1
|
McGurk KA, Qiao M, Zheng SL, Sau A, Henry A, Ribeiro ALP, Ribeiro AH, Ng FS, Lumbers RT, Bai W, Ware JS, O'Regan DP. Genetic and phenotypic architecture of human myocardial trabeculation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1503-1515. [PMID: 39567769 PMCID: PMC11634767 DOI: 10.1038/s44161-024-00564-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Cardiac trabeculae form a network of muscular strands that line the inner surfaces of the heart. Their development depends on multiscale morphogenetic processes and, while highly conserved across vertebrate evolution, their role in the pathophysiology of the mature heart is not fully understood. Here we report variant associations across the allele frequency spectrum for trabecular morphology in 47,803 participants of the UK Biobank using fractal dimension analysis of cardiac imaging. We identified an association between trabeculation and rare variants in 56 genes that regulate myocardial contractility and ventricular development. Genome-wide association studies identified 68 loci in pathways that regulate sarcomeric function, differentiation of the conduction system and cell fate determination. We found that trabeculation-associated variants were modifiers of cardiomyopathy phenotypes with opposing effects in hypertrophic and dilated cardiomyopathy. Together, these data provide insights into mechanisms that regulate trabecular development and plasticity, and identify a potential role in modifying monogenic disease expression.
Collapse
Affiliation(s)
- Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Mengyun Qiao
- Department of Computing, Department of Brain Sciences and Data Science Institute, Imperial College London, London, UK
| | - Sean L Zheng
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Arunashis Sau
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
| | - Albert Henry
- Institute of Health Informatics, University College London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Antonio Luiz P Ribeiro
- Department of Internal Medicine, Faculdade de Medicina, and Telehealth Center and Cardiology Service, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio H Ribeiro
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
- Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London, UK
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Wenjia Bai
- Department of Computing, Department of Brain Sciences and Data Science Institute, Imperial College London, London, UK
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, Imperial College Healthcare NHS Trust, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
2
|
Ferrero E, Di Gregorio E, Ferrero M, Ortolan E, Moon YA, Di Campli A, Pavinato L, Mancini C, Tripathy D, Manes M, Hoxha E, Costanzi C, Pozzi E, Rossi Sebastiano M, Mitro N, Tempia F, Caruso D, Borroni B, Basso M, Sallese M, Brusco A. Spinocerebellar ataxia 38: structure-function analysis shows ELOVL5 G230V is proteotoxic, conformationally altered and a mutational hotspot. Hum Genet 2023; 142:1055-1076. [PMID: 37199746 PMCID: PMC10449689 DOI: 10.1007/s00439-023-02572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Eleonora Di Gregorio
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy
| | - Marta Ferrero
- Experimental Zooprophylactic Institute of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Erika Ortolan
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Antonella Di Campli
- Institute of Protein Biochemistry, Italian National Research Council, Naples, Italy
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Marta Manes
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | | | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Matteo Rossi Sebastiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Sallese
- Centre for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy.
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy.
| |
Collapse
|
3
|
Aburayyan A, Carlson RJ, Rabie GN, Lee MK, Gulsuner S, Walsh T, Avraham KB, Kanaan MN, King MC. A paradoxical genotype-phenotype relationship: Low level of GOSR2 translation from a non-AUG start codon in a family with profound hearing loss. Hum Mol Genet 2023; 32:2265-2268. [PMID: 37074134 PMCID: PMC10321379 DOI: 10.1093/hmg/ddad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 03/25/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023] Open
Affiliation(s)
- Amal Aburayyan
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Hereditary Research Laboratory, Department of Biology, Bethlehem University, Bethlehem, Palestine
| | - Ryan J Carlson
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, WA, USA
| | - Grace N Rabie
- Hereditary Research Laboratory, Department of Biology, Bethlehem University, Bethlehem, Palestine
| | - Ming K Lee
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, WA, USA
| | - Suleyman Gulsuner
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tom Walsh
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, WA, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moien N Kanaan
- Hereditary Research Laboratory, Department of Biology, Bethlehem University, Bethlehem, Palestine
| | - Mary-Claire King
- Department of Genome Sciences and Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
5
|
Clark SL, Chan RF, Zhao M, Xie LY, Copeland WE, Penninx BW, Aberg KA, van den Oord EJ. Dual methylation and hydroxymethylation study of alcohol use disorder. Addict Biol 2022; 27:e13114. [PMID: 34791764 PMCID: PMC8891051 DOI: 10.1111/adb.13114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022]
Abstract
Using an integrative, multi-tissue design, we sought to characterize methylation and hydroxymethylation changes in blood and brain associated with alcohol use disorder (AUD). First, we used epigenomic deconvolution to perform cell-type-specific methylome-wide association studies within subpopulations of granulocytes/T-cells/B-cells/monocytes in 1132 blood samples. Blood findings were then examined for overlap with AUD-related associations with methylation and hydroxymethylation in 50 human post-mortem brain samples. Follow-up analyses investigated if overlapping findings mediated AUD-associated transcription changes in the same brain samples. Lastly, we replicated our blood findings in an independent sample of 412 individuals and aimed to replicate published alcohol methylation findings using our results. Cell-type-specific analyses in blood identified methylome-wide significant associations in monocytes and T-cells. The monocyte findings were significantly enriched for AUD-related methylation and hydroxymethylation in brain. Hydroxymethylation in specific sites mediated AUD-associated transcription in the same brain samples. As part of the most comprehensive methylation study of AUD to date, this work involved the first cell-type-specific methylation study of AUD conducted in blood, identifying and replicating a finding in DLGAP1 that may be a blood-based biomarker of AUD. In this first study to consider the role of hydroxymethylation in AUD, we found evidence for a novel mechanism for cognitive deficits associated with AUD. Our results suggest promising new avenues for AUD research.
Collapse
Affiliation(s)
| | - Robin F. Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | - Lin Y. Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | | | - Brenda W.J.H. Penninx
- Department of Psychiatry, University of Vermont,Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Karolina A. Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University
| | | |
Collapse
|
6
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
7
|
Stemmerik MG, Borch JDS, Dunø M, Krag T, Vissing J. Myopathy can be a key phenotype of membrin (GOSR2) deficiency. Hum Mutat 2021; 42:1101-1106. [PMID: 34167170 DOI: 10.1002/humu.24247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
T1-weighted, cross-sectional MR images showing shoulder girdle, abdominal, paraspinal, gluteal and thigh muscles almost completely replaced by fat, whereas lower leg muscles are almost unaffected i a patient who is compound heterozygous for pathogenic variants in GOSR2.
Collapse
Affiliation(s)
- Mads G Stemmerik
- Department of Neurology, Copenhagen Neuromuscular Center, University of Copenhagen, Copenhagen, Denmark
| | - Josefine de S Borch
- Department of Neurology, Copenhagen Neuromuscular Center, University of Copenhagen, Copenhagen, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, Molecular Genetic Laboratory, University Hospital Copenhagen, Copenhagen, Denmark
| | - Thomas Krag
- Department of Neurology, Copenhagen Neuromuscular Center, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Department of Neurology, Copenhagen Neuromuscular Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Carpenter JC, Männikkö R, Heffner C, Heneine J, Sampedro‐Castañeda M, Lignani G, Schorge S. Progressive myoclonus epilepsy KCNC1 variant causes a developmental dendritopathy. Epilepsia 2021; 62:1256-1267. [PMID: 33735526 PMCID: PMC8436768 DOI: 10.1111/epi.16867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Mutations in KCNC1 can cause severe neurological dysfunction, including intellectual disability, epilepsy, and ataxia. The Arg320His variant, which occurs in the voltage-sensing domain of the channel, causes a highly penetrant and specific form of progressive myoclonus epilepsy with severe ataxia, designated myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK). KCNC1 encodes the voltage-gated potassium channel KV 3.1, a channel that is important for enabling high-frequency firing in interneurons, raising the possibility that MEAK is associated with reduced interneuronal function. METHODS To determine how this variant triggers MEAK, we expressed KV 3.1bR320H in cortical interneurons in vitro and investigated the effects on neuronal function and morphology. We also performed electrophysiological recordings of oocytes expressing KV 3.1b to determine whether the mutation introduces gating pore currents. RESULTS Expression of the KV 3.1bR320H variant profoundly reduced excitability of mature cortical interneurons, and cells expressing these channels were unable to support high-frequency firing. The mutant channel also had an unexpected effect on morphology, severely impairing neurite development and interneuron viability, an effect that could not be rescued by blocking KV 3 channels. Oocyte recordings confirmed that in the adult KV 3.1b isoform, R320H confers a dominant negative loss-of-function effect by slowing channel activation, but does not introduce potentially toxic gating pore currents. SIGNIFICANCE Overall, our data suggest that, in addition to the regulation of high-frequency firing, KV 3.1 channels play a hitherto unrecognized role in neuronal development. MEAK may be described as a developmental dendritopathy.
Collapse
Affiliation(s)
- Jenna C. Carpenter
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Roope Männikkö
- Department of Neuromuscular DiseasesUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Catherine Heffner
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Jana Heneine
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Marisol Sampedro‐Castañeda
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Gabriele Lignani
- Department of Clinical and Experimental EpilepsyUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Stephanie Schorge
- Department of PharmacologyUniversity College London School of PharmacyLondonUK
| |
Collapse
|
9
|
Tang BL. Defects in early secretory pathway transport machinery components and neurodevelopmental disorders. Rev Neurosci 2021; 32:851-869. [PMID: 33781010 DOI: 10.1515/revneuro-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The early secretory pathway, provisionally comprising of vesicular traffic between the endoplasmic reticulum (ER) and the Golgi apparatus, occurs constitutively in mammalian cells. Critical for a constant supply of secretory and plasma membrane (PM) materials, the pathway is presumably essential for general cellular function and survival. Neurons exhibit a high intensity in membrane dynamics and protein/lipid trafficking, with differential and polarized trafficking towards the somatodendritic and axonal PM domains. Mutations in genes encoding early secretory pathway membrane trafficking machinery components are known to result in neurodevelopmental or neurological disorders with disease manifestation in early life. Here, such rare disorders associated with autosomal recessive mutations in coat proteins, membrane tethering complexes and membrane fusion machineries responsible for trafficking in the early secretory pathway are summarily discussed. These mutations affected genes encoding subunits of coat protein complex I and II, subunits of transport protein particle (TRAPP) complexes, members of the YIP1 domain family (YIPF) and a SNAP receptor (SNARE) family member. Why the ubiquitously present and constitutively acting early secretory pathway machinery components could specifically affect neurodevelopment is addressed, with the plausible underlying disease etiologies and neuropathological mechanisms resulting from these mutations explored.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore117597, Singapore
| |
Collapse
|
10
|
Abstract
Alten et al. present a detailed investigation of disease-causing SNAP25 mutations based on structural analysis, neurotransmitter release, and emerging circuit properties. They show that structurally clustered mutations within the SNAP25 SNARE motif cause similar functional defects and predict that alterations of spontaneous release are a novel disease mechanism.
Collapse
|
11
|
Abstract
One in three epilepsy cases is drug resistant, and seizures often begin in infancy, when they are life-threatening and when therapeutic options are highly limited. An important tool for prioritizing and validating genes associated with epileptic conditions, which is suitable for large-scale screening, is disease modeling in Drosophila. Approximately two-thirds of disease genes are conserved in Drosophila, and gene-specific fly models exhibit behavioral changes that are related to symptoms of epilepsy. Models are based on behavior readouts, seizure-like attacks and paralysis following stimulation, and neuronal, cell-biological readouts that are in the majority based on changes in nerve cell activity or morphology. In this review, we focus on behavioral phenotypes. Importantly, Drosophila modeling is independent of, and complementary to, other approaches that are computational and based on systems analysis. The large number of known epilepsy-associated gene variants indicates a need for efficient research strategies. We will discuss the status quo of epilepsy disease modelling in Drosophila and describe promising steps towards the development of new drugs to reduce seizure rates and alleviate other epileptic symptoms.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Kevin Lüthy
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
12
|
Appunni S, Rubens M, Ramamoorthy V, Sharma H, Singh AK, Swarup V, Singh HN. Differentially Expressed Genes and Their Clinical Significance in Ischaemic Stroke: An In-Silico Study. Malays J Med Sci 2021; 27:53-67. [PMID: 33447134 PMCID: PMC7785266 DOI: 10.21315/mjms2020.27.6.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ischaemic stroke (IS), a multifactorial neurological disorder, is mediated by interplay between genes and the environment and, thus, blood-based IS biomarkers are of significant clinical value. Therefore, this study aimed to find global differentially expressed genes (DEGs) in-silico, to identify key enriched genes via gene set enrichment analysis (GSEA) and to determine the clinical significance of these genes in IS. Methods Microarray expression dataset GSE22255 was retrieved from the Gene Expression Omnibus (GEO) database. It includes messenger ribonucleic acid (mRNA) expression data for the peripheral blood mononuclear cells of 20 controls and 20 IS patients. The bioconductor-package ‘affy’ was used to calculate expression and a pairwise t-test was applied to screen DEGs (P < 0.01). Further, GSEA was used to determine the enrichment of DEGs specific to gene ontology (GO) annotations. Results GSEA analysis revealed 21 genes to be significantly plausible gene markers, enriched in multiple pathways among all the DEGs (n = 881). Ten gene sets were found to be core enriched in specific GO annotations. JunD, NCX3 and fibroblast growth factor receptor 4 (FGFR4) were under-represented and glycoprotein M6-B (GPM6B) was persistently over-represented. Conclusion The identified genes are either associated with the pathophysiology of IS or they affect post-IS neuronal regeneration, thereby influencing clinical outcome. These genes should, therefore, be evaluated for their utility as suitable markers for predicting IS in clinical scenarios.
Collapse
Affiliation(s)
| | | | | | - Hina Sharma
- National Network of Depression Centers India Foundation, New Delhi, India
| | | | - Vishnu Swarup
- All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
13
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
14
|
Turner TJ, Zourray C, Schorge S, Lignani G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J Neurochem 2020; 157:229-262. [PMID: 32880951 PMCID: PMC8436749 DOI: 10.1111/jnc.15168] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorders can be caused by mutations in neuronal genes fundamental to brain development. These disorders have severe symptoms ranging from intellectually disability, social and cognitive impairments, and a subset are strongly linked with epilepsy. In this review, we focus on those neurodevelopmental disorders that are frequently characterized by the presence of epilepsy (NDD + E). We loosely group the genes linked to NDD + E with different neuronal functions: transcriptional regulation, intrinsic excitability and synaptic transmission. All these genes have in common a pivotal role in defining the brain architecture and function during early development, and when their function is altered, symptoms can present in the first stages of human life. The relationship with epilepsy is complex. In some NDD + E, epilepsy is a comorbidity and in others seizures appear to be the main cause of the pathology, suggesting that either structural changes (NDD) or neuronal communication (E) can lead to these disorders. Furthermore, grouping the genes that cause NDD + E, we review the uses and limitations of current models of the different disorders, and how different gene therapy strategies are being developed to treat them. We highlight where gene replacement may not be a treatment option, and where innovative therapeutic tools, such as CRISPR‐based gene editing, and new avenues of delivery are required. In general this group of genetically defined disorders, supported increasing knowledge of the mechanisms leading to neurological dysfunction serve as an excellent collection for illustrating the translational potential of gene therapy, including newly emerging tools.
Collapse
Affiliation(s)
- Thomas J Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Department of Pharmacology, UCL School of Pharmacy, London, UK
| | | | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
15
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Takai A, Yamaguchi M, Yoshida H, Chiyonobu T. Investigating Developmental and Epileptic Encephalopathy Using Drosophila melanogaster. Int J Mol Sci 2020; 21:ijms21176442. [PMID: 32899411 PMCID: PMC7503973 DOI: 10.3390/ijms21176442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are the spectrum of severe epilepsies characterized by early-onset, refractory seizures occurring in the context of developmental regression or plateauing. Early infantile epileptic encephalopathy (EIEE) is one of the earliest forms of DEE, manifesting as frequent epileptic spasms and characteristic electroencephalogram findings in early infancy. In recent years, next-generation sequencing approaches have identified a number of monogenic determinants underlying DEE. In the case of EIEE, 85 genes have been registered in Online Mendelian Inheritance in Man as causative genes. Model organisms are indispensable tools for understanding the in vivo roles of the newly identified causative genes. In this review, we first present an overview of epilepsy and its genetic etiology, especially focusing on EIEE and then briefly summarize epilepsy research using animal and patient-derived induced pluripotent stem cell (iPSC) models. The Drosophila model, which is characterized by easy gene manipulation, a short generation time, low cost and fewer ethical restrictions when designing experiments, is optimal for understanding the genetics of DEE. We therefore highlight studies with Drosophila models for EIEE and discuss the future development of their practical use.
Collapse
Affiliation(s)
- Akari Takai
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; (M.Y.); (H.Y.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Kyoto 619-0237, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; (M.Y.); (H.Y.)
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
- Correspondence:
| |
Collapse
|
17
|
Genetic and functional insights into the fractal structure of the heart. Nature 2020; 584:589-594. [PMID: 32814899 DOI: 10.1038/s41586-020-2635-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2020] [Indexed: 01/06/2023]
Abstract
The inner surfaces of the human heart are covered by a complex network of muscular strands that is thought to be a remnant of embryonic development1,2. The function of these trabeculae in adults and their genetic architecture are unknown. Here we performed a genome-wide association study to investigate image-derived phenotypes of trabeculae using the fractal analysis of trabecular morphology in 18,096 participants of the UK Biobank. We identified 16 significant loci that contain genes associated with haemodynamic phenotypes and regulation of cytoskeletal arborization3,4. Using biomechanical simulations and observational data from human participants, we demonstrate that trabecular morphology is an important determinant of cardiac performance. Through genetic association studies with cardiac disease phenotypes and Mendelian randomization, we find a causal relationship between trabecular morphology and risk of cardiovascular disease. These findings suggest a previously unknown role for myocardial trabeculae in the function of the adult heart, identify conserved pathways that regulate structural complexity and reveal the influence of the myocardial trabeculae on susceptibility to cardiovascular disease.
Collapse
|
18
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
19
|
Jain Goyal M, Zhao X, Bozhinova M, Andrade-López K, de Heus C, Schulze-Dramac S, Müller-McNicoll M, Klumperman J, Béthune J. A paralog-specific role of COPI vesicles in the neuronal differentiation of mouse pluripotent cells. Life Sci Alliance 2020; 3:3/9/e202000714. [PMID: 32665377 PMCID: PMC7368096 DOI: 10.26508/lsa.202000714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/03/2022] Open
Abstract
The paralogous COPI coat subunit γ1-COP plays a unique role in promoting neurite outgrowth during the neuronal differentiation of mouse pluripotent cells. Coat protein complex I (COPI)–coated vesicles mediate membrane trafficking between Golgi cisternae as well as retrieval of proteins from the Golgi to the endoplasmic reticulum. There are several flavors of the COPI coat defined by paralogous subunits of the protein complex coatomer. However, whether paralogous COPI proteins have specific functions is currently unknown. Here, we show that the paralogous coatomer subunits γ1-COP and γ2-COP are differentially expressed during the neuronal differentiation of mouse pluripotent cells. Moreover, through a combination of genome editing experiments, we demonstrate that whereas γ-COP paralogs are largely functionally redundant, γ1-COP specifically promotes neurite outgrowth. Our work stresses a role of the COPI pathway in neuronal polarization and provides evidence for distinct functions for coatomer paralogous subunits in this process.
Collapse
Affiliation(s)
- Manu Jain Goyal
- Junior Research Group, Cluster of Excellence CellNetworks, Heidelberg, Germany.,Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Xiyan Zhao
- Junior Research Group, Cluster of Excellence CellNetworks, Heidelberg, Germany.,Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Mariya Bozhinova
- Junior Research Group, Cluster of Excellence CellNetworks, Heidelberg, Germany.,Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Karla Andrade-López
- Junior Research Group, Cluster of Excellence CellNetworks, Heidelberg, Germany.,Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Cecilia de Heus
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandra Schulze-Dramac
- RNA Regulation Group, Cluster of Excellence "Macromolecular Complexes," Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence "Macromolecular Complexes," Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Julien Béthune
- Junior Research Group, Cluster of Excellence CellNetworks, Heidelberg, Germany .,Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
20
|
Linders PTA, Peters E, ter Beest M, Lefeber DJ, van den Bogaart G. Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. Int J Mol Sci 2020; 21:E4654. [PMID: 32629928 PMCID: PMC7369703 DOI: 10.3390/ijms21134654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosylation is an important post-translational modification for both intracellular and secreted proteins. For glycosylation to occur, cargo must be transported after synthesis through the different compartments of the Golgi apparatus where distinct monosaccharides are sequentially bound and trimmed, resulting in increasingly complex branched glycan structures. Of utmost importance for this process is the intraorganellar environment of the Golgi. Each Golgi compartment has a distinct pH, which is maintained by the vacuolar H+-ATPase (V-ATPase). Moreover, tethering factors such as Golgins and the conserved oligomeric Golgi (COG) complex, in concert with coatomer (COPI) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion, efficiently deliver glycosylation enzymes to the right Golgi compartment. Together, these factors maintain intra-Golgi trafficking of proteins involved in glycosylation and thereby enable proper glycosylation. However, pathogenic mutations in these factors can cause defective glycosylation and lead to diseases with a wide variety of symptoms such as liver dysfunction and skin and bone disorders. Collectively, this group of disorders is known as congenital disorders of glycosylation (CDG). Recent technological advances have enabled the robust identification of novel CDGs related to membrane trafficking components. In this review, we highlight differences and similarities between membrane trafficking-related CDGs.
Collapse
Affiliation(s)
- Peter T. A. Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Ella Peters
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Martin ter Beest
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
| | - Dirk J. Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands; (P.T.A.L.); (E.P.); (M.t.B.)
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
21
|
Polet SS, Anderson DG, Koens LH, van Egmond ME, Drost G, Brusse E, Willemsen MA, Sival DA, Brouwer OF, Kremer HP, de Vries JJ, Tijssen MA, de Koning TJ. A detailed description of the phenotypic spectrum of North Sea Progressive Myoclonus Epilepsy in a large cohort of seventeen patients. Parkinsonism Relat Disord 2020; 72:44-48. [PMID: 32105965 DOI: 10.1016/j.parkreldis.2020.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION In 2011, a homozygous mutation in GOSR2 (c.430G > T; p. Gly144Trp) was reported as a novel cause of Progressive Myoclonus Epilepsy (PME) with early-onset ataxia. Interestingly, the ancestors of patients originate from countries bound to the North Sea, hence the condition was termed North Sea PME (NSPME). Until now, only 20 patients have been reported in literature. Here, we provide a detailed description of clinical and neurophysiological data of seventeen patients. METHODS We collected clinical and neurophysiological data from the medical records of seventeen NSPME patients (5-46 years). In addition, we conducted an interview focused on factors influencing myoclonus severity. RESULTS The core clinical features of NSPME are early-onset ataxia, myoclonus and seizures, with additionally areflexia and scoliosis. Factors such as fever, illness, heat, emotions, stress, noise and light (flashes) all exacerbated myoclonic jerks. Epilepsy severity ranged from the absence of or incidental clinical seizures to frequent daily seizures and status epilepticus. Some patients made use of a wheelchair during their first decade, whereas others still walked independently during their third decade. Neurophysiological features suggesting neuromuscular involvement in NSPME were variable, with findings ranging from indicative of sensory neuronopathy and anterior horn cell involvement to an isolated absent H-reflex. CONCLUSION Although the sequence of symptoms is rather homogeneous, the severity of symptoms and rate of progression varied considerably among individual patients. Common triggers for myoclonus can be identified and myoclonus is difficult to treat; to what extent neuromuscular involvement contributes to the phenotype remains to be further elucidated.
Collapse
Affiliation(s)
- Sjoukje S Polet
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - David G Anderson
- Department of Neurology, University of the Witwatersrand, University of the Witwatersrand Donald Gordon Medical Center, 18 Eton Road, Parktown, Johannesburg, South Africa; Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, The University of the Witwatersrand, Johannesburg, South Africa
| | - Lisette H Koens
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Martje E van Egmond
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Gea Drost
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Esther Brusse
- Department of Neurology, Erasmus University Medical Center Rotterdam, Doctor Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Michèl Aap Willemsen
- Department of Pediatric Neurology, Radboud University Nijmegen, Radboud University Medical Center Nijmegen, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Deborah A Sival
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Oebele F Brouwer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Hubertus Ph Kremer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Marina Aj Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Tom J de Koning
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Pediatrics, Department of Clinical Sciences, Lund University, Sweden.
| |
Collapse
|
22
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
23
|
Lambrechts RA, Polet SS, Hernandez-Pichardo A, van Ninhuys L, Gorter JA, Grzeschik NA, de Koning-Tijssen MAJ, de Koning TJ, Sibon OCM. North Sea Progressive Myoclonus Epilepsy is Exacerbated by Heat, A Phenotype Primarily Associated with Affected Glia. Neuroscience 2019; 423:1-11. [PMID: 31682953 DOI: 10.1016/j.neuroscience.2019.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
Progressive myoclonic epilepsies (PMEs) comprise a group of rare disorders of different genetic aetiologies, leading to childhood-onset myoclonus, myoclonic seizures and subsequent neurological decline. One of the genetic causes for PME, a mutation in the gene coding for Golgi SNAP receptor 2 (GOSR2), gives rise to a PME-subtype prevalent in Northern Europe and hence referred to as North Sea Progressive Myoclonic Epilepsy (NS-PME). Treatment for NS-PME, as for all PME subtypes, is symptomatic; the pathophysiology of NS-PME is currently unknown, precluding targeted therapy. Here, we investigated the pathophysiology of NS-PME. By means of chart review in combination with interviews with patients (n = 14), we found heat to be an exacerbating factor for a majority of NS-PME patients (86%). To substantiate these findings, we designed a NS-PME Drosophila melanogaster model. Downregulation of the Drosophila GOSR2-orthologue Membrin leads to heat-induced seizure-like behaviour. Specific downregulation of GOSR2/Membrin in glia but not in neuronal cells resulted in a similar phenotype, which was progressive as the flies aged and was partially responsive to treatment with sodium barbital. Our data suggest a role for GOSR2 in glia in the pathophysiology of NS-PME.
Collapse
Affiliation(s)
- Roald A Lambrechts
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sjoukje S Polet
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alejandra Hernandez-Pichardo
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lisa van Ninhuys
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jenke A Gorter
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nicola A Grzeschik
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marina A J de Koning-Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Tom J de Koning
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ody C M Sibon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
24
|
Ruhl DA, Bomba-Warczak E, Watson ET, Bradberry MM, Peterson TA, Basu T, Frelka A, Evans CS, Briguglio JS, Basta T, Stowell MHB, Savas JN, Roopra A, Pearce RA, Piper RC, Chapman ER. Synaptotagmin 17 controls neurite outgrowth and synaptic physiology via distinct cellular pathways. Nat Commun 2019; 10:3532. [PMID: 31387992 PMCID: PMC6684635 DOI: 10.1038/s41467-019-11459-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/13/2019] [Indexed: 12/28/2022] Open
Abstract
The synaptotagmin (syt) proteins have been widely studied for their role in regulating fusion of intracellular vesicles with the plasma membrane. Here we report that syt-17, an unusual isoform of unknown function, plays no role in exocytosis, and instead plays multiple roles in intracellular membrane trafficking. Syt-17 is localized to the Golgi complex in hippocampal neurons, where it coordinates import of vesicles from the endoplasmic reticulum to support neurite outgrowth and facilitate axon regrowth after injury. Further, we discovered a second pool of syt-17 on early endosomes in neurites. Loss of syt-17 disrupts endocytic trafficking, resulting in the accumulation of excess postsynaptic AMPA receptors and defective synaptic plasticity. Two distinct pools of syt-17 thus control two crucial, independent membrane trafficking pathways in neurons. Function of syt-17 appears to be one mechanism by which neurons have specialized their secretory and endosomal systems to support the demands of synaptic communication over sprawling neurite arbors. The functional role of synaptotagmin-17 (syt-17) has remained unanswered. In this study, authors demonstrate that syt-17 exists in two distinct pools in hippocampal neurons (Golgi complex and early endosomes), where it served two completely independent functions: controlling neurite outgrowth and synaptic physiology
Collapse
Affiliation(s)
- David A Ruhl
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Ewa Bomba-Warczak
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Emma T Watson
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Mazdak M Bradberry
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Tabitha A Peterson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Trina Basu
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Alyssa Frelka
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 53706, USA
| | - Chantell S Evans
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph S Briguglio
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Tamara Basta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin, Madison, WI, 53706, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
25
|
Jepson JEC, Praschberger R, Krishnakumar SS. Mechanisms of Neurological Dysfunction in GOSR2 Progressive Myoclonus Epilepsy, a Golgi SNAREopathy. Neuroscience 2019; 420:41-49. [PMID: 30954670 DOI: 10.1016/j.neuroscience.2019.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Successive fusion events between transport vesicles and their target membranes mediate trafficking of secreted, membrane- and organelle-localised proteins. During the initial steps of this process, termed the secretory pathway, COPII vesicles bud from the endoplasmic reticulum (ER) and fuse with the cis-Golgi membrane, thus depositing their cargo. This fusion step is driven by a quartet of SNARE proteins that includes the cis-Golgi t-SNARE Membrin, encoded by the GOSR2 gene. Mis-sense mutations in GOSR2 result in Progressive Myoclonus Epilepsy (PME), a severe neurological disorder characterised by ataxia, myoclonus and seizures in the absence of significant cognitive impairment. However, given the ubiquitous and essential function of ER-to-Golgi transport, why GOSR2 mutations cause neurological dysfunction and not lethality or a broader range of developmental defects has remained an enigma. Here we highlight new work that has shed light on this issue and incorporate insights into canonical and non-canonical secretory trafficking pathways in neurons to speculate as to the cellular and molecular mechanisms underlying GOSR2 PME. This article is part of a Special Issue entitled: SNARE proteins: a long journey of science in brain physiology and pathology: from molecular.
Collapse
Affiliation(s)
- James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK.
| | - Roman Praschberger
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Shyam S Krishnakumar
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK; Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
26
|
Eidhof I, Baets J, Kamsteeg EJ, Deconinck T, van Ninhuijs L, Martin JJ, Schüle R, Züchner S, De Jonghe P, Schenck A, van de Warrenburg BP. GDAP2 mutations implicate susceptibility to cellular stress in a new form of cerebellar ataxia. Brain 2018; 141:2592-2604. [PMID: 30084953 PMCID: PMC7534050 DOI: 10.1093/brain/awy198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/09/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Autosomal recessive cerebellar ataxias are a group of rare disorders that share progressive degeneration of the cerebellum and associated tracts as the main hallmark. Here, we report two unrelated patients with a new subtype of autosomal recessive cerebellar ataxia caused by biallelic, gene-disruptive mutations in GDAP2, a gene previously not implicated in disease. Both patients had onset of ataxia in the fourth decade. Other features included progressive spasticity and dementia. Neuropathological examination showed degenerative changes in the cerebellum, olive inferior, thalamus, substantia nigra, and pyramidal tracts, as well as tau pathology in the hippocampus and amygdala. To provide further evidence for a causative role of GDAP2 mutations in autosomal recessive cerebellar ataxia pathophysiology, its orthologous gene was investigated in the fruit fly Drosophila melanogaster. Ubiquitous knockdown of Drosophila Gdap2 resulted in shortened lifespan and motor behaviour anomalies such as righting defects, reduced and uncoordinated walking behaviour, and compromised flight. Gdap2 expression levels responded to stress treatments in control flies, and Gdap2 knockdown flies showed increased sensitivity to deleterious effects of stressors such as reactive oxygen species and nutrient deprivation. Thus, Gdap2 knockdown in Drosophila and GDAP2 loss-of-function mutations in humans lead to locomotor phenotypes, which may be mediated by altered responses to cellular stress.
Collapse
Affiliation(s)
- Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, GA Nijmegen, The Netherlands
| | - Jonathan Baets
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, GA Nijmegen, The Netherlands
| | - Tine Deconinck
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Lisa van Ninhuijs
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, GA Nijmegen, The Netherlands
| | | | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics, Miami, USA
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, USA
| | - Peter De Jonghe
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, GA Nijmegen, The Netherlands
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, GC Nijmegen, The Netherlands
| |
Collapse
|