition of ZNF217 suppressed, whereas overexpression induced, proliferation, survival, migration, and stemness of human ULMS. In a second ex vivo ULMS SB metastasis screen, three CCGs were identified that may drive ULMS metastasis to the lung. One of these CCGs, Nrd1 (NRDC in humans), showed stronger expression in human metastatic tumors compared with primary ULMS and negatively associated with patient survival. NRDC knockdown impaired migration and adhesion without affecting cell proliferation, whereas overexpression had the opposite effect. Together, these results reveal novel mechanism driving ULMS tumorigenesis and metastasis and identify ZNF217 and NRDC as potential targets for ULMS therapy. SIGNIFICANCE: An in vivo Sleeping Beauty transposon mutagenesis screen identifies candidate cancer genes that drive initiation and progression of uterine leiomyosarcoma and may serve as therapeutic targets.
Collapse
Affiliation(s)
- Michiko Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Shimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jean C Tien
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhubo Wei
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Airi Kuruma
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aya Nakae
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Zeng TB, Pierce N, Liao J, Szabó PE. H3K9 methyltransferase EHMT2/G9a controls ERVK-driven noncanonical imprinted genes. Epigenomics 2021; 13:1299-1314. [PMID: 34519223 DOI: 10.2217/epi-2021-0168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Paternal allele-specific expression of noncanonical imprinted genes in the extraembryonic lineages depends on an H3K27me3-based imprint in the oocyte, which is not a lasting mark. We hypothesized that EHMT2, the main euchromatic H3K9 dimethyltransferase, also has a role in controlling noncanonical imprinting. Methods: We carried out allele-specific total RNA-seq analysis in the ectoplacental cone of somite-matched 8.5 days post coitum embryos using reciprocal mouse crosses. Results: We found that the maternal allele of noncanonical imprinted genes was derepressed from its ERVK promoter in the Ehmt2-/- ectoplacental cone. In Ehmt2-/- embryos, loss of DNA methylation accompanied biallelic derepression of the ERVK promoters. Canonical imprinting and imprinted X chromosome inactivation were generally undisturbed. Conclusion: EHMT2 is essential for repressing the maternal allele in noncanonical imprinting.
Collapse
Affiliation(s)
- Tie-Bo Zeng
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nicholas Pierce
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ji Liao
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Piroska E Szabó
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
15
|
Kobayashi H. Canonical and Non-canonical Genomic Imprinting in Rodents. Front Cell Dev Biol 2021; 9:713878. [PMID: 34422832 PMCID: PMC8375499 DOI: 10.3389/fcell.2021.713878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon that results in unequal expression of homologous maternal and paternal alleles. This process is initiated in the germline, and the parental epigenetic memories can be maintained following fertilization and induce further allele-specific transcription and chromatin modifications of single or multiple neighboring genes, known as imprinted genes. To date, more than 260 imprinted genes have been identified in the mouse genome, most of which are controlled by imprinted germline differentially methylated regions (gDMRs) that exhibit parent-of-origin specific DNA methylation, which is considered primary imprint. Recent studies provide evidence that a subset of gDMR-less, placenta-specific imprinted genes is controlled by maternal-derived histone modifications. To further understand DNA methylation-dependent (canonical) and -independent (non-canonical) imprints, this review summarizes the loci under the control of each type of imprinting in the mouse and compares them with the respective homologs in other rodents. Understanding epigenetic systems that differ among loci or species may provide new models for exploring genetic regulation and evolutionary divergence.
Collapse
Affiliation(s)
- Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
16
|
Wang IF, Wang Y, Yang YH, Huang GJ, Tsai KJ, Shen CKJ. Activation of a hippocampal CREB-pCREB-miRNA-MEF2 axis modulates individual variation of spatial learning and memory capability. Cell Rep 2021; 36:109477. [PMID: 34348143 DOI: 10.1016/j.celrep.2021.109477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
Phenotypic variation is a fundamental prerequisite for cell and organism evolution by natural selection. Whereas the role of stochastic gene expression in phenotypic diversity of genetically identical cells is well studied, not much is known regarding the relationship between stochastic gene expression and individual behavioral variation in animals. We demonstrate that a specific miRNA (miR-466f-3p) is upregulated in the hippocampus of a portion of individual inbred mice upon a Morris water maze task. Significantly, miR-466f-3p positively regulates the neuron morphology, function and spatial learning, and memory capability of mice. Mechanistically, miR-466f-3p represses translation of MEF2A, a negative regulator of learning/memory. Finally, we show that varied upregulation of hippocampal miR-466f-3p results from randomized phosphorylation of hippocampal cyclic AMP (cAMP)-response element binding (CREB) in individuals. This finding of modulation of spatial learning and memory via a randomized hippocampal signaling axis upon neuronal stimulation represents a demonstration of how variation in tissue gene expression lead to varied animal behavior.
Collapse
Affiliation(s)
- I-Fang Wang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yihan Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hua Yang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Guo-Jen Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou 33302, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
| | - Che-Kun James Shen
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
17
|
Haig D, Mainieri A. The Evolution of Imprinted microRNAs and Their RNA Targets. Genes (Basel) 2020; 11:genes11091038. [PMID: 32899179 PMCID: PMC7564603 DOI: 10.3390/genes11091038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mammalian genomes contain many imprinted microRNAs. When an imprinted miRNA targets an unimprinted mRNA their interaction may have different fitness consequences for the loci encoding the miRNA and mRNA. In one possible outcome, the mRNA sequence evolves to evade regulation by the miRNA by a simple change of target sequence. Such a response is unavailable if the targeted sequence is strongly constrained by other functions. In these cases, the mRNA evolves to accommodate regulation by the imprinted miRNA. These evolutionary dynamics are illustrated using the examples of the imprinted C19MC cluster of miRNAs in primates and C2MC cluster in mice that are paternally expressed in placentas. The 3′ UTR of PTEN, a gene with growth-related and metabolic functions, appears to be an important target of miRNAs from both clusters.
Collapse
|
18
|
Addo KA, Palakodety N, Hartwell HJ, Tingare A, Fry RC. Placental microRNAs: Responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicol Rep 2020; 7:1046-1056. [PMID: 32913718 PMCID: PMC7472806 DOI: 10.1016/j.toxrep.2020.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are epigenetic modifiers that play an important role in the regulation of the expression of genes across the genome. miRNAs are expressed in the placenta as well as other organs, and are involved in several biological processes including the regulation of trophoblast differentiation, migration, invasion, proliferation, apoptosis, angiogenesis and cellular metabolism. Related to their role in disease process, miRNAs have been shown to be differentially expressed between normal placentas and placentas obtained from women with pregnancy/health complications such as preeclampsia, gestational diabetes mellitus, and obesity. This dysregulation indicates that miRNAs in the placenta likely play important roles in the pathogenesis of diseases during pregnancy. Furthermore, miRNAs in the placenta are susceptible to altered expression in relation to exposure to environmental toxicants. With relevance to the placenta, the dysregulation of miRNAs in both placenta and blood has been associated with maternal exposures to several toxicants. In this review, we provide a summary of miRNAs that have been assessed in the context of human pregnancy-related diseases and in relation to exposure to environmental toxicants in the placenta. Where data are available, miRNAs are discussed in their context as biomarkers of exposure and/or disease, with comparisons made across-tissue types, and conservation across studies detailed.
Collapse
Affiliation(s)
- Kezia A. Addo
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Niharika Palakodety
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Hadley J. Hartwell
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Aishani Tingare
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Overexpression of miR-669m inhibits erythroblast differentiation. Sci Rep 2020; 10:13554. [PMID: 32782283 PMCID: PMC7419302 DOI: 10.1038/s41598-020-70442-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs), one of small non-coding RNAs, regulate many cell functions through their post-transcriptionally downregulation of target genes. Accumulated studies have revealed that miRNAs are involved in hematopoiesis. In the present study, we investigated effects of miR-669m overexpression on hematopoiesis in mouse in vivo, and found that erythroid differentiation was inhibited by the overexpression. Our bioinformatic analyses showed that candidate targets of miR-669m which are involved in the erythropoiesis inhibition are A-kinase anchoring protein 7 (Akap7) and X-linked Kx blood group (Xk) genes. These two genes were predicted as targets of miR-669m by two different in silico methods and were upregulated in late erythroblasts in a public RNA-seq data, which was confirmed with qPCR. Further, miR-669m suppressed luciferase reporters for 3′ untranslated regions of Akap7 and Xk genes, which supports these genes are direct targets of miR-669m. Physiologically, miR-669m was not expressed in the erythroblast. In conclusion, using miR-669m, we found Akap7 and Xk, which may be involved in erythroid differentiation, implying that manipulating these genes could be a therapeutic way for diseases associated with erythropoiesis dysfunction.
Collapse
|
20
|
Abstract
Genomic imprinting is a parent-of-origin dependent phenomenon that restricts transcription to predominantly one parental allele. Since the discovery of the first long noncoding RNA (lncRNA), which notably was an imprinted lncRNA, a body of knowledge has demonstrated pivotal roles for imprinted lncRNAs in regulating parental-specific expression of neighboring imprinted genes. In this Review, we will discuss the multiple functionalities attributed to lncRNAs and how they regulate imprinted gene expression. We also raise unresolved questions about imprinted lncRNA function, which may lead to new avenues of investigation. This Review is dedicated to the memory of Denise Barlow, a giant in the field of genomic imprinting and functional lncRNAs. With her passion for understanding the inner workings of science, her indominable spirit and her consummate curiosity, Denise blazed a path of scientific investigation that made many seminal contributions to genomic imprinting and the wider field of epigenetic regulation, in addition to inspiring future generations of scientists.
Collapse
Affiliation(s)
- William A. MacDonald
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mellissa R. W. Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Placental miRNAs in feto-maternal communication mediated by extracellular vesicles. Placenta 2020; 102:27-33. [PMID: 33218575 DOI: 10.1016/j.placenta.2020.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
A complex network composed of at least 1900 microRNA (miRNA) species orchestrates the development and function of the human placenta. These molecules regulate genes and pathways operating major functional processes in trophoblast cells such as proliferation, invasion, differentiation, and metabolism. Nevertheless, the cellular localization and role of most placental miRNAs remain to be determined. The existence of eutherian- (C14MC) and primate-specific miRNA clusters (C19MC), together with human placenta-specific miRNAs, indicate the relevance of these molecules in evolution and diversification of the placenta, including the acquisition of its unique features in humans. They may be related also to diseases that are exclusively present in primates, such as preeclampsia. Changes in the miRNA expression profile have been reported in several placental pathologies. Which miRNAs are involved in the pathomechanism of these diseases or act to maintain placental homeostasis is uncertain. Placenta-derived miRNAs are packed into extracellular vesicles (EVs) and distributed through the maternal circulation to distant organs, where they contribute to adaptations required during pregnancy. Similarly, the placenta also receives molecular information from other tissues to adapt fetoplacental metabolic demands to the maternal energetic supply. These processes can be impaired in pathologic conditions. Therefore, the collection of circulating placental miRNAs constitutes potentially a minimally-invasive approach to assess the fetoplacental status and to diagnose pregnancy diseases. Future therapies may include manipulation of miRNA levels for prevention and treatment of placental complications to protect maternal health and fetal development.
Collapse
|
22
|
Chen Z, Zhang Y. Maternal H3K27me3-dependent autosomal and X chromosome imprinting. Nat Rev Genet 2020; 21:555-571. [PMID: 32514155 DOI: 10.1038/s41576-020-0245-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Genomic imprinting and X-chromosome inactivation (XCI) are classic epigenetic phenomena that involve transcriptional silencing of one parental allele. Germline-derived differential DNA methylation is the best-studied epigenetic mark that initiates imprinting, but evidence indicates that other mechanisms exist. Recent studies have revealed that maternal trimethylation of H3 on lysine 27 (H3K27me3) mediates autosomal maternal allele-specific gene silencing and has an important role in imprinted XCI through repression of maternal Xist. Furthermore, loss of H3K27me3-mediated imprinting contributes to the developmental defects observed in cloned embryos. This novel maternal H3K27me3-mediated non-canonical imprinting mechanism further emphasizes the important role of parental chromatin in development and could provide the basis for improving the efficiency of embryo cloning.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA. .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. .,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
23
|
Loss of H3K27me3 imprinting in the Sfmbt2 miRNA cluster causes enlargement of cloned mouse placentas. Nat Commun 2020; 11:2150. [PMID: 32358519 PMCID: PMC7195362 DOI: 10.1038/s41467-020-16044-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/07/2020] [Indexed: 01/31/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) in mammals is an inefficient process that is frequently associated with abnormal phenotypes, especially in placentas. Recent studies demonstrated that mouse SCNT placentas completely lack histone methylation (H3K27me3)-dependent imprinting, but how it affects placental development remains unclear. Here, we provide evidence that the loss of H3K27me3 imprinting is responsible for abnormal placental enlargement and low birth rates following SCNT, through upregulation of imprinted miRNAs. When we restore the normal paternal expression of H3K27me3-dependent imprinted genes (Sfmbt2, Gab1, and Slc38a4) in SCNT placentas by maternal knockout, the placentas remain enlarged. Intriguingly, correcting the expression of clustered miRNAs within the Sfmbt2 gene ameliorates the placental phenotype. Importantly, their target genes, which are confirmed to cause SCNT-like placental histology, recover their expression level. The birth rates increase about twofold. Thus, we identify loss of H3K27me3 imprinting as an epigenetic error that compromises embryo development following SCNT. Somatic cell nuclear transfer (SCNT) frequently results in abnormal placenta development in cloned mice. Here the authors show that loss of histone methylation (H3K27me3) imprinting in clustered Sfmbt2 miRNAs contributes to SCNT placenta defect.
Collapse
|
24
|
Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond) 2020; 134:1001-1025. [PMID: 32337535 PMCID: PMC7239341 DOI: 10.1042/cs20200023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.
Collapse
Affiliation(s)
- Sonya Frazier
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Martin W. McBride
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Helen Mulvana
- Biomedical Engineering, University of Strathclyde, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
25
|
Abstract
As the maternal–foetal interface, the placenta is essential for the establishment and progression of healthy pregnancy, regulating both foetal growth and maternal adaptation to pregnancy. The evolution and functional importance of genomic imprinting are inextricably linked to mammalian placentation. Recent technological advances in mapping and manipulating the epigenome in embryogenesis in mouse models have revealed novel mechanisms regulating genomic imprinting in placental trophoblast, the physiological implications of which are only just beginning to be explored. This review will highlight important recent discoveries and exciting new directions in the study of placental imprinting. The placenta is essential for healthy pregnancy because it supports the growth of the baby, helps the mother’s body adapt, and provides a connection between mother and the developing baby. Studying gene regulation and the early steps in placental development is challenging in human pregnancy, so mouse models have been key in building our understanding of these processes. In particular, these studies have identified a subset of genes that are essential for placentation, termed imprinted genes. Imprinted genes are those that are expressed from only one copy, depending on whether they were inherited from mom or dad. In this review, I describe recent novel approaches used to study the mechanisms regulating these imprinted genes in mouse models, and I highlight several new discoveries. It has become apparent that the regulation of imprinted genes in placenta is often unique from other tissues and that there are species-specific mechanisms allowing the evolution of new imprinted genes specifically in the placenta.
Collapse
Affiliation(s)
- Courtney W. Hanna
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Wang F, Ren D, Liang X, Ke S, Zhang B, Hu B, Song X, Wang X. A long noncoding RNA cluster-based genomic locus maintains proper development and visual function. Nucleic Acids Res 2020; 47:6315-6329. [PMID: 31127312 PMCID: PMC6614851 DOI: 10.1093/nar/gkz444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 01/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) represent a group of regulatory RNAs that play critical roles in numerous cellular events, but their functional importance in development remains largely unexplored. Here, we discovered a series of previously unidentified gene clusters harboring conserved lncRNAs at the nonimprinting regions in brain (CNIBs). Among the seven identified CNIBs, human CNIB1 locus is located at Chr 9q33.3 and conserved from Danio rerio to Homo sapiens. Chr 9q33.3-9q34.11 microdeletion has previously been linked to human nail-patella syndrome (NPS) which is frequently accompanied by developmental and visual deficiencies. By generating CNIB1 deletion alleles in zebrafish, we demonstrated the requirement of CNIB1 for proper growth and development, and visual activities. Furthermore, we found that the role of CNIB1 on visual activity is mediated through a regulator of ocular development-lmx1bb. Collectively, our study shows that CNIB1 lncRNAs are important for zebrafish development and provides an lncRNA cluster-mediated pathophysiological mechanism for human Chr 9q33.3-9q34.11 microdeletion syndrome.
Collapse
Affiliation(s)
- Fei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dalong Ren
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaolin Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shengwei Ke
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bowen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangting Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
|
28
|
Abstract
The mouse is the most extensively used mammalian laboratory species in biology and medicine because of the ready availability of a wide variety of defined genetic and gene-modified strains and abundant genetic information. Its small size and rapid generation turnover are also advantages compared with other experimental animals. Using these advantages, somatic cell nuclear transfer (SCNT) in mice has provided invaluable information on epigenetics related to SCNT technology and cloning, playing a leading role in relevant technical improvements. These improvements include treatment with histone deacetylase inhibitors, correction of Xist gene expression (controlling X chromosome inactivation), and removal of methylated histones from SCNT-generated embryos, which have proven to be effective for SCNT cloning of other species. However, even with the best combination of these treatments, the birth rate in cloned offspring is still lower than intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). One remaining issue associated with SCNT is placental enlargement (hyperplasia) found in late pregnancy, but this abnormality might not be a major cause for the low efficiency of SCNT because many SCNT-derived embryos die before their placentas start to enlarge at midgestation (early postimplantation stage). It is known that, at this stage, undifferentiated trophoblast cells in the extraembryonic tissue of SCNT-derived embryos fail to proliferate. Understanding the molecular mechanisms is essential for further technical improvements of mouse SCNT, which might also provide clues for technical breakthroughs in mammalian SCNT and cloning in general.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Research Center, Ibaraki, 305-0074, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan; RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|
29
|
Gong Z, Yang J, Bai S, Wei S. MicroRNAs regulate granulosa cells apoptosis and follicular development - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1714-1724. [PMID: 32054175 PMCID: PMC7649074 DOI: 10.5713/ajas.19.0707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Objective MicroRNAs (miRNAs) are the most abundant small RNAs. Approximately 2,000 annotated miRNAs genes have been found to be differentially expressed in ovarian follicles during the follicular development (FD). Many miRNAs exert their regulatory effects on the apoptosis of follicular granulosa cells (FGCs) and FD. However, accurate roles and mechanism of miRNAs regulating apoptosis of FGCs remain undetermined. Methods In this review, we summarized the regulatory role of each miRNA or miRNA cluster on FGCs apoptosis and FD on the bases of 41 academic articles retrieved from PubMed and web of science and other databases. Results Total of 30 miRNAs and 4 miRNAs clusters in 41 articles were reviewed and summarized in the present article. Twenty nine documents indicated explicitly that 24 miRNAs and miRNAs clusters in 29 articles promoted or induced FGCs apoptosis through their distinctive target genes. The remaining 10 miRNAs and miRNAs of 12 articles inhibited FGCs apoptosis. MiRNAs exerted modulation actions by at least 77 signal pathways during FGCs apoptosis and FD. Conclusion We concluded that miRNAs or miRNAs clusters could modulate the apoptosis of GCs (including follicular GCs, mural GCs and cumulus cells) by targeting their specific genes. A great majority of miRNAs show a promoting role on apoptosis of FGCs in mammals. But the accurate mechanism of miRNAs and miRNA clusters has not been well understood. It is necessary to ascertain clearly the role and mechanism of each miRNA or miRNA cluster in the future. Understanding precise functions and mechanisms of miRNAs in FGCs apoptosis and FD will be beneficial in developing new diagnostic and treatment strategies for treating infertility and ovarian diseases in humans and animals.
Collapse
Affiliation(s)
- Zhuandi Gong
- Hospital, Northwest Minzu University, Lanzhou 730030, China
| | - Juan Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Shengju Bai
- Hospital, Northwest Minzu University, Lanzhou 730030, China
| | - Suocheng Wei
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
30
|
Chen Z, Zhang Y. Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development. Nat Genet 2019; 51:947-951. [PMID: 31133747 PMCID: PMC6545155 DOI: 10.1038/s41588-019-0418-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/11/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Zhiyuan Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA. .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. .,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
31
|
Sharma A, Lacko LA, Argueta LB, Glendinning MD, Stuhlmann H. miR-126 regulates glycogen trophoblast proliferation and DNA methylation in the murine placenta. Dev Biol 2019; 449:21-34. [PMID: 30771304 DOI: 10.1016/j.ydbio.2019.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
A functional placenta develops through a delicate interplay of its vascular and trophoblast compartments. We have identified a previously unknown expression domain for the endothelial-specific microRNA miR-126 in trophoblasts of murine and human placentas. Here, we determine the role of miR-126 in placental development using a mouse model with a targeted deletion of miR-126. In addition to vascular defects observed only in the embryo, loss of miR-126 function in the placenta leads to junctional zone hyperplasia at E15.5 at the expense of the labyrinth, reduced placental volume for nutrient exchange and intra-uterine growth restriction of the embryos. Junctional zone hyperplasia results from increased numbers of proliferating glycogen trophoblast (GlyT) progenitors at E13.5 that give rise to an expanded glycogen trophoblast population at E15.5. Transcriptomic profile of miR-126-/- placentas revealed dysregulation of a large number of GlyT (Prl6a1, Prl7c1, Pcdh12) and trophoblast-specific genes (Tpbpa, Tpbpb, Prld1) and genes with known roles in placental development. We show that miR-126-/- placentas, but not miR-126-/- embryos, display aberrant expression of imprinted genes with important roles in glycogen trophoblasts and junctional zone development, including Igf2, H19, Cdkn1c and Phlda2, during mid-gestation. We also show that miR126-/- placentas display global hypermethylation, including at several imprint control centers. Our findings uncover a novel role for miR-126 in regulating extra-embryonic energy stores, expression of imprinted genes and DNA methylation in the placenta.
Collapse
Affiliation(s)
- Abhijeet Sharma
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States
| | - Lauretta A Lacko
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States; Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States
| | - Lissenya B Argueta
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States
| | - Michael D Glendinning
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States
| | - Heidi Stuhlmann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States.
| |
Collapse
|
32
|
Malnou EC, Umlauf D, Mouysset M, Cavaillé J. Imprinted MicroRNA Gene Clusters in the Evolution, Development, and Functions of Mammalian Placenta. Front Genet 2019; 9:706. [PMID: 30713549 PMCID: PMC6346411 DOI: 10.3389/fgene.2018.00706] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
In mammals, the expression of a subset of microRNA (miRNA) genes is governed by genomic imprinting, an epigenetic mechanism that confers monoallelic expression in a parent-of-origin manner. Three evolutionarily distinct genomic intervals contain the vast majority of imprinted miRNA genes: the rodent-specific, paternally expressed C2MC located in intron 10 of the Sfmbt2 gene, the primate-specific, paternally expressed C19MC positioned at human Chr.19q13.4 and the eutherian-specific, maternally expressed miRNAs embedded within the imprinted Dlk1-Dio3 domains at human 14q32 (also named C14MC in humans). Interestingly, these imprinted miRNA genes form large clusters composed of many related gene copies that are co-expressed with a marked, or even exclusive, localization in the placenta. Here, we summarize our knowledge on the evolutionary, molecular, and physiological relevance of these epigenetically-regulated, recently-evolved miRNAs, by focusing on their roles in placentation and possibly also in pregnancy diseases (e.g., preeclampsia, intrauterine growth restriction, preterm birth).
Collapse
Affiliation(s)
- E Cécile Malnou
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - David Umlauf
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Maïlys Mouysset
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Jérôme Cavaillé
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
33
|
Yang X, Meng T. MicroRNA-431 affects trophoblast migration and invasion by targeting ZEB1 in preeclampsia. Gene 2018; 683:225-232. [PMID: 30315928 DOI: 10.1016/j.gene.2018.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Preeclampsia (PE) is a pregnancy complication that is characterized by higher blood pressure, together with higher protein quantity presence in the urine, which occurs after 20 weeks of gestation leading to severity of adverse maternal and fetal consequences. Some special microRNAs (miRNAs) expressed in placentas may be related to the occurrence of PE. Researchers have found that the expression of miR-431 in PE placentas was increased if compared with normal placentas; however, the effect and mechanism of miR-431 in PE are still unknown. METHODS In this study, we compared the expression levels of miR-431 and its putative target gene Zinc finger E-box-binding homeobox 1 (ZEB1) in 30 PE placentas and 30 normal placenta tissues. The effects of miR-431 and ZEB1 were verified by CCK-8 assay, transwell migration and invasion assay, cell cycle distribution assay and apoptosis assay in HTR-8/SVneo cells transfected with miR-431 mimic, siR-ZEB1 and their negative controls. RESULTS Results revealed that miR-431 was markedly added, while the mRNA and protein expressions of ZEB1 were decreased in PE placentas. The functional tests showed over-expression of miR-431 suppressed ZEB1 expression and decreased the migration and invasive capacity of trophoblast cells. MiR-431 overexpression induced apoptosis of HTR-8/SVneo cells, but it had no significant effect on cell proliferation and the distribution of cell cycle. In addition, siR-ZEB1 simulated the roles of miR-431 mimic. We found that miR-431 mimic and siR-ZEB1 reduced the epithelial-mesenchymal transition (EMT) with added E-cadherin expression and reduced vimentin expression in the cell line. CONCLUSIONS In conclusion, we found that miR-431 inhibited the migration and invasion of trophoblastic cells by targeting ZEB1, which might give rise to the onset of PE.
Collapse
Affiliation(s)
- Xiuhua Yang
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Tao Meng
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
34
|
Matoba S, Wang H, Jiang L, Lu F, Iwabuchi KA, Wu X, Inoue K, Yang L, Press W, Lee JT, Ogura A, Shen L, Zhang Y. Loss of H3K27me3 Imprinting in Somatic Cell Nuclear Transfer Embryos Disrupts Post-Implantation Development. Cell Stem Cell 2018; 23:343-354.e5. [PMID: 30033120 DOI: 10.1016/j.stem.2018.06.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Animal cloning can be achieved through somatic cell nuclear transfer (SCNT), although the live birth rate is relatively low. Recent studies have identified H3K9me3 in donor cells and abnormal Xist activation as epigenetic barriers that impede SCNT. Here we overcome these barriers using a combination of Xist knockout donor cells and overexpression of Kdm4 to achieve more than 20% efficiency of mouse SCNT. However, post-implantation defects and abnormal placentas were still observed, indicating that additional epigenetic barriers impede SCNT cloning. Comparative DNA methylome analysis of IVF and SCNT blastocysts identified abnormally methylated regions in SCNT embryos despite successful global reprogramming of the methylome. Strikingly, allelic transcriptomic and ChIP-seq analyses of pre-implantation SCNT embryos revealed complete loss of H3K27me3 imprinting, which may account for the postnatal developmental defects observed in SCNT embryos. Together, these results provide an efficient method for mouse cloning while paving the way for further improving SCNT efficiency.
Collapse
Affiliation(s)
- Shogo Matoba
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; RIKEN Bioresource Research Center, Tsukuba, Ibaraki 305-0074, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Huihan Wang
- Life Sciences Institute and Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Lan Jiang
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Falong Lu
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kumiko A Iwabuchi
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoji Wu
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kimiko Inoue
- RIKEN Bioresource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Lin Yang
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - William Press
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Atsuo Ogura
- RIKEN Bioresource Research Center, Tsukuba, Ibaraki 305-0074, Japan; RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Li Shen
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Life Sciences Institute and Stem Cell Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yi Zhang
- Howard Hughes Medical Institute; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Becker W, Nagarkatti M, Nagarkatti PS. miR-466a Targeting of TGF-β2 Contributes to FoxP3 + Regulatory T Cell Differentiation in a Murine Model of Allogeneic Transplantation. Front Immunol 2018; 9:688. [PMID: 29686677 PMCID: PMC5900016 DOI: 10.3389/fimmu.2018.00688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
The promise of inducing immunological tolerance through regulatory T cell (Treg) control of effector T cell function is crucial for developing future therapeutic strategies to treat allograft rejection as well as inflammatory autoimmune diseases. In the current study, we used murine allograft rejection as a model to identify microRNA (miRNA) regulation of Treg differentiation from naïve CD4 cells. We performed miRNA expression array in CD4+ T cells in the draining lymph node (dLN) of mice which received syngeneic or allogeneic grafts to determine the molecular mechanisms that hinder the expansion of Tregs. We identified an increase in miRNA cluster 297-669 (C2MC) after allogeneic transplantation, in CD4+ T cells, such that 10 of the 27 upregulated miRNAs were all from this cluster, with one of its members, mmu-miR-466a-3p (miR-466a-3p), targeting transforming growth factor beta 2 (TGF-β2), as identified through reporter luciferase assay. Transfection of miR-466a-3p in CD4+ T cells led to a decreased inducible FoxP3+ Treg generation while inhibiting miR-466a-3p expression through locked nucleic acid resulting in increased Tregs and a reduction in effector T cells. Furthermore, in vivo inhibition of miR-466a-3p in an allogeneic skin-graft model attenuated T cell response against the graft through an increase in TGF-β2. TGF-β2 was as effective as TGF-β1 at both inducing Tregs and through adoptive transfer, mitigating host effector T cell response against the allograft. Together, the current study demonstrates for the first time a new role for miRNA-466a-3p and TGF-β2 in the regulation of Treg differentiation and thus offers novel avenues to control inflammatory disorders.
Collapse
Affiliation(s)
| | | | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
36
|
Hayder H, O'Brien J, Nadeem U, Peng C. MicroRNAs: crucial regulators of placental development. Reproduction 2018; 155:R259-R271. [PMID: 29615475 DOI: 10.1530/rep-17-0603] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/03/2018] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that are integral to a wide range of cellular processes mainly through the regulation of translation and mRNA stability of their target genes. The placenta is a transient organ that exists throughout gestation in mammals, facilitating nutrient and gas exchange and waste removal between the mother and the fetus. miRNAs are expressed in the placenta, and many studies have shown that miRNAs play an important role in regulating trophoblast differentiation, migration, invasion, proliferation, apoptosis, vasculogenesis/angiogenesis and cellular metabolism. In this review, we provide a brief overview of canonical and non-canonical pathways of miRNA biogenesis and mechanisms of miRNA actions. We highlight the current knowledge of the role of miRNAs in placental development. Finally, we point out several limitations of the current research and suggest future directions.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of BiologyYork University, Toronto, Ontario, Canada
| | - Jacob O'Brien
- Department of BiologyYork University, Toronto, Ontario, Canada
| | - Uzma Nadeem
- Department of BiologyYork University, Toronto, Ontario, Canada
| | - Chun Peng
- Department of BiologyYork University, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Mainieri A, Haig D. Lost in translation: The 3'-UTR of IGF1R as an ancient long noncoding RNA. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:82-91. [PMID: 29644076 PMCID: PMC5887972 DOI: 10.1093/emph/eoy008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/21/2018] [Indexed: 12/20/2022]
Abstract
Background and objectives The insulin-like growth factor (IGF) signaling system is a major arena of intragenomic conflict over embryonic growth between imprinted genes of maternal and paternal origin and the IGF type 1 receptor (IGF1R) promotes proliferation of many human cancers. The 3'-untranslated region (3'-UTR) of the mouse Igf1r mRNA is targeted by miR-675-3p derived from the imprinted H19 long noncoding RNA. We undertook a comparative sequence analysis of vertebrate IGF1R 3'-UTRs to determine the evolutionary history of miR-675 target sequences and to identify conserved features that are likely to be involved in post-transcriptional regulation of IGF1R translation. Methodology Sequences of IGF1R 3'-UTRs were obtained from public databases and analyzed using publicly available algorithms. Results A very long 3'-UTR is a conserved feature of vertebrate IGF1R mRNAs. We found that some ancient microRNAs, such as let-7 and mir-182, have predicted binding sites that are conserved between cartilaginous fish and mammals. One very conserved region is targeted by multiple, maternally expressed imprinted microRNAs that appear to have evolved more recently than the targeted sequences. Conclusions and implications The conserved structures we identify in the IGF1R 3'-UTR are strong candidates for regulating cell proliferation during development and carcinogenesis. These conserved structures are now targeted by multiple imprinted microRNAs. These observations emphasize the central importance of IGF signaling pathways in the mediation of intragenomic conflicts over embryonic growth and identify possible targets for therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Avantika Mainieri
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
38
|
Koreman E, Sun X, Lu QR. Chromatin remodeling and epigenetic regulation of oligodendrocyte myelination and myelin repair. Mol Cell Neurosci 2017; 87:18-26. [PMID: 29254827 DOI: 10.1016/j.mcn.2017.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/27/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes are essential for the development, function, and health of the vertebrate central nervous system. These cells maintain axon myelination to ensure saltatory propagation of action potentials. Oligodendrocyte develops from neural progenitor cells, in a step-wise process that involves oligodendrocyte precursor specification, proliferation, and differentiation. The lineage progression requires coordination of transcriptional and epigenetic circuits to mediate the stage-specific intricacies of oligodendrocyte development. Epigenetic mechanisms involve DNA methylation, histone modifications, ATP-dependent chromatin remodeling, and non-coding RNA modulation that regulate the chromatin state over regulatory genes, which must be expressed or repressed to establish oligodendrocyte identity and lineage progression. In this review, we will focus on epigenetic programming associated with histone modification enzymes, chromatin remodeling, and non-coding RNAs that regulate oligodendrocyte lineage progression, and discuss how these mechanisms might be harnessed to induce myelin repair for treatment of demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Elijah Koreman
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowei Sun
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
39
|
CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function. Sci Rep 2017; 7:8585. [PMID: 28819307 PMCID: PMC5561095 DOI: 10.1038/s41598-017-09268-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/18/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of diverse physiological and pathophysiological processes. MiRNA families and clusters are two key features in miRNA biology. Here we explore the use of CRISPR/Cas9 as a powerful tool to delineate the function and regulation of miRNA families and clusters. We focused on four miRNA clusters composed of miRNA members of the same family, homo-clusters or different families, hetero-clusters. Our results highlight different regulatory mechanisms in miRNA cluster expression. In the case of the miR-497~195 cluster, editing of miR-195 led to a significant decrease in the expression of the other miRNA in the cluster, miR-497a. Although no gene editing was detected in the miR-497a genomic locus, computational simulation revealed alteration in the three dimensional structure of the pri-miR-497~195 that may affect its processing. In cluster miR-143~145 our results imply a feed-forward regulation, although structural changes cannot be ruled out. Furthermore, in the miR-17~92 and miR-106~25 clusters no interdependency in miRNA expression was observed. Our findings suggest that CRISPR/Cas9 is a powerful gene editing tool that can uncover novel mechanisms of clustered miRNA regulation and function.
Collapse
|