1
|
Wei Y, Zhang Y, Cao W, Cheng N, Xiao Y, Zhu Y, Xu Y, Zhang L, Guo L, Song J, Sha SH, Shao B, Ma F, Yang J, Ying Z, He Z, Chai R, Fang Q, Yang J. RONIN/HCF1-TFEB Axis Protects Against D-Galactose-Induced Cochlear Hair Cell Senescence Through Autophagy Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407880. [PMID: 39985193 DOI: 10.1002/advs.202407880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/17/2025] [Indexed: 02/24/2025]
Abstract
Age-related hearing loss is characterized by senescent inner ear hair cells (HCs) and reduced autophagy. Despite the improved understanding of these processes, detailed molecular mechanisms underlying cochlear HC senescence remain unclear. Transcription Factor EB (TFEB), a key regulator of genes associated with autophagy and lysosomes, crucially affects aging-related illnesses. However, intricate regulatory networks that influence TFEB activity remain to be thoroughly elucidated. The findings revealed that RONIN (THAP11), through its interaction with host cell factor C1 (HCF1/HCFC1), modulated the transcriptional activity of Tfeb, thus contributing to the mitigation (D-galatactose [D-gal]) senescent HC loss. Specifically, RONIN overexpression improved autophagy levels and lysosomal activity and attenuated changes associated with the senescence of HCs triggered by D-gal. These findings highlight the possibility of using RONIN as a viable therapeutic target to ameliorate presbycusis by enhancing the TFEB function.
Collapse
Affiliation(s)
- Yongjie Wei
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuhua Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Nan Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yan Xu
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Lei Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Lingna Guo
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jun Song
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, The Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Fang Ma
- Center for Scientific Research of Anhui Medical University, Hefei, 230032, China
| | - Jingwen Yang
- International Department of Hefei 168 High School, Hefei, 230601, China
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration Nantong University, Nantong, 226001, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science Beijing Institute of Technology, Beijing, 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Qiaojun Fang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
2
|
Pellerin D, Iruzubieta P, Xu IRL, Danzi MC, Cortese A, Synofzik M, Houlden H, Zuchner S, Brais B. Recent Advances in the Genetics of Ataxias: An Update on Novel Autosomal Dominant Repeat Expansions. Curr Neurol Neurosci Rep 2025; 25:16. [PMID: 39820740 DOI: 10.1007/s11910-024-01400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW Autosomal dominant cerebellar ataxias, also known as spinocerebellar ataxias (SCAs), are genetically and clinically diverse neurodegenerative disorders characterized by progressive cerebellar dysfunction. Despite advances in sequencing technologies, a large proportion of patients with SCA still lack a definitive genetic diagnosis. The advent of advanced bioinformatic tools and emerging genomics technologies, such as long-read sequencing, offers an unparalleled opportunity to close the diagnostic gap for hereditary ataxias. This article reviews the recently identified repeat expansion SCAs and describes their molecular basis, epidemiology, and clinical features. RECENT FINDINGS Leveraging advanced bioinformatic tools and long-read sequencing, recent studies have identified novel pathogenic short tandem repeat expansions in FGF14, ZFHX3, and THAP11, associated with SCA27B, SCA4, and SCA51, respectively. SCA27B, caused by an intronic (GAA)•(TTC) repeat expansion, has emerged as one of the most common forms of adult-onset hereditary ataxias, especially in European populations. The coding GGC repeat expansion in ZFHX3 causing SCA4 was identified more than 25 years after the disorder's initial clinical description and appears to be a rare cause of ataxia outside northern Europe. SCA51, caused by a coding CAG repeat expansion, is overall rare and has been described in a small number of patients. The recent identification of three novel pathogenic repeat expansions underscores the importance of this class of genomic variation in the pathogenesis of SCAs. Progress in sequencing technologies holds promise for closing the diagnostic gap in SCAs and guiding the development of therapeutic strategies for ataxia.
Collapse
Affiliation(s)
- David Pellerin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Pablo Iruzubieta
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
- Department of Neurosciences, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Isaac R L Xu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Matthis Synofzik
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Qin Y, Godoy-Parejo C, Skowronska M, Verma A, Dejosez M, Zwaka TP. Generation of human pluripotent stem cell lines (WAe009-A) with THAP11 F80L cobalamin disorder-associated mutation. Stem Cell Res 2024; 79:103483. [PMID: 38943762 DOI: 10.1016/j.scr.2024.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Recent studies reported that the mutation in the THAP11 gene (THAP11F80L) could be responsible for the inborn vitamin deficiency known as cobalamin disorder, by affecting the expression of the enzyme MMACHC, key in the cobalamin metabolism. However, the specifics of the molecular mechanism are largely unknown. In here we generated genetically modified human pluripotent stem cell lines with THAP11F80L mutation, providing a new research tool for futher exploring the molecular mechanism. The established hPSC lines remain pluripotent, showing expression of OCT3/4, differentiation capacity to the three germ layers and displaying normal karyotype.
Collapse
Affiliation(s)
- Yiren Qin
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Godoy-Parejo
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Marta Skowronska
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angela Verma
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marion Dejosez
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas P Zwaka
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Huang W, Zhu JY, Fu Y, van de Leemput J, Han Z. Lpt, trr, and Hcf regulate histone mono- and dimethylation that are essential for Drosophila heart development. Dev Biol 2022; 490:53-65. [PMID: 35853502 PMCID: PMC10728806 DOI: 10.1016/j.ydbio.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Mammalian KMT2C, KMT2D, and HCFC1 are expressed during heart development and have been associated with congenital heart disease, but their roles in heart development remain elusive. We found that the Drosophila Lpt and trr genes encode the N-terminal and C-terminal homologs, respectively, of mammalian KMT2C or KMT2D. Lpt and trr mutant embryos showed reduced cardiac progenitor cells. Silencing of Lpt, trr, or both simultaneously in the heart led to similar abnormal cardiac morphology, tissue fibrosis, and cardiac functional defects. Like KMT2D, Lpt and trr were found to modulate histone H3K4 mono- and dimethylation, but not trimethylation. Investigation of downstream genes regulated by mouse KMT2D in the heart showed that their fly homologs are similarly regulated by Lpt or trr in the fly heart, suggesting that Lpt and trr regulate an evolutionarily conserved transcriptional network for heart development. Moreover, we showed that cardiac silencing of Hcf, the fly homolog of mammalian HCFC1, leads to heart defects similar to those observed in Lpt and trr silencing, as well as reduced H3K4 monomethylation. Our findings suggest that Lpt and trr function together to execute the conserved function of mammalian KMT2C and KMT2D in histone H3 lysine K4 mono- and dimethylation required for heart development. Possibly aided by Hcf, which we show plays a related role in H3K4 methylation during fly heart development.
Collapse
Affiliation(s)
- Wen Huang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jun-Yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulong Fu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Genomic Diagnostics and Bioinformatics, Department of Pathology, The University of Alabama at Birmingham, Alabama, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Baccam GC, Xie J, Jin X, Park H, Wang B, Husson H, Ibraghimov-Beskrovnaya O, Huang CL. Glucosylceramide synthase inhibition protects against cardiac hypertrophy in chronic kidney disease. Sci Rep 2022; 12:9340. [PMID: 35660779 PMCID: PMC9167280 DOI: 10.1038/s41598-022-13390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
A significant population of patients with chronic kidney disease (CKD) develops cardiac hypertrophy, which can lead to heart failure and sudden cardiac death. Soluble klotho (sKL), the shed ectodomain of the transmembrane protein klotho, protects the heart against hypertrophic growth. We have shown that sKL protects the heart by regulating the formation and function of lipid rafts by targeting the sialic acid moiety of gangliosides, GM1/GM3. Reduction in circulating sKL contributes to an increased risk of cardiac hypertrophy in mice. sKL replacement therapy has been considered but its use is limited by the inability to mass produce the protein. Therefore, alternative methods to protect the heart are proposed. Glucosylation of ceramide catalyzed by glucosylceramide synthase is the entry step for the formation of gangliosides. Here we show that oral administration of a glucosylceramide synthase inhibitor (GCSi) reduces plasma and heart tissue glycosphingolipids, including gangliosides. Administration of GCSi is protective in two mouse models of cardiac stress-induction, one with isoproterenol overstimulation and the other with 5/6 nephrectomy-induced CKD. Treatment with GCSi does not alter the severity of renal dysfunction and hypertension in CKD. These results provide proof of principle for targeting glucosylceramide synthase to decrease gangliosides as a treatment for cardiac hypertrophy. They also support the hypothesis that sKL protects the heart by targeting gangliosides.
Collapse
Affiliation(s)
- Gabriel C Baccam
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA
| | - Jian Xie
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA
| | - Xin Jin
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA
| | - Hyejung Park
- US Early Development, Synthetics Platform, Global CMC Development, Sanofi, Waltham, MA, 02451, USA
| | - Bing Wang
- US Early Development, Synthetics Platform, Global CMC Development, Sanofi, Waltham, MA, 02451, USA
| | - Hervé Husson
- Genomic Medicine Unit, Sanofi, Framingham, MA, 01701, USA
| | - Oxana Ibraghimov-Beskrovnaya
- Rare and Neurologic Diseases, Sanofi, Framingham, MA, 01701, USA
- Dyne Therapeutics, 1560 Trapelo Road, Waltham, MA, 20451, USA
| | - Chou-Long Huang
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, E300 GH, Iowa City, IA, 52242-1081, USA.
| |
Collapse
|
6
|
Chern T, Achilleos A, Tong X, Hill MC, Saltzman AB, Reineke LC, Chaudhury A, Dasgupta SK, Redhead Y, Watkins D, Neilson JR, Thiagarajan P, Green JBA, Malovannaya A, Martin JF, Rosenblatt DS, Poché RA. Mutations in Hcfc1 and Ronin result in an inborn error of cobalamin metabolism and ribosomopathy. Nat Commun 2022; 13:134. [PMID: 35013307 PMCID: PMC8748873 DOI: 10.1038/s41467-021-27759-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Combined methylmalonic acidemia and homocystinuria (cblC) is the most common inborn error of intracellular cobalamin metabolism and due to mutations in Methylmalonic Aciduria type C and Homocystinuria (MMACHC). Recently, mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) were shown to result in cellular phenocopies of cblC. Since HCFC1/RONIN jointly regulate MMACHC, patients with mutations in these factors suffer from reduced MMACHC expression and exhibit a cblC-like disease. However, additional de-regulated genes and the resulting pathophysiology is unknown. Therefore, we have generated mouse models of this disease. In addition to exhibiting loss of Mmachc, metabolic perturbations, and developmental defects previously observed in cblC, we uncovered reduced expression of target genes that encode ribosome protein subunits. We also identified specific phenotypes that we ascribe to deregulation of ribosome biogenesis impacting normal translation during development. These findings identify HCFC1/RONIN as transcriptional regulators of ribosome biogenesis during development and their mutation results in complex syndromes exhibiting aspects of both cblC and ribosomopathies. Combined methylmalonic acidemia (MMA) and hyperhomocysteinemias are inborn errors of vitamin B12 metabolism, and mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) underlie some forms of these disorders. Here the authors generated mouse models of a human syndrome due to mutations in RONIN (THAP11) and HCFC1, and show that this syndrome is both an inborn error of vitamin B12 metabolism and displays some features of ribosomopathy.
Collapse
Affiliation(s)
- Tiffany Chern
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Annita Achilleos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus.
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C Hill
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alexander B Saltzman
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lucas C Reineke
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Swapan K Dasgupta
- Department of Pathology, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA
| | - Yushi Redhead
- The Francis Crick Institute, London, NW1 1AT, UK.,Centre for Craniofacial Biology and Regeneration, King's College London, London, SE1 9RT, UK
| | - David Watkins
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Division of Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Perumal Thiagarajan
- Department of Pathology, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeremy B A Green
- Centre for Craniofacial Biology and Regeneration, King's College London, London, SE1 9RT, UK
| | - Anna Malovannaya
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Heart Institute, Houston, TX, 77030, USA
| | - David S Rosenblatt
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Division of Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Salewskij K, Gross-Thebing T, Ing-Simmons E, Duethorn B, Rieger B, Fan R, Chen R, Govindasamy N, Brinkmann H, Kremer L, Kuempel-Rink N, Mildner K, Zeuschner D, Stehling M, Dejosez M, Zwaka TP, Schöler HR, Busch KB, Vaquerizas JM, Bedzhov I. Ronin governs the metabolic capacity of the embryonic lineage for post-implantation development. EMBO Rep 2021; 22:e53048. [PMID: 34515391 PMCID: PMC8567215 DOI: 10.15252/embr.202153048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
During implantation, the murine embryo transitions from a “quiet” into an active metabolic/proliferative state, which kick‐starts the growth and morphogenesis of the post‐implantation conceptus. Such transition is also required for embryonic stem cells to be established from mouse blastocysts, but the factors regulating this process are poorly understood. Here, we show that Ronin plays a critical role in the process by enabling active energy production, and the loss of Ronin results in the establishment of a reversible quiescent state in which naïve pluripotency is promoted. In addition, Ronin fine‐tunes the expression of genes that encode ribosomal proteins and is required for proper tissue‐scale organisation of the pluripotent lineage during the transition from blastocyst to egg cylinder stage. Thus, Ronin function is essential for governing the metabolic capacity so that it can support the pluripotent lineage’s high‐energy demands for cell proliferation and morphogenesis.
Collapse
Affiliation(s)
- Kirill Salewskij
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Theresa Gross-Thebing
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Elizabeth Ing-Simmons
- Regulatory Genomics Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Binyamin Duethorn
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bettina Rieger
- Institut für Integrative Zellbiologie und Physiologie, University of Münster, Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Rui Chen
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Niraimathi Govindasamy
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Heike Brinkmann
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ludmila Kremer
- Transgenic Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Nannette Kuempel-Rink
- Transgenic Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Karina Mildner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marion Dejosez
- Department for Cell, Regenerative and Developmental Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Huffington Foundation Center for Cell-based Research in Parkinson's Disease, New York, NY, USA
| | - Thomas P Zwaka
- Department for Cell, Regenerative and Developmental Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Huffington Foundation Center for Cell-based Research in Parkinson's Disease, New York, NY, USA
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Karin B Busch
- Institut für Integrative Zellbiologie und Physiologie, University of Münster, Münster, Germany
| | - Juan M Vaquerizas
- Regulatory Genomics Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,MRC London Institute of Medical Sciences, London, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
8
|
Kay M, Soltani BM, Nemir M, Aghagolzadeh P, Pezzuto I, Chouvardas P, Ruberto F, Movahedi F, Ansari H, Baharvand H, Pedrazzini T. The conserved long noncoding RNA CARMA regulates cardiomyocyte differentiation. Cardiovasc Res 2021; 118:2339-2353. [PMID: 34459880 DOI: 10.1093/cvr/cvab281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS Production of functional cardiomyocytes from pluripotent stem cells requires tight control of the differentiation process. Long noncoding RNAs (lncRNAs) exert critical regulatory function in cell specification during development. In this study, we designed an integrated approach to identify lncRNAs implicated in cardiogenesis in differentiating human embryonic stem cells (ESCs). METHODS AND RESULTS We identified CARMA (CARdiomyocyte Maturation-Associated lncRNA), a conserved lncRNA controlling cardiomyocyte differentiation and maturation in human ESCs. CARMA is located adjacent to MIR-1-1HG, the host gene for two cardiogenic miRNAs: MIR1-1 and MIR-133a2, and transcribed in an antisense orientation. The expression of CARMA and the miRNAs is negatively correlated, and CARMA knockdown increases MIR1-1 and MIR-133a2 expression. In addition, CARMA possesses MIR-133a2 binding sites, suggesting the lncRNA could be also a target of miRNA action. Upon CARMA downregulation, MIR-133a2 target protein-coding genes are coordinately downregulated. Among those, we found RBPJ, the gene encoding the effector of the NOTCH pathway. NOTCH has been shown to control a binary cell fate decision between the mesoderm and the neuroectoderm lineages, and NOTCH inhibition leads to enhanced cardiomyocyte differentiation at the expense of neuroectodermal derivatives. Interestingly, two lncRNAs, linc1230 and linc1335, which are known repressors of neuroectodermal specification, were found upregulated upon Notch1 silencing in ESCs. Forced expression of either linc1230 or linc1335 improved ESC-derived cardiomyocyte production. These two lncRNAs were also found upregulated following CARMA knockdown in ESCs. CONCLUSIONS Altogether, these data suggest the existence of a network, implicating three newly identified lncRNAs, the two myomirs MIR1-1 and MIR-133a2 and the NOTCH signaling pathway, for the coordinated regulation of cardiogenic differentiation in ESCs. TRANSLATIONAL PERSPECTIVE Cardiac dysfunction and heart failure develop secondary to a massive loss of cardiomyocytes in the damaged myocardium. Several avenues have been evaluated to promote regeneration following injury. Cell therapy for heart disease envisages the production of functional cardiomyocytes from differentiating pluripotent stem cells prior transfer into the injured heart muscle. Here, we report the functional characterization of CARMA, a lncRNA implicated in cardiogenesis. CARMA knockdown in differentiating human embryonic stem cells (ESCs) promotes cardiogenic commitment and cardiomyocyte differentiation. CARMA represents therefore a novel target for improving human ESC-derived cardiomyocyte production, and cell-based regenerative strategies for heart disease.
Collapse
Affiliation(s)
- Maryam Kay
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Experimental Cardiology Unit, Divison of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohamed Nemir
- Experimental Cardiology Unit, Divison of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Parisa Aghagolzadeh
- Experimental Cardiology Unit, Divison of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Iole Pezzuto
- Experimental Cardiology Unit, Divison of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | | | - Francesco Ruberto
- Experimental Cardiology Unit, Divison of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Fatemeh Movahedi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Hassan Ansari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Divison of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| |
Collapse
|
9
|
Zwaka TP, Skowronska M, Richman R, Dejosez M. Ronin overexpression induces cerebellar degeneration in a mouse model of ataxia. Dis Model Mech 2021; 14:269269. [PMID: 34165550 PMCID: PMC8246265 DOI: 10.1242/dmm.044834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of genetically heterogeneous inherited neurodegenerative disorders characterized by progressive ataxia and cerebellar degeneration. Here, we used a mouse model to test a possible connection between SCA and Ronin (Thap11), a polyglutamine-containing transcriptional regulator encoded in a region of human chromosome 16q22.1 that has been genetically linked to SCA type 4. We report that transgenic expression of Ronin in mouse cerebellar Purkinje cells leads to detrimental loss of these cells and the development of severe ataxia as early as 10 weeks after birth. Mechanistically, we find that several SCA-causing genes harbor Ronin DNA-binding motifs and are transcriptionally deregulated in transgenic animals. In addition, ectopic expression of Ronin in embryonic stem cells significantly increases the protein level of Ataxin-1, the protein encoded by Atxn1, alterations of which cause SCA type 1. This increase is also seen in the cerebellum of transgenic animals, although the latter was not statistically significant. Hence, our data provide evidence for a link between Ronin and SCAs, and suggest that Ronin may be involved in the development of other neurodegenerative diseases. Summary: Ronin is a polyglutamine protein encoded in a region of human chromosome 16q22.1 linked to spinocerebellar ataxia type 4. Overexpression of Ronin in mouse cerebellar Purkinje cells leads to their loss and ataxia.
Collapse
Affiliation(s)
- Thomas P Zwaka
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Skowronska
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ronald Richman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marion Dejosez
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Sanghavi HM, Majumdar S. Oligomerization of THAP9 Transposase via Amino-Terminal Domains. Biochemistry 2021; 60:1822-1835. [PMID: 34033475 DOI: 10.1021/acs.biochem.1c00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Active DNA transposases like the Drosophila P element transposase (DmTNP) undergo oligomerization as a prerequisite for transposition. Human THAP9 (hTHAP9) is a catalytically active but functionally uncharacterized homologue of DmTNP. Here we report (using co-immunoprecipitation, pull down, colocalization, and proximity ligation assays) that both full length and truncated hTHAP9 (corresponding to amino-terminal DNA binding and predicted coiled coil domains) undergo homo-oligomerization, predominantly in the nuclei of HEK293T cells. Interestingly, the oligomerization is shown to be partially mediated by DNA. However, mutating the leucines (either individually or together) or deleting the predicted coiled coil region did not significantly affect oligomerization. Thus, we highlight the importance of DNA and the amino-terminal regions of hTHAP9 for their ability to form higher-order oligomeric states. We also report that Hcf-1, THAP1, THAP10, and THAP11 are possible protein interaction partners of hTHAP9. Elucidating the functional relevance of the different putative oligomeric state(s) of hTHAP9 would help answer questions about its interaction partners as well as its unknown physiological roles.
Collapse
Affiliation(s)
- Hiral M Sanghavi
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Sharmistha Majumdar
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
11
|
Duan Z, Zhou X, Chen F, Chen H, Duan G, Li H. THAP11 down-regulation may contribute to cardio-protective effects of sevoflurane anesthesia: Evidence from clinical and molecular evidence. Life Sci 2021; 274:119327. [PMID: 33711390 DOI: 10.1016/j.lfs.2021.119327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to explore the potential target of the cardio-protective effect induced by sevoflurane anesthesia based on evidence from clinical samples and in vitro model. Forty patients undergoing mitral valve replacement were randomly allocated to receive sevoflurane or propofol-based anesthesia. Atrial muscle specimens were collected from all patients, of which 5 were used to perform transcriptomics analysis. The cTn-I concentration was tested before, at the end of, and 24 h after surgery. In in vitro study, the expression level of the identified target gene, i.e., THAP11, was studied in H9C2 cells treated with sevoflurane or propofol. Then, we studied cell viability using CCK-8 staining, apoptosis by using flow cytometry, and cell death by lactic acid dehydrogenase (LDH) detection in H9C2 cells exposed to oxygen glucose deprivation/reoxygenation (OGD/R) injury. THAP11 was the most significantly down-regulated gene in the transcriptomics analysis (P < 0.001), as confirmed in validation samples (P = 0.006). THAP11 mRNA levels in atrial muscle specimens were positively associated with cTn-I levels at 24-h postoperatively (determination coefficient = 0.564; P < 0.001). Sevoflurane treatment down-regulated THAP11 in H9C2 cell models, which promoted cell viability, inhibited cell apoptosis, and death in the OGD/R injury cell model. Up-regulation of THAP11 reduced the protective effect of sevoflurane treatment against OGD/R injury. Sevoflurane anesthesia down-regulates the expression of THAP11, which contributes to a cardio-protective effect. THAP11 down-regulation promotes cell viability, and inhibits cell apoptosis and death, thereby protecting again myocardial injury; it may therefore be a novel target for perioperative cardio-protection.
Collapse
Affiliation(s)
- Zhenxin Duan
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaoying Zhou
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Feng Chen
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Huifang Chen
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Guangyou Duan
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing, China.
| | - Hong Li
- Department of Anesthesiology, Second Affiliated Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
12
|
Novel exon-skipping variant disrupting the basic domain of HCFC1 causes intellectual disability without metabolic abnormalities in both male and female patients. J Hum Genet 2021; 66:717-724. [PMID: 33517344 DOI: 10.1038/s10038-020-00892-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022]
Abstract
HCFC1, a global transcriptional regulator, has been shown to associate with MMACHC expression. Pathogenic variants in HCFC1 cause X-linked combined methylmalonic acidemia and hyperhomocysteinemia, CblX type (MIM# 309541). Recent studies showed that certain variants in HCFC1 are associated with X-linked intellectual disability with mild or absent metabolic abnormalities. Here, we report five subjects (three males, two females) from the same family with a novel predicted loss of function HCFC1 variant. All five patients exhibit developmental delay or intellectual disability/learning difficulty and some dysmorphic features; findings were milder in the female as compared to male subjects. Biochemical studies in all patients did not show methylmalonic acidemia or hyperhomocysteinemia but revealed elevated vitamin B12 levels. Trio exome sequencing of the proband and his parents revealed a maternally inherited novel variant in HCFC1 designated as c.1781_1803 + 3del26insCA (NM_005334). Targeted testing confirmed the presence of the same variant in two half-siblings and maternal great uncle. In silico analysis showed that the variant is expected to reduce the quality of the splice donor site in intron 10 and causes abnormal splicing. Sequencing of proband's cDNA revealed exon 10 skipping. Further molecular studies in the two manifesting females revealed moderate and high skewing of X inactivation. Our results support previous observation that HCFC1 variants located outside the Kelch domain exhibit dissociation of the clinical and biochemical phenotype and cause milder or no metabolic changes. We also show that this novel variant can be associated with a phenotype in females, although with milder severity, but further studies are needed to understand the role of skewed X inactivation among females in this rare disorder. Our work expands the genotypes and phenotypes associated with HCFC1-related disorder.
Collapse
|
13
|
Dehaene H, Praz V, Lhôte P, Lopes M, Herr W. THAP11F80L cobalamin disorder-associated mutation reveals normal and pathogenic THAP11 functions in gene expression and cell proliferation. PLoS One 2020; 15:e0224646. [PMID: 31905202 PMCID: PMC6944463 DOI: 10.1371/journal.pone.0224646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Twelve human THAP proteins share the THAP domain, an evolutionary conserved zinc-finger DNA-binding domain. Studies of different THAP proteins have indicated roles in gene transcription, cell proliferation and development. We have analyzed this protein family, focusing on THAP7 and THAP11. We show that human THAP proteins possess differing homo- and heterodimer formation properties and interaction abilities with the transcriptional co-regulator HCF-1. HEK-293 cells lacking THAP7 were viable but proliferated more slowly. In contrast, HEK-293 cells were very sensitive to THAP11 alteration. Nevertheless, HEK-293 cells bearing a THAP11 mutation identified in a patient suffering from cobalamin disorder (THAP11F80L) were viable although proliferated more slowly. Cobalamin disorder is an inborn vitamin deficiency characterized by neurodevelopmental abnormalities, most often owing to biallelic mutations in the MMACHC gene, whose gene product MMACHC is a key enzyme in the cobalamin (vitamin B12) metabolic pathway. We show that THAP11F80L selectively affected promoter binding by THAP11, having more deleterious effects on a subset of THAP11 targets, and resulting in altered patterns of gene expression. In particular, THAP11F80L exhibited a strong effect on association with the MMACHC promoter and led to a decrease in MMACHC gene transcription, suggesting that the THAP11F80L mutation is directly responsible for the observed cobalamin disorder.
Collapse
Affiliation(s)
- Harmonie Dehaene
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Philippe Lhôte
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Maykel Lopes
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Fujita J, Tohyama S, Kishino Y, Okada M, Morita Y. Concise Review: Genetic and Epigenetic Regulation of Cardiac Differentiation from Human Pluripotent Stem Cells. Stem Cells 2019; 37:992-1002. [PMID: 31021504 DOI: 10.1002/stem.3027] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/15/2019] [Indexed: 12/28/2022]
Abstract
Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, are the ideal cell sources for disease modeling, drug discovery, and regenerative medicine. In particular, regenerative therapy with hPSC-derived cardiomyocytes (CMs) is an unmet medical need for the treatment of severe heart failure. Cardiac differentiation protocols from hPSCs are made on the basis of cardiac development in vivo. However, current protocols have yet to yield 100% pure CMs, and their maturity is low. Cardiac development is regulated by the cardiac gene network, including transcription factors (TFs). According to our current understanding of cardiac development, cardiac TFs are sequentially expressed during cardiac commitment in hPSCs. Expression levels of each gene are strictly regulated by epigenetic modifications. DNA methylation, histone modification, and noncoding RNAs significantly influence cardiac differentiation. These complex circuits of genetic and epigenetic factors dynamically affect protein expression and metabolic changes in cardiac differentiation and maturation. Here, we review cardiac differentiation protocols and their molecular machinery, closing with a discussion of the future challenges for producing hPSC-derived CMs. Stem Cells 2019;37:992-1002.
Collapse
Affiliation(s)
- Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|