1
|
Sung CYW, Li M, Jonjic S, Sanchez V, Britt WJ. Cytomegalovirus infection lengthens the cell cycle of granule cell precursors during postnatal cerebellar development. JCI Insight 2024; 9:e175525. [PMID: 38855871 PMCID: PMC11382886 DOI: 10.1172/jci.insight.175525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection in infants infected in utero can lead to a variety of neurodevelopmental disorders. However, mechanisms underlying altered neurodevelopment in infected infants remain poorly understood. We have previously described a murine model of congenital HCMV infection in which murine CMV (MCMV) spreads hematogenously and establishes a focal infection in all regions of the brain of newborn mice, including the cerebellum. Infection resulted in disruption of cerebellar cortical development characterized by reduced cerebellar size and foliation. This disruption was associated with altered cell cycle progression of the granule cell precursors (GCPs), which are the progenitors that give rise to granule cells (GCs), the most abundant neurons in the cerebellum. In the current study, we have demonstrated that MCMV infection leads to prolonged GCP cell cycle, premature exit from the cell cycle, and reduced numbers of GCs resulting in cerebellar hypoplasia. Treatment with TNF-α neutralizing antibody partially normalized the cell cycle alterations of GCPs and altered cerebellar morphogenesis induced by MCMV infection. Collectively, our results argue that virus-induced inflammation altered the cell cycle of GCPs resulting in a reduced numbers of GCs and cerebellar cortical hypoplasia, thus providing a potential mechanism for altered neurodevelopment in fetuses infected with HCMV.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Mao Li
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Stipan Jonjic
- Department of Histology and Embryology and
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Veronica Sanchez
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - William J Britt
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Department of Neurobiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Liu Q, Cheng L, Li F, Zhu H, Lu X, Huang C, Yuan X. NSC689857, an inhibitor of Skp2, produces antidepressant-like effects in mice. Behav Pharmacol 2024; 35:227-238. [PMID: 38651981 DOI: 10.1097/fbp.0000000000000773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We have previously reported that two inhibitors of an E3 ligase S-phase kinase-associated protein 2 (Skp2), SMIP004 and C1, have an antidepressant-like effect in non-stressed and chronically stressed mice. This prompted us to ask whether other Skp2 inhibitors could also have an antidepressant effect. Here, we used NSC689857, another Skp2 inhibitor, to investigate this hypothesis. The results showed that administration of NSC689857 (5 mg/kg) produced an antidepressant-like effect in a time-dependent manner in non-stressed male mice, which started 8 days after drug administration. Dose-dependent analysis showed that administration of 5 and 10 mg/kg, but not 1 mg/kg, of NSC689857 produced antidepressant-like effects in both non-stressed male and female mice. Administration of NSC689857 (5 mg/kg) also induced antidepressant-like effects in non-stressed male mice when administered three times within 24 h (24, 5, and 1 h before testing) but not when administered acutely (1 h before testing). In addition, NSC689857 and fluoxetine coadministration produced additive antidepressant-like effects in non-stressed male mice. These effects of NSC689857 were not associated with the changes in locomotor activity. Administration of NSC689857 (5 mg/kg) also attenuated depression-like behaviors in male mice induced by chronic social defeat stress, suggesting therapeutic potential of NSC689857 in depression. Overall, these results suggest that NSC689857 is capable of exerting antidepressant-like effects in both non-stressed and chronically stressed mice.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Pharmacy, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong
| | - Li Cheng
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Dalmaso B, Liber AMP, Ventura DF, Jancar S, Del Debbio CB. Platelet-activating factor receptor (PAFR) regulates neuronal maturation and synaptic transmission during postnatal retinal development. Front Cell Neurosci 2024; 18:1343745. [PMID: 38572071 PMCID: PMC10988781 DOI: 10.3389/fncel.2024.1343745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Platelet-activating factor (PAF), PAF receptor (PAFR), and PAF- synthesis/degradation systems are involved in essential CNS processes such as neuroblast proliferation, differentiation, migration, and synaptic modulation. The retina is an important central nervous system (CNS) tissue for visual information processing. During retinal development, the balance between Retinal Progenitor Cell (RPC) proliferation and differentiation is crucial for proper cell determination and retinogenesis. Despite its importance in retinal development, the effects of PAFR deletion on RPC dynamics are still unknown. Methods We compared PAFR knockout mice (PAFR-/-) retinal postnatal development proliferation and differentiation aspects with control animals. Electrophysiological responses were analyzed by electroretinography (ERG). Results and discussion In this study, we demonstrate that PAFR-/- mice increased proliferation during postnatal retinogenesis and altered the expression of specific differentiation markers. The retinas of postnatal PAFR-/- animals decreased neuronal differentiation and synaptic transmission markers, leading to differential responses to light stimuli measured by ERG. Our findings suggest that PAFR signaling plays a critical role in regulating postnatal RPC cell differentiation dynamics during retinal development, cell organization, and neuronal circuitry formation.
Collapse
Affiliation(s)
- Barbara Dalmaso
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (ICB-USP), São Paulo, Brazil
| | - Andre Mauricio Passos Liber
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo (IP-USP), São Paulo, Brazil
| | - Dora Fix Ventura
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo (IP-USP), São Paulo, Brazil
| | - Sonia Jancar
- Department of Immunology, Biomedical Sciences Institute, University of São Paulo (ICB-USP), São Paulo, Brazil
| | - Carolina Beltrame Del Debbio
- Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo (ICB-USP), São Paulo, Brazil
| |
Collapse
|
4
|
Fetit R, Barbato MI, Theil T, Pratt T, Price DJ. 16p11.2 deletion accelerates subpallial maturation and increases variability in human iPSC-derived ventral telencephalic organoids. Development 2023; 150:dev201227. [PMID: 36826401 PMCID: PMC10110424 DOI: 10.1242/dev.201227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023]
Abstract
Inhibitory interneurons regulate cortical circuit activity, and their dysfunction has been implicated in autism spectrum disorder (ASD). 16p11.2 microdeletions are genetically linked to 1% of ASD cases. However, few studies investigate the effects of this microdeletion on interneuron development. Using ventral telencephalic organoids derived from human induced pluripotent stem cells, we have investigated the effect of this microdeletion on organoid size, progenitor proliferation and organisation into neural rosettes, ganglionic eminence marker expression at early developmental timepoints, and expression of the neuronal marker NEUN at later stages. At early stages, deletion organoids exhibited greater variations in size with concomitant increases in relative neural rosette area and the expression of the ventral telencephalic marker COUPTFII, with increased variability in these properties. Cell cycle analysis revealed an increase in total cell cycle length caused primarily by an elongated G1 phase, the duration of which also varied more than normal. At later stages, deletion organoids increased their NEUN expression. We propose that 16p11.2 microdeletions increase developmental variability and may contribute to ASD aetiology by lengthening the cell cycle of ventral progenitors, promoting premature differentiation into interneurons.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Michela Ilaria Barbato
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas Theil
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas Pratt
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - David J. Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
5
|
Humbert S, Barnat M. Huntington's disease and brain development. C R Biol 2022; 345:77-90. [PMID: 36847466 DOI: 10.5802/crbiol.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Huntington's disease is a rare inherited neurological disorder that generally manifests in mild-adulthood. The disease is characterized by the dysfunction and the degeneration of specific brain structures leading progressively to psychiatric, cognitive and motor disorders. The disease is caused by a mutation in the gene coding for huntingtin and, although it appears in adulthood, embryos carry the mutated gene from their development in utero. Studies based on mouse models and human stem cells have reported altered developmental mechanisms in disease conditions. However, does the mutation affect development in humans? Focusing on the early stages of brain development in human fetuses carrying the HD mutation, we have identified abnormalities in the development of the neocortex, the structure that ensure higher cerebral functions. Altogether, these studies suggests that developmental defects could contribute to the onset symptoms in adults, changing the perspective on disease and thus the health care of patients.
Collapse
|
6
|
Guo Y, Chomiak A, Hong Y, Lowe CC, Kopsidas CA, Chan WC, Andrade J, Pan H, Zhou X, Monuki ES, Feng Y. Histone H2A ubiquitination resulting from Brap loss of function connects multiple aging hallmarks and accelerates neurodegeneration. iScience 2022; 25:104519. [PMID: 35754718 PMCID: PMC9213774 DOI: 10.1016/j.isci.2022.104519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 01/10/2023] Open
Abstract
Aging is an intricate process characterized by multiple hallmarks including stem cell exhaustion, genome instability, epigenome alteration, impaired proteostasis, and cellular senescence. Whereas each of these traits is detrimental at the cellular level, it remains unclear how they are interconnected to cause systemic organ deterioration. Here we show that abrogating Brap, a BRCA1-associated protein essential for neurogenesis, results in persistent DNA double-strand breaks and elevation of histone H2A mono- and poly-ubiquitination (H2Aub). These defects extend to cellular senescence and proteasome-mediated histone H2A proteolysis with alterations in cells' proteomic and epigenetic states. Brap deletion in the mouse brain causes neuroinflammation, impaired proteostasis, accelerated neurodegeneration, and substantially shortened the lifespan. We further show the elevation of H2Aub also occurs in human brain tissues with Alzheimer's disease. These data together suggest that chromatin aberrations mediated by H2Aub may act as a nexus of multiple aging hallmarks and promote tissue-wide degeneration.
Collapse
Affiliation(s)
- Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Alison.A. Chomiak
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Ye Hong
- University of Turku, Turku 20500, Finland
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Wen-Ching Chan
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Hongna Pan
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Edwin S. Monuki
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Chomiak AA, Guo Y, Kopsidas CA, McDaniel DP, Lowe CC, Pan H, Zhou X, Zhou Q, Doughty ML, Feng Y. Nde1 is required for heterochromatin compaction and stability in neocortical neurons. iScience 2022; 25:104354. [PMID: 35601919 PMCID: PMC9121328 DOI: 10.1016/j.isci.2022.104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The NDE1 gene encodes a scaffold protein essential for brain development. Although biallelic NDE1 loss of function (LOF) causes microcephaly with profound mental retardation, NDE1 missense mutations and copy number variations are associated with multiple neuropsychiatric disorders. However, the etiology of the diverse phenotypes resulting from NDE1 aberrations remains elusive. Here we demonstrate Nde1 controls neurogenesis through facilitating H4K20 trimethylation-mediated heterochromatin compaction. This mechanism patterns diverse chromatin landscapes and stabilizes constitutive heterochromatin of neocortical neurons. We demonstrate that NDE1 can undergo dynamic liquid-liquid phase separation, partitioning to the nucleus and interacting with pericentromeric and centromeric satellite repeats. Nde1 LOF results in nuclear architecture aberrations and DNA double-strand breaks, as well as instability and derepression of pericentromeric satellite repeats in neocortical neurons. These findings uncover a pivotal role of NDE1/Nde1 in establishing and protecting neuronal heterochromatin. They suggest that heterochromatin instability predisposes a wide range of brain dysfunction.
Collapse
Affiliation(s)
- Alison A. Chomiak
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Hongna Pan
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Qiong Zhou
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Martin L. Doughty
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Priest C, Nagari RT, Bideyan L, Lee SD, Nguyen A, Xiao X, Tontonoz P. Brap regulates liver morphology and hepatocyte turnover via modulation of the Hippo pathway. Proc Natl Acad Sci U S A 2022; 119:e2201859119. [PMID: 35476518 PMCID: PMC9171358 DOI: 10.1073/pnas.2201859119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Regulation of hepatocyte proliferation and liver morphology is of critical importance to tissue and whole-body homeostasis. However, the molecular mechanisms that underlie this complex process are incompletely understood. Here, we describe a role for the ubiquitin ligase BRCA1-associated protein (BRAP) in regulation of hepatocyte morphology and turnover via regulation of MST2, a protein kinase in the Hippo pathway. The Hippo pathway has been implicated in the control of liver morphology, inflammation, and fibrosis. We demonstrate here that liver-specific ablation of Brap in mice results in gross and cellular morphological alterations of the liver. Brap-deficient livers exhibit increased hepatocyte proliferation, cell death, and inflammation. We show that loss of BRAP protein alters Hippo pathway signaling, causing a reduction in phosphorylation of YAP and increased expression of YAP target genes, including those regulating cell growth and interactions with the extracellular environment. Finally, increased Hippo signaling in Brap knockout mice alters the pattern of liver lipid accumulation in dietary models of obesity. These studies identify a role for BRAP as a modulator of the hepatic Hippo pathway with relevance to human liver disease.
Collapse
Affiliation(s)
- Christina Priest
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Rohith T. Nagari
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Lara Bideyan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Stephen D. Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Alexander Nguyen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
9
|
Martí-Clúa J. Incorporation of 5-Bromo-2'-deoxyuridine into DNA and Proliferative Behavior of Cerebellar Neuroblasts: All That Glitters Is Not Gold. Cells 2021; 10:cells10061453. [PMID: 34200598 PMCID: PMC8229392 DOI: 10.3390/cells10061453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
The synthetic halogenated pyrimidine analog, 5-bromo-2'-deoxyuridine (BrdU), is a marker of DNA synthesis. This exogenous nucleoside has generated important insights into the cellular mechanisms of the central nervous system development in a variety of animals including insects, birds, and mammals. Despite this, the detrimental effects of the incorporation of BrdU into DNA on proliferation and viability of different types of cells has been frequently neglected. This review will summarize and present the effects of a pulse of BrdU, at doses ranging from 25 to 300 µg/g, or repeated injections. The latter, following the method of the progressively delayed labeling comprehensive procedure. The prenatal and perinatal development of the cerebellum are studied. These current data have implications for the interpretation of the results obtained by this marker as an index of the generation, migration, and settled pattern of neurons in the developing central nervous system. Caution should be exercised when interpreting the results obtained using BrdU. This is particularly important when high or repeated doses of this agent are injected. I hope that this review sheds light on the effects of this toxic maker. It may be used as a reference for toxicologists and neurobiologists given the broad use of 5-bromo-2'-deoxyuridine to label dividing cells.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
10
|
Sakai H, Shiina I, Shinomiya T, Nagahara Y. BRAP2 inhibits the Ras/Raf/MEK and PI3K/Akt pathways in leukemia cells, thereby inducing apoptosis and inhibiting cell growth. Exp Ther Med 2021; 21:463. [PMID: 33747195 DOI: 10.3892/etm.2021.9894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1)-associated protein 2 (BRAP2) is a novel protein that binds to BRCA1 and is located in the cytoplasm. BRAP2 has been demonstrated to bind to regulators of the Ras-Raf-MEK and PI3K/Akt pathways, both of which are involved in carcinogenesis. This suggests that BRAP2 may be capable of regulating both pathways. In the present study, the role of BRAP2 in both pathways was clarified during apoptosis and cell proliferation in a leukemia cell line. A BRAP2-deficient leukemia cell line was generated using CRISPR/Cas9, the BRAP2-deficient and parental cells were treated with a Ras, pan-Raf or PI3K inhibitor, and the changes in signal transduction, apoptosis and cell proliferation were evaluated. BRAP2 knockout attenuated the inhibition of signal transduction of the Ras-Raf-MEK and PI3K/Akt pathways by the Ras, pan-Raf or PI3K inhibitor. BRAP2 deletion also suppressed the cytotoxic and apoptotic effects of the Ras and pan-Raf inhibitors. However, the loss of BRAP2 did not suppress the cytotoxicity of the PI3K inhibitor but did suppress the PI3K inhibitor-induced inhibition of cell proliferation. The present results indicated that BRAP2 induces apoptosis and the inhibition of cell proliferation via regulating the Ras-Raf-MEK and PI3K/Akt pathways. In leukemia cells, because the Ras-Raf-MEK and PI3K/Akt pathways are activated aberrantly, the simultaneous inhibition of both pathways is desired. The current results indicated that enhancement of the function of BRAP2 may represent a new target in leukemia treatment.
Collapse
Affiliation(s)
- Hiroharu Sakai
- Division of Materials and Life Sciences, Graduate School of Advanced Science and Technology, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takahisa Shinomiya
- Division of Materials and Life Sciences, Graduate School of Advanced Science and Technology, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
| | - Yukitoshi Nagahara
- Division of Materials and Life Sciences, Graduate School of Advanced Science and Technology, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
| |
Collapse
|
11
|
Zhang C, Huang L, Xiong J, Xie L, Ying S, Jia Y, Yao Y, Song X, Zeng Z, Yuan J. Isoalantolactone inhibits pancreatic cancer proliferation by regulation of PI3K and Wnt signal pathway. PLoS One 2021; 16:e0247752. [PMID: 33661942 PMCID: PMC7932101 DOI: 10.1371/journal.pone.0247752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Isoalantolactone (IATL) is one of multiple isomeric sesquiterpene lactones and is isolated from inula helenium. IATL has multiple functions such as antibacterial, antihelminthic and antiproliferative activities. IATL also inhibits pancreatic cancer proliferation and induces apoptosis by increasing ROS production. However, the detailed mechanism of IATL-mediated pancreatic cancer apoptosis remains largely unknown. METHODS In current study, pancreatic carcinoma cell lines (PANC-1, AsPC-1, BxPC-3) and a mouse xenograft model were used to determine the mechanism of IATL-mediated toxic effects. RESULTS IATL (20μM) inhibited pancreatic adenocarcinoma cell lines proliferation in a time-dependent way; while scratch assay showed that IATL significantly inhibited PANC-1 scratch closure (P<0.05); Invasion assays indicated that IATL significantly attenuated pancreatic adenocarcinoma cell lines invasion on matrigel. Signal analysis showed that IATL inhibited pancreatic adenocarcinoma cell proliferation by blocking EGF-PI3K-Skp2-Akt signal axis. Moreover, IATL induced pancreatic adenocarcinoma cell apoptosis by increasing cytosolic Caspase3 and Box expression. This apoptosis was mediated by inhibition of canonical wnt signal pathway. Finally, xenograft studies showed that IATL also significantly inhibited pancreatic adenocarcinoma cell proliferation and induced pancreatic adenocarcinoma cell apoptosis in vivo. CONCLUSIONS IATL inhibits pancreatic cancer proliferation and induces apoptosis on cellular and in vivo models. Signal pathway studies reveal that EGF-PI3K-Skp2-Akt signal axis and canonical wnt pathway are involved in IATL-mediated cellular proliferation inhibition and apoptosis. These studies indicate that IATL may provide a future potential therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Chaoxiong Zhang
- Research Center for Occupational Respiratory Disease, West China Fourth Hospital, Sichuan University, Chengdu, China
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Lei Huang
- Department of Gastroenterology, Chengdu First People’s Hospital, Chengdu, China
| | - Jingyuan Xiong
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Linshen Xie
- Research Center for Occupational Respiratory Disease, West China Fourth Hospital, Sichuan University, Chengdu, China
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Shi Ying
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - You Jia
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Research Center for Occupational Respiratory Disease, West China Fourth Hospital, Sichuan University, Chengdu, China
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Xuejiao Song
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhenguo Zeng
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
12
|
CUX2, BRAP and ALDH2 are associated with metabolic traits in people with excessive alcohol consumption. Sci Rep 2020; 10:18118. [PMID: 33093602 PMCID: PMC7583246 DOI: 10.1038/s41598-020-75199-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Molecular mechanisms that prompt or mitigate excessive alcohol consumption could be partly explained by metabolic shifts. This genome-wide association study aims to identify the susceptibility gene loci for excessive alcohol consumption by jointly measuring weekly alcohol consumption and γ-GT levels. We analysed the Taiwan Biobank data of 18,363 Taiwanese people, including 1945 with excessive alcohol use. We found that one or two copies of the G allele in rs671 (ALDH2) increased the risk of excessive alcohol consumption, while one or two copies of the C allele in rs3782886 (BRAP) reduced the risk of excessive alcohol consumption. To minimize the influence of extensive regional linkage disequilibrium, we used the ridge regression. The ridge coefficients of rs7398833, rs671 and rs3782886 were unchanged across different values of the shrinkage parameter. The three variants corresponded to posttranscriptional activity, including cut-like homeobox 2 (a protein coded by CUX2), Glu504Lys of acetaldehyde dehydrogenase 2 (a protein encoded by ALDH2) and Glu4Gly of BRCA1-associated protein (a protein encoded by BRAP). We found that Glu504Lys of ALDH2 and Glu4Gly of BRAP are involved in the negative regulation of excessive alcohol consumption. The mechanism underlying the γ-GT-catalytic metabolic reaction in excessive alcohol consumption is associated with ALDH2, BRAP and CUX2. Further study is needed to clarify the roles of ALDH2, BRAP and CUX2 in the liver–brain endocrine axis connecting metabolic shifts with excessive alcohol consumption.
Collapse
|
13
|
Volland C, Schott P, Didié M, Männer J, Unsöld B, Toischer K, Schmidt C, Urlaub H, Nickels K, Knöll R, Schmidt A, Guan K, Hasenfuß G, Seidler T. Control of p21Cip by BRCA1-associated protein is critical for cardiomyocyte cell cycle progression and survival. Cardiovasc Res 2020; 116:592-604. [PMID: 31286143 DOI: 10.1093/cvr/cvz177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/26/2019] [Accepted: 07/05/2019] [Indexed: 01/24/2023] Open
Abstract
AIMS Identifying the key components in cardiomyocyte cell cycle regulation is of relevance for the understanding of cardiac development and adaptive and maladaptive processes in the adult myocardium. BRCA1-associated protein (BRAP) has been suggested as a cytoplasmic retention factor for several proteins including Cyclin-dependent-kinase inhibitor p21Cip. We observed profound expressional changes of BRAP in early postnatal myocardium and investigated the impact of BRAP on cardiomyocyte cell cycle regulation. METHODS AND RESULTS General knockout of Brap in mice evoked embryonic lethality associated with reduced myocardial wall thickness and lethal cardiac congestion suggesting a prominent role for BRAP in cardiomyocyte proliferation. αMHC-Cre driven cardiomyocyte-specific knockout of Brap also evoked lethal cardiac failure shortly after birth. Likewise, conditional cardiomyocyte-specific Brap deletion using tamoxifen-induced knockout in adult mice resulted in marked ventricular dilatation and heart failure 3 weeks after induction. Several lines of evidence suggest that Brap deletion evoked marked inhibition of DNA synthesis and cell cycle progression. In cardiomyocytes with proliferative capacity, this causes developmental arrest, whereas in adult hearts loss of BRAP-induced apoptosis. This is explained by altered signalling through p21Cip which we identify as the link between BRAP and cell cycle/apoptosis. BRAP deletion enhanced p21Cip expression, while BRAP overexpression in cardiomyocyte-specific transgenic mice impeded p21Cip expression. That was paralleled by enhanced nuclear Ki-67 expression and DNA synthesis. CONCLUSION By controlling p21Cip activity BRAP expression controls cell cycle activity and prevents developmental arrest in developing cardiomyocytes and apoptosis in adult cardiomyocytes.
Collapse
Affiliation(s)
- Cornelia Volland
- Department of Cardiology and Pulmonology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Peter Schott
- Department of Cardiology and Pulmonology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Michael Didié
- Department of Cardiology and Pulmonology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany.,Department of Pharmacology, Georg-August University Göttingen, Göttingen, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen, 37075 Göttingen, Germany
| | - Jörg Männer
- Group Cardio-Embryology, Institute for Anatomy and Embryology, Georg-August University Göttingen, Göttingen, Germany
| | - Bernhard Unsöld
- Department of Cardiology and Pulmonology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pulmonology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen, 37075 Göttingen, Germany
| | - Carla Schmidt
- Max-Planck-Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Göttingen, Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Göttingen, Germany.,Bioanalytics, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Katrin Nickels
- Working Group on Cardiovascular Molecular Genetics, Heart Center, Department of Cardiology and Pulmonology, Göttingen, Germany
| | - Ralph Knöll
- Working Group on Cardiovascular Molecular Genetics, Heart Center, Department of Cardiology and Pulmonology, Göttingen, Germany
| | - Albrecht Schmidt
- Department of Cardiology and Pulmonology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Kaomei Guan
- Department of Cardiology and Pulmonology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pulmonology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen, 37075 Göttingen, Germany
| | - Tim Seidler
- Department of Cardiology and Pulmonology, Georg-August University, Robert-Koch Str. 40, 37075 Göttingen, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
14
|
Jungas T, Joseph M, Fawal MA, Davy A. Population Dynamics and Neuronal Polyploidy in the Developing Neocortex. Cereb Cortex Commun 2020; 1:tgaa063. [PMID: 34296126 PMCID: PMC8152829 DOI: 10.1093/texcom/tgaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022] Open
Abstract
The mammalian neocortex is composed of different subtypes of projection neurons that are generated sequentially during embryogenesis by differentiation of neural progenitors. While molecular mechanisms that control neuronal production in the developing neocortex have been extensively studied, the dynamics and absolute numbers of the different progenitor and neuronal populations are still poorly characterized. Here, we describe a medium throughput approach based on flow cytometry and well-known identity markers of cortical subpopulations to collect quantitative data over the course of mouse neocortex development. We collected a complete dataset in a physiological developmental context on two progenitor and two neuron populations, including relative proportions and absolute numbers. Our study reveals unexpected total numbers of Tbr2+ progenitors. In addition, we show that polyploid neurons are present throughout neocortex development.
Collapse
Affiliation(s)
- Thomas Jungas
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Mathieu Joseph
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
15
|
Wei X, Liu X, Liu H, He X, Zhuang H, Tang Y, Wang B. BRCA1-associated protein induced proliferation and migration of gastric cancer cells through MAPK pathway. Surg Oncol 2020; 35:191-199. [PMID: 32890957 DOI: 10.1016/j.suronc.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 11/29/2022]
Abstract
BRCA1-associated protein (BRAP) was first found to bind to the nuclear localization signal motifs of BRCA1. In this study, we investigated the role of BRAP in gastric cancer. The cancer genome atlas(TCGA) data were obtained from UALCAN. We downregulated and upregulated the level of BRAP in gastric cancer cells by transfection with shRNAs and plasmids. Then, we evaluated the expression of BRAP by qRT-PCR and investigated the expression of important proteins by Western blot analysis. We conducted a microarray analysis to identify the function of BRAP in gastric cancer cells. Then, we investigated the effect of BRAP on proliferation and migration by CCK-8 assays, colony formation assays, wound healing assays and an extreme limiting dilution analysis. The analysis of TCGA data showed that BRAP was significantly overexpressed in gastric cancer tissues compared to that in normal gastric mucosal tissues (P < 0.001). A hybridization-based microarray assay was used to analyze MGC-803 cells and BRAP-downregulated MGC-803 cells. We found 22,199 protein-coding RNAs that were differentially expressed. The genes in the two groups were analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and both the focal adhesion and MAPK pathways were significantly enriched. The results of Cell Counting Kit-8(CCK-8) assays, colony formation assays, wound healing assays and the extreme limiting dilution analysis showed that the knockdown of BRAP reduced gastric cancer cell proliferation and migration and inhibited the process of epithelial-mesenehymal transition (EMT). The overexpression of BRAP induced gastric cancer cell proliferation, migration and the process of EMT. To verify the function of the mitogen-activated protein kinase (MAPK) signaling pathway, we performed a Western blot analysis. The results showed that the downregulation of BRAP decreased the levels of p-ERK and p-Raf1, thereby decreasing the activity of the MAPK signaling pathway. The use of Honokiol increased the levels of p-ERK and p-Raf1, rescuing the function of BRAP downregulation in the MAPK pathway. Xenograft tumor transplantation experiments in nude mice further confirmed the role of BRAP in gastric cancer progression and metastasis.
Collapse
Affiliation(s)
- Xiaodong Wei
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin, 300100, PR China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, PR China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin, 300100, PR China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, PR China
| | - Huimin Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Xin He
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450008, PR China.
| | - Yanping Tang
- Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin, 300100, PR China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, 300100, PR China.
| | - Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, 300050, China.
| |
Collapse
|
16
|
Rodríguez-Vázquez L, Martí J. Administration of 5-bromo-2'-deoxyuridine interferes with neuroblast proliferation and promotes apoptotic cell death in the rat cerebellar neuroepithelium. J Comp Neurol 2020; 529:1081-1096. [PMID: 32785933 DOI: 10.1002/cne.25005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
The current study was conducted to assess whether a single administration of 5-bromo-2'-deoxyuridine (BrdU) interferes with cell proliferation and leads to the activation of apoptotic cellular events in the prenatal cerebellum. BrdU effects across a wide range of doses (25-300 μg/g b.w.) were analyzed using immunohistochemical and ultrastructural procedures. The pregnant rats were injected with BrdU at embryonic day 13, and their fetuses were sacrificed from 5 to 35 hr after exposure. The quantification of several parameters such as the density of mitotic figures, and BrdU and proliferating cell nuclear antigen (PCNA)-reactive cells showed that, in comparison with the saline injected rats, the administration of BrdU impairs the proliferative behavior of neuroepithelial cells. The above-mentioned parameters were significantly reduced in rats injected with 100 μg/g b.w. of BrdU. The reduction was more evident using 200 μg/g b.w. The most severe effects were found with 300 μg/g b.w. of BrdU. The present findings also revealed that high doses of BrdU lead to the activation of apoptotic cellular events as evidenced by both terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and immunohistochemistry for active caspase-3. In comparison with saline rats, many apoptotic cells were found in rats injected with 100 μg/g b.w. of BrdU. The number of dying cells increased with 200 μg/g b.w. The most important number of apoptotic cells were observed in animals injected with 300 μg/g b.w. of BrdU. Ultrastructural studies confirmed the presence of neuroblasts at different stages of apoptosis.
Collapse
Affiliation(s)
- Lucía Rodríguez-Vázquez
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Joaquín Martí
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Martí J, Rodríguez-Vázquez L. An immunocytochemical approach to the analysis of the cell division cycle in the rat cerebellar neuroepithelium. Cell Cycle 2020; 19:2451-2459. [PMID: 32835583 DOI: 10.1080/15384101.2020.1806425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cerebellar neurons are generated from the rhombic lip and the neuroepithelium. In this study, we analyze the histogenesis of the cerebellar neuroepithelium in terms of cellular kinetics. The experimental animals are the offspring of pregnant dams injected with 5-bromo-2'-deoxyuridine (BrdU) on embryonic day 13. We infer the fraction of S-phase cells by examining a range of survival times after a single BrdU-exposure and a cumulative BrdU-labeling sequence, which allow for the derivation of cell-cycle parameters and phase durations. The current results indicate that the dose of BrdU employed (35 mg/kg) provides saturation S-phase labeling from at least 1 h after marker delivery. The duration of G2, mitotic phase, and G1 are 1.2, 0.5, and 6.9 h, respectively. The duration for the S-phase, growth fraction, and the whole cycle are obtained on the basis of two proliferative models, steady-state and exponential growth. Both models provided similar results. In conclusion, our results indicate that the steady-state and the cumulative S-phase labeling paradigms can be adopted to analyze cell cycle parameters in the cerebellar neuroepithelium. Current results can help in understanding the regulatory mechanisms of cerebellar histogenesis and the cell biological mechanisms of the proliferative cycle of the neuroepithelium.
Collapse
Affiliation(s)
- Joaquín Martí
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona , Barcelona, Spain
| | - Lucía Rodríguez-Vázquez
- Unidad de Citología e Histología, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona , Barcelona, Spain
| |
Collapse
|
18
|
Kischel A, Audouard C, Fawal MA, Davy A. Ephrin-B2 paces neuronal production in the developing neocortex. BMC DEVELOPMENTAL BIOLOGY 2020; 20:12. [PMID: 32404061 PMCID: PMC7222552 DOI: 10.1186/s12861-020-00215-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/19/2020] [Indexed: 01/19/2023]
Abstract
Background During mammalian cerebral cortex development, different types of projection neurons are produced in a precise temporal order and in stereotypical numbers. The mechanisms regulating timely generation of neocortex projection neurons and ensuring production in sufficient numbers of each neuronal identity are only partially understood. Results Here, we show that ephrin-B2, a member of the Eph:ephrin cell-to-cell communication pathway, sets the neurogenic tempo in the neocortex. Indeed, conditional mutant embryos for ephrin-B2 exhibit a transient delay in neurogenesis and acute stimulation of Eph signaling by in utero injection of synthetic ephrin-B2 led to a transient increase in neuronal production. Using genetic approaches we show that ephrin-B2 acts on neural progenitors to control their differentiation in a juxtacrine manner. Unexpectedly, we observed that perinatal neuron numbers recovered following both loss and gain of ephrin-B2, highlighting the ability of neural progenitors to adapt their behavior to the state of the system in order to produce stereotypical numbers of neurons. Conclusions Altogether, our data uncover a role for ephrin-B2 in embryonic neurogenesis and emphasize the plasticity of neuronal production in the neocortex.
Collapse
Affiliation(s)
- Anthony Kischel
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Christophe Audouard
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI), Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
19
|
Derks W, Bergmann O. BRAP: a novel regulator of the cardiomyocyte cell cycle controlling both proliferation and survival? Cardiovasc Res 2020; 116:467-469. [PMID: 31584619 PMCID: PMC7031701 DOI: 10.1093/cvr/cvz246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Wouter Derks
- Center for Regenerative Therapies Dresden, TU-Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies Dresden, TU-Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
- Karolinska Institutet, Biomedicum, Cell and Molecular Biology, SE-17177 Stockholm, Sweden
- Corresponding author. Tel: +4935145882354; fax: +4935145882119, E-mail:
| |
Collapse
|
20
|
Lee W, Cho JH, Lee Y, Lee S, Kim DH, Ha S, Kondo Y, Ishigami A, Chung HY, Lee J. Dibutyl phthalate impairs neural progenitor cell proliferation and hippocampal neurogenesis. Food Chem Toxicol 2019; 129:239-248. [DOI: 10.1016/j.fct.2019.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 01/18/2023]
|
21
|
Marcucci F, Soares CA, Mason C. Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells. J Comp Neurol 2019; 527:212-224. [PMID: 29761490 PMCID: PMC6237670 DOI: 10.1002/cne.24467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022]
Abstract
In higher vertebrates, the circuit formed by retinal ganglion cells (RGCs) projecting ipsilaterally (iRGCs) or contralaterally (cRGCs) to the brain permits binocular vision and depth perception. iRGCs and cRGCs differ in their position within the retina and in expression of transcription, guidance and activity-related factors. To parse whether these two populations also differ in the timing of their genesis, a feature of distinct neural subtypes and associated projections, we used newer birthdating methods and cell subtype specific markers to determine birthdate and cell cycle exit more precisely than previously. In the ventrotemporal (VT) retina, i- and cRGCs intermingle and neurogenesis in this zone lags behind RGC production in the rest of the retina where only cRGCs are positioned. In addition, within the VT retina, i- and cRGC populations are born at distinct times: neurogenesis of iRGCs surges at E13, and cRGCs arise as early as E14, not later in embryogenesis as reported. Moreover, in the ventral ciliary margin zone (CMZ), which contains progenitors that give rise to some iRGCs in ventral neural retina (Marcucci et al., 2016), cell cycle exit is slower than in other retinal regions in which progenitors give rise only to cRGCs. Further, when the cell cycle regulator Cyclin D2 is missing, cell cycle length in the CMZ is further reduced, mirroring the reduction of both i- and cRGCs in the Cyclin D2 mutant. These results strengthen the view that differential regulation of cell cycle dynamics at the progenitor level is associated with specific RGC fates and laterality of axonal projection.
Collapse
Affiliation(s)
- Florencia Marcucci
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Célia A. Soares
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Carol Mason
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
- Department of Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| |
Collapse
|