1
|
Xue W, Chen Y, Lei Z, Wang Y, Liu J, Wen X, Xu F, Chen P, Wu Z, Jin YN, Yu YV. Calcium levels in ASER neurons determine behavioral valence by engaging distinct neuronal circuits in C. elegans. Nat Commun 2025; 16:1814. [PMID: 39979341 PMCID: PMC11842750 DOI: 10.1038/s41467-025-57051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
The valence of stimuli is shaped by various factors, including environmental cues, internal states, genetic variability, and past experience. However, the mechanisms behind this flexibility remain elusive. In the nematode C. elegans, we found that ethanol, an olfactory stimulus, can elicit opposite chemotaxis responses - attraction vs. aversion - depending on NaCl concentration, demonstrating the role of environmental factors in altering valence. Remarkably, a single chemosensory neuron, ASER, orchestrate this bidirectional ethanol chemotaxis by integrating information from both stimuli - ethanol and NaCl - into its neuronal activity dynamics. Specifically, different calcium dynamics in the ASER neuron differentially activate the signaling molecule CMK-1, thereby engaging different downstream interneurons and leading to opposite chemotaxis directions. Consistently, optogenetic manipulations of the ASER neuron reverse the chemotaxis directions, by altering its calcium dynamics. Our findings reveal a mechanism by which a single neuron integrates multisensory inputs to determine context-dependent behavioral valence, contributing to our current understanding of valence encoding.
Collapse
Affiliation(s)
- Weikang Xue
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuanhua Chen
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Ziyi Lei
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuanxia Wang
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jiaze Liu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xin Wen
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Fang Xu
- Department of Biomedical Engineering, Tissue Engineering and Organ Manufacturing (TEOM) Lab, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Pu Chen
- Department of Biomedical Engineering, Tissue Engineering and Organ Manufacturing (TEOM) Lab, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhengxing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Youngnam N Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Vidal-Saez MS, Vilarroya O, Garcia-Ojalvo J. A multiscale sensorimotor model of experience-dependent behavior in a minimal organism. Biophys J 2024; 123:1654-1667. [PMID: 38815587 PMCID: PMC11213988 DOI: 10.1016/j.bpj.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
To survive in ever-changing environments, living organisms need to continuously combine the ongoing external inputs they receive, representing present conditions, with their dynamical internal state, which includes influences of past experiences. It is still unclear in general, however 1) how this happens at the molecular and cellular levels and 2) how the corresponding molecular and cellular processes are integrated with the behavioral responses of the organism. Here, we address these issues by modeling mathematically a particular behavioral paradigm in a minimal model organism, namely chemotaxis in the nematode C. elegans. Specifically, we use a long-standing collection of elegant experiments on salt chemotaxis in this animal, in which the migration direction varies depending on its previous experience. Our model integrates the molecular, cellular, and organismal levels to reproduce the experimentally observed experience-dependent behavior. The model proposes specific molecular mechanisms for the encoding of current conditions and past experiences in key neurons associated with this response, predicting the behavior of various mutants associated with those molecular circuits.
Collapse
Affiliation(s)
- María Sol Vidal-Saez
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar Vilarroya
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
4
|
Rahmani A, McMillen A, Allen E, Minervini C, Chew YL. Behavioral Tests for Associative Learning in Caenorhabditis elegans. Methods Mol Biol 2024; 2746:21-46. [PMID: 38070077 DOI: 10.1007/978-1-0716-3585-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Learning is critical for survival as it provides the capacity to adapt to a changing environment. At the molecular and cellular level, learning leads to alterations within neural circuits that include synaptic rewiring, synaptic plasticity, and protein level/gene expression changes. There has been substantial progress in recent years on dissecting how learning and memory is regulated at the molecular and cellular level, including the use of compact invertebrate nervous systems as experimental models. This progress has been facilitated by the establishment of robust behavioral assays that generate a quantifiable readout of the extent to which animals learn and remember. This chapter will focus on protocols of behavioral tests for associative learning using the nematode Caenorhabditis elegans, with its unparalleled genetic tractability, compact nervous system of ~300 neurons, high level of conservation with mammalian systems, and amenability to a suite of behavioral tools and analyses. Specifically, we will provide a detailed description of the methods for two behavioral assays that model associative learning, one measuring appetitive olfactory learning and the other assaying aversive gustatory learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Anna McMillen
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Ericka Allen
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Caitlin Minervini
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
5
|
Tomioka M, Umemura Y, Ueoka Y, Chin R, Katae K, Uchiyama C, Ike Y, Iino Y. Antagonistic regulation of salt and sugar chemotaxis plasticity by a single chemosensory neuron in Caenorhabditis elegans. PLoS Genet 2023; 19:e1010637. [PMID: 37669262 PMCID: PMC10503759 DOI: 10.1371/journal.pgen.1010637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/15/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
The nematode Caenorhabditis elegans memorizes various external chemicals, such as ions and odorants, during feeding. Here we find that C. elegans is attracted to the monosaccharides glucose and fructose after exposure to these monosaccharides in the presence of food; however, it avoids them without conditioning. The attraction to glucose requires a gustatory neuron called ASEL. ASEL activity increases when glucose concentration decreases. Optogenetic ASEL stimulation promotes forward movements; however, after glucose conditioning, it promotes turning, suggesting that after glucose conditioning, the behavioral output of ASEL activation switches toward glucose. We previously reported that chemotaxis toward sodium ion (Na+), which is sensed by ASEL, increases after Na+ conditioning in the presence of food. Interestingly, glucose conditioning decreases Na+ chemotaxis, and conversely, Na+ conditioning decreases glucose chemotaxis, suggesting the reciprocal inhibition of learned chemotaxis to distinct chemicals. The activation of PKC-1, an nPKC ε/η ortholog, in ASEL promotes glucose chemotaxis and decreases Na+ chemotaxis after glucose conditioning. Furthermore, genetic screening identified ENSA-1, an ortholog of the protein phosphatase inhibitor ARPP-16/19, which functions in parallel with PKC-1 in glucose-induced chemotactic learning toward distinct chemicals. These findings suggest that kinase-phosphatase signaling regulates the balance between learned behaviors based on glucose conditioning in ASEL, which might contribute to migration toward chemical compositions where the animals were previously fed.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Umemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yutaro Ueoka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Risshun Chin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Keita Katae
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Chihiro Uchiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yasuaki Ike
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Brandel-Ankrapp KL, Arey RN. Uncovering novel regulators of memory using C. elegans genetic and genomic analysis. Biochem Soc Trans 2023; 51:161-171. [PMID: 36744642 PMCID: PMC10518207 DOI: 10.1042/bst20220455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
How organisms learn and encode memory is an outstanding question in neuroscience research. Specifically, how memories are acquired and consolidated at the level of molecular and gene pathways remains unclear. In addition, memory is disrupted in a wide variety of neurological disorders; therefore, discovering molecular regulators of memory may reveal therapeutic targets for these disorders. C. elegans are an excellent model to uncover molecular and genetic regulators of memory. Indeed, the nematode's invariant neuronal lineage, fully mapped genome, and conserved associative behaviors have allowed the development of a breadth of genetic and genomic tools to examine learning and memory. In this mini-review, we discuss novel and exciting genetic and genomic techniques used to examine molecular and genetic underpinnings of memory from the level of the whole-worm to tissue-specific and cell-type specific approaches with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Katie L. Brandel-Ankrapp
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, U.S.A
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | - Rachel N. Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, U.S.A
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A
| |
Collapse
|
7
|
McLachlan IG, Kramer TS, Dua M, DiLoreto EM, Gomes MA, Dag U, Srinivasan J, Flavell SW. Diverse states and stimuli tune olfactory receptor expression levels to modulate food-seeking behavior. eLife 2022; 11:e79557. [PMID: 36044259 PMCID: PMC9433090 DOI: 10.7554/elife.79557] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
Animals must weigh competing needs and states to generate adaptive behavioral responses to the environment. Sensorimotor circuits are thus tasked with integrating diverse external and internal cues relevant to these needs to generate context-appropriate behaviors. However, the mechanisms that underlie this integration are largely unknown. Here, we show that a wide range of states and stimuli converge upon a single Caenorhabditis elegans olfactory neuron to modulate food-seeking behavior. Using an unbiased ribotagging approach, we find that the expression of olfactory receptor genes in the AWA olfactory neuron is influenced by a wide array of states and stimuli, including feeding state, physiological stress, and recent sensory cues. We identify odorants that activate these state-dependent olfactory receptors and show that altered expression of these receptors influences food-seeking and foraging. Further, we dissect the molecular and neural circuit pathways through which external sensory information and internal nutritional state are integrated by AWA. This reveals a modular organization in which sensory and state-related signals arising from different cell types in the body converge on AWA and independently control chemoreceptor expression. The synthesis of these signals by AWA allows animals to generate sensorimotor responses that reflect the animal's overall state. Our findings suggest a general model in which sensory- and state-dependent transcriptional changes at the sensory periphery modulate animals' sensorimotor responses to meet their ongoing needs and states.
Collapse
Affiliation(s)
- Ian G McLachlan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Talya S Kramer
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- MIT Biology Graduate Program, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malvika Dua
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Elizabeth M DiLoreto
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcesterUnited States
| | - Matthew A Gomes
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ugur Dag
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcesterUnited States
| | - Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
8
|
Dhakal P, Chaudhry SI, Signorelli R, Collins KM. Serotonin signals through postsynaptic Gαq, Trio RhoGEF, and diacylglycerol to promote Caenorhabditis elegans egg-laying circuit activity and behavior. Genetics 2022; 221:iyac084. [PMID: 35579369 PMCID: PMC9252285 DOI: 10.1093/genetics/iyac084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Activated Gαq signals through phospholipase-Cβ and Trio, a Rho GTPase exchange factor (RhoGEF), but how these distinct effector pathways promote cellular responses to neurotransmitters like serotonin remains poorly understood. We used the egg-laying behavior circuit of Caenorhabditis elegans to determine whether phospholipase-Cβ and Trio mediate serotonin and Gαq signaling through independent or related biochemical pathways. Our genetic rescue experiments suggest that phospholipase-Cβ functions in neurons while Trio Rho GTPase exchange factor functions in both neurons and the postsynaptic vulval muscles. While Gαq, phospholipase-Cβ, and Trio Rho GTPase exchange factor mutants fail to lay eggs in response to serotonin, optogenetic stimulation of the serotonin-releasing HSN neurons restores egg laying only in phospholipase-Cβ mutants. Phospholipase-Cβ mutants showed vulval muscle Ca2+ transients while strong Gαq and Trio Rho GTPase exchange factor mutants had little or no vulval muscle Ca2+ activity. Treatment with phorbol 12-myristate 13-acetate that mimics 1,2-diacylglycerol, a product of PIP2 hydrolysis, rescued egg-laying circuit activity and behavior defects of Gαq signaling mutants, suggesting both phospholipase-C and Rho signaling promote synaptic transmission and egg laying via modulation of 1,2-diacylglycerol levels. 1,2-Diacylglycerol activates effectors including UNC-13; however, we find that phorbol esters, but not serotonin, stimulate egg laying in unc-13 and phospholipase-Cβ mutants. These results support a model where serotonin signaling through Gαq, phospholipase-Cβ, and UNC-13 promotes neurotransmitter release, and that serotonin also signals through Gαq, Trio Rho GTPase exchange factor, and an unidentified, phorbol 12-myristate 13-acetate-responsive effector to promote postsynaptic muscle excitability. Thus, the same neuromodulator serotonin can signal in distinct cells and effector pathways to coordinate activation of a motor behavior circuit.
Collapse
Affiliation(s)
- Pravat Dhakal
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Sana I Chaudhry
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | - Kevin M Collins
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
9
|
Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans. Nat Commun 2022; 13:2928. [PMID: 35624091 PMCID: PMC9142520 DOI: 10.1038/s41467-022-30279-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/25/2022] [Indexed: 01/21/2023] Open
Abstract
Animals navigate toward favorable locations using various environmental cues. However, the mechanism of how the goal information is encoded and decoded to generate migration toward the appropriate direction has not been clarified. Here, we describe the mechanism of migration towards a learned concentration of NaCl in Caenorhabditis elegans. In the salt-sensing neuron ASER, the difference between the experienced and currently perceived NaCl concentration is encoded as phosphorylation at Ser65 of UNC-64/Syntaxin 1 A through the protein kinase C(PKC-1) signaling pathway. The phosphorylation affects basal glutamate transmission from ASER, inducing the reversal of the postsynaptic response of reorientation-initiating neurons (i.e., from inhibitory to excitatory), guiding the animals toward the experienced concentration. This process, the decoding of the context, is achieved through the differential sensitivity of postsynaptic excitatory and inhibitory receptors. Our results reveal the mechanism of migration based on the synaptic plasticity that conceptually differs from the classical ones. The nematode C. elegans moves around to find an optimal environment. This work demonstrates how it can detect and move towards a previously learned salinity using the salt-sensing neuron ASER.
Collapse
|
10
|
Ohno H, Bao Z. Small RNAs couple embryonic developmental programs to gut microbes. SCIENCE ADVANCES 2022; 8:eabl7663. [PMID: 35319987 PMCID: PMC8942359 DOI: 10.1126/sciadv.abl7663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Embryogenesis has long been known for its robustness to environmental factors. Although developmental tuning of embryogenesis to the environment experienced by the parent may be beneficial, little is understood on whether and how developmental patterns proactively change. Here, we show that Caenorhabditis elegans undergoes alternative embryogenesis in response to maternal gut microbes. Harmful microbes result in altered endodermal cell divisions; morphological changes, including left-right asymmetric development; double association between intestinal and primordial germ cells; and partial rescue of fecundity. The miR-35 microRNA family, which is controlled by systemic endogenous RNA interference and targets the β-transducin repeat-containing protein/cell division cycle 25 (CDC25) pathway, transmits intergenerational information to regulate cell divisions and reproduction. Our findings challenge the widespread assumption that C. elegans has an invariant cell lineage that consists of a fixed cell number and provide insights into how organisms optimize embryogenesis to adapt to environmental changes through epigenetic control.
Collapse
|
11
|
The redundancy and diversity between two novel PKC isotypes that regulate learning in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2022; 119:2106974119. [PMID: 35027448 PMCID: PMC8784152 DOI: 10.1073/pnas.2106974119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
The nematode Caenorhabditis elegans learns the concentration of NaCl and moves toward the previously experienced concentration. In this behavior, the history of NaCl concentration change is reflected in the level of diacylglycerol and the activity of protein kinase C, PKC-1, in the gustatory sensory neuron ASER and determines the direction of migration. Here, through a genetic screen, we found that the activation of Gq protein compensates for the behavioral defect of the loss-of-function mutant of pkc-1 We found that Gq activation results in hyperproduction of diacylglycerol in ASER sensory neuron, which leads to recruitment of TPA-1, an nPKC isotype closely related to PKC-1. Unlike the pkc-1 mutants, loss of tpa-1 did not obviously affect migration directions in the conventional learning assay. This difference was suggested to be due to cooperative functions of the C1 and C2-like domains of the nPKC isotypes. Furthermore, we investigated how the compensatory capability of tpa-1 contributes to learning and found that learning was less robust in the context of cognitive decline or environmental perturbation in tpa-1 mutants. These results highlight how two nPKC isotypes contribute to the learning system.
Collapse
|
12
|
Hoare SRJ, Tewson PH, Sachdev S, Connor M, Hughes TE, Quinn AM. Quantifying the Kinetics of Signaling and Arrestin Recruitment by Nervous System G-Protein Coupled Receptors. Front Cell Neurosci 2022; 15:814547. [PMID: 35110998 PMCID: PMC8801586 DOI: 10.3389/fncel.2021.814547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Neurons integrate inputs over different time and space scales. Fast excitatory synapses at boutons (ms and μm), and slow modulation over entire dendritic arbors (seconds and mm) are all ultimately combined to produce behavior. Understanding the timing of signaling events mediated by G-protein-coupled receptors is necessary to elucidate the mechanism of action of therapeutics targeting the nervous system. Measuring signaling kinetics in live cells has been transformed by the adoption of fluorescent biosensors and dyes that convert biological signals into optical signals that are conveniently recorded by microscopic imaging or by fluorescence plate readers. Quantifying the timing of signaling has now become routine with the application of equations in familiar curve fitting software to estimate the rates of signaling from the waveform. Here we describe examples of the application of these methods, including (1) Kinetic analysis of opioid signaling dynamics and partial agonism measured using cAMP and arrestin biosensors; (2) Quantifying the signaling activity of illicit synthetic cannabinoid receptor agonists measured using a fluorescent membrane potential dye; (3) Demonstration of multiplicity of arrestin functions from analysis of biosensor waveforms and quantification of the rates of these processes. These examples show how temporal analysis provides additional dimensions to enhance the understanding of GPCR signaling and therapeutic mechanisms in the nervous system.
Collapse
Affiliation(s)
- Sam R. J. Hoare
- Pharmechanics LLC, Owego, NY, United States
- *Correspondence: Sam R. J. Hoare
| | | | - Shivani Sachdev
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
13
|
Tomioka M, Jang MS, Iino Y. DAF-2c signaling promotes taste avoidance after starvation in Caenorhabditis elegans by controlling distinct phospholipase C isozymes. Commun Biol 2022; 5:30. [PMID: 35017611 PMCID: PMC8752840 DOI: 10.1038/s42003-021-02956-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, we reported that DAF-2c, an axonal insulin receptor isoform in Caenorhabditis elegans, acts in the ASER gustatory neuron to regulate taste avoidance learning, a process in which worms learn to avoid salt concentrations experienced during starvation. Here, we show that secretion of INS-1, an insulin-like peptide, after starvation conditioning is sufficient to drive taste avoidance via DAF-2c signaling. Starvation conditioning enhances the salt-triggered activity of AIA neurons, the main sites of INS-1 release, which potentially promotes feedback signaling to ASER to maintain DAF-2c activity during taste avoidance. Genetic studies suggest that DAF-2c-Akt signaling promotes high-salt avoidance via a decrease in PLCβ activity. On the other hand, the DAF-2c pathway promotes low-salt avoidance via PLCε and putative Akt phosphorylation sites on PLCε are essential for taste avoidance. Our findings imply that animals disperse from the location at which they experience starvation by controlling distinct PLC isozymes via DAF-2c.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Moon Sun Jang
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
14
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Hino T, Hirai S, Ishihara T, Fujiwara M. EGL-4/PKG regulates the role of an interneuron in a chemotaxis circuit of C. elegans through mediating integration of sensory signals. Genes Cells 2021; 26:411-425. [PMID: 33817914 DOI: 10.1111/gtc.12849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Interneurons, innervated by multiple sensory neurons, need to integrate information from these sensory neurons and respond to sensory stimuli adequately. Mechanisms how sensory information is integrated to form responses of interneurons are not fully understood. In Caenorhabditis elegans, loss-of-function mutations of egl-4, which encodes a cGMP-dependent protein kinase (PKG), cause a defect in chemotaxis to odorants. Our genetic and imaging analyses revealed that the response property of AIY interneuron to an odorant is reversed in the egl-4 mutant, while the responses of two upstream olfactory neurons, AWA and AWC, are largely unchanged. Cell- ablation experiments show that AIY in the egl-4 mutant functions to suppress chemotaxis. Furthermore, the reversal of AIY response occurs only in the presence of sensory signals from both AWA and AWC. These results suggest that sensory signals are inadequately integrated in the egl-4 mutant. We also show that egl-4 expression in AWA and another sensory neuron prevents the reversed AIY response and restores chemotaxis in the egl-4 mutants. We propose that EGL-4/PKG, by suppressing aberrant integration of signals from olfactory neurons, converts the response property of an interneuron to olfactory stimuli and maintains the role of the interneuron in the circuit to execute chemotactic behavior.
Collapse
Affiliation(s)
- Takahiro Hino
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shota Hirai
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Ishihara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Manabi Fujiwara
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Nagashima T, Iino Y, Tomioka M. DAF-16/FOXO promotes taste avoidance learning independently of axonal insulin-like signaling. PLoS Genet 2019; 15:e1008297. [PMID: 31323047 PMCID: PMC6668909 DOI: 10.1371/journal.pgen.1008297] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/31/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
The avoidance of starvation is critical for the survival of most organisms, thus animals change behavior based on past nutritional conditions. Insulin signaling is important for nutritional state-dependent behavioral plasticity, yet the underlying regulatory mechanism at the cellular level remains unclear. Previous studies showed that insulin-like signaling is required for taste avoidance learning, in which the nematode Caenorhabditis elegans avoids salt concentrations encountered under starvation conditions. DAF-2c, a splice isoform of the DAF-2 insulin receptor, functions in the axon of the ASER sensory neuron, which senses changes in salt concentrations. In addition, mutants of a major downstream factor of DAF-2, the forkhead transcription factor O (FOXO) homolog DAF-16, show defects in taste avoidance learning. Interestingly, the defect of the daf-2 mutant is not suppressed by daf-16 mutations in the learning, unlike those in other phenomena, such as longevity and development. Here we show that multiple DAF-16 isoforms function in ASER. By epistasis analysis using a DAF-2c isoform-specific mutant and an activated form of DAF-16, we found that DAF-16 acts in the nucleus in parallel with the DAF-2c-dependent pathway in the axon, indicating that insulin-like signaling acts both in the cell body and axon of a single neuron, ASER. Starvation conditioning induces nuclear translocation of DAF-16 in ASER and degradation of DAF-16 before starvation conditioning causes defects in taste avoidance learning. Forced nuclear localization of DAF-16 in ASER biased chemotaxis towards lower salt concentrtions and this effect required the Gq/PKC pathway and neuropeptide processing enzymes. These data imply that DAF-16/FOXO transmits starvation signals and modulates neuropeptide transmission in the learning. Animals change behavior based on remembered experiences of hunger and appetite. Signaling by insulin and insulin-like peptides in the nervous system plays key roles in behavioral responses to hunger and satiety. In C. elegans, insulin-like signaling in the gustatory sensory neuron ASER regulates learned avoidance of salt concentrations experienced during fasting, which we call taste avoidance learning. DAF-2c, an isoform of the insulin receptor homolog, is localized to the axon of ASER and regulates taste avoidance learning. Here, we show that DAF-16, the forkhead transcription factor O (FOXO) homolog, translocates into the nucleus of ASER during fasting and promotes taste avoidance learning. DAF-16 is negatively regulated by insulin-like signaling independently of axonal DAF-2c signaling. This dual function of insulin-like signaling in the cell body and the axon ensures dynamic changes in behavioral responses after experience of hunger. By genetic analyses using constitutively nuclear-translocated DAF-16, we show that DAF-16 in ASER regulates taste avoidance learning via modulating neuropeptide signaling in the nervous system, which is reminiscent of the function of FOXO in the hypothalamus in the regulation of food-seeking behavior in mammals.
Collapse
Affiliation(s)
- Takashi Nagashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
17
|
Tewson P, Martinka S, Shaner N, Berlot C, Quinn AM, Hughes T. Assay for Detecting Gαi-Mediated Decreases in cAMP in Living Cells. SLAS DISCOVERY 2018; 23:898-906. [PMID: 29991302 DOI: 10.1177/2472555218786238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell-based assays to detect Gαi signaling are often indirect, frequently involve complex pharmacological interventions, and are usually blind to the kinetics of the signaling. Our goal was to develop a simple, direct measure of Gαi signaling in living cells. We previously reported our fluorescent cADDis assay and showed that it reliably detects Gαs-mediated increases in cAMP levels. Agonists that stimulate a Gs-coupled receptor produce changes in the intensity of bright green or red fluorescent protein sensors that can be followed over time using automated fluorescence plate readers or fluorescence imaging systems. Since the cADDis sensors can monitor Gαs-mediated increases in adenylyl cyclase activity, in theory they should also be capable of detecting Gαi-mediated decreases. Here we apply our green fluorescent cADDis sensor to the detection of Gαi-mediated inhibition of adenylyl cyclase activity. We validated and optimized the assay in living HEK 293T cells using several known Gαi-coupled receptors and agonists, and we report robust Z' statistics and consistent EC50 responses.
Collapse
Affiliation(s)
| | | | - Nathan Shaner
- 2 Department of Photobiology and Bioimaging, The Scintillon Institute, San Diego, CA, USA
| | | | | | - Thomas Hughes
- 1 Montana Molecular, Bozeman, MT, USA.,3 Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, USA
| |
Collapse
|
18
|
Fagan KA, Luo J, Lagoy RC, Schroeder FC, Albrecht DR, Portman DS. A Single-Neuron Chemosensory Switch Determines the Valence of a Sexually Dimorphic Sensory Behavior. Curr Biol 2018; 28:902-914.e5. [PMID: 29526590 PMCID: PMC5862148 DOI: 10.1016/j.cub.2018.02.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 01/08/2023]
Abstract
Biological sex, a fundamental dimension of internal state, can modulate neural circuits to generate behavioral variation. Understanding how and why circuits are tuned by sex can provide important insights into neural and behavioral plasticity. Here we find that sexually dimorphic behavioral responses to C. elegans ascaroside sex pheromones are implemented by the functional modulation of shared chemosensory circuitry. In particular, the sexual state of a single sensory neuron pair, ADF, determines the nature of an animal's behavioral response regardless of the sex of the rest of the body. Genetic feminization of ADF causes males to be repelled by, rather than attracted to, ascarosides, whereas masculinization of ADF has the opposite effect in hermaphrodites. When ADF is ablated, both sexes are weakly repelled by ascarosides. Genetic sex modulates ADF function by tuning chemosensation: although ADF is functional in both sexes, it detects the ascaroside ascr#3 only in males, a consequence of cell-autonomous action of the master sexual regulator tra-1. This occurs in part through the conserved DM-domain gene mab-3, which promotes the male state of ADF. The sexual modulation of ADF has a key role in reproductive fitness, as feminization or ablation of ADF renders males unable to use ascarosides to locate mates. Our results reveal an economical mechanism in which sex-specific behavioral valence arises through the cell-autonomous regulation of a chemosensory switch by genetic sex, allowing a social cue with salience for both sexes to elicit navigational responses commensurate with the differing needs of each.
Collapse
Affiliation(s)
- Kelli A Fagan
- Neuroscience Graduate Program, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA
| | - Jintao Luo
- Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Center for Neurotherapeutics Development, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA
| | - Ross C Lagoy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Room 4004, Worcester, MA 01605, USA
| | | | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Room 4004, Worcester, MA 01605, USA
| | - Douglas S Portman
- Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Center for Neurotherapeutics Development, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14610, USA; Departments of Biomedical Genetics, Neuroscience, and Biology, University of Rochester, 601 Elmwood Avenue, Box 645, Rochester, NY 14610, USA.
| |
Collapse
|