1
|
Caya-Bissonnette L, Béïque JC. Half a century legacy of long-term potentiation. Curr Biol 2024; 34:R640-R662. [PMID: 38981433 DOI: 10.1016/j.cub.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
In 1973, two papers from Bliss and Lømo and from Bliss and Gardner-Medwin reported that high-frequency synaptic stimulation in the dentate gyrus of rabbits resulted in a long-lasting increase in synaptic strength. This form of synaptic plasticity, commonly referred to as long-term potentiation (LTP), was immediately considered as an attractive mechanism accounting for the ability of the brain to store information. In this historical piece looking back over the past 50 years, we discuss how these two landmark contributions directly motivated a colossal research effort and detail some of the resulting milestones that have shaped our evolving understanding of the molecular and cellular underpinnings of LTP. We highlight the main features of LTP, cover key experiments that defined its induction and expression mechanisms, and outline the evidence supporting a potential role of LTP in learning and memory. We also briefly explore some ramifications of LTP on network stability, consider current limitations of LTP as a model of associative memory, and entertain future research orientations.
Collapse
Affiliation(s)
- Léa Caya-Bissonnette
- Graduate Program in Neuroscience, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
2
|
Vazquez-Juarez E, Srivastava I, Lindskog M. The effect of ketamine on synaptic mistuning induced by impaired glutamate reuptake. Neuropsychopharmacology 2023; 48:1859-1868. [PMID: 37301901 PMCID: PMC10584870 DOI: 10.1038/s41386-023-01617-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Mistuning of synaptic transmission has been proposed to underlie many psychiatric disorders, with decreased reuptake of the excitatory neurotransmitter glutamate as one contributing factor. Synaptic tuning occurs through several diverging and converging forms of plasticity. By recording evoked field postsynaptic potentials in the CA1 area in hippocampal slices, we found that inhibiting glutamate transporters using DL-TBOA causes retuning of synaptic transmission, resulting in a new steady state with reduced synaptic strength and a lower threshold for inducing long-term synaptic potentiation (LTP). Moreover, a similar reduced threshold for LTP was observed in a rat model of depression with decreased levels of glutamate transporters. Most importantly, we found that the antidepressant ketamine counteracts the effects of increased glutamate on the various steps involved in synaptic retuning. We, therefore, propose that ketamine's mechanism of action as an antidepressant is to restore adequate synaptic tuning.
Collapse
Affiliation(s)
- Erika Vazquez-Juarez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ipsit Srivastava
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Medical Cell Biology, Uppsala University, 751 24, Uppsala, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Department of Medical Cell Biology, Uppsala University, 751 24, Uppsala, Sweden.
| |
Collapse
|
3
|
Ma S, Li Z, Gong S, Lu C, Li X, Li Y. High Frequency Electromagnetic Radiation Stimulates Neuronal Growth and Hippocampal Synaptic Transmission. Brain Sci 2023; 13:brainsci13040686. [PMID: 37190651 DOI: 10.3390/brainsci13040686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Terahertz waves lie within the rotation and oscillation energy levels of biomolecules, and can directly couple with biomolecules to excite nonlinear resonance effects, thus causing conformational or configuration changes in biomolecules. Based on this mechanism, we investigated the effect pattern of 0.138 THz radiation on the dynamic growth of neurons and synaptic transmission efficiency, while explaining the phenomenon at a more microscopic level. We found that cumulative 0.138 THz radiation not only did not cause neuronal death, but that it promoted the dynamic growth of neuronal cytosol and protrusions. Additionally, there was a cumulative effect of terahertz radiation on the promotion of neuronal growth. Furthermore, in electrophysiological terms, 0.138 THz waves improved synaptic transmission efficiency in the hippocampal CA1 region, and this was a slow and continuous process. This is consistent with the morphological results. This phenomenon can continue for more than 10 min after terahertz radiation ends, and these phenomena were associated with an increase in dendritic spine density. In summary, our study shows that 0.138 THz waves can modulate dynamic neuronal growth and synaptic transmission. Therefore, 0.138 terahertz waves may become a novel neuromodulation technique for modulating neuron structure and function.
Collapse
Affiliation(s)
- Shaoqing Ma
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
| | - Zhiwei Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shixiang Gong
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
| | - Chengbiao Lu
- Henan International Key Laboratory for Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yingwei Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao 066004, China
| |
Collapse
|
4
|
Dubes S, Soula A, Benquet S, Tessier B, Poujol C, Favereaux A, Thoumine O, Letellier M. miR
‐124‐dependent tagging of synapses by synaptopodin enables input‐specific homeostatic plasticity. EMBO J 2022; 41:e109012. [PMID: 35875872 PMCID: PMC9574720 DOI: 10.15252/embj.2021109012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 12/26/2022] Open
Abstract
Homeostatic synaptic plasticity is a process by which neurons adjust their synaptic strength to compensate for perturbations in neuronal activity. Whether the highly diverse synapses on a neuron respond uniformly to the same perturbation remains unclear. Moreover, the molecular determinants that underlie synapse‐specific homeostatic synaptic plasticity are unknown. Here, we report a synaptic tagging mechanism in which the ability of individual synapses to increase their strength in response to activity deprivation depends on the local expression of the spine‐apparatus protein synaptopodin under the regulation of miR‐124. Using genetic manipulations to alter synaptopodin expression or regulation by miR‐124, we show that synaptopodin behaves as a “postsynaptic tag” whose translation is derepressed in a subpopulation of synapses and allows for nonuniform homeostatic strengthening and synaptic AMPA receptor stabilization. By genetically silencing individual connections in pairs of neurons, we demonstrate that this process operates in an input‐specific manner. Overall, our study shifts the current view that homeostatic synaptic plasticity affects all synapses uniformly to a more complex paradigm where the ability of individual synapses to undergo homeostatic changes depends on their own functional and biochemical state.
Collapse
Affiliation(s)
- Sandra Dubes
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Anaïs Soula
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Sébastien Benquet
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Béatrice Tessier
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Christel Poujol
- University of Bordeaux CNRS INSERM Bordeaux Imaging Center BIC UMS 3420, US 4 Bordeaux France
| | - Alexandre Favereaux
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Olivier Thoumine
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Mathieu Letellier
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| |
Collapse
|
5
|
Hao Y, Plested AJ. Seeing glutamate at central synapses. J Neurosci Methods 2022; 375:109531. [DOI: 10.1016/j.jneumeth.2022.109531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
|
6
|
Chronic neuronal excitation leads to dual metaplasticity in the signaling for structural long-term potentiation. Cell Rep 2022; 38:110153. [PMID: 34986356 DOI: 10.1016/j.celrep.2021.110153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Synaptic plasticity is long-lasting changes in synaptic currents and structure. When neurons are exposed to signals that induce aberrant neuronal excitation, they increase the threshold for the induction of long-term potentiation (LTP), known as metaplasticity. However, the metaplastic regulation of structural LTP (sLTP) remains unclear. We investigate glutamate uncaging/photoactivatable (pa)CaMKII-dependent sLTP induction in hippocampal CA1 neurons after chronic neuronal excitation by GABAA receptor antagonists. We find that the neuronal excitation decreases the glutamate uncaging-evoked Ca2+ influx mediated by GluN2B-containing NMDA receptors and suppresses sLTP induction. In addition, single-spine optogenetic stimulation using paCaMKII indicates the suppression of CaMKII signaling. While the inhibition of Ca2+ influx is protein synthesis independent, the paCaMKII-induced sLTP suppression depends on it. Our findings demonstrate that chronic neuronal excitation suppresses sLTP in two independent ways (i.e., dual inhibition of Ca2+ influx and CaMKII signaling). This dual inhibition mechanism may contribute to robust neuronal protection in excitable environments.
Collapse
|
7
|
Gao WJ, Yang SS, Mack NR, Chamberlin LA. Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry 2022; 27:731-743. [PMID: 34163013 PMCID: PMC8695640 DOI: 10.1038/s41380-021-01196-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.
Collapse
Affiliation(s)
- Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Nancy R Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Linda A Chamberlin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| |
Collapse
|
8
|
Adoff MD, Climer JR, Davoudi H, Marvin JS, Looger LL, Dombeck DA. The functional organization of excitatory synaptic input to place cells. Nat Commun 2021; 12:3558. [PMID: 34117238 PMCID: PMC8196201 DOI: 10.1038/s41467-021-23829-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Hippocampal place cells contribute to mammalian spatial navigation and memory formation. Numerous models have been proposed to explain the location-specific firing of this cognitive representation, but the pattern of excitatory synaptic input leading to place firing is unknown, leaving no synaptic-scale explanation of place coding. Here we used resonant scanning two-photon microscopy to establish the pattern of synaptic glutamate input received by CA1 place cells in behaving mice. During traversals of the somatic place field, we found increased excitatory dendritic input, mainly arising from inputs with spatial tuning overlapping the somatic field, and functional clustering of this input along the dendrites over ~10 µm. These results implicate increases in total excitatory input and co-activation of anatomically clustered synaptic input in place firing. Since they largely inherit their fields from upstream synaptic partners with similar fields, many CA1 place cells appear to be part of multi-brain-region cell assemblies forming representations of specific locations.
Collapse
Affiliation(s)
- Michael D Adoff
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Jason R Climer
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Heydar Davoudi
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
9
|
Brymer KJ, Barnes JR, Parsons MP. Entering a new era of quantifying glutamate clearance in health and disease. J Neurosci Res 2021; 99:1598-1617. [PMID: 33618436 DOI: 10.1002/jnr.24810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Glutamate transporter proteins, expressed on both neurons and glia, serve as the main gatekeepers that dictate the spatial and temporal actions of extracellular glutamate. Glutamate is essential to the function of the healthy brain yet paradoxically contributes to the toxicity associated with many neurodegenerative diseases. Rapid transporter-mediated glutamate uptake, primarily occurring at astrocytic processes, tightens the efficiency of excitatory network activity and prevents toxic glutamate build-up in the extracellular space. Glutamate transporter dysfunction is thought to underlie myriad central nervous system (CNS) diseases including Alzheimer and Huntington disease. Over the past few decades, techniques such as biochemical uptake assays and electrophysiological recordings of transporter currents from individual astrocytes have revealed the remarkable ability of the CNS to efficiently clear extracellular glutamate. In more recent years, the rapidly evolving glutamate-sensing "sniffers" now allow researchers to visualize real-time glutamate transients on a millisecond time scale with single synapse spatial resolution in defined cell populations. As we transition to an increased reliance on optical-based methods of glutamate visualization and quantification, it is of utmost importance to understand not only the advantages that glutamate biosensors bring to the table but also the associated caveats and their implications for data interpretation. In this review, we summarize the strengths and limitations of the commonly used methods to quantify glutamate uptake. We then discuss what these techniques, when viewed as a complementary whole, have told us about the brain's ability to regulate glutamate levels, in both health and in the context of neurodegenerative disease.
Collapse
Affiliation(s)
- Kyle J Brymer
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jocelyn R Barnes
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew P Parsons
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
10
|
Glutamatergic Dysfunction and Synaptic Ultrastructural Alterations in Schizophrenia and Autism Spectrum Disorder: Evidence from Human and Rodent Studies. Int J Mol Sci 2020; 22:ijms22010059. [PMID: 33374598 PMCID: PMC7793137 DOI: 10.3390/ijms22010059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The correlation between dysfunction in the glutamatergic system and neuropsychiatric disorders, including schizophrenia and autism spectrum disorder, is undisputed. Both disorders are associated with molecular and ultrastructural alterations that affect synaptic plasticity and thus the molecular and physiological basis of learning and memory. Altered synaptic plasticity, accompanied by changes in protein synthesis and trafficking of postsynaptic proteins, as well as structural modifications of excitatory synapses, are critically involved in the postnatal development of the mammalian nervous system. In this review, we summarize glutamatergic alterations and ultrastructural changes in synapses in schizophrenia and autism spectrum disorder of genetic or drug-related origin, and briefly comment on the possible reversibility of these neuropsychiatric disorders in the light of findings in regular synaptic physiology.
Collapse
|
11
|
Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package. STAR Protoc 2020; 1:100176. [PMID: 33377070 PMCID: PMC7757407 DOI: 10.1016/j.xpro.2020.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The proportion of silent (AMPAR-lacking) synapses is thought to be related to the plasticity potential of neural networks. We created a maximum-likelihood estimator of silent synapse fraction based on simulations of the underlying experimental methodology. Here, we provide a set of guidelines for running a Python package on compatible experimental synaptic data. Compared with traditional failure-rate approaches, this synthetic likelihood estimator improves the validity and accuracy of the estimates of the silent synapse fraction. For complete details on the use and execution of this protocol, please refer to Lynn et al. (2020). Guidelines for acquiring failure-rate data and parsing successes/failures Simple installation guide for the SilentMLE package Initializing experimentally constrained estimators of the silent synapse fraction Expected results and interpretation of estimator output
Collapse
|
12
|
Wu YK, Hengen KB, Turrigiano GG, Gjorgjieva J. Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics. Proc Natl Acad Sci U S A 2020; 117:24514-24525. [PMID: 32917810 PMCID: PMC7533694 DOI: 10.1073/pnas.1918368117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 08/04/2020] [Indexed: 11/18/2022] Open
Abstract
Homeostasis is indispensable to counteract the destabilizing effects of Hebbian plasticity. Although it is commonly assumed that homeostasis modulates synaptic strength, membrane excitability, and firing rates, its role at the neural circuit and network level is unknown. Here, we identify changes in higher-order network properties of freely behaving rodents during prolonged visual deprivation. Strikingly, our data reveal that functional pairwise correlations and their structure are subject to homeostatic regulation. Using a computational model, we demonstrate that the interplay of different plasticity and homeostatic mechanisms can capture the initial drop and delayed recovery of firing rates and correlations observed experimentally. Moreover, our model indicates that synaptic scaling is crucial for the recovery of correlations and network structure, while intrinsic plasticity is essential for the rebound of firing rates, suggesting that synaptic scaling and intrinsic plasticity can serve distinct functions in homeostatically regulating network dynamics.
Collapse
Affiliation(s)
- Yue Kris Wu
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Keith B Hengen
- Department of Biology, Brandeis University, Waltham, MA 02454
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | | | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany;
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
13
|
Local Design Principles at Hippocampal Synapses Revealed by an Energy-Information Trade-Off. eNeuro 2020; 7:ENEURO.0521-19.2020. [PMID: 32847867 PMCID: PMC7540928 DOI: 10.1523/eneuro.0521-19.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/01/2022] Open
Abstract
Synapses across different brain regions display distinct structure-function relationships. We investigated the interplay of fundamental design constraints that shape the transmission properties of the excitatory CA3-CA1 pyramidal cell connection, a prototypic synapse for studying the mechanisms of learning in the mammalian hippocampus. This small synapse is characterized by probabilistic release of transmitter, which is markedly facilitated in response to naturally occurring trains of action potentials. Based on a physiologically motivated computational model of the rat CA3 presynaptic terminal, we show how unreliability and short-term dynamics of vesicular release work together to regulate the trade-off of information transfer versus energy use. We propose that individual CA3-CA1 synapses are designed to operate near the maximum possible capacity of information transmission in an efficient manner. Experimental measurements reveal a wide range of vesicular release probabilities at hippocampal synapses, which may be a necessary consequence of long-term plasticity and homeostatic mechanisms that manifest as presynaptic modifications of the release probability. We show that the timescales and magnitude of short-term plasticity (STP) render synaptic information transfer nearly independent of differences in release probability. Thus, individual synapses transmit optimally while maintaining a heterogeneous distribution of presynaptic strengths indicative of synaptically-encoded memory representations. Our results support the view that organizing principles that are evident on higher scales of neural organization percolate down to the design of an individual synapse.
Collapse
|
14
|
Lynn MB, Lee KFH, Soares C, Naud R, Béïque JC. A Synthetic Likelihood Solution to the Silent Synapse Estimation Problem. Cell Rep 2020; 32:107916. [PMID: 32697998 DOI: 10.1016/j.celrep.2020.107916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
Functional features of synaptic populations are typically inferred from random electrophysiological sampling of small subsets of synapses. Are these samples unbiased? Here, we develop a biophysically constrained statistical framework to address this question and apply it to assess the performance of a widely used method based on a failure-rate analysis to quantify the occurrence of silent (AMPAR-lacking) synapses. We simulate this method in silico and find that it is characterized by strong and systematic biases, poor reliability, and weak statistical power. Key conclusions are validated by whole-cell recordings from hippocampal neurons. To address these shortcomings, we develop a simulator of the experimental protocol and use it to compute a synthetic likelihood. By maximizing the likelihood, we infer silent synapse fraction with no bias, low variance, and superior statistical power over alternatives. Together, this generalizable approach highlights how a simulator of experimental methodologies can substantially improve the estimation of physiological properties.
Collapse
Affiliation(s)
- Michael B Lynn
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kevin F H Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cary Soares
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Richard Naud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Centre for Neural Dynamics, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa's Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada; Department of Physics, STEM Complex, Room 336, 150 Louis Pasteur Private, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Centre for Neural Dynamics, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa's Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
15
|
Sanderson TM, Georgiou J, Collingridge GL. Illuminating Relationships Between the Pre- and Post-synapse. Front Neural Circuits 2020; 14:9. [PMID: 32308573 PMCID: PMC7146027 DOI: 10.3389/fncir.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Excitatory synapses in the mammalian cortex are highly diverse, both in terms of their structure and function. However, relationships between synaptic features indicate they are highly coordinated entities. Imaging techniques, that enable physiology at the resolution of individual synapses to be investigated, have allowed the presynaptic activity level of the synapse to be related to postsynaptic function. This approach has revealed that neuronal activity induces the pre- and post-synapse to be functionally correlated and that subsets of synapses are more susceptible to certain forms of synaptic plasticity. As presynaptic function is often examined in isolation from postsynaptic properties, the effect it has on the post-synapse is not fully understood. However, since postsynaptic receptors at excitatory synapses respond to release of glutamate, it follows that they may be differentially regulated depending on the frequency of its release. Therefore, examining postsynaptic properties in the context of presynaptic function may be a useful way to approach a broad range of questions on synaptic physiology. In this review, we focus on how optophysiology tools have been utilized to study relationships between the pre- and the post-synapse. Multiple imaging techniques have revealed correlations in synaptic properties from the submicron to the dendritic level. Optical tools together with advanced imaging techniques are ideally suited to illuminate this area further, due to the spatial resolution and control they allow.
Collapse
Affiliation(s)
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.,Glutamate Research Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Glasgow SD, Wong EW, Thompson-Steckel G, Marcal N, Séguéla P, Ruthazer ES, Kennedy TE. Pre- and post-synaptic roles for DCC in memory consolidation in the adult mouse hippocampus. Mol Brain 2020; 13:56. [PMID: 32264905 PMCID: PMC7137442 DOI: 10.1186/s13041-020-00597-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
The receptor deleted in colorectal cancer (DCC) and its ligand netrin-1 are essential for axon guidance during development and are expressed by neurons in the mature brain. Netrin-1 recruits GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and is critical for long-term potentiation (LTP) at CA3-CA1 hippocampal Schaffer collateral synapses, while conditional DCC deletion from glutamatergic neurons impairs hippocampal-dependent spatial memory and severely disrupts LTP induction. DCC co-fractionates with the detergent-resistant component of postsynaptic density, yet is enriched in axonal growth cones that differentiate into presynaptic terminals during development. Specific presynaptic and postsynaptic contributions of DCC to the function of mature neural circuits have yet to be identified. Employing hippocampal subregion-specific conditional deletion of DCC, we show that DCC loss from CA1 hippocampal pyramidal neurons resulted in deficits in spatial memory, increased resting membrane potential, abnormal dendritic spine morphology, weaker spontaneous excitatory postsynaptic activity, and reduced levels of postsynaptic adaptor and signaling proteins; however, the capacity to induce LTP remained intact. In contrast, deletion of DCC from CA3 neurons did not induce detectable changes in the intrinsic electrophysiological properties of CA1 pyramidal neurons, but impaired performance on the novel object place recognition task as well as compromised excitatory synaptic transmission and LTP at Schaffer collateral synapses. Together, these findings reveal specific pre- and post-synaptic contributions of DCC to hippocampal synaptic plasticity underlying spatial memory.
Collapse
Affiliation(s)
- Stephen D Glasgow
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada.,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Canada
| | - Edwin W Wong
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Greta Thompson-Steckel
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Nathalie Marcal
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Philippe Séguéla
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Edward S Ruthazer
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada
| | - Timothy E Kennedy
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montréal, Québec, H3A 2B4, Canada. .,NSERC CREATE Neuroengineering Training Program, McGill University, Montréal, Canada. .,Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, Quebec, H3A 0C7, Canada.
| |
Collapse
|
17
|
Kruijssen DLH, Wierenga CJ. Single Synapse LTP: A Matter of Context? Front Cell Neurosci 2019; 13:496. [PMID: 31780899 PMCID: PMC6861208 DOI: 10.3389/fncel.2019.00496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
The most commonly studied form of synaptic plasticity is long-term potentiation (LTP). Over the last 15 years, it has been possible to induce structural and functional LTP in dendritic spines using two-photon glutamate uncaging, allowing for studying the signaling mechanisms of LTP with single synapse resolution. In this review, we compare different stimulation methods to induce single synapse LTP and discuss how LTP is expressed. We summarize the underlying signaling mechanisms that have been studied with high spatiotemporal resolution. Finally, we discuss how LTP in a single synapse can be affected by excitatory and inhibitory synapses nearby. We argue that single synapse LTP is highly dependent on context: the choice of induction method, the history of the dendritic spine and the dendritic vicinity crucially affect signaling pathways and expression of single synapse LTP.
Collapse
Affiliation(s)
- Dennis L H Kruijssen
- Department of Biology, Science for Life, Utrecht University, Utrecht, Netherlands
| | - Corette J Wierenga
- Department of Biology, Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Soares C, Trotter D, Longtin A, Béïque JC, Naud R. Parsing Out the Variability of Transmission at Central Synapses Using Optical Quantal Analysis. Front Synaptic Neurosci 2019; 11:22. [PMID: 31474847 PMCID: PMC6702664 DOI: 10.3389/fnsyn.2019.00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Properties of synaptic release dictates the core of information transfer in neural circuits. Despite decades of technical and theoretical advances, distinguishing bona fide information content from the multiple sources of synaptic variability remains a challenging problem. Here, we employed a combination of computational approaches with cellular electrophysiology, two-photon uncaging of MNI-Glutamate and imaging at single synapses. We describe and calibrate the use of the fluorescent glutamate sensor iGluSnFR and found that its kinetic profile is close to that of AMPA receptors, therefore providing several distinct advantages over slower methods relying on NMDA receptor activation (i.e., chemical or genetically encoded calcium indicators). Using an array of statistical methods, we further developed, and validated on surrogate data, an expectation-maximization algorithm that, by biophysically constraining release variability, extracts the quantal parameters n (maximum number of released vesicles) and p (unitary probability of release) from single-synapse iGluSnFR-mediated transients. Together, we present a generalizable mathematical formalism which, when applied to optical recordings, paves the way to an increasingly precise investigation of information transfer at central synapses.
Collapse
Affiliation(s)
- Cary Soares
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Trotter
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - André Longtin
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Richard Naud
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Glasgow SD, McPhedrain R, Madranges JF, Kennedy TE, Ruthazer ES. Approaches and Limitations in the Investigation of Synaptic Transmission and Plasticity. Front Synaptic Neurosci 2019; 11:20. [PMID: 31396073 PMCID: PMC6667546 DOI: 10.3389/fnsyn.2019.00020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
The numbers and strengths of synapses in the brain change throughout development, and even into adulthood, as synaptic inputs are added, eliminated, and refined in response to ongoing neural activity. A number of experimental techniques can assess these changes, including single-cell electrophysiological recording which offers measurements of synaptic inputs with high temporal resolution. Coupled with electrical stimulation, photoactivatable opsins, and caged compounds, to facilitate fine spatiotemporal control over release of neurotransmitters, electrophysiological recordings allow for precise dissection of presynaptic and postsynaptic mechanisms of action. Here, we discuss the strengths and pitfalls of various techniques commonly used to analyze synapses, including miniature excitatory/inhibitory (E/I) postsynaptic currents, evoked release, and optogenetic stimulation. Together, these techniques can provide multiple lines of convergent evidence to generate meaningful insight into the emergence of circuit connectivity and maturation. A full understanding of potential caveats and alternative explanations for findings is essential to avoid data misinterpretation.
Collapse
Affiliation(s)
| | | | | | | | - Edward S. Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Vincent-Lamarre P, Lynn M, Béïque JC. The Eloquent Silent Synapse. Trends Neurosci 2019; 41:557-559. [PMID: 30143180 DOI: 10.1016/j.tins.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/08/2018] [Indexed: 11/15/2022]
Abstract
The ability of central synapses to undergo long-term potentiation (LTP) still captures the imagination of scientists and has become one of the most fascinating and deeply studied questions in modern neuroscience. By the mid-1990s, however, the field was deeply ensnarled in trying to answer a passionately dichotomous question: is LTP expressed by a pre- or a postsynaptic mechanism? Experimental results that could only be seen by many as being incontrovertibly contradictory presented a perplexing conundrum. However, two papers published in 1995 fundamentally redefined critical assumptions and provided a cunningly simple and elegant solution to an otherwise inextricable impasse.
Collapse
Affiliation(s)
- Philippe Vincent-Lamarre
- University of Ottawa Brain and Mind Research Institute's Center for Neural Dynamics, Department of Cellular and Molecular Medicine, Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; These authors contributed equally to this work
| | - Michael Lynn
- University of Ottawa Brain and Mind Research Institute's Center for Neural Dynamics, Department of Cellular and Molecular Medicine, Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; These authors contributed equally to this work
| | - Jean-Claude Béïque
- University of Ottawa Brain and Mind Research Institute's Center for Neural Dynamics, Department of Cellular and Molecular Medicine, Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
21
|
Delvendahl I, Müller M. Homeostatic plasticity—a presynaptic perspective. Curr Opin Neurobiol 2019; 54:155-162. [DOI: 10.1016/j.conb.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023]
|
22
|
Li J, Park E, Zhong LR, Chen L. Homeostatic synaptic plasticity as a metaplasticity mechanism - a molecular and cellular perspective. Curr Opin Neurobiol 2019; 54:44-53. [PMID: 30212714 PMCID: PMC6361678 DOI: 10.1016/j.conb.2018.08.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
The molecular mechanisms underlying various types of synaptic plasticity are historically regarded as separate processes involved in independent cellular events. However, recent progress in our molecular understanding of Hebbian and homeostatic synaptic plasticity supports the observation that these two types of plasticity share common cellular events, and are often altered together in neurological diseases. Here, we discuss the emerging concept of homeostatic synaptic plasticity as a metaplasticity mechanism with a focus on cellular signaling processes that enable a direct interaction between Hebbian and homeostatic plasticity. We also identify distinct and shared molecular players involved in these cellular processes that may be explored experimentally in future studies to test the hypothesis that homeostatic synaptic plasticity serves as a metaplasticity mechanism to integrate changes in neuronal activity and support optimal Hebbian learning.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Esther Park
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Lei R Zhong
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Lu Chen
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA.
| |
Collapse
|
23
|
Hobbiss AF, Ramiro-Cortés Y, Israely I. Homeostatic Plasticity Scales Dendritic Spine Volumes and Changes the Threshold and Specificity of Hebbian Plasticity. iScience 2018; 8:161-174. [PMID: 30317078 PMCID: PMC6187013 DOI: 10.1016/j.isci.2018.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/03/2018] [Accepted: 09/17/2018] [Indexed: 11/27/2022] Open
Abstract
Information is encoded in neural networks through changes in synaptic weights. Synaptic learning rules involve a combination of rapid Hebbian plasticity and slower homeostatic synaptic plasticity that regulates neuronal activity through global synaptic scaling. Hebbian and homeostatic plasticity have been extensively investigated, whereas much less is known about their interaction. Here we investigated structural and functional consequences of homeostatic plasticity at dendritic spines of mouse hippocampal neurons. We found that prolonged activity blockade induced spine growth, paralleling synaptic strength increases. Following activity blockade, glutamate uncaging-mediated stimulation at single spines led to size-dependent structural potentiation: smaller spines underwent robust growth, whereas larger spines remained unchanged. Moreover, spines near the stimulated spine exhibited volume changes following homeostatic plasticity, indicating that there was a breakdown of input specificity following homeostatic plasticity. Overall, these findings demonstrate that Hebbian and homeostatic plasticity interact to shape neural connectivity through non-uniform structural plasticity at inputs. Chronic activity blockade leads to enlarged hippocampal spines and structural scaling Homeostatic plasticity affects subsequent Hebbian plasticity according to size of spines Neighbors also grow after potentiation of single spines, compromising input specificity
Collapse
Affiliation(s)
| | - Yazmin Ramiro-Cortés
- Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito exterior s/n, Ciudad de México 04510, México
| | - Inbal Israely
- Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal; Department of Pathology and Cell Biology in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neuroscience, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
Chowdhury D, Hell JW. Homeostatic synaptic scaling: molecular regulators of synaptic AMPA-type glutamate receptors. F1000Res 2018; 7:234. [PMID: 29560257 PMCID: PMC5832907 DOI: 10.12688/f1000research.13561.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 01/31/2023] Open
Abstract
The ability of neurons and circuits to maintain their excitability and activity levels within the appropriate dynamic range by homeostatic mechanisms is fundamental for brain function. Neuronal hyperactivity, for instance, could cause seizures. One such homeostatic process is synaptic scaling, also known as synaptic homeostasis. It involves a negative feedback process by which neurons adjust (scale) their postsynaptic strength over their whole synapse population to compensate for increased or decreased overall input thereby preventing neuronal hyper- or hypoactivity that could otherwise result in neuronal network dysfunction. While synaptic scaling is well-established and critical, our understanding of the underlying molecular mechanisms is still in its infancy. Homeostatic adaptation of synaptic strength is achieved through upregulation (upscaling) or downregulation (downscaling) of the functional availability of AMPA-type glutamate receptors (AMPARs) at postsynaptic sites. Understanding how synaptic AMPARs are modulated in response to alterations in overall neuronal activity is essential to gain valuable insights into how neuronal networks adapt to changes in their environment, as well as the genesis of an array of neurological disorders. Here we discuss the key molecular mechanisms that have been implicated in tuning the synaptic abundance of postsynaptic AMPARs in order to maintain synaptic homeostasis.
Collapse
Affiliation(s)
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|