1
|
Cantu Gutierrez ME, Hill MC, Largoza GE, Gillespie WB, Martin JF, Wythe JD. Mapping the transcriptional and epigenetic landscape of organotypic endothelial diversity in the developing and adult mouse. NATURE CARDIOVASCULAR RESEARCH 2025; 4:473-495. [PMID: 40097733 PMCID: PMC12023908 DOI: 10.1038/s44161-025-00618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2025] [Indexed: 03/19/2025]
Abstract
The vascular endothelium features unique molecular and functional properties across different vessel types, such as between arteries, veins and capillaries, as well as between different organs, such as the leaky sinusoidal endothelium of the liver versus the impermeable vessels of the brain. However, the transcriptional networks governing endothelial organ specialization remain unclear. Here we profile the accessible chromatin and transcriptional landscapes of the endothelium from the mouse liver, lung, heart, kidney, brain and retina, across developmental time, to identify potential transcriptional regulators of endothelial heterogeneity. We then determine which of these putative regulators are conserved in human brain endothelial cells, and using single-cell transcriptomic profiling, we define which regulatory networks are active during brain maturation. Finally, we show that the putative transcriptional regulators identified by these three approaches molecularly and functionally reprogram naive endothelial cells. Thus, this resource can be used to identify potential transcriptional regulators controlling the establishment and maintenance of organ-specific endothelial specialization.
Collapse
Affiliation(s)
- Manuel E Cantu Gutierrez
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew C Hill
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabrielle E Largoza
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - William B Gillespie
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - James F Martin
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Texas Heart Institute, Houston, TX, USA
| | - Joshua D Wythe
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Clauss B, Lu M. A quantitative evaluation of topological motifs and their coupling in gene circuit state distributions. iScience 2023; 26:106029. [PMID: 36824273 PMCID: PMC9941213 DOI: 10.1016/j.isci.2023.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
One of the major challenges in biology is to understand how gene interactions collaborate to determine overall functions of biological systems. Here, we present a new computational framework that enables systematic, high-throughput, and quantitative evaluation of how small transcriptional regulatory circuit motifs, and their coupling, contribute to functions of a dynamical biological system. We illustrate how this approach can be applied to identify four-node gene circuits, circuit motifs, and motif coupling responsible for various gene expression state distributions, including those derived from single-cell RNA sequencing data. We also identify seven major classes of four-node circuits from clustering analysis of state distributions. The method is applied to establish phenomenological models of gene circuits driving human neuron differentiation, revealing important biologically relevant regulatory interactions. Our study will shed light on a better understanding of gene regulatory mechanisms in creating and maintaining cellular states.
Collapse
Affiliation(s)
- Benjamin Clauss
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA,Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA,Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA,Genetics Program, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA,The Jackson Laboratory, Bar Harbor, ME 04609, USA,Corresponding author
| |
Collapse
|
3
|
Fröhlich J, Rose K, Hecht A. Transcriptional activity mediated by β-CATENIN and TCF/LEF family members is completely dispensable for survival and propagation of multiple human colorectal cancer cell lines. Sci Rep 2023; 13:287. [PMID: 36609428 PMCID: PMC9822887 DOI: 10.1038/s41598-022-27261-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/29/2022] [Indexed: 01/08/2023] Open
Abstract
Unrestrained transcriptional activity of β-CATENIN and its binding partner TCF7L2 frequently underlies colorectal tumor initiation and is considered an obligatory oncogenic driver throughout intestinal carcinogenesis. Yet, the TCF7L2 gene carries inactivating mutations in about 10% of colorectal tumors and is non-essential in colorectal cancer (CRC) cell lines. To determine whether CRC cells acquire TCF7L2-independence through cancer-specific compensation by other T-cell factor (TCF)/lymphoid enhancer-binding factor (LEF) family members, or rather lose addiction to β-CATENIN/TCF7L2-driven gene expression altogether, we generated multiple CRC cell lines entirely negative for TCF/LEF or β-CATENIN expression. Survival of these cells and the ability to propagate them demonstrate their complete β-CATENIN- and TCF/LEF-independence. Nonetheless, one β-CATENIN-deficient cell line eventually became senescent, and absence of TCF/LEF proteins and β-CATENIN consistently impaired CRC cell proliferation, reminiscent of mitogenic effects of WNT/β-CATENIN signaling in the healthy intestine. Despite this common phenotype, β-CATENIN-deficient cells exhibited highly cell-line-specific gene expression changes with little overlap between β-CATENIN- and TCF7L2-dependent transcriptomes. Apparently, β-CATENIN and TCF7L2 independently control sizeable fractions of their target genes. The observed divergence of β-CATENIN and TCF7L2 transcriptional programs, and the finding that neither β-CATENIN nor TCF/LEF activity is strictly required for CRC cell survival has important implications when evaluating these factors as potential drug targets.
Collapse
Affiliation(s)
- Janna Fröhlich
- grid.5963.9Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany ,grid.5963.9Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Katja Rose
- grid.5963.9Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104 Freiburg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany. .,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Sun H, Wang H, Zhang W, Mao H, Li B. Single-cell RNA sequencing reveals resident progenitor and vascularization-associated cell subpopulations in rat annulus fibrosus. J Orthop Translat 2022; 38:256-267. [PMID: 36568849 PMCID: PMC9758498 DOI: 10.1016/j.jot.2022.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background One of the main causes of low back pain is intervertebral disc degeneration (IDD). Annulus fibrosus (AF) is important for the integrity and functions of the intervertebral disc (IVD). However, the resident functional cell components such as progenitors and vascularization-associated cells in AF are yet to be fully identified. Purpose Identification of functional AF cell subpopulations including resident progenitors and vascularization-associated cells. Methods In this study, the single-cell RNA sequencing data of rat IVDs from a public database were analyzed using Seurat for cell clustering, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analysis, StemID for stem cell identification, Monocle and RNA velocity for pseudotime differentiation trajectory validation, single-cell regulatory network inference and clustering (SCENIC) for gene regulatory network (GRN) analysis, and CellChat for cell-cell interaction analysis. Immunostaining on normal and degenerated rat IVDs, as well as human AF, was used for validations. Results From the data analysis, seven AF cell clusters were identified, including two newly discovered functional clusters, the Grem1 + subpopulation and the Lum + subpopulation. The Grem1 + subpopulation had progenitor characteristics, while the Lum + subpopulation was associated with vascularization during IDD. The GRN analysis showed that Sox9 and Id1 were among the key regulators in the Grem1 + subpopulation, and Nr2f2 and Creb5 could be responsible for the vascularization function in the Lum + subpopulation. Cell-cell interaction analysis revealed highly regulated cellular communications between these cells, and multiple signaling networks including PDGF and MIF signaling pathways were involved in the interactions. Conclusions Our results revealed two new functional AF cell subpopulations, with stemness and vascularization induction potential, respectively. The Translational potential of this article These findings complement our knowledge about IVDs, especially the AF, and in return provide potential cell source and regulation targets for IDD treatment and tissue repair. The existence of the cell subpopulations was also validated in human AF, which strengthen the clinical relevance of the findings.
Collapse
Affiliation(s)
- Heng Sun
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haijiao Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China,Corresponding author.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China,Corresponding author. 178 Ganjiang Rd, Rm 201 Bldg 18, Soochow University (North Campus), Suzhou, Jiangsu, 215007, China.
| |
Collapse
|
5
|
Zambanini G, Nordin A, Jonasson M, Pagella P, Cantù C. A new CUT&RUN low volume-urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/β-catenin tissue-specific genomic targets. Development 2022; 149:dev201124. [PMID: 36355069 PMCID: PMC10112916 DOI: 10.1242/dev.201124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Upon WNT/β-catenin pathway activation, stabilized β-catenin travels to the nucleus where it associates with the TCF/LEF transcription factors, constitutively bound to genomic Wnt-responsive elements (WREs), to activate target gene transcription. Discovering the binding profile of β-catenin is therefore required to unambiguously assign direct targets of WNT signaling. Cleavage under targets and release using nuclease (CUT&RUN) has emerged as prime technique for mapping the binding profile of DNA-interacting proteins. Here, we present a modified version of CUT&RUN, named LoV-U (low volume and urea), that enables the robust and reproducible generation of β-catenin binding profiles, uncovering direct WNT/β-catenin target genes in human cells, as well as in cells isolated from developing mouse tissues. CUT&RUN-LoV-U outperforms original CUT&RUN when targeting co-factors that do not bind the DNA, can profile all classes of chromatin regulators and is well suited for simultaneous processing of several samples. We believe that the application of our protocol will allow the detection of the complex system of tissue-specific WNT/β-catenin target genes, together with other non-DNA-binding transcriptional regulators that act downstream of ontogenetically fundamental signaling cascades.
Collapse
Affiliation(s)
- Gianluca Zambanini
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping SE-58183, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58183, Sweden
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping SE-58183, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58183, Sweden
| | - Mattias Jonasson
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping SE-58183, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58183, Sweden
| | - Pierfrancesco Pagella
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping SE-58183, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58183, Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping SE-58183, Sweden
- Department of Biomedical and Clinical Sciences (BKV), Division of Molecular Medicine and Virology (MMV), Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58183, Sweden
| |
Collapse
|
6
|
Mukherjee S, Luedeke DM, McCoy L, Iwafuchi M, Zorn AM. SOX transcription factors direct TCF-independent WNT/β-catenin responsive transcription to govern cell fate in human pluripotent stem cells. Cell Rep 2022; 40:111247. [PMID: 36001974 PMCID: PMC10123531 DOI: 10.1016/j.celrep.2022.111247] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/06/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
WNT/β-catenin signaling controls gene expression across biological contexts from development and stem cell homeostasis to diseases including cancer. How β-catenin is recruited to distinct enhancers to activate context-specific transcription is unclear, given that most WNT/ß-catenin-responsive transcription is thought to be mediated by TCF/LEF transcription factors (TFs). With time-resolved multi-omic analyses, we show that SOX TFs can direct lineage-specific WNT-responsive transcription during the differentiation of human pluripotent stem cells (hPSCs) into definitive endoderm and neuromesodermal progenitors. We demonstrate that SOX17 and SOX2 are required to recruit β-catenin to lineage-specific WNT-responsive enhancers, many of which are not occupied by TCFs. At TCF-independent enhancers, SOX TFs establish a permissive chromatin landscape and recruit a WNT-enhanceosome complex to activate SOX/ß-catenin-dependent transcription. Given that SOX TFs and the WNT pathway are critical for specification of most cell types, these results have broad mechanistic implications for the specificity of WNT responses across developmental and disease contexts.
Collapse
Affiliation(s)
- Shreyasi Mukherjee
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| | - David M Luedeke
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leslie McCoy
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Makiko Iwafuchi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati Department of Pediatrics, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
7
|
Shafi O, Siddiqui G. Tracing the origins of glioblastoma by investigating the role of gliogenic and related neurogenic genes/signaling pathways in GBM development: a systematic review. World J Surg Oncol 2022; 20:146. [PMID: 35538578 PMCID: PMC9087910 DOI: 10.1186/s12957-022-02602-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 02/16/2023] Open
Abstract
Background Glioblastoma is one of the most aggressive tumors. The etiology and the factors determining its onset are not yet entirely known. This study investigates the origins of GBM, and for this purpose, it focuses primarily on developmental gliogenic processes. It also focuses on the impact of the related neurogenic developmental processes in glioblastoma oncogenesis. It also addresses why glial cells are at more risk of tumor development compared to neurons. Methods Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving glioblastoma, gliogenesis, neurogenesis, stemness, neural stem cells, gliogenic signaling and pathways, neurogenic signaling and pathways, and astrocytogenic genes. Results The origin of GBM is dependent on dysregulation in multiple genes and pathways that accumulatively converge the cells towards oncogenesis. There are multiple layers of steps in glioblastoma oncogenesis including the failure of cell fate-specific genes to keep the cells differentiated in their specific cell types such as p300, BMP, HOPX, and NRSF/REST. There are genes and signaling pathways that are involved in differentiation and also contribute to GBM such as FGFR3, JAK-STAT, and hey1. The genes that contribute to differentiation processes but also contribute to stemness in GBM include notch, Sox9, Sox4, c-myc gene overrides p300, and then GFAP, leading to upregulation of nestin, SHH, NF-κB, and others. GBM mutations pathologically impact the cell circuitry such as the interaction between Sox2 and JAK-STAT pathway, resulting in GBM development and progression. Conclusion Glioblastoma originates when the gene expression of key gliogenic genes and signaling pathways become dysregulated. This study identifies key gliogenic genes having the ability to control oncogenesis in glioblastoma cells, including p300, BMP, PAX6, HOPX, NRSF/REST, LIF, and TGF beta. It also identifies key neurogenic genes having the ability to control oncogenesis including PAX6, neurogenins including Ngn1, NeuroD1, NeuroD4, Numb, NKX6-1 Ebf, Myt1, and ASCL1. This study also postulates how aging contributes to the onset of glioblastoma by dysregulating the gene expression of NF-κB, REST/NRSF, ERK, AKT, EGFR, and others.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
8
|
β-catenin links cell seeding density to global gene expression during mouse embryonic stem cell differentiation. iScience 2022; 25:103541. [PMID: 34977504 PMCID: PMC8689156 DOI: 10.1016/j.isci.2021.103541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Although cell density is known to affect numerous biological processes including gene expression and cell fate specification, mechanistic understanding of what factors link cell density to global gene regulation is lacking. Here, we reveal that the expression of thousands of genes in mouse embryonic stem cells (mESCs) is affected by cell seeding density and that low cell density enhances the efficiency of differentiation. Mechanistically, β-catenin is localized primarily to adherens junctions during both self-renewal and differentiation at high density. However, when mESCs differentiate at low density, β-catenin translocates to the nucleus and associates with Tcf7l1, inducing co-occupied lineage markers. Meanwhile, Esrrb sustains the expression of pluripotency-associated genes while repressing lineage markers at high density, and its association with DNA decreases at low density. Our results provide new insights into the previously neglected but pervasive phenomenon of density-dependent gene regulation.
Collapse
|
9
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
10
|
Doumpas N, Söderholm S, Narula S, Moreira S, Doble BW, Cantù C, Basler K. TCF/LEF regulation of the topologically associated domain ADI promotes mESCs to exit the pluripotent ground state. Cell Rep 2021; 36:109705. [PMID: 34525377 DOI: 10.1016/j.celrep.2021.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) can be maintained in vitro in defined N2B27 medium supplemented with two chemical inhibitors for GSK3 and MEK (2i) and the cytokine leukemia inhibitory factor (LIF), which act synergistically to promote self-renewal and pluripotency. Here, we find that genetic deletion of the four genes encoding the TCF/LEF transcription factors confers mESCs with the ability to self-renew in N2B27 medium alone. TCF/LEF quadruple knockout (qKO) mESCs display dysregulation of several genes, including Aire, Dnmt3l, and IcosL, located adjacent to each other within a topologically associated domain (TAD). Aire, Dnmt3l, and IcosL appear to be regulated by TCF/LEF in a β-catenin independent manner. Moreover, downregulation of Aire and Dnmt3l in wild-type mESCs mimics the loss of TCF/LEF and increases mESC survival in the absence of 2iL. Hence, this study identifies TCF/LEF effectors that mediate exit from the pluripotent state.
Collapse
Affiliation(s)
- Nikolaos Doumpas
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Simon Söderholm
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Smarth Narula
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Steven Moreira
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Bradley W Doble
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Departments of Biochemistry and Medical Genetics & Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Ramakrishnan AB, Chen L, Burby PE, Cadigan KM. Wnt target enhancer regulation by a CDX/TCF transcription factor collective and a novel DNA motif. Nucleic Acids Res 2021; 49:8625-8641. [PMID: 34358319 PMCID: PMC8421206 DOI: 10.1093/nar/gkab657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/10/2021] [Accepted: 07/23/2021] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation by Wnt signalling is primarily thought to be accomplished by a complex of β-catenin and TCF family transcription factors (TFs). Although numerous studies have suggested that additional TFs play roles in regulating Wnt target genes, their mechanisms of action have not been investigated in detail. We characterised a Wnt-responsive element (WRE) downstream of the Wnt target gene Axin2 and found that TCFs and Caudal type homeobox (CDX) proteins were required for its activation. Using a new separation-of-function TCF mutant, we found that WRE activity requires the formation of a TCF/CDX complex. Our systematic mutagenesis of this enhancer identified other sequences essential for activation by Wnt signalling, including several copies of a novel CAG DNA motif. Computational and experimental evidence indicates that the TCF/CDX/CAG mode of regulation is prevalent in multiple WREs. Put together, our results demonstrate the complex nature of cis- and trans- interactions required for signal-dependent enhancer activity.
Collapse
Affiliation(s)
| | - Lisheng Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Peter E Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
12
|
Koch S. Regulation of Wnt Signaling by FOX Transcription Factors in Cancer. Cancers (Basel) 2021; 13:cancers13143446. [PMID: 34298659 PMCID: PMC8307807 DOI: 10.3390/cancers13143446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Cancer is caused by a breakdown of cell-to-cell communication, which results in the unrestricted expansion of cells within a tissue. In many cases, tumor growth is maintained by the continuous activation of cell signaling programs that normally drive embryonic development and wound repair. In this review article, I discuss how one of the largest human protein families, namely FOX proteins, controls the activity of the Wnt pathway, a major regulatory signaling cascade in developing organisms and adult stem cells. Evidence suggests that there is considerable crosstalk between FOX proteins and the Wnt pathway, which contributes to cancer initiation and progression. A better understanding of FOX biology may therefore lead to the development of new targeted treatments for many types of cancer. Abstract Aberrant activation of the oncogenic Wnt signaling pathway is a hallmark of numerous types of cancer. However, in many cases, it is unclear how a chronically high Wnt signaling tone is maintained in the absence of activating pathway mutations. Forkhead box (FOX) family transcription factors are key regulators of embryonic development and tissue homeostasis, and there is mounting evidence that they act in part by fine-tuning the Wnt signaling output in a tissue-specific and context-dependent manner. Here, I review the diverse ways in which FOX transcription factors interact with the Wnt pathway, and how the ectopic reactivation of FOX proteins may affect Wnt signaling activity in various types of cancer. Many FOX transcription factors are partially functionally redundant and exhibit a highly restricted expression pattern, especially in adults. Thus, precision targeting of individual FOX proteins may lead to safe treatment options for Wnt-dependent cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, 58185 Linköping, Sweden; ; Tel.: +46-132-829-69
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
13
|
Zhu L, Zhang S, Hou C, Liang X, Saif Dehwah MA, Tan B, Shi L. The T cell factor, pangolin, from Litopenaeus vannamei play a positive role in the immune responses against white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104041. [PMID: 33577842 DOI: 10.1016/j.dci.2021.104041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
As a downstream interactor of β-catenin, Pangolin which is the homologous protein of the T cell factor/lymphoid enhancer factor (TCF/LEF) in vertebrates is less understood in the research field of immunity. In this study, two isoforms of Litopenaeus vannamei Pangolin (LvPangolin1 and LvPangolin2) were identified. Phylogenetic tree analysis revealed that all of the Pangolin proteins from invertebrates were represented the same lineage. The mRNA expression profiles of the LvPangolin1 and LvPangolin2 genes differed across different tissues. The expression of LvPangolin1 and the amount of LvPangolin1and LvPangolin2 combined (LvPangolinComb) were significantly increased in the haemocyte, intestine and gill but reduced in the hepatopancreas after white spot syndrome virus (WSSV) challenge. The inhibition of LvPangolin1 but not LvPangolinComb significantly reduced the survival rates of L. vannamei after WSSV infection, while significantly higher WSSV viral loads in both LvPangolin1-inhibited and LvPangolinComb-inhibited L. vannamei were observed. Knockdown of LvPangolin by RNAi could distinctly decrease the expression of antimicrobial peptide (AMP) genes and their related transcription factors. All of these results indicate that LvPangolin plays a positive role in the response to WSSV infection and that this may be mediated through regulating the immune signalling pathways which control the expression of AMPs with antiviral abilities.
Collapse
Affiliation(s)
- Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xueping Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Mustafa Abdo Saif Dehwah
- Department of Medical Laboratories, Faculty of Medical and Health Science, Taiz University/AL-Turba Branch, Taiz, 3191, Republic of Yemen
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Key Laboratory of Aquatic Non-grain-based Feed Resources, Ministry of Agriculture, Zhanjiang, China.
| |
Collapse
|
14
|
Söderholm S, Cantù C. The WNT/β‐catenin dependent transcription: A tissue‐specific business. WIREs Mech Dis 2020; 13:e1511. [PMID: 33085215 PMCID: PMC9285942 DOI: 10.1002/wsbm.1511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
β‐catenin‐mediated Wnt signaling is an ancient cell‐communication pathway in which β‐catenin drives the expression of certain genes as a consequence of the trigger given by extracellular WNT molecules. The events occurring from signal to transcription are evolutionarily conserved, and their final output orchestrates countless processes during embryonic development and tissue homeostasis. Importantly, a dysfunctional Wnt/β‐catenin pathway causes developmental malformations, and its aberrant activation is the root of several types of cancer. A rich literature describes the multitude of nuclear players that cooperate with β‐catenin to generate a transcriptional program. However, a unified theory of how β‐catenin drives target gene expression is still missing. We will discuss two types of β‐catenin interactors: transcription factors that allow β‐catenin to localize at target regions on the DNA, and transcriptional co‐factors that ultimately activate gene expression. In contrast to the presumed universality of β‐catenin's action, the ensemble of available evidence suggests a view in which β‐catenin drives a complex system of responses in different cells and tissues. A malleable armamentarium of players might interact with β‐catenin in order to activate the right “canonical” targets in each tissue, developmental stage, or disease context. Discovering the mechanism by which each tissue‐specific β‐catenin response is executed will be crucial to comprehend how a seemingly universal pathway fosters a wide spectrum of processes during development and homeostasis. Perhaps more importantly, this could ultimately inform us about which are the tumor‐specific components that need to be targeted to dampen the activity of oncogenic β‐catenin. This article is categorized under:Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development
Collapse
Affiliation(s)
- Simon Söderholm
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| |
Collapse
|
15
|
Peng T, Zhai Y, Atlasi Y, Ter Huurne M, Marks H, Stunnenberg HG, Megchelenbrink W. STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells. Genome Biol 2020; 21:243. [PMID: 32912294 PMCID: PMC7488044 DOI: 10.1186/s13059-020-02156-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Enhancers are distal regulators of gene expression that shape cell identity and control cell fate transitions. In mouse embryonic stem cells (mESCs), the pluripotency network is maintained by the function of a complex network of enhancers, that are drastically altered upon differentiation. Genome-wide chromatin accessibility and histone modification assays are commonly used as a proxy for identifying putative enhancers and for describing their activity levels and dynamics. RESULTS Here, we applied STARR-seq, a genome-wide plasmid-based assay, as a read-out for the enhancer landscape in "ground-state" (2i+LIF; 2iL) and "metastable" (serum+LIF; SL) mESCs. This analysis reveals that active STARR-seq loci show modest overlap with enhancer locations derived from peak calling of ChIP-seq libraries for common enhancer marks. We unveil ZIC3-bound loci with significant STARR-seq activity in SL-ESCs. Knock-out of Zic3 removes STARR-seq activity only in SL-ESCs and increases their propensity to differentiate towards the endodermal fate. STARR-seq also reveals enhancers that are not accessible, masked by a repressive chromatin signature. We describe a class of dormant, p53 bound enhancers that gain H3K27ac under specific conditions, such as after treatment with Nocodazol, or transiently during reprogramming from fibroblasts to pluripotency. CONCLUSIONS In conclusion, loci identified as active by STARR-seq often overlap with those identified by chromatin accessibility and active epigenetic marking, yet a significant fraction is epigenetically repressed or display condition-specific enhancer activity.
Collapse
Affiliation(s)
- Tianran Peng
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Yanan Zhai
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Yaser Atlasi
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Menno Ter Huurne
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Wout Megchelenbrink
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
16
|
Tao F, Soffers J, Hu D, Chen S, Gao X, Zhang Y, Zhao C, Smith SE, Unruh JR, Zhang D, Tsuchiya D, Venkatraman A, Zhao M, Li Z, Qian P, Parmely T, He XC, Washburn M, Florens L, Perry JM, Zeitlinger J, Workman J, Li L. β-Catenin and Associated Proteins Regulate Lineage Differentiation in Ground State Mouse Embryonic Stem Cells. Stem Cell Reports 2020; 15:662-676. [PMID: 32822591 PMCID: PMC7486223 DOI: 10.1016/j.stemcr.2020.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) cultured in defined medium resemble the pre-implantation epiblast in the ground state, with full developmental capacity including the germline. β-Catenin is required to maintain ground state pluripotency in mouse ESCs, but its exact role is controversial. Here, we reveal a Tcf3-independent role of β-catenin in restraining germline and somatic lineage differentiation genes. We show that β-catenin binds target genes with E2F6 and forms a complex with E2F6 and HMGA2 or E2F6 and HP1γ. Our data indicate that these complexes help β-catenin restrain and fine-tune germ cell and neural developmental potential. Overall, our data reveal a previously unappreciated role of β-catenin in preserving lineage differentiation integrity in ground state ESCs. β-Catenin depletion irreversibly compromised lineage development of ground state ESCs TCF3-independent role of β-catenin in determining lineage differentiation potential E2F6, HP1γ, and HMGA2 are β-catenin interaction partners and co-bound to target genes β-Catenin and protein partners fine-tune germline and neural development potential
Collapse
Affiliation(s)
- Fang Tao
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; University of Kansas Medical Center, Kansas City, KS, USA; Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jelly Soffers
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Deqing Hu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Shiyuan Chen
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Xin Gao
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ying Zhang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Chongbei Zhao
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Da Zhang
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Aparna Venkatraman
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Meng Zhao
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenrui Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Pengxu Qian
- China Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tari Parmely
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Xi C He
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Michael Washburn
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - John M Perry
- University of Kansas Medical Center, Kansas City, KS, USA; Children's Mercy Kansas City, Kansas City, MO, USA; University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; University of Kansas Medical Center, Kansas City, KS, USA
| | - Jerry Workman
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
17
|
Redundant and additive functions of the four Lef/Tcf transcription factors in lung epithelial progenitors. Proc Natl Acad Sci U S A 2020; 117:12182-12191. [PMID: 32414917 DOI: 10.1073/pnas.2002082117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In multicellular organisms, paralogs from gene duplication survive purifying selection by evolving tissue-specific expression and function. Whether this genetic redundancy is also selected for within a single cell type is unclear for multimember paralogs, as exemplified by the four obligatory Lef/Tcf transcription factors of canonical Wnt signaling, mainly due to the complex genetics involved. Using the developing mouse lung as a model system, we generate two quadruple conditional knockouts, four triple mutants, and various combinations of double mutants, showing that the four Lef/Tcf genes function redundantly in the presence of at least two Lef/Tcf paralogs, but additively upon losing additional paralogs to specify and maintain lung epithelial progenitors. Prelung-specification, pan-epithelial double knockouts have no lung phenotype; triple knockouts have varying phenotypes, including defective branching and tracheoesophageal fistulas; and the quadruple knockout barely forms a lung, resembling the Ctnnb1 mutant. Postlung-specification deletion of all four Lef/Tcf genes leads to branching defects, down-regulation of progenitor genes, premature alveolar differentiation, and derepression of gastrointestinal genes, again phenocopying the corresponding Ctnnb1 mutant. Our study supports a monotonic, positive signaling relationship between CTNNB1 and Lef/Tcf in lung epithelial progenitors as opposed to reported repressor functions of Lef/Tcf, and represents a thorough in vivo analysis of cell-type-specific genetic redundancy among the four Lef/Tcf paralogs.
Collapse
|
18
|
Abstract
Wnt/Wingless (Wg) signaling controls many aspects of animal development and is deregulated in different human cancers. The transcription factor dTcf/Pangolin (Pan) is the final effector of the Wg pathway in Drosophila and has a dual role in regulating the expression of Wg target genes. In the presence of Wg, dTcf/Pan interacts with β-catenin/Armadillo (Arm) and induces the transcription of Wg targets. In absence of Wg, dTcf/Pan partners with the transcriptional corepressor TLE/Groucho (Gro) and inhibits gene expression. Here, we use the wing imaginal disk of Drosophila as a model to examine the functions that dTcf/Pan plays in a proliferating epithelium. We report a function of dTcf/Pan in growth control and tumorigenesis. Our results show that dTcf/Pan can limit tissue growth in normal development and suppresses tumorigenesis in the context of oncogene up-regulation. We identify the conserved transcription factors Sox box protein 15 (Sox15) and Ftz transcription factor 1 (Ftz-f1) as genes controlled by dTcf/Pan involved in tumor development. In conclusion, this study reports a role for dTcf/Pan as a repressor of normal and oncogenic growth and identifies the genes inducing tumorigenesis downstream of dTcf/Pan.
Collapse
|
19
|
Doumpas N, Lampart F, Robinson MD, Lentini A, Nestor CE, Cantù C, Basler K. TCF/LEF dependent and independent transcriptional regulation of Wnt/β-catenin target genes. EMBO J 2019; 38:embj.201798873. [PMID: 30425074 PMCID: PMC6331726 DOI: 10.15252/embj.201798873] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/20/2023] Open
Abstract
During canonical Wnt signalling, the activity of nuclear β-catenin is largely mediated by the TCF/LEF family of transcription factors. To challenge this view, we used the CRISPR/Cas9 genome editing approach to generate HEK 293T cell clones lacking all four TCF/LEF genes. By performing unbiased whole transcriptome sequencing analysis, we found that a subset of β-catenin transcriptional targets did not require TCF/LEF factors for their regulation. Consistent with this finding, we observed in a genome-wide analysis that β-catenin occupied specific genomic regions in the absence of TCF/LEF Finally, we revealed the existence of a transcriptional activity of β-catenin that specifically appears when TCF/LEF factors are absent, and refer to this as β-catenin-GHOST response. Collectively, this study uncovers a previously neglected modus operandi of β-catenin that bypasses the TCF/LEF transcription factors.
Collapse
Affiliation(s)
- Nikolaos Doumpas
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Franziska Lampart
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Antonio Lentini
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Colm E Nestor
- Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Liang R, Liu Y. Tcf7l1 directly regulates cardiomyocyte differentiation in embryonic stem cells. Stem Cell Res Ther 2018; 9:267. [PMID: 30326964 PMCID: PMC6190650 DOI: 10.1186/s13287-018-1015-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023] Open
Abstract
The T-cell factor/lymphoid enhancer factor (TCF/LEF) family protein Tcf7l1 is highly abundant in embryonic stem cells (ESCs), regulating pluripotency and preparing epiblasts for further differentiation. Defects in the cardiovascular system in Tcf7l1-null mouse were considered secondary to mesoderm malformation. Here, we used temporally controlled Tcf7l1 expression in Tcf7l1-null ESCs to address whether Tcf7l1 directly contributes to cardiac forward programming. Tcf7l1 knockout during differentiation impaired cardiomyocyte formation but did not affect mesoderm formation. Tcf7l1-null ESCs showed delay in mesoderm formation, but once completed, ectopic Tcf7l1 augmented cardiomyocyte differentiation. Further, Tcf7l1-VP16 and Tcf7l1dN showed procardiac activity whereas Tcf7l1-En was ineffective. Our results support that Tcf7l1 contributes to cardiac lineage development as a β-catenin-independent transactivator of cardiac genes.
Collapse
Affiliation(s)
- Rui Liang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77004, USA
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77004, USA.
| |
Collapse
|
21
|
Chodelkova O, Masek J, Korinek V, Kozmik Z, Machon O. Tcf7L2 is essential for neurogenesis in the developing mouse neocortex. Neural Dev 2018; 13:8. [PMID: 29751817 PMCID: PMC5946422 DOI: 10.1186/s13064-018-0107-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
Generation of neurons in the embryonic neocortex is a balanced process of proliferation and differentiation of neuronal progenitor cells. Canonical Wnt signalling is crucial for expansion of radial glial cells in the ventricular zone and for differentiation of intermediate progenitors in the subventricular zone. We detected abundant expression of two transcrtiption factors mediating canonical Wnt signalling, Tcf7L1 and Tcf7L2, in the ventricular zone of the embryonic neocortex. Conditional knock-out analysis showed that Tcf7L2, but not Tcf7L1, is the principal Wnt mediator important for maintenance of progenitor cell identity in the ventricular zone. In the absence of Tcf7L2, the Wnt activity is reduced, ventricular zone markers Pax6 and Sox2 are downregulated and the neuroepithelial structure is severed due to the loss of apical adherens junctions. This results in decreased proliferation of radial glial cells, the reduced number of intermediate progenitors in the subventricular zone and hypoplastic forebrain. Our data show that canonical Wnt signalling, which is essential for determining the neuroepithelial character of the neocortical ventricular zone, is mediated by Tcf7L2.
Collapse
Affiliation(s)
- Olga Chodelkova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 14200, Prague, Czech Republic
| | - Jan Masek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 14200, Prague, Czech Republic.,Present address: Department of Biosciences and Nutrition, Karolinska Institutet, SE-14183, Huddinge, Sweden
| | - Vladimir Korinek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 14200, Prague, Czech Republic
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 14200, Prague, Czech Republic.,Laboratory of Eye Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Ondrej Machon
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1084, 14200, Prague, Czech Republic. .,Institute of Experimental Medicine of the Czech Academy of Sciences, Vídeňská 1084, 14200, Prague, Czech Republic.
| |
Collapse
|
22
|
The Pleiotropic Effects of the Canonical Wnt Pathway in Early Development and Pluripotency. Genes (Basel) 2018; 9:genes9020093. [PMID: 29443926 PMCID: PMC5852589 DOI: 10.3390/genes9020093] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
The technology to derive embryonic and induced pluripotent stem cells from early embryonic stages and adult somatic cells, respectively, emerged as a powerful resource to enable the establishment of new in vitro models, which recapitulate early developmental processes and disease. Additionally, pluripotent stem cells (PSCs) represent an invaluable source of relevant differentiated cell types with immense potential for regenerative medicine and cell replacement therapies. Pluripotent stem cells support self-renewal, potency and proliferation for extensive periods of culture in vitro. However, the core pathways that rule each of these cellular features specific to PSCs only recently began to be clarified. The Wnt signaling pathway is pivotal during early embryogenesis and is central for the induction and maintenance of the pluripotency of PSCs. Signaling by the Wnt family of ligands is conveyed intracellularly by the stabilization of β-catenin in the cytoplasm and in the nucleus, where it elicits the transcriptional activity of T-cell factor (TCF)/lymphoid enhancer factor (LEF) family of transcription factors. Interestingly, in PSCs, the Wnt/β-catenin–TCF/LEF axis has several unrelated and sometimes opposite cellular functions such as self-renewal, stemness, lineage commitment and cell cycle regulation. In addition, tight control of the Wnt signaling pathway enhances reprogramming of somatic cells to induced pluripotency. Several recent research efforts emphasize the pleiotropic functions of the Wnt signaling pathway in the pluripotent state. Nonetheless, conflicting results and unanswered questions still linger. In this review, we will focus on the diverse functions of the canonical Wnt signaling pathway on the developmental processes preceding embryo implantation, as well as on its roles in pluripotent stem cell biology such as self-renewal and cell cycle regulation and somatic cell reprogramming.
Collapse
|
23
|
Ramakrishnan AB, Sinha A, Fan VB, Cadigan KM. The Wnt Transcriptional Switch: TLE Removal or Inactivation? Bioessays 2017; 40. [PMID: 29250807 DOI: 10.1002/bies.201700162] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/12/2017] [Indexed: 01/06/2023]
Abstract
Many targets of the Wnt/β-catenin signaling pathway are regulated by TCF transcription factors, which play important roles in animal development, stem cell biology, and oncogenesis. TCFs can regulate Wnt targets through a "transcriptional switch," repressing gene expression in unstimulated cells and promoting transcription upon Wnt signaling. However, it is not clear whether this switch mechanism is a general feature of Wnt gene regulation or limited to a subset of Wnt targets. Co-repressors of the TLE family are known to contribute to the repression of Wnt targets in the absence of signaling, but how they are inactivated or displaced by Wnt signaling is poorly understood. In this mini-review, we discuss several recent reports that address the prevalence and molecular mechanisms of the Wnt transcription switch, including the finding of Wnt-dependent ubiquitination/inactivation of TLEs. Together, these findings highlight the growing complexity of the regulation of gene expression by the Wnt pathway.
Collapse
Affiliation(s)
| | - Abhishek Sinha
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048
| | - Vinson B Fan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048
| | - Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048
| |
Collapse
|