1
|
A protein association atlas for human tissues. Nat Biotechnol 2025:10.1038/s41587-025-02692-y. [PMID: 40355565 DOI: 10.1038/s41587-025-02692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
2
|
Paraskar G, Bhattacharya S, Kuttiappan A. The Role of Proteomics and Genomics in the Development of Colorectal Cancer Diagnostic Tools and Potential New Treatments. ACS Pharmacol Transl Sci 2025; 8:1227-1250. [PMID: 40370990 PMCID: PMC12070319 DOI: 10.1021/acsptsci.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 04/03/2025] [Indexed: 05/16/2025]
Abstract
The complex molecular mechanisms involving genetic and epigenetic modifications contribute to colorectal cancer (CRC), which remains a significant threat to world health. This review elucidates the role of proteomics and genomics in the progression, diagnosis, and treatment of colorectal cancers. All potential key pathways involved in CRC, including WNT, MAPK, PI3K, and TGF-β pathways, are reviewed with a systematic analysis, concluding with their involvement in tumorigenesis and therapeutic resistance. Emerging next-generation sequencing technologies revealed critical mutations that are relevant to CRC development. Proteomics has contributed to identifying biomarkers and post-translational modifications that hold promise for targeted therapies. Recent technological advances have provided functional insights into protein signaling networks and pathways through mass spectrometry and integrated proteogenomic approaches. This work emphasizes biomarker-driven translational efforts that integrate genomic insights with protein expression profiles to refine personalized treatments. The application of innovations in liquid biopsy and computational biology advocates for precision medicine paths to improve the outcomes for CRC. Now, pharmacoproteomics offers novel domains for drug discovery and resistance management and serves as a foundation for comprehensive CRC treatment paradigms.
Collapse
Affiliation(s)
- Gaurav Paraskar
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Anitha Kuttiappan
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
3
|
Laman Trip DS, van Oostrum M, Memon D, Frommelt F, Baptista D, Panneerselvam K, Bradley G, Licata L, Hermjakob H, Orchard S, Trynka G, McDonagh EM, Fossati A, Aebersold R, Gstaiger M, Wollscheid B, Beltrao P. A tissue-specific atlas of protein-protein associations enables prioritization of candidate disease genes. Nat Biotechnol 2025:10.1038/s41587-025-02659-z. [PMID: 40316700 DOI: 10.1038/s41587-025-02659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/28/2025] [Indexed: 05/04/2025]
Abstract
Despite progress in mapping protein-protein interactions, their tissue specificity is understudied. Here, given that protein coabundance is predictive of functional association, we compiled and analyzed protein abundance data of 7,811 proteomic samples from 11 human tissues to produce an atlas of tissue-specific protein associations. We find that this method recapitulates known protein complexes and the larger structural organization of the cell. Interactions of stable protein complexes are well preserved across tissues, while cell-type-specific cellular structures, such as synaptic components, are found to represent a substantial driver of differences between tissues. Over 25% of associations are tissue specific, of which <7% are because of differences in gene expression. We validate protein associations for the brain through cofractionation experiments in synaptosomes, curation of brain-derived pulldown data and AlphaFold2 modeling. We also construct a network of brain interactions for schizophrenia-related genes, indicating that our approach can functionally prioritize candidate disease genes in loci linked to brain disorders.
Collapse
Affiliation(s)
- Diederik S Laman Trip
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Marc van Oostrum
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Danish Memon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Fabian Frommelt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Delora Baptista
- Gulbenkian Institute for Molecular Medicine, Oeiras, Portugal
| | - Kalpana Panneerselvam
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Glyn Bradley
- Computational Biology, Functional Genomics, GSK, Stevenage, UK
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - Gosia Trynka
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ellen M McDonagh
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Andrea Fossati
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Pedro Beltrao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Cambridge, UK.
- Gulbenkian Institute for Molecular Medicine, Oeiras, Portugal.
| |
Collapse
|
4
|
Lane KA, Harrod A, Wu L, Roumeliotis TI, Feng H, Foo S, Begg KAG, Schiavoni F, Amin N, Zenke FT, Melcher AA, Choudhary JS, Downs JA. PBRM1 directs PBAF to pericentromeres and protects centromere integrity. Nat Commun 2025; 16:1980. [PMID: 40011561 PMCID: PMC11865495 DOI: 10.1038/s41467-025-57277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 02/16/2025] [Indexed: 02/28/2025] Open
Abstract
The specialised structure of the centromere is critical for effective chromosome segregation, but its repetitive nature makes it vulnerable to rearrangements. Centromere fragility can drive tumorigenesis, but protective mechanisms preventing fragility are still not fully understood. The PBAF chromatin remodelling complex is frequently misregulated in cancer, but its role in cancer is incompletely characterized. Here, we identify PBAF as a protector of centromere and pericentromere structure with profound consequences for genome stability. A conserved feature of isogenic cell lines lacking PBRM1, a subunit of PBAF, is compromised centromere and pericentromere integrity. PBAF is present at these regions, and binding patterns of PBAF and H3K9 methylation change when PBRM1 is absent. PBRM1 loss creates a dependence on the spindle assembly checkpoint, which represents a therapeutic vulnerability. Importantly, we find that even in the absence of any perturbations, PBRM1 loss leads to centromere fragility, thus identifying a key player in centromere protection.
Collapse
Affiliation(s)
- Karen A Lane
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Alison Harrod
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Lillian Wu
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Theodoros I Roumeliotis
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Hugang Feng
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
- The Francis Crick Institute; London, London, UK
| | - Shane Foo
- Division of Radiotherapy and Imaging, The Institute of Cancer Research; London, London, UK
| | - Katheryn A G Begg
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Federica Schiavoni
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Noa Amin
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Frank T Zenke
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Alan A Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research; London, London, UK
| | - Jyoti S Choudhary
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK
| | - Jessica A Downs
- Division of Cell and Molecular Biology, The Institute of Cancer Research; London, London, UK.
| |
Collapse
|
5
|
Liu B, Xie Y, Zhang Y, Tang G, Lin J, Yuan Z, Liu X, Wang X, Huang M, Luo Y, Yu H. Spatial deconvolution from bulk DNA methylation profiles determines intratumoral epigenetic heterogeneity. Cell Biosci 2025; 15:7. [PMID: 39844296 PMCID: PMC11756021 DOI: 10.1186/s13578-024-01337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Intratumoral heterogeneity emerges from accumulating genetic and epigenetic changes during tumorigenesis, which may contribute to therapeutic failure and drug resistance. However, the lack of a quick and convenient approach to determine the intratumoral epigenetic heterogeneity (eITH) limit the application of eITH in clinical settings. Here, we aimed to develop a tool that can evaluate the eITH using the DNA methylation profiles from bulk tumors. METHODS Genomic DNA of three laser micro-dissected tumor regions, including digestive tract surface, central bulk, and invasive front, was extracted from formalin-fixed paraffin-embedded sections of colorectal cancer patients. The genome-wide methylation profiles were generated with methylation array. The most variable methylated probes were selected to construct a DNA methylation-based heterogeneity (MeHEG) estimation tool that can deconvolve the proportion of each reference tumor region with the support vector machine model-based method. A PCR-based assay for quantitative analysis of DNA methylation (QASM) was developed to specifically determine the methylation status of each CpG in MeHEG assay at single-base resolution to realize fast evaluation of epigenetic heterogeneity. RESULTS In the discovery set with 79 patients, the differentially methylated CpGs among the three tumor regions were found. The 7 most representative CpGs were identified and subsequently selected to develop the MeHEG algorithm. We validated its performance of deconvolution of tumor regions in an independent cohort. In addition, we showed the significant association of MeHEG-based epigenetic heterogeneity with the genomic heterogeneity in mutation and copy number variation in our in-house and TCGA cohorts. Besides, we found that the patients with higher MeHEG score had worse disease-free and overall survival outcomes. Finally, we found dynamic change of epigenetic heterogeneity based on MeHEG score in cancer cells under the treatment of therapeutic drugs. CONCLUSION By developing a 7-loci panel using a machine learning approach combined with the QASM assay for PCR-based application, we present a valuable method for evaluating intratumoral heterogeneity. The MeHEG algorithm offers novel insights into tumor heterogeneity from an epigenetic perspective, potentially enriching current knowledge of tumor complexity and providing a new tool for clinical and research applications in cancer biology.
Collapse
Affiliation(s)
- Binbin Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Yumo Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Guannan Tang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Jinxin Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Ze Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Xiaoxia Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meijin Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China.
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Zhou Z, Zhang R, Zhou A, Lv J, Chen S, Zou H, Zhang G, Lin T, Wang Z, Zhang Y, Weng S, Han X, Liu Z. Proteomics appending a complementary dimension to precision oncotherapy. Comput Struct Biotechnol J 2024; 23:1725-1739. [PMID: 38689716 PMCID: PMC11058087 DOI: 10.1016/j.csbj.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Recent advances in high-throughput proteomic profiling technologies have facilitated the precise quantification of numerous proteins across multiple specimens concurrently. Researchers have the opportunity to comprehensively analyze the molecular signatures in plentiful medical specimens or disease pattern cell lines. Along with advances in data analysis and integration, proteomics data could be efficiently consolidated and employed to recognize precise elementary molecular mechanisms and decode individual biomarkers, guiding the precision treatment of tumors. Herein, we review a broad array of proteomics technologies and the progress and methods for the integration of proteomics data and further discuss how to better merge proteomics in precision medicine and clinical settings.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Aoyang Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinxiang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Haijiao Zou
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Lin
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
7
|
Hoenger Ramazanova RD, Roumeliotis TI, Wright JC, Choudhary JS. PhoXplex: Combining Phospho-enrichable Cross-Linking with Isobaric Labeling for Quantitative Proteome-Wide Mapping of Protein Interfaces. J Proteome Res 2024; 23:5209-5220. [PMID: 39422127 PMCID: PMC11537259 DOI: 10.1021/acs.jproteome.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Integrating cross-linking mass spectrometry (XL-MS) into structural biology workflows provides valuable information about the spatial arrangement of amino acid stretches, which can guide elucidation of protein assembly architecture. Additionally, the combination of XL-MS with peptide quantitation techniques is a powerful approach to delineate protein interface dynamics across diverse conditions. While XL-MS is increasingly effective with isolated proteins or small complexes, its application to whole-cell samples poses technical challenges related to analysis depth and throughput. The use of enrichable cross-linkers has greatly improved the detectability of protein interfaces in a proteome-wide scale, facilitating global protein-protein interaction mapping. Therefore, bringing together enrichable cross-linking and multiplexed peptide quantification is an appealing approach to enable comparative characterization of structural attributes of proteins and protein interactions. Here, we combined phospho-enrichable cross-linking with TMT labeling to develop a streamline workflow (PhoXplex) for the detection of differential structural features across a panel of cell lines in a global scale. We achieved deep coverage with quantification of over 9000 cross-links and long loop-links in total including potentially novel interactions. Overlaying AlphaFold predictions and disorder protein annotations enables exploration of the quantitative cross-linking data set, to reveal possible associations between mutations and protein structures. Lastly, we discuss current shortcomings and perspectives for deep whole-cell profiling of protein interfaces at large-scale.
Collapse
Affiliation(s)
- Runa D. Hoenger Ramazanova
- Functional
Proteomics team, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Theodoros I. Roumeliotis
- Functional
Proteomics team, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - James C. Wright
- Functional
Proteomics team, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Jyoti S. Choudhary
- Functional
Proteomics team, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
8
|
Rivandi M, Franken A, Yang L, Abramova A, Stamm N, Eberhardt J, Gierke B, Beer M, Fehm T, Niederacher D, Pawlak M, Neubauer H. Miniaturized protein profiling permits targeted signaling pathway analysis in individual circulating tumor cells to improve personalized treatment. J Transl Med 2024; 22:848. [PMID: 39304879 DOI: 10.1186/s12967-024-05616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/18/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Traditional genomic profiling and mutation analysis of single cells like Circulating Tumor Cells (CTCs) fails to capture post-translational and functional alterations of proteins, often leading to limited treatment efficacy. To overcome this gap, we developed a miniaturized 'protein analysis on the single cell level' workflow-baptized ZeptoCTC. It integrates established technologies for single-cell isolation with sensitive Reverse Phase Protein Array (RPPA) analysis, thus enabling the comprehensive assessment of multiple protein expression and activation in individual CTCs. METHODS The ZeptoCTC workflow involves several critical steps. Firstly, individual cells are labeled and isolated. This is followed by cell lysis and the printing of true single cell lysate preparations onto a ZeptoChip using a modified micromanipulator, CellCelector™. The printed lysates then undergo fluorescence immunoassay RPPA protein detection using a ZeptoReader. Finally, signal quantification is carried out with Image J software, ensuring precise measurement of multiple protein levels. RESULTS The efficacy of ZeptoCTC was demonstrated through various applications. Initially, it was used for measuring EpCAM protein expression, a standard marker for CTC detection, revealing higher levels in single MCF-7 over MDA-MB-231 tumor cells. Furthermore, in Capivasertib (Akt-inhibitor)-treated MCF-7 single cells, ZeptoCTC detected a 2-fold increase in the pAkt/Akt ratio compared to control cells, and confirmed co-performed bulk-cell western blot analysis results. Notably, when applied to individual CTCs from metastasized breast cancer patients, ZeptoCTC revealed significant differences in protein activation levels, particularly in measured pAkt and pErk levels, compared to patient-matched WBCs. Moreover, it successfully differentiated between CTCs from patients with different Akt1 genotypes, highlighting its potential to determine the activation status of druggable cancer driving proteins for individual and targeted treatment decision making. CONCLUSIONS The ZeptoCTC workflow represents a valuable tool in single cell cancer research, crucial for personalized medicine. It permits detailed analysis of key proteins and their activation status of targeted, cancer-driven signaling pathways in single cell samples, aiding in understanding tumor response, progression, and treatment efficacy beyond bulk analysis. The method significantly advances clinical investigations in cancer, improving treatment precision and effectiveness. The workflow will be applicable to protein analysis on other types of single cells like relevant in stem cell, neuropathology and hemopoietic cell research.
Collapse
Affiliation(s)
- Mahdi Rivandi
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Liwen Yang
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Anna Abramova
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Nadia Stamm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | | | | | - Meike Beer
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany
| | | | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf, Germany.
- Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Duesseldorf), Duesseldorf, Germany.
| |
Collapse
|
9
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
10
|
Beltrao P, Van Den Bossche T, Gabriels R, Holstein T, Kockmann T, Nameni A, Panse C, Schlapbach R, Lautenbacher L, Mattanovich M, Nesvizhskii A, Van Puyvelde B, Scheid J, Schwämmle V, Strauss M, Susmelj AK, The M, Webel H, Wilhelm M, Winkelhardt D, Wolski WE, Xi M. Proceedings of the EuBIC-MS developers meeting 2023. J Proteomics 2024; 305:105246. [PMID: 38964537 DOI: 10.1016/j.jprot.2024.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The 2023 European Bioinformatics Community for Mass Spectrometry (EuBIC-MS) Developers Meeting was held from January 15th to January 20th, 2023, in Congressi Stefano Franscin at Monte Verità in Ticino, Switzerland. The participants were scientists and developers working in computational mass spectrometry (MS), metabolomics, and proteomics. The 5-day program was split between introductory keynote lectures and parallel hackathon sessions focusing on "Artificial Intelligence in proteomics" to stimulate future directions in the MS-driven omics areas. During the latter, the participants developed bioinformatics tools and resources addressing outstanding needs in the community. The hackathons allowed less experienced participants to learn from more advanced computational MS experts and actively contribute to highly relevant research projects. We successfully produced several new tools applicable to the proteomics community by improving data analysis and facilitating future research.
Collapse
Affiliation(s)
| | - Tim Van Den Bossche
- VIB-UGent Center for Medical Biotechnology, 9052 Zwijnaarde, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, 9052 Zwijnaarde, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tanja Holstein
- VIB-UGent Center for Medical Biotechnology, 9052 Zwijnaarde, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tobias Kockmann
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Alireza Nameni
- VIB-UGent Center for Medical Biotechnology, 9052 Zwijnaarde, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Christian Panse
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland.
| | - Ralph Schlapbach
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Ludwig Lautenbacher
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, D - 85354 Freising, Germany
| | - Matthias Mattanovich
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Alexey Nesvizhskii
- Departments of Pathology and Computational Medicine and Bioinfoirmatics, University of Michigan, Ann Arbor, MI 48105, USA
| | - Bart Van Puyvelde
- ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Jonas Scheid
- Department of Peptide-based Immunotherapy, Institute of Immunology, University and University hospital Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany; Quantitative Biology Center (QBiC), University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Maximilian Strauss
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Matthew The
- TUM School of Life Sciences Technische Universität München, D - 85354 Freising, Germany
| | - Henry Webel
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Wilhelm
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, D - 85354 Freising, Germany
| | | | - Witold E Wolski
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Muyao Xi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
11
|
Sobsey CA, Froehlich BC, Mitsa G, Ibrahim S, Popp R, Zahedi RP, de Bruin EC, Borchers CH, Batist G. mTORC1-Driven Protein Translation Correlates with Clinical Benefit of Capivasertib within a Genetically Preselected Cohort of PIK3CA-Altered Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2058-2074. [PMID: 38954770 PMCID: PMC11320025 DOI: 10.1158/2767-9764.crc-24-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/12/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Capivasertib is a potent selective inhibitor of AKT. It was recently FDA approved in combination with fulvestrant to treat HR+, HER2-negative breast cancers with certain genetic alteration(s) activating the PI3K pathway. In phase I trials, heavily pretreated patients with tumors selected for activating PI3K pathway mutations treated with capivasertib monotherapy demonstrated objective response rates of <30%. We investigated the proteomic profile associated with capivasertib response in genetically preselected patients and cancer cell lines. We analyzed samples from 16 PIK3CA-mutated patient tumors collected prior to capivasertib monotherapy in the phase I trial. PI3K pathway proteins were precisely quantified with immuno-Matrix-Assisted Laser Desorption/Ionization-mass spectrometry (iMALDI-MS). Global proteomic profiles were also obtained. Patients were classified according to response to capivasertib monotherapy: "clinical benefit (CB)" (≥12 weeks without progression, n = 7) or "no clinical benefit (NCB)" (progression in <12 weeks, n = 9). Proteins that differed between the patient groups were subsequently quantified in AKT1- or PIK3CA-altered breast cancer cell lines with varying capivasertib sensitivity. The measured concentrations of AKT1 and AKT2 varied among the PIK3CA-mutated tumors but did not differ between the CB and NCB groups. However, analysis of the global proteome data showed that translational activity was higher in tumors of the NCB vs. CB group. When reproducibly quantified by validated LC-MRM-MS assays, the same proteins of interest similarly distinguished between capivasertib-sensitive versus -resistant cell lines. The results provide further evidence that increased mTORC1-driven translation functions as a mechanism of resistance to capivasertib monotherapy. Protein concentrations may offer additional insights for patient selection for capivasertib, even among genetically preselected patients. SIGNIFICANCE Capivasertib's first-in-class FDA approval demonstrates its promise, yet there remains an opportunity to optimize its use. Our results provide new evidence that proteomics can stratify genetically preselected patients on clinical benefit. Characterization of the same profile in cell lines furnishes additional validation. Among PIK3CA-altered tumors, increased mTORC1-driven translation appears to confer intrinsic resistance. Assessing mTORC1 activation could therefore prove a useful complement to the existing genetic selection strategy for capivasertib.
Collapse
Affiliation(s)
- Constance A. Sobsey
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Bjoern C. Froehlich
- University of Victoria-Genome British Columbia Proteomics Centre, University of Victoria, Victoria, BC, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| | - Georgia Mitsa
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | - Sahar Ibrahim
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| | | | - Rene P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, Canada.
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
| | | | - Christoph H. Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| | - Gerald Batist
- Segal Cancer Centre, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- McGill Centre for Translational Research in Cancer, Lady Davis Institute, Montreal, QC, Canada.
| |
Collapse
|
12
|
Lee CY, The M, Meng C, Bayer FP, Putzker K, Müller J, Streubel J, Woortman J, Sakhteman A, Resch M, Schneider A, Wilhelm S, Kuster B. Illuminating phenotypic drug responses of sarcoma cells to kinase inhibitors by phosphoproteomics. Mol Syst Biol 2024; 20:28-55. [PMID: 38177929 PMCID: PMC10883282 DOI: 10.1038/s44320-023-00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Kinase inhibitors (KIs) are important cancer drugs but often feature polypharmacology that is molecularly not understood. This disconnect is particularly apparent in cancer entities such as sarcomas for which the oncogenic drivers are often not clear. To investigate more systematically how the cellular proteotypes of sarcoma cells shape their response to molecularly targeted drugs, we profiled the proteomes and phosphoproteomes of 17 sarcoma cell lines and screened the same against 150 cancer drugs. The resulting 2550 phenotypic profiles revealed distinct drug responses and the cellular activity landscapes derived from deep (phospho)proteomes (9-10,000 proteins and 10-27,000 phosphorylation sites per cell line) enabled several lines of analysis. For instance, connecting the (phospho)proteomic data with drug responses revealed known and novel mechanisms of action (MoAs) of KIs and identified markers of drug sensitivity or resistance. All data is publicly accessible via an interactive web application that enables exploration of this rich molecular resource for a better understanding of active signalling pathways in sarcoma cells, identifying treatment response predictors and revealing novel MoA of clinical KIs.
Collapse
Affiliation(s)
- Chien-Yun Lee
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Kerstin Putzker
- Chemical Biology Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Julian Müller
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Johanna Streubel
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Woortman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Moritz Resch
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Annika Schneider
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Stephanie Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
13
|
Liu Z, Jiang S, Hao B, Xie S, Liu Y, Huang Y, Xu H, Luo C, Huang M, Tan M, Xu JY. A proteomic landscape of pharmacologic perturbations for functional relevance. J Pharm Anal 2024; 14:128-139. [PMID: 38352953 PMCID: PMC10859532 DOI: 10.1016/j.jpha.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 02/16/2024] Open
Abstract
Pharmacological perturbation studies based on protein-level signatures are fundamental for drug discovery. In the present study, we used a mass spectrometry (MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds. The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells. Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol, as well as the noncanonical targets of clinically approved tamoxifen, lovastatin, and their derivatives. Furthermore, the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints. This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.
Collapse
Affiliation(s)
- Zhiwei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shangwen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuyu Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Heng Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
| |
Collapse
|
14
|
Ezzeldin S, Osama A, Anwar AM, Mahgoub S, Ahmed EA, Farid N, Zamzam M, El Ghoneimy A, Magdeldin S. Detection of early prognostic biomarkers for metastasis of Ewing's sarcoma in pediatric patients. Life Sci 2023; 334:122237. [PMID: 37926299 DOI: 10.1016/j.lfs.2023.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
AIMS Ewing's Sarcoma is an extremely aggressive tumor in children. The disease is associated with highly metastatic rate, especially at the time of diagnosis, contributing to a lower survival rate and poor prognosis. The study aimed to identify predictive biomarkers for metastatic Ewing's sarcoma through in-depth analysis of the plasma proteome profile of pediatric Ewing's sarcoma patients. MAIN METHODS Plasma samples from Ewing's sarcoma patients and control individuals were profiled using both shotgun and dimethyl-labeled proteomics analysis. Subsequently, Ewing's sarcoma patients were further stratified according to their metastatic state and chemotherapy response. Western blot was used for validation. Univariate and multivariate analyses were performed to determine proteome metastasis predictors. Receiver operating characteristic (ROC) analysis was done to assess the diagnostic significance of the potential plasma Ewing's sarcoma biomarkers. KEY FINDINGS Our results revealed a set of proteins significantly associated with the metastatic Ewing's sarcoma disease profile. These proteins include ceruloplasmin and several immunoglobulins. Additionally, our study disclosed significant differentially expressed proteins in pediatric Ewing's sarcoma, including CD5 antigen-like, clusterin, and dermcidin. Stable isotope dimethyl labeling and western blot further confirmed our results, strengthening the impact of such proteins in disease development. Furthermore, an unbiased ROC curve evaluated and confirmed the predictive power of these biomarker candidates. SIGNIFICANCE This study presented potential empirical predictive circulating biomarkers for determining the disease status of pediatric Ewing's sarcoma, which is vital for early prediction.
Collapse
Affiliation(s)
- Shahd Ezzeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Sebaey Mahgoub
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Eman A Ahmed
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Nesma Farid
- Clinical Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Manal Zamzam
- Department of Pediatric Oncology, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Ahmed El Ghoneimy
- Musculoskeletal Tumor Surgery Unit, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt; Department of Orthopedic Surgery, Faculty of Medicine, Cairo University, 12613 Giza, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| |
Collapse
|
15
|
Rimawi I, Yanai S, Turgeman G, Yanai J. Whole transcriptome analysis in offspring whose fathers were exposed to a developmental insult: a novel avian model. Sci Rep 2023; 13:16499. [PMID: 37779136 PMCID: PMC10543553 DOI: 10.1038/s41598-023-43593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
Although the effects of paternal exposure to insults on the offspring received limited attention in the past, it is currently gaining interest especially after understanding the mechanisms which may mediate such exposure effects. In the current study, the well-controlled avian model (Fayoumi) was utilized to investigate the effects of paternal exposure to the developmental insult, chlorpyrifos on the offspring's gene expression via mRNA and small RNA sequencing. Numerous mRNA gene expression changes were detected in the offspring after paternal exposure to the developmental insult, especially in genes related to neurogenesis, learning and memory. qPCR analysis of several genes, that were significantly changed in mRNA sequencing, confirmed the results obtained in mRNA sequencing. On the other hand, small RNA sequencing did not identify significant microRNA genes expression changes in the offspring after paternal exposure to the developmental insult. The effects of the paternal exposure were more pronounced in the female offspring compared to the male offspring. The results identified expression alterations in major genes (some of which were pertinent to the functional changes observed in other forms of early developmental exposure) after paternal insult exposure and provided a direction for future studies involving the most affected genes.
Collapse
Affiliation(s)
- Issam Rimawi
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Sunny Yanai
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gadi Turgeman
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Joseph Yanai
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Buljan M, Banaei-Esfahani A, Blattmann P, Meier-Abt F, Shao W, Vitek O, Tang H, Aebersold R. A computational framework for the inference of protein complex remodeling from whole-proteome measurements. Nat Methods 2023; 20:1523-1529. [PMID: 37749212 PMCID: PMC10555833 DOI: 10.1038/s41592-023-02011-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/16/2023] [Indexed: 09/27/2023]
Abstract
Protein complexes are responsible for the enactment of most cellular functions. For the protein complex to form and function, its subunits often need to be present at defined quantitative ratios. Typically, global changes in protein complex composition are assessed with experimental approaches that tend to be time consuming. Here, we have developed a computational algorithm for the detection of altered protein complexes based on the systematic assessment of subunit ratios from quantitative proteomic measurements. We applied it to measurements from breast cancer cell lines and patient biopsies and were able to identify strong remodeling of HDAC2 epigenetic complexes in more aggressive forms of cancer. The presented algorithm is available as an R package and enables the inference of changes in protein complex states by extracting functionally relevant information from bottom-up proteomic datasets.
Collapse
Affiliation(s)
- Marija Buljan
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, St Gallen, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Amir Banaei-Esfahani
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter Blattmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Idorsia Pharmaceuticals, Allschwil, Switzerland
| | - Fabienne Meier-Abt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Wenguang Shao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Olga Vitek
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Lau R, Yu L, Roumeliotis TI, Stewart A, Pickard L, Riisanes R, Gurel B, de Bono JS, Choudhary JS, Banerji U. Unbiased differential proteomic profiling between cancer-associated fibroblasts and cancer cell lines. J Proteomics 2023; 288:104973. [PMID: 37481068 DOI: 10.1016/j.jprot.2023.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/03/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of tumors. We aimed to profile the proteome of cancer cell lines representing three common cancer types (lung, colorectal and pancreatic) and a representative CAF cell line from each tumor type to gain insight into CAF function and novel CAF biomarkers. We used isobaric labeling, liquid chromatography and mass spectrometry to evaluate the proteome of 9 cancer and 3 CAF cell lines. Of the 9460 proteins evaluated, functional enrichment analysis revealed an upregulation of N-glycan biosynthesis and extracellular matrix proteins in CAFs. 85 proteins had 16-fold higher expression in CAFs compared to cancer cells, including previously known CAF markers like fibroblast activation protein (FAP). Novel overexpressed CAF biomarkers included heat shock protein β-6 (HSPB6/HSP20) and cyclooxygenase 1 (PTGS1/COX1). SiRNA knockdown of the genes encoding these proteins did not reduce contractility in lung CAFs, suggesting they were not crucial to this function. Immunohistochemical analysis of 30 tumor samples (10 lung, 10 colorectal and 10 pancreatic) showed restricted HSPB6 and PTGS1 expression in the stroma. Therefore, we describe an unbiased differential proteome analysis of CAFs compared to cancer cells, which revealed higher expression of HSPB6 and PTGS1 in CAFs. Data are available via ProteomeXchange (PXD040360). SIGNIFICANCE: Cancer-associated fibroblasts (CAFs) are highly abundant stromal cells present in tumors. CAFs are known to influence tumor progression and drug resistance. Characterizing the proteome of CAFs could give potential insights into new stromal drug targets and biomarkers. Mass spectrometry-based analysis comparing proteomic profiles of CAFs and cancers characterized 9460 proteins of which 85 proteins had 16-fold higher expression in CAFs compared to cancer cells. Further interrogation of this rich resource could provide insight into the function of CAFs and could reveal putative stromal targets. We describe for the first time that heat shock protein β-6 (HSPB6/HSP20) and cyclooxygenase 1 (PTGS1/COX1) are overexpressed in CAFs compared to cancer cells.
Collapse
Affiliation(s)
- Rachel Lau
- Clinical Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom.
| | - Lu Yu
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Theodoros I Roumeliotis
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Adam Stewart
- Clinical Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Lisa Pickard
- Clinical Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Ruth Riisanes
- Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Bora Gurel
- Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Johann S de Bono
- Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Jyoti S Choudhary
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom.
| | - Udai Banerji
- Clinical Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom.
| |
Collapse
|
18
|
Gunji D, Narumi R, Muraoka S, Isoyama J, Ikemoto N, Ishida M, Tomonaga T, Sakai Y, Obama K, Adachi J. Integrative analysis of cancer dependency data and comprehensive phosphoproteomics data revealed the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant colorectal cancer. Mol Omics 2023; 19:624-639. [PMID: 37232035 DOI: 10.1039/d3mo00042g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Colorectal cancer (CRC), a common malignant tumour of the gastrointestinal tract, is a life-threatening cancer worldwide. Mutations in KRAS and BRAF, the major driver mutation subtypes in CRC, activate the RAS pathway, contribute to tumorigenesis in CRC and are being investigated as potential therapeutic targets. Despite recent advances in clinical trials targeting KRASG12C or RAS downstream signalling molecules for KRAS-mutant CRC, there is a lack of effective therapeutic interventions. Therefore, understanding the unique molecular characteristics of KRAS-mutant CRC is essential for identifying molecular targets and developing novel therapeutic interventions. We obtained in-depth proteomics and phosphoproteomics quantitative data for over 7900 proteins and 38 700 phosphorylation sites in cells from 35 CRC cell lines and performed informatic analyses, including proteomics-based coexpression analysis and correlation analysis between phosphoproteomics data and cancer dependency scores of the corresponding phosphoproteins. Our results revealed novel dysregulated protein-protein associations enriched specifically in KRAS-mutant cells. Our phosphoproteomics analysis revealed activation of EPHA2 kinase and downstream tight junction signalling in KRAS-mutant cells. Furthermore, the results implicate the phosphorylation site Y378 in the tight junction protein PARD3 as a cancer vulnerability in KRAS-mutant cells. Together, our large-scale phosphoproteomics and proteomics data across 35 steady-state CRC cell lines represent a valuable resource for understanding the molecular characteristics of oncogenic mutations. Our approach to predicting cancer dependency from phosphoproteomics data identified the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant CRC.
Collapse
Affiliation(s)
- Daigo Gunji
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Surgery, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, 606-8507, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Narumi Ikemoto
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Mimiko Ishida
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, 606-8507, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, 606-8507, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
19
|
Sousa A, Dugourd A, Memon D, Petursson B, Petsalaki E, Saez‐Rodriguez J, Beltrao P. Pan-Cancer landscape of protein activities identifies drivers of signalling dysregulation and patient survival. Mol Syst Biol 2023; 19:e10631. [PMID: 36688815 PMCID: PMC9996241 DOI: 10.15252/msb.202110631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Genetic alterations in cancer cells trigger oncogenic transformation, a process largely mediated by the dysregulation of kinase and transcription factor (TF) activities. While the mutational profiles of thousands of tumours have been extensively characterised, the measurements of protein activities have been technically limited until recently. We compiled public data of matched genomics and (phospho)proteomics measurements for 1,110 tumours and 77 cell lines that we used to estimate activity changes in 218 kinases and 292 TFs. Co-regulation of kinase and TF activities reflects previously known regulatory relationships and allows us to dissect genetic drivers of signalling changes in cancer. We find that loss-of-function mutations are not often associated with the dysregulation of downstream targets, suggesting frequent compensatory mechanisms. Finally, we identified the activities most differentially regulated in cancer subtypes and showed how these can be linked to differences in patient survival. Our results provide broad insights into the dysregulation of protein activities in cancer and their contribution to disease severity.
Collapse
Affiliation(s)
- Abel Sousa
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (i3s)PortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA)Abel Salazar Biomedical Sciences Institute, University of PortoPortoPortugal
| | - Aurelien Dugourd
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
- Faculty of MedicineInstitute of Experimental Medicine and Systems Biology, RWTH Aachen UniversityAachenGermany
| | - Danish Memon
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Borgthor Petursson
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
| | - Julio Saez‐Rodriguez
- Faculty of Medicine, and Heidelberg University HospitalInstitute for Computational Biomedicine, Heidelberg UniversityHeidelbergGermany
| | - Pedro Beltrao
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteCambridgeUK
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
20
|
Genetics of mitochondrial diseases: Current approaches for the molecular diagnosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:141-165. [PMID: 36813310 DOI: 10.1016/b978-0-12-821751-1.00011-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a genetically and phenotypically variable set of monogenic disorders. The main characteristic of mitochondrial diseases is a defective oxidative phosphorylation. Both nuclear and mitochondrial DNA encode the approximately 1500 mitochondrial proteins. Since identification of the first mitochondrial disease gene in 1988 a total of 425 genes have been associated with mitochondrial diseases. Mitochondrial dysfunctions can be caused both by pathogenic variants in the mitochondrial DNA or the nuclear DNA. Hence, besides maternal inheritance, mitochondrial diseases can follow all modes of Mendelian inheritance. The maternal inheritance and tissue specificity distinguish molecular diagnostics of mitochondrial disorders from other rare disorders. With the advances made in the next-generation sequencing technology, whole exome sequencing and even whole-genome sequencing are now the established methods of choice for molecular diagnostics of mitochondrial diseases. They reach a diagnostic rate of more than 50% in clinically suspected mitochondrial disease patients. Moreover, next-generation sequencing is delivering a constantly growing number of novel mitochondrial disease genes. This chapter reviews mitochondrial and nuclear causes of mitochondrial diseases, molecular diagnostic methodologies, and their current challenges and perspectives.
Collapse
|
21
|
Salovska B, Gao E, Müller‐Dott S, Li W, Cordon CC, Wang S, Dugourd A, Rosenberger G, Saez‐Rodriguez J, Liu Y. Phosphoproteomic analysis of metformin signaling in colorectal cancer cells elucidates mechanism of action and potential therapeutic opportunities. Clin Transl Med 2023; 13:e1179. [PMID: 36781298 PMCID: PMC9925373 DOI: 10.1002/ctm2.1179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The biguanide drug metformin is a safe and widely prescribed drug for type 2 diabetes. Interestingly, hundreds of clinical trials have been set to evaluate the potential role of metformin in the prevention and treatment of cancer including colorectal cancer (CRC). However, the "metformin signaling" remains controversial. AIMS AND METHODS To interrogate cell signaling induced by metformin in CRC and explore the druggability of the metformin-rewired phosphorylation network, we performed integrative analysis of phosphoproteomics, bioinformatics, and cell proliferation assays on a panel of 12 molecularly heterogeneous CRC cell lines. Using the high-resolute data-independent analysis mass spectrometry (DIA-MS), we monitored a total of 10,142 proteins and 56,080 phosphosites (P-sites) in CRC cells upon a short- and a long-term metformin treatment. RESULTS AND CONCLUSIONS We found that metformin tended to primarily remodel cell signaling in the long-term and only minimally regulated the total proteome expression levels. Strikingly, the phosphorylation signaling response to metformin was highly heterogeneous in the CRC panel, based on a network analysis inferring kinase/phosphatase activities and cell signaling reconstruction. A "MetScore" was determined to assign the metformin relevance of each P-site, revealing new and robust phosphorylation nodes and pathways in metformin signaling. Finally, we leveraged the metformin P-site signature to identify pharmacodynamic interactions and confirmed a number of candidate metformin-interacting drugs, including navitoclax, a BCL-2/BCL-xL inhibitor. Together, we provide a comprehensive phosphoproteomic resource to explore the metformin-induced cell signaling for potential cancer therapeutics. This resource can be accessed at https://yslproteomics.shinyapps.io/Metformin/.
Collapse
Affiliation(s)
- Barbora Salovska
- Yale Cancer Biology InstituteYale UniversityWest HavenConnecticutUSA
| | - Erli Gao
- Yale Cancer Biology InstituteYale UniversityWest HavenConnecticutUSA
| | - Sophia Müller‐Dott
- Institute for Computational BiomedicineFaculty of MedicineHeidelberg University HospitalBioquant, Heidelberg UniversityHeidelbergGermany
| | - Wenxue Li
- Yale Cancer Biology InstituteYale UniversityWest HavenConnecticutUSA
| | | | - Shisheng Wang
- West China‐Washington Mitochondria and Metabolism Research CenterWest China HospitalSichuan UniversityChengduChina
| | - Aurelien Dugourd
- Institute for Computational BiomedicineFaculty of MedicineHeidelberg University HospitalBioquant, Heidelberg UniversityHeidelbergGermany
| | | | - Julio Saez‐Rodriguez
- Institute for Computational BiomedicineFaculty of MedicineHeidelberg University HospitalBioquant, Heidelberg UniversityHeidelbergGermany
| | - Yansheng Liu
- Yale Cancer Biology InstituteYale UniversityWest HavenConnecticutUSA
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
22
|
Heck KA, Lindholm HT, Niederdorfer B, Tsirvouli E, Kuiper M, Flobak Å, Lægreid A, Thommesen L. Characterisation of Colorectal Cancer Cell Lines through Proteomic Profiling of Their Extracellular Vesicles. Proteomes 2023; 11:proteomes11010003. [PMID: 36648961 PMCID: PMC9844407 DOI: 10.3390/proteomes11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers, driven by several factors including deregulations in intracellular signalling pathways. Small extracellular vesicles (sEVs) are nanosized protein-packaged particles released from cells, which are present in liquid biopsies. Here, we characterised the proteome landscape of sEVs and their cells of origin in three CRC cell lines HCT116, HT29 and SW620 to explore molecular traits that could be exploited as cancer biomarker candidates and how intracellular signalling can be assessed by sEV analysis instead of directly obtaining the cell of origin itself. Our findings revealed that sEV cargo clearly reflects its cell of origin with proteins of the PI3K-AKT pathway highly represented in sEVs. Proteins known to be involved in CRC were detected in both cells and sEVs including KRAS, ARAF, mTOR, PDPK1 and MAPK1, while TGFB1 and TGFBR2, known to be key players in epithelial cancer carcinogenesis, were found to be enriched in sEVs. Furthermore, the phosphopeptide-enriched profiling of cell lysates demonstrated a distinct pattern between cell lines and highlighted potential phosphoproteomic targets to be investigated in sEVs. The total proteomic and phosphoproteomics profiles described in the current work can serve as a source to identify candidates for cancer biomarkers that can potentially be assessed from liquid biopsies.
Collapse
Affiliation(s)
- Kathleen A. Heck
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Håvard T. Lindholm
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Barbara Niederdorfer
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- The Cancer Clinic, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Liv Thommesen
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Correspondence:
| |
Collapse
|
23
|
Reid XJ, Low JKK, Mackay JP. A NuRD for all seasons. Trends Biochem Sci 2023; 48:11-25. [PMID: 35798615 DOI: 10.1016/j.tibs.2022.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/27/2022]
Abstract
The nucleosome-remodeling and deacetylase (NuRD) complex is an essential transcriptional regulator in all complex animals. All seven core subunits of the complex exist as multiple paralogs, raising the question of whether the complex might utilize paralog switching to achieve cell type-specific functions. We examine the evidence for this idea, making use of published quantitative proteomic data to dissect NuRD composition in 20 different tissues, as well as a large-scale CRISPR knockout screen carried out in >1000 human cancer cell lines. These data, together with recent reports, provide strong support for the idea that distinct permutations of the NuRD complex with tailored functions might regulate tissue-specific gene expression programs.
Collapse
Affiliation(s)
- Xavier J Reid
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
24
|
Barrio-Hernandez I, Beltrao P. Network analysis of genome-wide association studies for drug target prioritisation. Curr Opin Chem Biol 2022; 71:102206. [PMID: 36087372 DOI: 10.1016/j.cbpa.2022.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
Over the past decades, genome-wide association studies (GWAS) have led to a dramatic expansion of genetic variants implicated with human traits and diseases. These advances are expected to result in new drug targets but the identification of causal genes and the cell biology underlying human diseases from GWAS remains challenging. Here, we review protein interaction network-based methods to analyse GWAS data. These approaches can rank candidate drug targets at GWAS-associated loci or among interactors of disease genes without direct genetic support. These methods identify the cell biology affected in common across diseases, offering opportunities for drug repurposing, as well as be combined with expression data to identify focal tissues and cell types. Going forward, we expect that these methods will further improve from advances in the characterisation of context specific interaction networks and the joint analysis of rare and common genetic signals.
Collapse
Affiliation(s)
- Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD, UK; Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD, UK; Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SA, UK; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, 8093, Switzerland.
| |
Collapse
|
25
|
Monnerat G, Kasai-Brunswick TH, Asensi KD, Silva dos Santos D, Barbosa RAQ, Cristina Paccola Mesquita F, Calvancanti Albuquerque JP, Raphaela PF, Wendt C, Miranda K, Domont GB, Nogueira FCS, Bastos Carvalho A, Campos de Carvalho AC. Modelling premature cardiac aging with induced pluripotent stem cells from a hutchinson-gilford Progeria Syndrome patient. Front Physiol 2022; 13:1007418. [PMID: 36505085 PMCID: PMC9726722 DOI: 10.3389/fphys.2022.1007418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disorder that causes accelerated aging and a high risk of cardiovascular complications. However, the underlying mechanisms of cardiac complications of this syndrome are not fully understood. This study modeled HGPS using cardiomyocytes (CM) derived from induced pluripotent stem cells (iPSC) derived from a patient with HGPS and characterized the biophysical, morphological, and molecular changes found in these CM compared to CM derived from a healthy donor. Electrophysiological recordings suggest that the HGPS-CM was functional and had normal electrophysiological properties. Electron tomography showed nuclear morphology alteration, and the 3D reconstruction of electron tomography images suggests structural abnormalities in HGPS-CM mitochondria, however, there was no difference in mitochondrial content as measured by Mitotracker. Immunofluorescence indicates nuclear morphological alteration and confirms the presence of Troponin T. Telomere length was measured using qRT-PCR, and no difference was found in the CM from HGPS when compared to the control. Proteomic analysis was carried out in a high-resolution system using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). The proteomics data show distinct group separations and protein expression differences between HGPS and control-CM, highlighting changes in ribosomal, TCA cycle, and amino acid biosynthesis, among other modifications. Our findings show that iPSC-derived cardiomyocytes from a Progeria Syndrome patient have significant changes in mitochondrial morphology and protein expression, implying novel mechanisms underlying premature cardiac aging.
Collapse
Affiliation(s)
- Gustavo Monnerat
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tais Hanae Kasai-Brunswick
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging, CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karina Dutra Asensi
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danubia Silva dos Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Pires Ferreira Raphaela
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Wendt
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Miranda
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Barbosa Domont
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio César Sousa Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Bastos Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Carlos Campos de Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Science and Technology Institute in Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Benstead-Hume G, Wooller SK, Renaut J, Dias S, Woodbine L, Carr AM, Pearl FMG. Biological network topology features predict gene dependencies in cancer cell-lines. BIOINFORMATICS ADVANCES 2022; 2:vbac084. [PMID: 36699394 PMCID: PMC9681200 DOI: 10.1093/bioadv/vbac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Motivation Protein-protein interaction (PPI) networks have been shown to successfully predict essential proteins. However, such networks are derived generically from experiments on many thousands of different cells. Consequently, conventional PPI networks cannot capture the variation of genetic dependencies that exists across different cell types, let alone those that emerge as a result of the massive cell restructuring that occurs during carcinogenesis. Predicting cell-specific dependencies is of considerable therapeutic benefit, facilitating the use of drugs to inhibit those proteins on which the cancer cells have become specifically dependent. In order to go beyond the limitations of the generic PPI, we have attempted to personalise PPI networks to reflect cell-specific patterns of gene expression and mutation. By using 12 topological features of the resulting PPIs, together with matched gene dependency data from DepMap, we trained random-forest classifiers (DependANT) to predict novel gene dependencies. Results We found that DependANT improves the power of the baseline generic PPI models in predicting common gene dependencies, by up to 10.8% and is more sensitive than the baseline generic model when predicting genes on which only a small number of cell types are dependent. Availability and implementation Software available at https://bitbucket.org/bioinformatics_lab_sussex/dependant2. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | - Joanna Renaut
- Bioinformatics Lab, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Samantha Dias
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Lisa Woodbine
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | |
Collapse
|
27
|
Ba Q, Hei Y, Dighe A, Li W, Maziarz J, Pak I, Wang S, Wagner GP, Liu Y. Proteotype coevolution and quantitative diversity across 11 mammalian species. SCIENCE ADVANCES 2022; 8:eabn0756. [PMID: 36083897 PMCID: PMC9462687 DOI: 10.1126/sciadv.abn0756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary profiling has been largely limited to the nucleotide level. Using consistent proteomic methods, we quantified proteomic and phosphoproteomic layers in fibroblasts from 11 common mammalian species, with transcriptomes as reference. Covariation analysis indicates that transcript and protein expression levels and variabilities across mammals remarkably follow functional role, with extracellular matrix-associated expression being the most variable, demonstrating strong transcriptome-proteome coevolution. The biological variability of gene expression is universal at both interindividual and interspecies scales but to a different extent. RNA metabolic processes particularly show higher interspecies versus interindividual variation. Our results further indicate that while the ubiquitin-proteasome system is strongly conserved in mammals, lysosome-mediated protein degradation exhibits remarkable variation between mammalian lineages. In addition, the phosphosite profiles reveal a phosphorylation coevolution network independent of protein abundance.
Collapse
Affiliation(s)
- Qian Ba
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Yuanyuan Hei
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Anasuya Dighe
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Jamie Maziarz
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Irene Pak
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Shisheng Wang
- West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Günter P. Wagner
- Yale Systems Biology Institute, West Haven, CT 06516, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
28
|
Gonçalves E, Poulos RC, Cai Z, Barthorpe S, Manda SS, Lucas N, Beck A, Bucio-Noble D, Dausmann M, Hall C, Hecker M, Koh J, Lightfoot H, Mahboob S, Mali I, Morris J, Richardson L, Seneviratne AJ, Shepherd R, Sykes E, Thomas F, Valentini S, Williams SG, Wu Y, Xavier D, MacKenzie KL, Hains PG, Tully B, Robinson PJ, Zhong Q, Garnett MJ, Reddel RR. Pan-cancer proteomic map of 949 human cell lines. Cancer Cell 2022; 40:835-849.e8. [PMID: 35839778 PMCID: PMC9387775 DOI: 10.1016/j.ccell.2022.06.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022]
Abstract
The proteome provides unique insights into disease biology beyond the genome and transcriptome. A lack of large proteomic datasets has restricted the identification of new cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types are analyzed by mass spectrometry. Deploying a workflow to quantify 8,498 proteins, these data capture evidence of cell-type and post-transcriptional modifications. Integrating multi-omics, drug response, and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipeline reveals thousands of protein biomarkers of cancer vulnerabilities that are not significant at the transcript level. The power of the proteome to predict drug response is very similar to that of the transcriptome. Further, random downsampling to only 1,500 proteins has limited impact on predictive power, consistent with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-DepMapSanger) is a comprehensive resource available at https://cellmodelpassports.sanger.ac.uk.
Collapse
Affiliation(s)
- Emanuel Gonçalves
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK; Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal; INESC-ID, 1000-029 Lisboa, Portugal
| | - Rebecca C Poulos
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Zhaoxiang Cai
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Syd Barthorpe
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Srikanth S Manda
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Natasha Lucas
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Alexandra Beck
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Daniel Bucio-Noble
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Michael Dausmann
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Caitlin Hall
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Michael Hecker
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jennifer Koh
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Howard Lightfoot
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sadia Mahboob
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Iman Mali
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - James Morris
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Akila J Seneviratne
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Rebecca Shepherd
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Erin Sykes
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Frances Thomas
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sara Valentini
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G Williams
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Yangxiu Wu
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Dylan Xavier
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Karen L MacKenzie
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Peter G Hains
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Brett Tully
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.
| | - Qing Zhong
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.
| | - Roger R Reddel
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
29
|
Sialana F, Roumeliotis TI, Bouguenina H, Chan Wah Hak L, Wang H, Caldwell J, Collins I, Chopra R, Choudhary JS. SimPLIT: Simplified Sample Preparation for Large-Scale Isobaric Tagging Proteomics. J Proteome Res 2022; 21:1842-1856. [PMID: 35848491 PMCID: PMC9361352 DOI: 10.1021/acs.jproteome.2c00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large scale proteomic profiling of cell lines can reveal molecular signatures attributed to variable genotypes or induced perturbations, enabling proteogenomic associations and elucidation of pharmacological mechanisms of action. Although isobaric labeling has increased the throughput of proteomic analysis, the commonly used sample preparation workflows often require time-consuming steps and costly consumables, limiting their suitability for large scale studies. Here, we present a simplified and cost-effective one-pot reaction workflow in a 96-well plate format (SimPLIT) that minimizes processing steps and demonstrates improved reproducibility compared to alternative approaches. The workflow is based on a sodium deoxycholate lysis buffer and a single detergent cleanup step after peptide labeling, followed by quick off-line fractionation and MS2 analysis. We showcase the applicability of the workflow in a panel of colorectal cancer cell lines and by performing target discovery for a set of molecular glue degraders in different cell lines, in a 96-sample assay. Using this workflow, we report frequently dysregulated proteins in colorectal cancer cells and uncover cell-dependent protein degradation profiles of seven cereblon E3 ligase modulators (CRL4CRBN). Overall, SimPLIT is a robust method that can be easily implemented in any proteomics laboratory for medium-to-large scale TMT-based studies for deep profiling of cell lines.
Collapse
Affiliation(s)
- Fernando
J. Sialana
- Functional
Proteomics Group, The Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, U.K.
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Theodoros I. Roumeliotis
- Functional
Proteomics Group, The Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, U.K.
| | - Habib Bouguenina
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Laura Chan Wah Hak
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Hannah Wang
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - John Caldwell
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Ian Collins
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rajesh Chopra
- Cancer
Research UK Cancer Therapeutics Unit, The
Institute of Cancer Research, London SM2 5NG, U.K.
| | - Jyoti S. Choudhary
- Functional
Proteomics Group, The Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, U.K.
| |
Collapse
|
30
|
Nam KH, Ordureau A. Quantitative proteome remodeling characterization of two human reference pluripotent stem cell lines during neurogenesis and cardiomyogenesis. Proteomics 2022; 22:e2100246. [PMID: 35871287 PMCID: PMC10389174 DOI: 10.1002/pmic.202100246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
Human pluripotent stem cells (PSCs) have become popular tools within the research community to study developmental and model diseases. While many induced-PSCs (iPSCs) from various genetic background sources are currently available, scientific advancement has been hampered by the considerable phenotypic variations observed between different iPSC lines. A recent collaborative effort selected a novel iPSC line to address this and encourage the adoption of a standardized iPSC line termed KOLF2.1J. Here, leveraging the multiplexing power of isobaric labeling, we systematically investigate, at the 10k proteome level, the relative protein abundance profiles of the KOLF2.1J reference iPSC line upon two distinct cell state differentiation trajectories. In addition, we side-by-side systematically compare this line with the H9 line, an established embryonically derived PSC line that we previously characterized. We noticed differences in the basal proteome of the two cell lines and highlighted the differentially expressed proteins. While the difference between the cell line's proteome subsisted upon differentiation, the global proteome remodeling trajectory was highly similar during the tested differentiation routes. We thus conclude that the KOLF2.1J line performs well at the proteome level upon the neuro and cardiomyogenesis differentiation protocol used. We believe this dataset will serve as a resource of value for the research community.
Collapse
Affiliation(s)
- Ki Hong Nam
- Cell Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| | - Alban Ordureau
- Cell Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| |
Collapse
|
31
|
Autoimmune Effect of Antibodies against the SARS-CoV-2 Nucleoprotein. Viruses 2022; 14:v14061141. [PMID: 35746613 PMCID: PMC9228376 DOI: 10.3390/v14061141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 is continuing to spread around the world and drastically affect our daily life. New strains appear, and the severity of the course of the disease itself seems to be decreasing, but even people who have been ill on an outpatient basis suffer post-COVID consequences. Partly, it is associated with the autoimmune reactions, so debates about the development of new vaccines and the need for vaccination/revaccination continue. In this study we performed an analysis of the antibody response of patients with COVID-19 to linear and conformational epitopes of viral proteins using ELISA, chip array and western blot with analysis of correlations between antibody titer, disease severity, and complications. We have shown that the presence of IgG antibodies to the nucleoprotein can deteriorate the course of the disease, induce multiple direct COVID-19 symptoms, and contribute to long-term post-covid symptoms. We analyzed the cross reactivity of antibodies to SARS-CoV-2 with own human proteins and showed that antibodies to the nucleocapsid protein can bind to human proteins. In accordance with the possibility of HLA presentation, the main possible targets of the autoantibodies were identified. People with HLA alleles A01:01; A26:01; B39:01; B15:01 are most susceptible to the development of autoimmune processes after COVID-19.
Collapse
|
32
|
Multi-omics approach reveals posttranscriptionally regulated genes are essential for human pluripotent stem cells. iScience 2022; 25:104289. [PMID: 35573189 PMCID: PMC9097716 DOI: 10.1016/j.isci.2022.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The effects of transcription factors on the maintenance and differentiation of human-induced or embryonic pluripotent stem cells (iPSCs/ESCs) have been well studied. However, the importance of posttranscriptional regulatory mechanisms, which cause the quantitative dissociation of mRNA and protein expression, has not been explored in detail. Here, by combining transcriptome and proteome profiling, we identified 228 posttranscriptionally regulated genes with strict upregulation of the protein level in iPSCs/ESCs. Among them, we found 84 genes were vital for the survival of iPSCs and HDFs, including 20 genes that were specifically necessary for iPSC survival. These 20 proteins were upregulated only in iPSCs/ESCs and not in differentiated cells derived from the three germ layers. Although there are still unknown mechanisms that downregulate protein levels in HDFs, these results reveal that posttranscriptionally regulated genes have a crucial role in iPSC survival. The posttranscriptionally regulated 20 genes are necessary for iPSC survival The proteins of HSPA8, EIF3D, and NCBP2 are quickly degraded in HDFs mRNA localization affects the protein amounts in most of the 20 genes Translation is repressed in HDFs despite mRNA binding to ribosomes
Collapse
|
33
|
Schiavoni F, Zuazua-Villar P, Roumeliotis TI, Benstead-Hume G, Pardo M, Pearl FMG, Choudhary JS, Downs JA. Aneuploidy tolerance caused by BRG1 loss allows chromosome gains and recovery of fitness. Nat Commun 2022; 13:1731. [PMID: 35365638 PMCID: PMC8975814 DOI: 10.1038/s41467-022-29420-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Aneuploidy results in decreased cellular fitness in many species and model systems. However, aneuploidy is commonly found in cancer cells and often correlates with aggressive growth, suggesting that the impact of aneuploidy on cellular fitness is context dependent. The BRG1 (SMARCA4) subunit of the SWI/SNF chromatin remodelling complex is frequently lost in cancer. Here, we use a chromosomally stable cell line to test the effect of BRG1 loss on the evolution of aneuploidy. BRG1 deletion leads to an initial loss of fitness in this cell line that improves over time. Notably, we find increased tolerance to aneuploidy immediately upon loss of BRG1, and the fitness recovery over time correlates with chromosome gain. These data show that BRG1 loss creates an environment where karyotype changes can be explored without a fitness penalty. At least in some genetic backgrounds, therefore, BRG1 loss can affect the progression of tumourigenesis through tolerance of aneuploidy.
Collapse
Affiliation(s)
- Federica Schiavoni
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Pedro Zuazua-Villar
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Graeme Benstead-Hume
- Functional Proteomics Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
- Bioinformatics Group, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Mercedes Pardo
- Functional Proteomics Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Frances M G Pearl
- Bioinformatics Group, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
| | - Jyoti S Choudhary
- Functional Proteomics Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Jessica A Downs
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
34
|
Zhong Q, Chatterjee S, Choudhary JS, Frankel G. EPEC-induced activation of the Ca 2+ transporter TRPV2 leads to pyroptotic cell death. Mol Microbiol 2022; 117:480-492. [PMID: 34897856 DOI: 10.1111/mmi.14863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
The enteropathogenic Escherichia coli (EPEC) type III secretion system effector Tir, which mediates intimate bacterial attachment to epithelial cells, also triggers Ca2+ influx followed by LPS entry and caspase-4-dependent pyroptosis, which could be antagonized by the effector NleF. Here we reveal the mechanism by which EPEC induces Ca2+ influx. We show that in the intestinal epithelial cell line SNU-C5, Tir activates the mechano/osmosensitive cation channel TRPV2 which triggers extracellular Ca2+ influx. Tir-induced Ca2+ influx could be blocked by siRNA silencing of TRPV2, pre-treatment with the TRPV2 inhibitor SET2 or by growing cells in low osmolality medium. Pharmacological activation of TRPV2 in the absence of Tir failed to initiate caspase-4-dependent cell death, confirming the necessity of Tir. Consistent with the model implicating activation on translocation of TRPV2 from the ER to plasma membrane, inhibition of protein trafficking by either brefeldin A or the effector NleA prevented TRPV2 activation and cell death. While infection with EPECΔnleA triggered pyroptotic cell death, this could be prevented by NleF. Taken together this study shows that while integration of Tir into the plasma membrane activates TRPV2, EPEC uses NleA to inhibit TRPV2 trafficking and NleF to inhibit caspase-4 and pyroptosis.
Collapse
Affiliation(s)
- Qiyun Zhong
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Sharanya Chatterjee
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
35
|
Kunowska N, Stelzl U. Decoding the cellular effects of genetic variation through interaction proteomics. Curr Opin Chem Biol 2022; 66:102100. [PMID: 34801969 DOI: 10.1016/j.cbpa.2021.102100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022]
Abstract
It is often unclear how genetic variation translates into cellular phenotypes, including how much of the coding variation can be recovered in the proteome. Proteogenomic analyses of heterogenous cell lines revealed that the genetic differences impact mostly the abundance and stoichiometry of protein complexes, with the effects propagating post-transcriptionally via protein interactions onto other subunits. Conversely, large scale binary interaction analyses of missense variants revealed that loss of interaction is widespread and caused by about 50% disease-associated mutations, while deep scanning mutagenesis of binary interactions identified thousands of interaction-deficient variants per interaction. The idea that phenotypes arise from genetic variation through protein-protein interaction is therefore substantiated by both forward and reverse interaction proteomics. With improved methodologies, these two approaches combined can close the knowledge gap between nucleotide sequence variation and its functional consequences on the cellular proteome.
Collapse
Affiliation(s)
- Natalia Kunowska
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Austria; BioTechMed-Graz, Austria; Field of Excellence BioHealth - University of Graz, Austria.
| |
Collapse
|
36
|
Colangelo T, Carbone A, Mazzarelli F, Cuttano R, Dama E, Nittoli T, Albanesi J, Barisciano G, Forte N, Palumbo O, Graziano P, di Masi A, Colantuoni V, Sabatino L, Bianchi F, Mazzoccoli G. Loss of circadian gene Timeless induces EMT and tumor progression in colorectal cancer via Zeb1-dependent mechanism. Cell Death Differ 2022; 29:1552-1568. [PMID: 35034102 PMCID: PMC9345857 DOI: 10.1038/s41418-022-00935-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
The circadian gene Timeless (TIM) provides a molecular bridge between circadian and cell cycle/DNA replication regulatory systems and has been recently involved in human cancer development and progression. However, its functional role in colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide, has not been fully clarified yet. Here, the analysis of two independent CRC patient cohorts (total 1159 samples) reveals that loss of TIM expression is an unfavorable prognostic factor significantly correlated with advanced tumor stage, metastatic spreading, and microsatellite stability status. Genome-wide expression profiling, in vitro and in vivo experiments, revealed that TIM knockdown induces the activation of the epithelial-to-mesenchymal transition (EMT) program. Accordingly, the analysis of a large set of human samples showed that TIM expression inversely correlated with a previously established gene signature of canonical EMT markers (EMT score), and its ectopic silencing promotes migration, invasion, and acquisition of stem-like phenotype in CRC cells. Mechanistically, we found that loss of TIM expression unleashes ZEB1 expression that in turn drives the EMT program and enhances the aggressive behavior of CRC cells. Besides, the deranged TIM-ZEB1 axis sets off the accumulation of DNA damage and delays DNA damage recovery. Furthermore, we show that the aggressive and genetically unstable 'CMS4 colorectal cancer molecular subtype' is characterized by a lower expression of TIM and that patients with the combination of low-TIM/high-ZEB1 expression have a poorer outcome. In conclusion, our results as a whole suggest the engagement of an unedited TIM-ZEB1 axis in key pathological processes driving malignant phenotype acquisition in colorectal carcinogenesis. Thus, TIM-ZEB1 expression profiling could provide a robust prognostic biomarker in CRC patients, supporting targeted therapeutic strategies with better treatment selection and patients' outcomes.
Collapse
Affiliation(s)
- Tommaso Colangelo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Annalucia Carbone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Viale Cappuccini snc, 71013, San Giovanni Rotondo, (FG), Italy
| | - Francesco Mazzarelli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Roberto Cuttano
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Elisa Dama
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Teresa Nittoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy
| | - Jacopo Albanesi
- Department of Sciences, Roma Tre University, Viale G. Marconi, 446, 00154, Rome, (RM), Italy
| | - Giovannina Barisciano
- Department of Sciences and Technologies, University of Sannio, Via Traiano, 3, 82100, Benevento, (BN), Italy
| | - Nicola Forte
- UOC- Patologia Clinica-Settore Anatomia Patologica, Ospedale Fatebenefratelli, Viale Principe di Napoli, 14/A, 82100, Benevento, (BN), Italy
| | - Orazio Palumbo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Division of Medical Genetics, Viale Padre Pio, 7d, 71013, San Giovanni Rotondo, (FG), Italy
| | - Paolo Graziano
- Pathology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini snc, 71013, San Giovanni Rotondo, (FG), Italy
| | - Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale G. Marconi, 446, 00154, Rome, (RM), Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Via Traiano, 3, 82100, Benevento, (BN), Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via Traiano, 3, 82100, Benevento, (BN), Italy
| | - Fabrizio Bianchi
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Biomarkers Unit, Viale Padre Pio 7, 71013, San Giovanni Rotondo, (FG), Italy.
| | - Gianluigi Mazzoccoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Viale Cappuccini snc, 71013, San Giovanni Rotondo, (FG), Italy.
| |
Collapse
|
37
|
Ghazi A, Le Corre D, Pilati C, Taieb J, Aparicio T, Didelot A, Dedhar S, Mulot C, Le Malicot K, Djouadi F, de Reynies A, Launay JM, Laurent-Puig P, Mouillet-Richard S. Prognostic value of the PrP C-ILK-IDO1 axis in the mesenchymal colorectal cancer subtype. Oncoimmunology 2021; 10:1940674. [PMID: 34249475 PMCID: PMC8244775 DOI: 10.1080/2162402x.2021.1940674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The CMS4 mesenchymal subtype of colorectal cancer (CRC) is associated with poor prognosis and resistance to treatment. The cellular prion protein PrPC is overexpressed in CMS4 tumors and controls the expression of a panel of CMS4-specific genes in CRC cell lines. Here, we sought to investigate PrPC downstream pathways that may underlie its role in CMS4 CRC. By combining gene set enrichment analyses and gain and loss of function approaches in CRC cell lines, we identify the integrin-linked kinase ILK as a proximal effector of PrPC that mediates its control on the CMS4 phenotype. We further leveraged three independent large CRC cohorts to assess correlations in gene expression pattern with patient outcomes and found that ILK is overexpressed in CMS4 mesenchymal tumors and confers a poor prognosis, especially when combined with high expression of the PrPC encoding gene PRNP. Of note, we discovered that the PrPC-ILK signaling axis controls the expression and activity of the tryptophan metabolizing enzyme indoleamine 2,3 dioxygenase IDO1, a key player in immune tolerance. In addition, we monitored alterations in the levels of tryptophan and its metabolites of the kynurenine pathway in the plasma of metastatic CRC patients (n = 325) and we highlight their prognostic value in combination with plasma PrPC levels. Thus, the PrPC-ILK-IDO1 axis plays a key role in the mesenchymal subtype of CRC. PrPC and IDO1-targeted strategies may represent new avenues for patient stratification and treatment in CRC.
Collapse
Affiliation(s)
- Alexandre Ghazi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Delphine Le Corre
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Camilla Pilati
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Julien Taieb
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Department of Gastroenterology and GI Oncology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Thomas Aparicio
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Saint-Louis, Université de Paris, Université Paris Diderot, Paris, France
| | - Audrey Didelot
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Shoukat Dedhar
- Genetics Unit, Integrative Oncology, BC Cancer, Vancouver, Canada
| | - Claire Mulot
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Karine Le Malicot
- Fédération Francophone de Cancérologie Digestive, Epicad Inserm, Université de Bourgogne et and Franche Comté, Dijon, France
| | - Fatima Djouadi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Aurélien de Reynies
- Programme carte d'identité des tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, INSERM U942 Lariboisière Hospital, Paris, France.,Pharma Research Department, F. Hoffmann-La-Roche Ltd., Basel, Switzerland
| | - Pierre Laurent-Puig
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,Department of Biology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Sophie Mouillet-Richard
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
38
|
Gao E, Li W, Wu C, Shao W, Di Y, Liu Y. Data-independent acquisition-based proteome and phosphoproteome profiling across six melanoma cell lines reveals determinants of proteotypes. Mol Omics 2021; 17:413-425. [PMID: 33728422 PMCID: PMC8205956 DOI: 10.1039/d0mo00188k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human cancer cell lines are widely used in pharmacological and systems biological studies. The rapid documentation of the steady-state gene expression landscape of the cells used in a particular experiment may help to improve the reproducibility of scientific research. Here we applied a data-independent acquisition mass spectrometry (DIA-MS) method, coupled with a peptide spectral-library-free data analysis workflow, to measure both the proteome and phosphoproteome of a melanoma cell line panel with different metastatic properties. For each cell line, the single-shot DIA-MS detected 8100 proteins and almost 40 000 phosphopeptides in the respective measurements of two hours. Benchmarking the DIA-MS data towards the RNA-seq data and tandem mass tag (TMT)-MS results from the same set of cell lines demonstrated comparable qualitative coverage and quantitative reproducibility. Our data confirmed the high but complex mRNA-protein and protein-phospsite correlations. The results successfully established DIA-MS as a strong and competitive proteotyping approach for cell lines. The data further showed that all subunits of the glycosylphosphatidylinositol (GPI)-anchor transamidase complex were overexpressed in metastatic melanoma cells and identified altered phosphoprotein modules such as the BAF complex and mRNA splicing between metastatic and primary cells. This study provides a high-quality resource for calibrating DIA-MS performance, benchmarking DIA bioinformatic algorithms, and exploring the metastatic proteotypes in melanoma cells.
Collapse
Affiliation(s)
- Erli Gao
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Chabanon RM, Morel D, Eychenne T, Colmet-Daage L, Bajrami I, Dorvault N, Garrido M, Meisenberg C, Lamb A, Ngo C, Hopkins SR, Roumeliotis TI, Jouny S, Hénon C, Kawai-Kawachi A, Astier C, Konde A, Del Nery E, Massard C, Pettitt SJ, Margueron R, Choudhary JS, Almouzni G, Soria JC, Deutsch E, Downs JA, Lord CJ, Postel-Vinay S. PBRM1 Deficiency Confers Synthetic Lethality to DNA Repair Inhibitors in Cancer. Cancer Res 2021; 81:2888-2902. [PMID: 33888468 DOI: 10.1158/0008-5472.can-21-0628] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Inactivation of Polybromo 1 (PBRM1), a specific subunit of the PBAF chromatin remodeling complex, occurs frequently in cancer, including 40% of clear cell renal cell carcinomas (ccRCC). To identify novel therapeutic approaches to targeting PBRM1-defective cancers, we used a series of orthogonal functional genomic screens that identified PARP and ATR inhibitors as being synthetic lethal with PBRM1 deficiency. The PBRM1/PARP inhibitor synthetic lethality was recapitulated using several clinical PARP inhibitors in a series of in vitro model systems and in vivo in a xenograft model of ccRCC. In the absence of exogenous DNA damage, PBRM1-defective cells exhibited elevated levels of replication stress, micronuclei, and R-loops. PARP inhibitor exposure exacerbated these phenotypes. Quantitative mass spectrometry revealed that multiple R-loop processing factors were downregulated in PBRM1-defective tumor cells. Exogenous expression of the R-loop resolution enzyme RNase H1 reversed the sensitivity of PBRM1-deficient cells to PARP inhibitors, suggesting that excessive levels of R-loops could be a cause of this synthetic lethality. PARP and ATR inhibitors also induced cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) innate immune signaling in PBRM1-defective tumor cells. Overall, these findings provide the preclinical basis for using PARP inhibitors in PBRM1-defective cancers. SIGNIFICANCE: This study demonstrates that PARP and ATR inhibitors are synthetic lethal with the loss of PBRM1, a PBAF-specific subunit, thus providing the rationale for assessing these inhibitors in patients with PBRM1-defective cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/2888/F1.large.jpg.
Collapse
MESH Headings
- Animals
- Apoptosis
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- DNA Repair
- DNA-Binding Proteins/deficiency
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Synthetic Lethal Mutations
- Transcription Factors/deficiency
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Roman M Chabanon
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Daphné Morel
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Thomas Eychenne
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Léo Colmet-Daage
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Ilirjana Bajrami
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Nicolas Dorvault
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Cornelia Meisenberg
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, London, United Kingdom
| | | | - Carine Ngo
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Suzanna R Hopkins
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, London, United Kingdom
| | | | - Samuel Jouny
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Clémence Hénon
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | | | - Clémence Astier
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Asha Konde
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research, The Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | | | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Raphaël Margueron
- Institut Curie, PSL Research University, INSERM Unit U934, CNRS UMR 3215, Paris, France
| | - Jyoti S Choudhary
- Functional Proteomics Team, The Institute of Cancer Research, London, United Kingdom
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR 3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris-VI, CNRS, UMR3664, Paris, France
| | - Jean-Charles Soria
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Eric Deutsch
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
- INSERM UMR1030 Molecular Radiotherapy and Therapeutic Innovations, Gustave Roussy, Villejuif, France
| | - Jessica A Downs
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, London, United Kingdom
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
| | - Sophie Postel-Vinay
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France.
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| |
Collapse
|
40
|
An integrated landscape of protein expression in human cancer. Sci Data 2021; 8:115. [PMID: 33893311 PMCID: PMC8065022 DOI: 10.1038/s41597-021-00890-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Using 11 proteomics datasets, mostly available through the PRIDE database, we assembled a reference expression map for 191 cancer cell lines and 246 clinical tumour samples, across 13 lineages. We found unique peptides identified only in tumour samples despite a much higher coverage in cell lines. These were mainly mapped to proteins related to regulation of signalling receptor activity. Correlations between baseline expression in cell lines and tumours were calculated. We found these to be highly similar across all samples with most similarity found within a given sample type. Integration of proteomics and transcriptomics data showed median correlation across cell lines to be 0.58 (range between 0.43 and 0.66). Additionally, in agreement with previous studies, variation in mRNA levels was often a poor predictor of changes in protein abundance. To our knowledge, this work constitutes the first meta-analysis focusing on cancer-related public proteomics datasets. We therefore also highlight shortcomings and limitations of such studies. All data is available through PRIDE dataset identifier PXD013455 and in Expression Atlas.
Collapse
|
41
|
Tsang O, Wong JWH. Proteogenomic interrogation of cancer cell lines: an overview of the field. Expert Rev Proteomics 2021; 18:221-232. [PMID: 33877947 DOI: 10.1080/14789450.2021.1914594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cancer cell lines (CCLs) have been a major resource for cancer research. Over the past couple of decades, they have been instrumental in omic profiling method development and as model systems to generate new knowledge in cell and cancer biology. More recently, with the increasing amount of genomic, transcriptomic and proteomic data being generated in hundreds of CCLs, there is growing potential for integrative proteogenomic data analyses to be performed.Areas covered: In this review, we first describe the most commonly used proteome profiling methods in CCLs. We then discuss how these proteomics data can be integrated with genomics data for proteogenomics analyses. Finally, we highlight some of the recent biological discoveries that have arisen from proteogenomics analyses of CCLs.Expert opinion: Protegeonomics analyses of CCLs have so far enabled the discovery of novel proteins and proteoforms. It has also improved our understanding of biological processes including post-transcriptional regulation of protein abundance and the presentation of antigens by major histocompatibility complex alleles. With proteomics data to be generated in hundreds to thousands of CCLs in coming years, there will be further potential for large-scale proteogenomics analyses and data integration with the phenotypically well-characterized CCLs.
Collapse
Affiliation(s)
- Olson Tsang
- Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Jason W H Wong
- Centre for PanorOmic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR
| |
Collapse
|
42
|
Picco G, Cattaneo CM, van Vliet EJ, Crisafulli G, Rospo G, Consonni S, Vieira SF, Rodríguez IS, Cancelliere C, Banerjee R, Schipper LJ, Oddo D, Dijkstra KK, Cinatl J, Michaelis M, Yang F, Di Nicolantonio F, Sartore-Bianchi A, Siena S, Arena S, Voest EE, Bardelli A, Garnett MJ. Werner Helicase Is a Synthetic-Lethal Vulnerability in Mismatch Repair-Deficient Colorectal Cancer Refractory to Targeted Therapies, Chemotherapy, and Immunotherapy. Cancer Discov 2021; 11:1923-1937. [PMID: 33837064 DOI: 10.1158/2159-8290.cd-20-1508] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Targeted therapies, chemotherapy, and immunotherapy are used to treat patients with mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer. The clinical effectiveness of targeted therapy and chemotherapy is limited by resistance and drug toxicities, and about half of patients receiving immunotherapy have disease that is refractory to immune checkpoint inhibitors. Loss of Werner syndrome ATP-dependent helicase (WRN) is a synthetic lethality in dMMR/MSI-H cells. To inform the development of WRN as a therapeutic target, we performed WRN knockout or knockdown in 60 heterogeneous dMMR colorectal cancer preclinical models, demonstrating that WRN dependency is an almost universal feature and a robust marker for patient selection. Furthermore, models of resistance to clinically relevant targeted therapy, chemotherapy, and immunotherapy retain WRN dependency. These data show the potential of therapeutically targeting WRN in patients with dMMR/MSI-H colorectal cancer and support WRN as a therapeutic option for patients with dMMR/MSI-H cancers refractory to current treatment strategies. SIGNIFICANCE: We found that a large, diverse set of dMMR/MSI-H colorectal cancer preclinical models, including models of treatment-refractory disease, are WRN-dependent. Our results support WRN as a promising synthetic-lethal target in dMMR/MSI-H colorectal cancer tumors as a monotherapy or in combination with targeted agents, chemotherapy, or immunotherapy.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
| | - Chiara M Cattaneo
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | | | - Giovanni Crisafulli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Giuseppe Rospo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | | | - Sara F Vieira
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Iñigo Sánchez Rodríguez
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | | | - Ruby Banerjee
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Luuk J Schipper
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | - Daniele Oddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Krijn K Dijkstra
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | - Jindrich Cinatl
- Institute for Medical Virology, Goethe-University, Frankfurt am Main, Germany
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milano, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Milano, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milano, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano (La Statale), Milano, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | - Emile E Voest
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, the Netherlands
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy.,Department of Oncology, University of Torino, Candiolo, Italy
| | | | | |
Collapse
|
43
|
Gerdes H, Casado P, Dokal A, Hijazi M, Akhtar N, Osuntola R, Rajeeve V, Fitzgibbon J, Travers J, Britton D, Khorsandi S, Cutillas PR. Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat Commun 2021; 12:1850. [PMID: 33767176 PMCID: PMC7994645 DOI: 10.1038/s41467-021-22170-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Artificial intelligence and machine learning (ML) promise to transform cancer therapies by accurately predicting the most appropriate therapies to treat individual patients. Here, we present an approach, named Drug Ranking Using ML (DRUML), which uses omics data to produce ordered lists of >400 drugs based on their anti-proliferative efficacy in cancer cells. To reduce noise and increase predictive robustness, instead of individual features, DRUML uses internally normalized distance metrics of drug response as features for ML model generation. DRUML is trained using in-house proteomics and phosphoproteomics data derived from 48 cell lines, and it is verified with data comprised of 53 cellular models from 12 independent laboratories. We show that DRUML predicts drug responses in independent verification datasets with low error (mean squared error < 0.1 and mean Spearman's rank 0.7). In addition, we demonstrate that DRUML predictions of cytarabine sensitivity in clinical leukemia samples are prognostic of patient survival (Log rank p < 0.005). Our results indicate that DRUML accurately ranks anti-cancer drugs by their efficacy across a wide range of pathologies.
Collapse
Affiliation(s)
- Henry Gerdes
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Pedro Casado
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Arran Dokal
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Kinomica Ltd, Alderley Park, Alderley Edge, Macclesfield, UK
| | - Maruan Hijazi
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Nosheen Akhtar
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ruth Osuntola
- Mass spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Vinothini Rajeeve
- Mass spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Jude Fitzgibbon
- Personalised Medicine Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Jon Travers
- Astra Zeneca Ltd, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - David Britton
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Kinomica Ltd, Alderley Park, Alderley Edge, Macclesfield, UK
| | | | - Pedro R Cutillas
- Cell Signalling & Proteomics Group, Centre for Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
- Mass spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
- The Alan Turing Institute, The British Library, 2QR, London, UK.
| |
Collapse
|
44
|
Jaiswal A, Gautam P, Pietilä EA, Timonen S, Nordström N, Akimov Y, Sipari N, Tanoli Z, Fleischer T, Lehti K, Wennerberg K, Aittokallio T. Multi-modal meta-analysis of cancer cell line omics profiles identifies ECHDC1 as a novel breast tumor suppressor. Mol Syst Biol 2021; 17:e9526. [PMID: 33750001 PMCID: PMC7983037 DOI: 10.15252/msb.20209526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Molecular and functional profiling of cancer cell lines is subject to laboratory-specific experimental practices and data analysis protocols. The current challenge therefore is how to make an integrated use of the omics profiles of cancer cell lines for reliable biological discoveries. Here, we carried out a systematic analysis of nine types of data modalities using meta-analysis of 53 omics studies across 12 research laboratories for 2,018 cell lines. To account for a relatively low consistency observed for certain data modalities, we developed a robust data integration approach that identifies reproducible signals shared among multiple data modalities and studies. We demonstrated the power of the integrative analyses by identifying a novel driver gene, ECHDC1, with tumor suppressive role validated both in breast cancer cells and patient tumors. The multi-modal meta-analysis approach also identified synthetic lethal partners of cancer drivers, including a co-dependency of PTEN deficient endometrial cancer cells on RNA helicases.
Collapse
Affiliation(s)
- Alok Jaiswal
- Institute for Molecular Medicine Finland (FIMM)Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Present address:
The Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM)Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Elina A Pietilä
- Individualized Drug Therapy, Research Programs UnitUniversity of HelsinkiHelsinkiFinland
| | - Sanna Timonen
- Institute for Molecular Medicine Finland (FIMM)Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Hematology Research Unit HelsinkiUniversity of Helsinki and Helsinki University Hospital Comprehensive Cancer CenterHelsinkiFinland
- Translational Immunology Research Program and Department of Clinical Chemistry and HematologyUniversity of HelsinkiHelsinkiFinland
| | - Nora Nordström
- Institute for Molecular Medicine Finland (FIMM)Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Yevhen Akimov
- Institute for Molecular Medicine Finland (FIMM)Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Nina Sipari
- Viikki Metabolomics UnitHelsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM)Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Thomas Fleischer
- Department of Cancer GeneticsInstitute for Cancer ResearchOslo University HospitalOsloNorway
| | - Kaisa Lehti
- Individualized Drug Therapy, Research Programs UnitUniversity of HelsinkiHelsinkiFinland
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
- Department of Biomedical Laboratory ScienceNorwegian University of Science and TechnologyTrondheimNorway
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM)Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem)University of CopenhagenCopenhagenDenmark
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM)Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Department of Cancer GeneticsInstitute for Cancer ResearchOslo University HospitalOsloNorway
- Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
- Oslo Centre for Biostatistics and Epidemiology (OCBE)University of OsloOsloNorway
| |
Collapse
|
45
|
Advancing Biomarker Development Through Convergent Engagement: Summary Report of the 2nd International Danube Symposium on Biomarker Development, Molecular Imaging and Applied Diagnostics; March 14-16, 2018; Vienna, Austria. Mol Imaging Biol 2021; 22:47-65. [PMID: 31049831 DOI: 10.1007/s11307-019-01361-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we report on the outcome of the 2nd International Danube Symposium on advanced biomarker development that was held in Vienna, Austria, in early 2018. During the meeting, cross-speciality participants assessed critical aspects of non-invasive, quantitative biomarker development in view of the need to expand our understanding of disease mechanisms and the definition of appropriate strategies both for molecular diagnostics and personalised therapies. More specifically, panelists addressed the main topics, including the current status of disease characterisation by means of non-invasive imaging, histopathology and liquid biopsies as well as strategies of gaining new understanding of disease formation, modulation and plasticity to large-scale molecular imaging as well as integrative multi-platform approaches. Highlights of the 2018 meeting included dedicated sessions on non-invasive disease characterisation, development of disease and therapeutic tailored biomarkers, standardisation and quality measures in biospecimens, new therapeutic approaches and socio-economic challenges of biomarker developments. The scientific programme was accompanied by a roundtable discussion on identification and implementation of sustainable strategies to address the educational needs in the rapidly evolving field of molecular diagnostics. The central theme that emanated from the 2nd Donau Symposium was the importance of the conceptualisation and implementation of a convergent approach towards a disease characterisation beyond lesion-counting "lumpology" for a cost-effective and patient-centric diagnosis, therapy planning, guidance and monitoring. This involves a judicious choice of diagnostic means, the adoption of clinical decision support systems and, above all, a new way of communication involving all stakeholders across modalities and specialities. Moreover, complex diseases require a comprehensive diagnosis by converging parameters from different disciplines, which will finally yield to a precise therapeutic guidance and outcome prediction. While it is attractive to focus on technical advances alone, it is important to develop a patient-centric approach, thus asking "What can we do with our expertise to help patients?"
Collapse
|
46
|
Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL, Lin MH, Chen HW, Chang GC, Chang YL, Wu CT, Lin MW, Hsieh MS, Wang YT, Chen YR, Jonassen I, Ghavidel FZ, Lin ZS, Lin KT, Chen CW, Sheu PY, Hung CT, Huang KC, Yang HC, Lin PY, Yen TC, Lin YW, Wang JH, Raghav L, Lin CY, Chen YS, Wu PS, Lai CT, Weng SH, Su KY, Chang WH, Tsai PY, Robles AI, Rodriguez H, Hsiao YJ, Chang WH, Sung TY, Chen JS, Yu SL, Choudhary JS, Chen HY, Yang PC, Chen YJ. Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2021; 182:226-244.e17. [PMID: 32649875 DOI: 10.1016/j.cell.2020.06.012] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Tai Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mong-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tai Wang
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Inge Jonassen
- Computational Biology Unit (CBU), Informatics Department, University of Bergen, Bergen, Norway
| | | | - Ze-Shiang Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ching-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Sheu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ting Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Hao-Chin Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ta-Chi Yen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Bioinformatics Program, Taiwan International Graduate Program, Hsinchu, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yan-Si Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Pei-Shan Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Ting Lai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Yan Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsin Chang
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan.
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
47
|
Zhong Q, Roumeliotis TI, Kozik Z, Cepeda-Molero M, Fernández LÁ, Shenoy AR, Bakal C, Frankel G, Choudhary JS. Clustering of Tir during enteropathogenic E. coli infection triggers calcium influx-dependent pyroptosis in intestinal epithelial cells. PLoS Biol 2020; 18:e3000986. [PMID: 33378358 PMCID: PMC7773185 DOI: 10.1371/journal.pbio.3000986] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.
Collapse
Affiliation(s)
- Qiyun Zhong
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Theodoros I. Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Zuza Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Massiel Cepeda-Molero
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM-Cantoblanco, Madrid, Spain
| | - Avinash R. Shenoy
- Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Chris Bakal
- Dynamical Cell Systems, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Jyoti S. Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
48
|
Gottlieb B, Trifiro M, Batist G. Why Tumor Genetic Heterogeneity May Require Rethinking Cancer Genesis and Treatment. Trends Cancer 2020; 7:400-409. [PMID: 33243702 DOI: 10.1016/j.trecan.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022]
Abstract
Tumor genetic heterogeneity, in which individual tumors contain both multiple variant cancer-associated and normal genes, has been widely reported, although its significance has yet to be fully understood. We propose a genetic heterogeneity-based selection-centric hypothesis in which genetic heterogeneity, caused by the temporary reduction of DNA repair efficiency, occurs very early in human development, resulting in a small minority of cells in normal tissues acquiring cancer-associated genes that remain dormant. Cancer develops when precancer cells are selected for by altered tissue microenvironments; similar scenarios occur with development of metastases and therapeutic resistance in established cancer. This suggests that a normal cell selection treatment approach based on preferentially selecting normal cells within tumors may be effective in treating cancer.
Collapse
Affiliation(s)
- Bruce Gottlieb
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Nursing, McGill University, Montreal, Quebec, Canada.
| | - Mark Trifiro
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Gerald Batist
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; McGill Centre for Translational Research in Cancer, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Barzine MP, Freivalds K, Wright JC, Opmanis M, Rituma D, Ghavidel FZ, Jarnuczak AF, Celms E, Čerāns K, Jonassen I, Lace L, Antonio Vizcaíno J, Choudhary JS, Brazma A, Viksna J. Using Deep Learning to Extrapolate Protein Expression Measurements. Proteomics 2020; 20:e2000009. [PMID: 32937025 PMCID: PMC7757209 DOI: 10.1002/pmic.202000009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/27/2020] [Indexed: 01/23/2023]
Abstract
Mass spectrometry (MS)-based quantitative proteomics experiments typically assay a subset of up to 60% of the ≈20 000 human protein coding genes. Computational methods for imputing the missing values using RNA expression data usually allow only for imputations of proteins measured in at least some of the samples. In silico methods for comprehensively estimating abundances across all proteins are still missing. Here, a novel method is proposed using deep learning to extrapolate the observed protein expression values in label-free MS experiments to all proteins, leveraging gene functional annotations and RNA measurements as key predictive attributes. This method is tested on four datasets, including human cell lines and human and mouse tissues. This method predicts the protein expression values with average R 2 scores between 0.46 and 0.54, which is significantly better than predictions based on correlations using the RNA expression data alone. Moreover, it is demonstrated that the derived models can be "transferred" across experiments and species. For instance, the model derived from human tissues gave a R 2 = 0.51 when applied to mouse tissue data. It is concluded that protein abundances generated in label-free MS experiments can be computationally predicted using functional annotated attributes and can be used to highlight aberrant protein abundance values.
Collapse
Affiliation(s)
- Mitra Parissa Barzine
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteEMBL‐EBIWellcome Trust Genome CampusHinxtonCB10 1SDUK
| | - Karlis Freivalds
- Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLV1459Latvia
- Faculty of ComputingUniversity of LatviaRigaLV1586Latvia
| | | | - Mārtiņš Opmanis
- Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLV1459Latvia
| | - Darta Rituma
- Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLV1459Latvia
- Faculty of ComputingUniversity of LatviaRigaLV1586Latvia
| | | | - Andrew F. Jarnuczak
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteEMBL‐EBIWellcome Trust Genome CampusHinxtonCB10 1SDUK
| | - Edgars Celms
- Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLV1459Latvia
- Faculty of ComputingUniversity of LatviaRigaLV1586Latvia
| | - Kārlis Čerāns
- Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLV1459Latvia
- Faculty of ComputingUniversity of LatviaRigaLV1586Latvia
| | - Inge Jonassen
- Computational Biology UnitInformatics DepartmentUniversity of BergenBergenNO5020Norway
| | - Lelde Lace
- Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLV1459Latvia
- Faculty of ComputingUniversity of LatviaRigaLV1586Latvia
| | - Juan Antonio Vizcaíno
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteEMBL‐EBIWellcome Trust Genome CampusHinxtonCB10 1SDUK
| | | | - Alvis Brazma
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteEMBL‐EBIWellcome Trust Genome CampusHinxtonCB10 1SDUK
| | - Juris Viksna
- Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLV1459Latvia
- Faculty of ComputingUniversity of LatviaRigaLV1586Latvia
| |
Collapse
|
50
|
Khawaja H, Campbell A, Roberts JZ, Javadi A, O'Reilly P, McArt D, Allen WL, Majkut J, Rehm M, Bardelli A, Di Nicolantonio F, Scott CJ, Kennedy R, Vitale N, Harrison T, Sansom OJ, Longley DB, Evergren E, Van Schaeybroeck S. RALB GTPase: a critical regulator of DR5 expression and TRAIL sensitivity in KRAS mutant colorectal cancer. Cell Death Dis 2020; 11:930. [PMID: 33122623 PMCID: PMC7596570 DOI: 10.1038/s41419-020-03131-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023]
Abstract
RAS mutant (MT) metastatic colorectal cancer (mCRC) is resistant to MEK1/2 inhibition and remains a difficult-to-treat group. Therefore, there is an unmet need for novel treatment options for RASMT mCRC. RALA and RALB GTPases function downstream of RAS and have been found to be key regulators of several cell functions implicated in KRAS-driven tumorigenesis. However, their role as regulators of the apoptotic machinery remains to be elucidated. Here, we found that inhibition of RALB expression, but not RALA, resulted in Caspase-8-dependent cell death in KRASMT CRC cells, which was not further increased following MEK1/2 inhibition. Proteomic analysis and mechanistic studies revealed that RALB depletion induced a marked upregulation of the pro-apoptotic cell surface TRAIL Death Receptor 5 (DR5) (also known as TRAIL-R2), primarily through modulating DR5 protein lysosomal degradation. Moreover, DR5 knockdown or knockout attenuated siRALB-induced apoptosis, confirming the role of the extrinsic apoptotic pathway as a regulator of siRALB-induced cell death. Importantly, TRAIL treatment resulted in the association of RALB with the death-inducing signalling complex (DISC) and targeting RALB using pharmacologic inhibition or RNAi approaches triggered a potent increase in TRAIL-induced cell death in KRASMT CRC cells. Significantly, high RALB mRNA levels were found in the poor prognostic Colorectal Cancer Intrinsic Subtypes (CRIS)-B CRC subgroup. Collectively, this study provides to our knowledge the first evidence for a role for RALB in apoptotic priming and suggests that RALB inhibition may be a promising strategy to improve response to TRAIL treatment in poor prognostic RASMT CRIS-B CRC.
Collapse
Affiliation(s)
- Hajrah Khawaja
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Andrew Campbell
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Jamie Z Roberts
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Arman Javadi
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Paul O'Reilly
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Darragh McArt
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Wendy L Allen
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Joanna Majkut
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569, Stuttgart, Germany
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, TO, 10060, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, 10060, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, TO, 10060, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, 10060, Italy
| | - Christopher J Scott
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Richard Kennedy
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Timothy Harrison
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Daniel B Longley
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Emma Evergren
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Sandra Van Schaeybroeck
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|