1
|
Mondragón-Rosas F, Florencio-Martínez LE, Villa-Delavequia GS, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Characterization of Tau95 led to the identification of a four-subunit TFIIIC complex in trypanosomatid parasites. Appl Microbiol Biotechnol 2024; 108:109. [PMID: 38204130 PMCID: PMC10781861 DOI: 10.1007/s00253-023-12903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 01/12/2024]
Abstract
RNA polymerase III (RNAP III) synthetizes small essential non-coding RNA molecules such as tRNAs and 5S rRNA. In yeast and vertebrates, RNAP III needs general transcription factors TFIIIA, TFIIIB, and TFIIIC to initiate transcription. TFIIIC, composed of six subunits, binds to internal promoter elements in RNAP III-dependent genes. Limited information is available about RNAP III transcription in the trypanosomatid protozoa Trypanosoma brucei and Leishmania major, which diverged early from the eukaryotic lineage. Analyses of the first published draft of the trypanosomatid genome sequences failed to recognize orthologs of any of the TFIIIC subunits, suggesting that this transcription factor is absent in these parasites. However, a putative TFIIIC subunit was recently annotated in the databases. Here we characterize this subunit in T. brucei and L. major and demonstrate that it corresponds to Tau95. In silico analyses showed that both proteins possess the typical Tau95 sequences: the DNA binding region and the dimerization domain. As anticipated for a transcription factor, Tau95 localized to the nucleus in insect forms of both parasites. Chromatin immunoprecipitation (ChIP) assays demonstrated that Tau95 binds to tRNA and U2 snRNA genes in T. brucei. Remarkably, by performing tandem affinity purifications we identified orthologs of TFIIIC subunits Tau55, Tau131, and Tau138 in T. brucei and L. major. Thus, contrary to what was assumed, trypanosomatid parasites do possess a TFIIIC complex. Other putative interacting partners of Tau95 were identified in T. brucei and L. major. KEY POINTS: • A four-subunit TFIIIC complex is present in T. brucei and L. major • TbTau95 associates with tRNA and U2 snRNA genes • Putative interacting partners of Tau95 might include some RNAP II regulators.
Collapse
Affiliation(s)
- Fabiola Mondragón-Rosas
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Luis E Florencio-Martínez
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Gino S Villa-Delavequia
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de Mexico, CP 07360, México
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, México
| | - Tomás Nepomuceno-Mejía
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Santiago Martínez-Calvillo
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México.
| |
Collapse
|
2
|
Rejnowicz E, Batchelor M, Leen E, Ahangar MS, Burgess SG, Richards MW, Kalverda AP, Bayliss R. Exploring the dynamics and interactions of the N-myc transactivation domain through solution nuclear magnetic resonance spectroscopy. Biochem J 2024; 481:1535-1556. [PMID: 39370942 PMCID: PMC11555651 DOI: 10.1042/bcj20240248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Myc proteins are transcription factors crucial for cell proliferation. They have a C-terminal domain that mediates Max and DNA binding, and an N-terminal disordered region culminating in the transactivation domain (TAD). The TAD participates in many protein-protein interactions, notably with kinases that promote stability (Aurora-A) or degradation (ERK1, GSK3) via the ubiquitin-proteasome system. We probed the structure, dynamics and interactions of N-myc TAD using nuclear magnetic resonance (NMR) spectroscopy following its complete backbone assignment. Chemical shift analysis revealed that N-myc has two regions with clear helical propensity: Trp77-Glu86 and Ala122-Glu132. These regions also have more restricted ps-ns motions than the rest of the TAD, and, along with the phosphodegron, have comparatively high transverse (R2) 15N relaxation rates, indicative of slower timescale dynamics and/or chemical exchange. Collectively these features suggest differential propensities for structure and interaction, either internal or with binding partners, across the TAD. Solution studies on the interaction between N-myc and Aurora-A revealed a previously uncharacterised binding site. The specificity and kinetics of sequential phosphorylation of N-myc by ERK1 and GSK3 were characterised using NMR and resulted in no significant structural changes outside the phosphodegron. When the phosphodegron was doubly phosphorylated, N-myc formed a robust interaction with the Fbxw7-Skp1 complex, but mapping the interaction by NMR suggests a more extensive interface. Our study provides foundational insights into N-myc TAD dynamics and a backbone assignment that will underpin future work on the structure, dynamics, interactions and regulatory post-translational modifications of this key oncoprotein.
Collapse
Affiliation(s)
- Ewa Rejnowicz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Matthew Batchelor
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mohd Syed Ahangar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Selena G. Burgess
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Mark W. Richards
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
3
|
Krenz B, Lee J, Kannan T, Eilers M. Immune evasion: An imperative and consequence of MYC deregulation. Mol Oncol 2024; 18:2338-2355. [PMID: 38957016 PMCID: PMC11459038 DOI: 10.1002/1878-0261.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.
Collapse
Affiliation(s)
- Bastian Krenz
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career CenterWürzburgGermany
| | - Jongkuen Lee
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Toshitha Kannan
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Martin Eilers
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| |
Collapse
|
4
|
Cantarella S, Vezzoli M, Carnevali D, Morselli M, Zemke N, Montanini B, Daussy CF, Wodrich H, Teichmann M, Pellegrini M, Berk A, Dieci G, Ferrari R. Adenovirus small E1A directs activation of Alu transcription at YAP/TEAD- and AP-1-bound enhancers through interactions with the EP400 chromatin remodeler. Nucleic Acids Res 2024; 52:9481-9500. [PMID: 39011896 PMCID: PMC11381368 DOI: 10.1093/nar/gkae615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Alu retrotransposons, which form the largest family of mobile DNA elements in the human genome, have recently come to attention as a potential source of regulatory novelties, most notably by participating in enhancer function. Even though Alu transcription by RNA polymerase III is subjected to tight epigenetic silencing, their expression has long been known to increase in response to various types of stress, including viral infection. Here we show that, in primary human fibroblasts, adenovirus small e1a triggered derepression of hundreds of individual Alus by promoting TFIIIB recruitment by Alu-bound TFIIIC. Epigenome profiling revealed an e1a-induced decrease of H3K27 acetylation and increase of H3K4 monomethylation at derepressed Alus, making them resemble poised enhancers. The enhancer nature of e1a-targeted Alus was confirmed by the enrichment, in their upstream regions, of the EP300/CBP acetyltransferase, EP400 chromatin remodeler and YAP1 and FOS transcription factors. The physical interaction of e1a with EP400 was critical for Alu derepression, which was abrogated upon EP400 ablation. Our data suggest that e1a targets a subset of enhancer Alus whose transcriptional activation, which requires EP400 and is mediated by the e1a-EP400 interaction, may participate in the manipulation of enhancer activity by adenoviruses.
Collapse
Affiliation(s)
- Simona Cantarella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Vezzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Davide Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Morselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Nathan R Zemke
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Barbara Montanini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Coralie F Daussy
- Bordeaux University, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Bordeaux, France
| | - Harald Wodrich
- Bordeaux University, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Bordeaux, France
| | - Martin Teichmann
- Bordeaux University, Inserm U 1312, Bordeaux Institute of Oncology, 33076 Bordeaux, France
| | - Matteo Pellegrini
- Department of Molecular Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnold J Berk
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
5
|
Vidal R, Leen E, Herold S, Müller M, Fleischhauer D, Schülein-Völk C, Papadopoulos D, Röschert I, Uhl L, Ade CP, Gallant P, Bayliss R, Eilers M, Büchel G. Association with TFIIIC limits MYCN localisation in hubs of active promoters and chromatin accumulation of non-phosphorylated RNA polymerase II. eLife 2024; 13:RP94407. [PMID: 39177021 PMCID: PMC11343564 DOI: 10.7554/elife.94407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
MYC family oncoproteins regulate the expression of a large number of genes and broadly stimulate elongation by RNA polymerase II (RNAPII). While the factors that control the chromatin association of MYC proteins are well understood, much less is known about how interacting proteins mediate MYC's effects on transcription. Here, we show that TFIIIC, an architectural protein complex that controls the three-dimensional chromatin organisation at its target sites, binds directly to the amino-terminal transcriptional regulatory domain of MYCN. Surprisingly, TFIIIC has no discernible role in MYCN-dependent gene expression and transcription elongation. Instead, MYCN and TFIIIC preferentially bind to promoters with paused RNAPII and globally limit the accumulation of non-phosphorylated RNAPII at promoters. Consistent with its ubiquitous role in transcription, MYCN broadly participates in hubs of active promoters. Depletion of TFIIIC further increases MYCN localisation to these hubs. This increase correlates with a failure of the nuclear exosome and BRCA1, both of which are involved in nascent RNA degradation, to localise to active promoters. Our data suggest that MYCN and TFIIIC exert an censoring function in early transcription that limits promoter accumulation of inactive RNAPII and facilitates promoter-proximal degradation of nascent RNA.
Collapse
Affiliation(s)
- Raphael Vidal
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Eoin Leen
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mareike Müller
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of WürzburgWürzburgGermany
| | - Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| | - Isabelle Röschert
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Carsten P Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Richard Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
- Mildred Scheel Early Career Center, University Hospital WürzburgWürzburgGermany
| |
Collapse
|
6
|
Curti L, Rohban S, Bianchi N, Croci O, Andronache A, Barozzi S, Mattioli M, Ricci F, Pastori E, Sberna S, Bellotti S, Accialini A, Ballarino R, Crosetto N, Wade M, Parazzoli D, Campaner S. CDK12 controls transcription at damaged genes and prevents MYC-induced transcription-replication conflicts. Nat Commun 2024; 15:7100. [PMID: 39155303 PMCID: PMC11330984 DOI: 10.1038/s41467-024-51229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The identification of genes involved in replicative stress is key to understanding cancer evolution and to identify therapeutic targets. Here, we show that CDK12 prevents transcription-replication conflicts (TRCs) and the activation of cytotoxic replicative stress upon deregulation of the MYC oncogene. CDK12 was recruited at damaged genes by PARP-dependent DDR-signaling and elongation-competent RNAPII, to repress transcription. Either loss or chemical inhibition of CDK12 led to DDR-resistant transcription of damaged genes. Loss of CDK12 exacerbated TRCs in MYC-overexpressing cells and led to the accumulation of double-strand DNA breaks, occurring between co-directional early-replicating regions and transcribed genes. Overall, our data demonstrate that CDK12 protects genome integrity by repressing transcription of damaged genes, which is required for proper resolution of DSBs at oncogene-induced TRCs. This provides a rationale that explains both how CDK12 deficiency can promote tandem duplications of early-replicated regions during tumor evolution, and how CDK12 targeting can exacerbate replicative-stress in tumors.
Collapse
Affiliation(s)
- Laura Curti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Rohban
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Nicola Bianchi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Adrian Andronache
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Barozzi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Michela Mattioli
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Fernanda Ricci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Elena Pastori
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Silvia Sberna
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Simone Bellotti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Anna Accialini
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165, Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, SE-17165, Solna, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Mark Wade
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
- Astex Pharmaceuticals, 436 Cambridge Science Park, CB4 0QA, Cambridge, UK
| | - Dario Parazzoli
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy.
| |
Collapse
|
7
|
Vogt M, Dudvarski Stankovic N, Cruz Garcia Y, Hofstetter J, Schneider K, Kuybu F, Hauck T, Adhikari B, Hamann A, Rocca Y, Grysczyk L, Martin B, Gebhardt-Wolf A, Wiegering A, Diefenbacher M, Gasteiger G, Knapp S, Saur D, Eilers M, Rosenfeldt M, Erhard F, Vos SM, Wolf E. Targeting MYC effector functions in pancreatic cancer by inhibiting the ATPase RUVBL1/2. Gut 2024; 73:1509-1528. [PMID: 38821858 PMCID: PMC11347226 DOI: 10.1136/gutjnl-2023-331519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE The hallmark oncogene MYC drives the progression of most tumours, but direct inhibition of MYC by a small-molecule drug has not reached clinical testing. MYC is a transcription factor that depends on several binding partners to function. We therefore explored the possibility of targeting MYC via its interactome in pancreatic ductal adenocarcinoma (PDAC). DESIGN To identify the most suitable targets among all MYC binding partners, we constructed a targeted shRNA library and performed screens in cultured PDAC cells and tumours in mice. RESULTS Unexpectedly, many MYC binding partners were found to be important for cultured PDAC cells but dispensable in vivo. However, some were also essential for tumours in their natural environment and, among these, the ATPases RUVBL1 and RUVBL2 ranked first. Degradation of RUVBL1 by the auxin-degron system led to the arrest of cultured PDAC cells but not untransformed cells and to complete tumour regression in mice, which was preceded by immune cell infiltration. Mechanistically, RUVBL1 was required for MYC to establish oncogenic and immunoevasive gene expression identifying the RUVBL1/2 complex as a druggable vulnerability in MYC-driven cancer. CONCLUSION One implication of our study is that PDAC cell dependencies are strongly influenced by the environment, so genetic screens should be performed in vitro and in vivo. Moreover, the auxin-degron system can be applied in a PDAC model, allowing target validation in living mice. Finally, by revealing the nuclear functions of the RUVBL1/2 complex, our study presents a pharmaceutical strategy to render pancreatic cancers potentially susceptible to immunotherapy.
Collapse
Affiliation(s)
- Markus Vogt
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Nevenka Dudvarski Stankovic
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Yiliam Cruz Garcia
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Katharina Schneider
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Filiz Kuybu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Theresa Hauck
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bikash Adhikari
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Anton Hamann
- Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yamila Rocca
- Max Planck Research Group and Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Lara Grysczyk
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Benedikt Martin
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Anneli Gebhardt-Wolf
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Armin Wiegering
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Markus Diefenbacher
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL/CPC-M), Munich, Germany
- Ludwig-Maximilian-Universität München (LMU), Munich, Germany
| | - Georg Gasteiger
- Max Planck Research Group and Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Dieter Saur
- Institute of Translational Cancer Research, TUM School of Medicine and Health, Munich, Germany
| | - Martin Eilers
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | | | - Florian Erhard
- Computational Systems Virology and Bioinformatics, Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elmar Wolf
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| |
Collapse
|
8
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
9
|
Papadopoulos D, Ha SA, Fleischhauer D, Uhl L, Russell TJ, Mikicic I, Schneider K, Brem A, Valanju OR, Cossa G, Gallant P, Schuelein-Voelk C, Maric HM, Beli P, Büchel G, Vos SM, Eilers M. The MYCN oncoprotein is an RNA-binding accessory factor of the nuclear exosome targeting complex. Mol Cell 2024; 84:2070-2086.e20. [PMID: 38703770 DOI: 10.1016/j.molcel.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Stefanie Anh Ha
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Daniel Fleischhauer
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Timothy J Russell
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Ivan Mikicic
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany
| | - Katharina Schneider
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Annika Brem
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Omkar Rajendra Valanju
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, Building D15, 97080 Würzburg, Germany
| | - Giacomo Cossa
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christina Schuelein-Voelk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, Building D15, 97080 Würzburg, Germany
| | - Petra Beli
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Johannes Gutenberg University, Ackermannweg 4, 55128 Mainz, Germany
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames Street, Cambridge, MA 02142, USA.
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
10
|
Liu Z, Zhang X, Xu M, Hong JJ, Ciardiello A, Lei H, Shern JF, Thiele CJ. MYCN drives oncogenesis by cooperating with the histone methyltransferase G9a and the WDR5 adaptor to orchestrate global gene transcription. PLoS Biol 2024; 22:e3002240. [PMID: 38547242 PMCID: PMC11003700 DOI: 10.1371/journal.pbio.3002240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/09/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
MYCN activates canonical MYC targets involved in ribosome biogenesis, protein synthesis, and represses neuronal differentiation genes to drive oncogenesis in neuroblastoma (NB). How MYCN orchestrates global gene expression remains incompletely understood. Our study finds that MYCN binds promoters to up-regulate canonical MYC targets but binds to both enhancers and promoters to repress differentiation genes. MYCN binding also increases H3K4me3 and H3K27ac on canonical MYC target promoters and decreases H3K27ac on neuronal differentiation gene enhancers and promoters. WDR5 facilitates MYCN promoter binding to activate canonical MYC target genes, whereas MYCN recruits G9a to enhancers to repress neuronal differentiation genes. Targeting both MYCN's active and repressive transcriptional activities using both WDR5 and G9a inhibitors synergistically suppresses NB growth. We demonstrate that MYCN cooperates with WDR5 and G9a to orchestrate global gene transcription. The targeting of both these cofactors is a novel therapeutic strategy to indirectly target the oncogenic activity of MYCN.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Man Xu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jason J. Hong
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Amanda Ciardiello
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Carol J. Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Gaballa A, Gebhardt-Wolf A, Krenz B, Mattavelli G, John M, Cossa G, Andreani S, Schülein-Völk C, Montesinos F, Vidal R, Kastner C, Ade CP, Kneitz B, Gasteiger G, Gallant P, Rosenfeldt M, Riedel A, Eilers M. PAF1c links S-phase progression to immune evasion and MYC function in pancreatic carcinoma. Nat Commun 2024; 15:1446. [PMID: 38365788 PMCID: PMC10873513 DOI: 10.1038/s41467-024-45760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), endogenous MYC is required for S-phase progression and escape from immune surveillance. Here we show that MYC in PDAC cells is needed for the recruitment of the PAF1c transcription elongation complex to RNA polymerase and that depletion of CTR9, a PAF1c subunit, enables long-term survival of PDAC-bearing mice. PAF1c is largely dispensable for normal proliferation and regulation of MYC target genes. Instead, PAF1c limits DNA damage associated with S-phase progression by being essential for the expression of long genes involved in replication and DNA repair. Surprisingly, the survival benefit conferred by CTR9 depletion is not due to DNA damage, but to T-cell activation and restoration of immune surveillance. This is because CTR9 depletion releases RNA polymerase and elongation factors from the body of long genes and promotes the transcription of short genes, including MHC class I genes. The data argue that functionally distinct gene sets compete for elongation factors and directly link MYC-driven S-phase progression to tumor immune evasion.
Collapse
Affiliation(s)
- Abdallah Gaballa
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anneli Gebhardt-Wolf
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Bastian Krenz
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Mara John
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Giacomo Cossa
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Silvia Andreani
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christina Schülein-Völk
- Core Unit High-Content Microscopy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Francisco Montesinos
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Raphael Vidal
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carolin Kastner
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Carsten P Ade
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Burkhard Kneitz
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius Maximilian University Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mathias Rosenfeldt
- Institute of Pathology, Julius Maximilian University Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Martin Eilers
- Department of Biochemistry and Molecular Biologyy, Theodor Boveri Institute, Biocenter, Julius Maximilian University Würzburg, Am Hubland, 97074, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
12
|
Felipe I, Martínez-de-Villarreal J, Patel K, Martínez-Torrecuadrada J, Grossmann LD, Roncador G, Cubells M, Farrell A, Kendsersky N, Sabroso-Lasa S, Sancho-Temiño L, Torres K, Martinez D, Perez JM, García F, Pogoriler J, Moreno L, Maris JM, Real FX. BPTF cooperates with MYCN and MYC to link neuroblastoma cell cycle control to epigenetic cellular states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579816. [PMID: 38405949 PMCID: PMC10888818 DOI: 10.1101/2024.02.11.579816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The nucleosome remodeling factor BPTF is required for the deployment of the MYC-driven transcriptional program. Deletion of one Bptf allele delays tumor progression in mouse models of pancreatic cancer and lymphoma. In neuroblastoma, MYCN cooperates with the transcriptional core regulatory circuitry (CRC). High BPTF levels are associated with high-risk features and decreased survival. BPTF depletion results in a dramatic decrease of cell proliferation. Bulk RNA-seq, single-cell sequencing, and tissue microarrays reveal a positive correlation of BPTF and CRC transcription factor expression. Immunoprecipitation/mass spectrometry shows that BPTF interacts with MYCN and the CRC proteins. Genome-wide distribution analysis of BPTF and CRC in neuroblastoma reveals a dual role for BPTF: 1) it co-localizes with MYCN/MYC at the promoter of genes involved in cell cycle and 2) it co-localizes with the CRC at super-enhancers to regulate cell identity. The critical role of BPTF across neuroblastoma subtypes supports its relevance as a therapeutic target.
Collapse
|
13
|
Hofstetter J, Ogunleye A, Kutschke A, Buchholz LM, Wolf E, Raabe T, Gallant P. Spt5 interacts genetically with Myc and is limiting for brain tumor growth in Drosophila. Life Sci Alliance 2024; 7:e202302130. [PMID: 37935464 PMCID: PMC10629571 DOI: 10.26508/lsa.202302130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
The transcription factor SPT5 physically interacts with MYC oncoproteins and is essential for efficient transcriptional activation of MYC targets in cultured cells. Here, we use Drosophila to address the relevance of this interaction in a living organism. Spt5 displays moderate synergy with Myc in fast proliferating young imaginal disc cells. During later development, Spt5-knockdown has no detectable consequences on its own, but strongly enhances eye defects caused by Myc overexpression. Similarly, Spt5-knockdown in larval type 2 neuroblasts has only mild effects on brain development and survival of control flies, but dramatically shrinks the volumes of experimentally induced neuroblast tumors and significantly extends the lifespan of tumor-bearing animals. This beneficial effect is still observed when Spt5 is knocked down systemically and after tumor initiation, highlighting SPT5 as a potential drug target in human oncology.
Collapse
Affiliation(s)
- Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayoola Ogunleye
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - André Kutschke
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Lisa Marie Buchholz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Raabe
- Molecular Genetics, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Veschi V, Durinck K, Thiele CJ, Speleman F. Neuroblastoma Epigenetic Landscape: Drugging Opportunities. PEDIATRIC ONCOLOGY 2024:71-95. [DOI: 10.1007/978-3-031-51292-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Papadopoulos D, Uhl L, Ha SA, Eilers M. Beyond gene expression: how MYC relieves transcription stress. Trends Cancer 2023; 9:805-816. [PMID: 37422352 DOI: 10.1016/j.trecan.2023.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
MYC oncoproteins are key drivers of tumorigenesis. As transcription factors, MYC proteins regulate transcription by all three nuclear polymerases and gene expression. Accumulating evidence shows that MYC proteins are also crucial for enhancing the stress resilience of transcription. MYC proteins relieve torsional stress caused by active transcription, prevent collisions between the transcription and replication machineries, resolve R-loops, and repair DNA damage by participating in a range of protein complexes and forming multimeric structures at sites of genomic instability. We review the key complexes and multimerization properties of MYC proteins that allow them to mitigate transcription-associated DNA damage, and propose that the oncogenic functions of MYC extend beyond the modulation of gene expression.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Mildred Scheel Early Career Center, University Hospital Würzburg, Würzburg, Germany
| | - Leonie Uhl
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefanie Anh Ha
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
16
|
Cowell IG, Casement JW, Austin CA. To Break or Not to Break: The Role of TOP2B in Transcription. Int J Mol Sci 2023; 24:14806. [PMID: 37834253 PMCID: PMC10573011 DOI: 10.3390/ijms241914806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Transcription and its regulation pose challenges related to DNA torsion and supercoiling of the DNA template. RNA polymerase tracking the helical groove of the DNA introduces positive helical torsion and supercoiling upstream and negative torsion and supercoiling behind its direction of travel. This can inhibit transcriptional elongation and other processes essential to transcription. In addition, chromatin remodeling associated with gene activation can generate or be hindered by excess DNA torsional stress in gene regulatory regions. These topological challenges are solved by DNA topoisomerases via a strand-passage reaction which involves transiently breaking and re-joining of one (type I topoisomerases) or both (type II topoisomerases) strands of the phosphodiester backbone. This review will focus on one of the two mammalian type II DNA topoisomerase enzymes, DNA topoisomerase II beta (TOP2B), that have been implicated in correct execution of developmental transcriptional programs and in signal-induced transcription, including transcriptional activation by nuclear hormone ligands. Surprisingly, several lines of evidence indicate that TOP2B-mediated protein-free DNA double-strand breaks are involved in signal-induced transcription. We discuss the possible significance and origins of these DSBs along with a network of protein interaction data supporting a variety of roles for TOP2B in transcriptional regulation.
Collapse
Affiliation(s)
- Ian G. Cowell
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - John W. Casement
- Bioinformatics Support Unit, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Caroline A. Austin
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
17
|
Sachs P, Bergmaier P, Treutwein K, Mermoud JE. The Conserved Chromatin Remodeler SMARCAD1 Interacts with TFIIIC and Architectural Proteins in Human and Mouse. Genes (Basel) 2023; 14:1793. [PMID: 37761933 PMCID: PMC10530723 DOI: 10.3390/genes14091793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
In vertebrates, SMARCAD1 participates in transcriptional regulation, heterochromatin maintenance, DNA repair, and replication. The molecular basis underlying its involvement in these processes is not well understood. We identified the RNA polymerase III general transcription factor TFIIIC as an interaction partner of native SMARCAD1 in mouse and human models using endogenous co-immunoprecipitations. TFIIIC has dual functionality, acting as a general transcription factor and as a genome organizer separating chromatin domains. We found that its partnership with SMARCAD1 is conserved across different mammalian cell types, from somatic to pluripotent cells. Using purified proteins, we confirmed that their interaction is direct. A gene expression analysis suggested that SMARCAD1 is dispensable for TFIIIC function as an RNA polymerase III transcription factor in mouse ESCs. The distribution of TFIIIC and SMARCAD1 in the ESC genome is distinct, and unlike in yeast, SMARCAD1 is not enriched at active tRNA genes. Further analysis of SMARCAD1-binding partners in pluripotent and differentiated mammalian cells reveals that SMARCAD1 associates with several factors that have key regulatory roles in chromatin organization, such as cohesin, laminB, and DDX5. Together, our work suggests for the first time that the SMARCAD1 enzyme participates in genome organization in mammalian nuclei through interactions with architectural proteins.
Collapse
Affiliation(s)
- Parysatis Sachs
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- CMC Development, R&D, Sanofi, 65926 Frankfurt, Germany
| | - Philipp Bergmaier
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
- Global Development Operations, R&D, Merck Healthcare, 64293 Darmstadt, Germany
| | - Katrin Treutwein
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| | - Jacqueline E. Mermoud
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
18
|
Smiles WJ, Catalano L, Stefan VE, Weber DD, Kofler B. Metabolic protein kinase signalling in neuroblastoma. Mol Metab 2023; 75:101771. [PMID: 37414143 PMCID: PMC10362370 DOI: 10.1016/j.molmet.2023.101771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric malignancy of incredibly complex aetiology. Oncogenic protein kinase signalling in neuroblastoma has conventionally focussed on transduction through the well-characterised PI3K/Akt and MAPK pathways, in which the latter has been implicated in treatment resistance. The discovery of the receptor tyrosine kinase ALK as a target of genetic alterations in cases of familial and sporadic neuroblastoma, was a breakthrough in the understanding of the complex genetic heterogeneity of neuroblastoma. However, despite progress in the development of small-molecule inhibitors of ALK, treatment resistance frequently arises and appears to be a feature of the disease. Moreover, since the identification of ALK, several additional protein kinases, including the PIM and Aurora kinases, have emerged not only as drivers of the disease phenotype, but also as promising druggable targets. This is particularly the case for Aurora-A, given its intimate engagement with MYCN, a driver oncogene of aggressive neuroblastoma previously considered 'undruggable.' SCOPE OF REVIEW Aided by significant advances in structural biology and a broader understanding of the mechanisms of protein kinase function and regulation, we comprehensively outline the role of protein kinase signalling, emphasising ALK, PIM and Aurora in neuroblastoma, their respective metabolic outputs, and broader implications for targeted therapies. MAJOR CONCLUSIONS Despite massively divergent regulatory mechanisms, ALK, PIM and Aurora kinases all obtain significant roles in cellular glycolytic and mitochondrial metabolism and neuroblastoma progression, and in several instances are implicated in treatment resistance. While metabolism of neuroblastoma tends to display hallmarks of the glycolytic "Warburg effect," aggressive, in particular MYCN-amplified tumours, retain functional mitochondrial metabolism, allowing for survival and proliferation under nutrient stress. Future strategies employing specific kinase inhibitors as part of the treatment regimen should consider combinatorial attempts at interfering with tumour metabolism, either through metabolic pathway inhibitors, or by dietary means, with a view to abolish metabolic flexibility that endows cancerous cells with a survival advantage.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| |
Collapse
|
19
|
Liu Z, Zhang X, Xu M, Hong JJ, Ciardiello A, Lei H, Shern JF, Thiele CJ. MYCN driven oncogenesis involves cooperation with WDR5 to activate canonical MYC targets and G9a to repress differentiation genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548643. [PMID: 37781575 PMCID: PMC10541123 DOI: 10.1101/2023.07.11.548643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
MYCN activates canonical MYC targets involved in ribosome biogenesis, protein synthesis and represses neuronal differentiation genes to drive oncogenesis in neuroblastoma (NB). How MYCN orchestrates global gene expression remains incompletely understood. Our study finds that MYCN binds promoters to up-regulate canonical MYC targets but binds to both enhancers and promoters to repress differentiation genes. MYCN-binding also increases H3K4me3 and H3K27ac on canonical MYC target promoters and decreases H3K27ac on neuronal differentiation gene enhancers and promoters. WDR5 is needed to facilitate MYCN promoter binding to activate canonical MYC target genes, whereas MYCN recruits G9a to enhancers to repress neuronal differentiation genes. Targeting both MYCN's active and repressive transcriptional activities using both WDR5 and G9a inhibitors synergistically suppresses NB growth. We demonstrate that MYCN cooperates with WDR5 and G9a to orchestrate global gene transcription. The targeting of both these cofactors is a novel therapeutic strategy to indirectly target the oncogenic activity of MYCN.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Man Xu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jason J. Hong
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Amanda Ciardiello
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Carol J. Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
20
|
Seifert-Davila W, Girbig M, Hauptmann L, Hoffmann T, Eustermann S, Müller CW. Structural insights into human TFIIIC promoter recognition. SCIENCE ADVANCES 2023; 9:eadh2019. [PMID: 37418517 PMCID: PMC11811891 DOI: 10.1126/sciadv.adh2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/02/2023] [Indexed: 07/09/2023]
Abstract
Transcription factor (TF) IIIC recruits RNA polymerase (Pol) III to most of its target genes. Recognition of intragenic A- and B-box motifs in transfer RNA (tRNA) genes by TFIIIC modules τA and τB is the first critical step for tRNA synthesis but is mechanistically poorly understood. Here, we report cryo-electron microscopy structures of the six-subunit human TFIIIC complex unbound and bound to a tRNA gene. The τB module recognizes the B-box via DNA shape and sequence readout through the assembly of multiple winged-helix domains. TFIIIC220 forms an integral part of both τA and τB connecting the two subcomplexes via a ~550-amino acid residue flexible linker. Our data provide a structural mechanism by which high-affinity B-box recognition anchors TFIIIC to promoter DNA and permits scanning for low-affinity A-boxes and TFIIIB for Pol III activation.
Collapse
Affiliation(s)
- Wolfram Seifert-Davila
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Candidate for joint PhD degree from EMBL and Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Mathias Girbig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W. Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
21
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
22
|
Das SK, Lewis BA, Levens D. MYC: a complex problem. Trends Cell Biol 2023; 33:235-246. [PMID: 35963793 PMCID: PMC9911561 DOI: 10.1016/j.tcb.2022.07.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
The MYC protooncogene functions as a universal amplifier of transcription through interaction with numerous factors and complexes that regulate almost every cellular process. However, a comprehensive model that explains MYC's actions and the interplay governing the complicated dynamics of components of the transcription and replication machinery is still lacking. Here, we review the potency of MYC as an oncogenic driver and how it regulates the broad spectrum of complexes (effectors and regulators). We propose a 'hand-over model' for differential partitioning and trafficking of unstructured MYC via a loose interaction network between various gene-regulatory complexes and factors. Additionally, the article discusses how unstructured-MYC energetically favors efficient modulation of the energy landscape of the transcription cycle.
Collapse
Affiliation(s)
- Subhendu K Das
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - Brian A Lewis
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD 20892-1500, USA.
| |
Collapse
|
23
|
Rishfi M, Krols S, Martens F, Bekaert SL, Sanders E, Eggermont A, De Vloed F, Goulding JR, Risseeuw M, Molenaar J, De Wilde B, Van Calenbergh S, Durinck K. Targeted AURKA degradation: Towards new therapeutic agents for neuroblastoma. Eur J Med Chem 2023; 247:115033. [PMID: 36549117 DOI: 10.1016/j.ejmech.2022.115033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Aurora kinase A (AURKA) is a well-established target in neuroblastoma (NB) due to both its catalytic functions during mitosis and its kinase-independent functions, including stabilization of the key oncoprotein MYCN. We present a structure-activity relationship (SAR) study of MK-5108-derived PROTACs against AURKA by exploring different linker lengths and exit vectors on the thalidomide moiety. PROTAC SK2188 induces the most potent AURKA degradation (DC50,24h 3.9 nM, Dmax,24h 89%) and shows an excellent binding and degradation selectivity profile. Treatment of NGP neuroblastoma cells with SK2188 induced concomitant MYCN degradation, high replication stress/DNA damage levels and apoptosis. Moreover, SK2188 significantly outperforms the parent inhibitor MK-5108 in a cell proliferation screen and patient-derived organoids. Furthermore, altering the attachment point of the PEG linker to the 5-position of thalidomide allowed us to identify a potent AURKA degrader with a linker as short as 2 PEG units. With this, our SAR-study provides interesting lead structures for further optimization and validation of AURKA degradation as a potential therapeutic strategy in neuroblastoma.
Collapse
Affiliation(s)
- Muhammad Rishfi
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Simon Krols
- Laboratory for medicinal chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fien Martens
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ellen Sanders
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Aline Eggermont
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fanny De Vloed
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Joshua Robert Goulding
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Martijn Risseeuw
- Laboratory for medicinal chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bram De Wilde
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Serge Van Calenbergh
- Laboratory for medicinal chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Kaat Durinck
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
24
|
Diebold M, Schönemann L, Eilers M, Sotriffer C, Schindelin H. Crystal structure of a covalently linked Aurora-A-MYCN complex. Acta Crystallogr D Struct Biol 2023; 79:1-9. [PMID: 36601802 PMCID: PMC9815099 DOI: 10.1107/s2059798322011433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Formation of the Aurora-A-MYCN complex increases levels of the oncogenic transcription factor MYCN in neuroblastoma cells by abrogating its degradation through the ubiquitin proteasome system. While some small-molecule inhibitors of Aurora-A were shown to destabilize MYCN, clinical trials have not been satisfactory to date. MYCN itself is considered to be `undruggable' due to its large intrinsically disordered regions. Targeting the Aurora-A-MYCN complex rather than Aurora-A or MYCN alone will open new possibilities for drug development and screening campaigns. To overcome the challenges that a ternary system composed of Aurora-A, MYCN and a small molecule entails, a covalently cross-linked construct of the Aurora-A-MYCN complex was designed, expressed and characterized, thus enabling screening and design campaigns to identify selective binders.
Collapse
Affiliation(s)
- Mathias Diebold
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lars Schönemann
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Haus D15, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Martin Eilers
- Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Haus D15, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
25
|
Sicotte H, Kalari KR, Qin S, Dehm SM, Bhargava V, Gormley M, Tan W, Sinnwell JP, Hillman DW, Li Y, Vedell PT, Carlson RE, Bryce AH, Jimenez RE, Weinshilboum RM, Kohli M, Wang L. Molecular Profile Changes in Patients with Castrate-Resistant Prostate Cancer Pre- and Post-Abiraterone/Prednisone Treatment. Mol Cancer Res 2022; 20:1739-1750. [PMID: 36135372 PMCID: PMC9716248 DOI: 10.1158/1541-7786.mcr-22-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/05/2022] [Accepted: 09/02/2022] [Indexed: 01/15/2023]
Abstract
We identified resistance mechanisms to abiraterone acetate/prednisone (AA/P) in patients with metastatic castration-resistant prostate cancer (mCRPC) in the Prostate Cancer Medically Optimized Genome-Enhanced Therapy (PROMOTE) study. We analyzed whole-exome sequencing (WES) and RNA-sequencing data from 83 patients with metastatic biopsies before (V1) and after 12 weeks of AA/P treatment (V2). Resistance was determined by time to treatment change (TTTC). At V2, 18 and 11 of 58 patients had either short-term (median 3.6 months; range 1.4-4.5) or long-term (median 29 months; range 23.5-41.7) responses, respectively. Nonresponders had low expression of TGFBR3 and increased activation of the Wnt pathway, cell cycle, upregulation of AR variants, both pre- and posttreatment, with further deletion of AR inhibitor CDK11B posttreatment. Deletion of androgen processing genes, HSD17B11, CYP19A1 were observed in nonresponders posttreatment. Genes involved in cell cycle, DNA repair, Wnt-signaling, and Aurora kinase pathways were differentially expressed between the responder and non-responder at V2. Activation of Wnt signaling in nonresponder and deactivation of MYC or its target genes in responders was detected via SCN loss, somatic mutations, and transcriptomics. Upregulation of genes in the AURKA pathway are consistent with the activation of MYC regulated genes in nonresponders. Several genes in the AKT1 axis had increased mutation rate in nonresponders. We also found evidence of resistance via PDCD1 overexpression in responders. IMPLICATIONS Finally, we identified candidates drugs to reverse AA/P resistance: topoisomerase inhibitors and drugs targeting the cell cycle via the MYC/AURKA/AURKB/TOP2A and/or PI3K_AKT_MTOR pathways.
Collapse
Affiliation(s)
- Hugues Sicotte
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Krishna R. Kalari
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Sisi Qin
- Department of Pathology, The University of Chicago., Chicago, Illinois
| | - Scott M. Dehm
- Masonic Cancer Center and Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, Minnesota
| | - Vipul Bhargava
- Janssen Research and Development, Spring House, Pennsylvania
| | - Michael Gormley
- Janssen Research and Development, Spring House, Pennsylvania
| | - Winston Tan
- Department of Medicine, Mayo Clinic, Jacksonville, Florida
| | - Jason P. Sinnwell
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - David W. Hillman
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Ying Li
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Peter T. Vedell
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Rachel E. Carlson
- Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Alan H. Bryce
- Division of Hematology & Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Manish Kohli
- Department of Internal Medicine, University of Utah and Huntsman Cancer Institute, Salt Lake City, Utah
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Cacioppo R, Lindon C. Regulating the regulator: a survey of mechanisms from transcription to translation controlling expression of mammalian cell cycle kinase Aurora A. Open Biol 2022; 12:220134. [PMID: 36067794 PMCID: PMC9448500 DOI: 10.1098/rsob.220134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Aurora Kinase A (AURKA) is a positive regulator of mitosis with a strict cell cycle-dependent expression pattern. Recently, novel oncogenic roles of AURKA have been uncovered that are independent of the kinase activity and act within multiple signalling pathways, including cell proliferation, survival and cancer stem cell phenotypes. For this, cellular abundance of AURKA protein is per se crucial and must be tightly fine-tuned. Indeed, AURKA is found overexpressed in different cancers, typically as a result of gene amplification or enhanced transcription. It has however become clear that impaired processing, decay and translation of AURKA mRNA can also offer the basis for altered AURKA levels. Accordingly, the involvement of gene expression mechanisms controlling AURKA expression in human diseases is increasingly recognized and calls for much more research. Here, we explore and create an integrated view of the molecular processes regulating AURKA expression at the level of transcription, post-transcription and translation, intercalating discussion on how impaired regulation underlies disease. Given that targeting AURKA levels might affect more functions compared to inhibiting the kinase activity, deeper understanding of its gene expression may aid the design of alternative and therapeutically more successful ways of suppressing the AURKA oncogene.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
27
|
Abstract
Neuroblastomas are tumours of sympathetic origin, with a heterogeneous clinical course ranging from localized or spontaneously regressing to widely metastatic disease. Neuroblastomas recapitulate many of the features of sympathoadrenal development, which have been directly targeted to improve the survival outcomes in patients with high-risk disease. Over the past few decades, improvements in the 5-year survival of patients with metastatic neuroblastomas, from <20% to >50%, have resulted from clinical trials incorporating high-dose chemotherapy with autologous stem cell transplantation, differentiating agents and immunotherapy with anti-GD2 monoclonal antibodies. The next generation of trials are designed to improve the initial response rates in patients with high-risk neuroblastomas via the addition of immunotherapies, targeted therapies (such as ALK inhibitors) and radiopharmaceuticals to standard induction regimens. Other trials are focused on testing precision medicine strategies for patients with relapsed and/or refractory disease, enhancing the antitumour immune response and improving the effectiveness of maintenance regimens, in order to prolong disease remission. In this Review, we describe advances in delineating the pathogenesis of neuroblastoma and in identifying the drivers of high-risk disease. We then discuss how this knowledge has informed improvements in risk stratification, risk-adapted therapy and the development of novel therapies.
Collapse
Affiliation(s)
- Bo Qiu
- Department of Paediatrics, Division of Paediatric Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| | - Katherine K Matthay
- Department of Paediatrics, Division of Paediatric Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Zanotti S, Decaesteker B, Vanhauwaert S, De Wilde B, De Vos WH, Speleman F. Cellular senescence in neuroblastoma. Br J Cancer 2022; 126:1529-1538. [PMID: 35197583 PMCID: PMC9130206 DOI: 10.1038/s41416-022-01755-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a tumour that arises from the sympathoadrenal lineage occurring predominantly in children younger than five years. About half of the patients are diagnosed with high-risk tumours and undergo intensive multi-modal therapy. The success rate of current treatments for high-risk neuroblastoma is disappointingly low and survivors suffer from multiple therapy-related long-term side effects. Most chemotherapeutics drive cancer cells towards cell death or senescence. Senescence has long been considered to represent a terminal non-proliferative state and therefore an effective barrier against tumorigenesis. This dogma, however, has been challenged by recent observations that infer a much more dynamic and reversible nature for this process, which may have implications for the efficacy of therapy-induced senescence-oriented treatment strategies. Neuroblastoma cells in a dormant, senescent-like state may escape therapy, whilst their senescence-associated secretome may promote inflammation and invasiveness, potentially fostering relapse. Conversely, due to its distinct molecular identity, senescence may also represent an opportunity for the development of novel (combination) therapies. However, the limited knowledge on the molecular dynamics and diversity of senescence signatures demands appropriate models to study this process in detail. This review summarises the molecular knowledge about cellular senescence in neuroblastoma and investigates current and future options towards therapeutic exploration.
Collapse
Affiliation(s)
- Sofia Zanotti
- grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610 Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium ,grid.510942.bCancer Research Institute Ghent (CRIG), Ghent, 9000 Belgium
| | - Bieke Decaesteker
- grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium ,grid.510942.bCancer Research Institute Ghent (CRIG), Ghent, 9000 Belgium
| | - Suzanne Vanhauwaert
- grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium ,grid.510942.bCancer Research Institute Ghent (CRIG), Ghent, 9000 Belgium
| | - Bram De Wilde
- grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium ,grid.5342.00000 0001 2069 7798Department of Internal Medicine and Pediatrics, Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium ,grid.410566.00000 0004 0626 3303Department of Pediatric Hematology Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, 9000 Belgium
| | - Winnok H. De Vos
- grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610 Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium.
| |
Collapse
|
29
|
Sizer RE, Chahid N, Butterfield SP, Donze D, Bryant NJ, White RJ. TFIIIC-based chromatin insulators through eukaryotic evolution. Gene X 2022; 835:146533. [PMID: 35623477 DOI: 10.1016/j.gene.2022.146533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/04/2022] Open
Abstract
Eukaryotic chromosomes are divided into domains with distinct structural and functional properties, such as differing levels of chromatin compaction and gene transcription. Domains of relatively compact chromatin and minimal transcription are termed heterochromatic, whereas euchromatin is more open and actively transcribed. Insulators separate these domains and maintain their distinct features. Disruption of insulators can cause diseases such as cancer. Many insulators contain tRNA genes (tDNAs), examples of which have been shown to block the spread of activating or silencing activities. This characteristic of specific tDNAs is conserved through evolution, such that human tDNAs can serve as barriers to the spread of silencing in fission yeast. Here we demonstrate that tDNAs from the methylotrophic fungus Pichia pastoris can function effectively as insulators in distantly-related budding yeast. Key to the function of tDNAs as insulators is TFIIIC, a transcription factor that is also required for their expression. TFIIIC binds additional loci besides tDNAs, some of which have insulator activity. Although the mechanistic basis of TFIIIC-based insulation has been studied extensively in yeast, it is largely uncharacterized in metazoa. Utilising publicly-available genome-wide ChIP-seq data, we consider the extent to which mechanisms conserved from yeast to man may suffice to allow efficient insulation by TFIIIC in the more challenging chromatin environments of metazoa and suggest features that may have been acquired during evolution to cope with new challenges. We demonstrate the widespread presence at human tDNAs of USF1, a transcription factor with well-established barrier activity in vertebrates. We predict that tDNA-based insulators in higher organisms have evolved through incorporation of modules, such as binding sites for factors like USF1 and CTCF that are absent from yeasts, thereby strengthening function and providing opportunities for regulation between cell types.
Collapse
Affiliation(s)
- Rebecca E Sizer
- Department of Biology, The University of York, York YO10 5DD, UK
| | - Nisreen Chahid
- Department of Biology, The University of York, York YO10 5DD, UK
| | | | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nia J Bryant
- Department of Biology, The University of York, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, The University of York, York YO10 5DD, UK.
| |
Collapse
|
30
|
Fischer T, Hartmann O, Reissland M, Prieto-Garcia C, Klann K, Pahor N, Schülein-Völk C, Baluapuri A, Polat B, Abazari A, Gerhard-Hartmann E, Kopp HG, Essmann F, Rosenfeldt M, Münch C, Flentje M, Diefenbacher ME. PTEN mutant non-small cell lung cancer require ATM to suppress pro-apoptotic signalling and evade radiotherapy. Cell Biosci 2022; 12:50. [PMID: 35477555 PMCID: PMC9044846 DOI: 10.1186/s13578-022-00778-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Despite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy. Results We demonstrate that loss of PTEN led to altered expression of transcriptional programs which directly regulate therapy resistance, resulting in establishment of radiation resistance. While PTEN-deficient tumor cells were not dependent on DNA-PK for IR resistance nor activated ATR during IR, they showed a significant dependence for the DNA damage kinase ATM. Pharmacologic inhibition of ATM, via KU-60019 and AZD1390 at non-toxic doses, restored and even synergized with IR in PTEN-deficient human and murine NSCLC cells as well in a multicellular organotypic ex vivo tumor model. Conclusion PTEN tumors are addicted to ATM to detect and repair radiation induced DNA damage. This creates an exploitable bottleneck. At least in cellulo and ex vivo we show that low concentration of ATM inhibitor is able to synergise with IR to treat PTEN-deficient tumors in genetically well-defined IR resistant lung cancer models.
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00778-7.
Collapse
Affiliation(s)
- Thomas Fischer
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany.,Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Würzburg, Germany
| | - Oliver Hartmann
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | - Michaela Reissland
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | - Cristian Prieto-Garcia
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | - Kevin Klann
- Protein Quality Control Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Nikolett Pahor
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany.,Mildred Scheel Early Career Center, Würzburg, Germany
| | | | - Apoorva Baluapuri
- Department of Biochemistry and Molecular Biology, Cancer Systems Biology Group, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Centre Mainfranken, Würzburg, Germany
| | - Arya Abazari
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Gerhard-Hartmann
- Comprehensive Cancer Centre Mainfranken, Würzburg, Germany.,Institute for Pathology, University of Würzburg, Würzburg, Germany
| | | | - Frank Essmann
- Institute for Clinical Pharmacology, Robert Bosch Hospital, Stuttgart, Germany
| | - Mathias Rosenfeldt
- Comprehensive Cancer Centre Mainfranken, Würzburg, Germany.,Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Christian Münch
- Protein Quality Control Group, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Markus E Diefenbacher
- Department of Biochemistry and Molecular Biology, Protein Stability and Cancer Group, University of Würzburg, Würzburg, Germany. .,Mildred Scheel Early Career Center, Würzburg, Germany. .,Comprehensive Cancer Centre Mainfranken, Würzburg, Germany. .,Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
31
|
Tomlinson L, Batchelor M, Sarsby J, Byrne DP, Brownridge PJ, Bayliss R, Eyers PA, Eyers CE. Exploring the Conformational Landscape and Stability of Aurora A Using Ion-Mobility Mass Spectrometry and Molecular Modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:420-435. [PMID: 35099954 PMCID: PMC9007459 DOI: 10.1021/jasms.1c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Protein kinase inhibitors are highly effective in treating diseases driven by aberrant kinase signaling and as chemical tools to help dissect the cellular roles of kinase signaling complexes. Evaluating the effects of binding of small molecule inhibitors on kinase conformational dynamics can assist in understanding both inhibition and resistance mechanisms. Using gas-phase ion-mobility mass spectrometry (IM-MS), we characterize changes in the conformational landscape and stability of the protein kinase Aurora A (Aur A) driven by binding of the physiological activator TPX2 or small molecule inhibition. Aided by molecular modeling, we establish three major conformations, the relative abundances of which were dependent on the Aur A activation status: one highly populated compact conformer similar to that observed in most crystal structures, a second highly populated conformer possessing a more open structure infrequently found in crystal structures, and an additional low-abundance conformer not currently represented in the protein databank. Notably, inhibitor binding induces more compact configurations of Aur A, as adopted by the unbound enzyme, with both IM-MS and modeling revealing inhibitor-mediated stabilization of active Aur A.
Collapse
Affiliation(s)
- Lauren
J. Tomlinson
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Matthew Batchelor
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Joscelyn Sarsby
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Dominic P. Byrne
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Philip J. Brownridge
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Richard Bayliss
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Patrick A. Eyers
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
32
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
33
|
Wang L, Chen C, Song Z, Wang H, Ye M, Wang D, Kang W, Liu H, Qing G. EZH2 depletion potentiates MYC degradation inhibiting neuroblastoma and small cell carcinoma tumor formation. Nat Commun 2022; 13:12. [PMID: 35013218 PMCID: PMC8748958 DOI: 10.1038/s41467-021-27609-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Efforts to therapeutically target EZH2 have generally focused on inhibition of its methyltransferase activity, although it remains less clear whether this is the central mechanism whereby EZH2 promotes cancer. In the current study, we show that EZH2 directly interacts with both MYC family oncoproteins, MYC and MYCN, and promotes their stabilization in a methyltransferase-independent manner. By competing against the SCFFBW7 ubiquitin ligase to bind MYC and MYCN, EZH2 counteracts FBW7-mediated MYC(N) polyubiquitination and proteasomal degradation. Depletion, but not enzymatic inhibition, of EZH2 induces robust MYC(N) degradation and inhibits tumor cell growth in MYC(N) driven neuroblastoma and small cell lung carcinoma. Here, we demonstrate the MYC family proteins as global EZH2 oncogenic effectors and EZH2 pharmacologic degraders as potential MYC(N) targeted cancer therapeutics, pointing out that MYC(N) driven cancers may develop inherent resistance to the canonical EZH2 enzymatic inhibitors currently in clinical development.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Chan Chen
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Zemin Song
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Honghong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Minghui Ye
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Donghai Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Wenqian Kang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Hudan Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Guoliang Qing
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
34
|
Das SK, Kuzin V, Cameron DP, Sanford S, Jha RK, Nie Z, Rosello MT, Holewinski R, Andresson T, Wisniewski J, Natsume T, Price DH, Lewis BA, Kouzine F, Levens D, Baranello L. MYC assembles and stimulates topoisomerases 1 and 2 in a "topoisome". Mol Cell 2021; 82:140-158.e12. [PMID: 34890565 DOI: 10.1016/j.molcel.2021.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 08/11/2021] [Accepted: 11/13/2021] [Indexed: 12/25/2022]
Abstract
High-intensity transcription and replication supercoil DNA to levels that can impede or halt these processes. As a potent transcription amplifier and replication accelerator, the proto-oncogene MYC must manage this interfering torsional stress. By comparing gene expression with the recruitment of topoisomerases and MYC to promoters, we surmised a direct association of MYC with topoisomerase 1 (TOP1) and TOP2 that was confirmed in vitro and in cells. Beyond recruiting topoisomerases, MYC directly stimulates their activities. We identify a MYC-nucleated "topoisome" complex that unites TOP1 and TOP2 and increases their levels and activities at promoters, gene bodies, and enhancers. Whether TOP2A or TOP2B is included in the topoisome is dictated by the presence of MYC versus MYCN, respectively. Thus, in vitro and in cells, MYC assembles tools that simplify DNA topology and promote genome function under high output conditions.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Donald P Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Suzanne Sanford
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Rajiv Kumar Jha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Zuqin Nie
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Marta Trullols Rosello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ronald Holewinski
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD 21701, USA
| | - Thorkell Andresson
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD 21701, USA
| | - Jan Wisniewski
- Confocal Microscopy and Digital Imaging Facility, National Cancer Institute, Bethesda, MD 20892, USA
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Shizuoka 411-8540, Japan; Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - David H Price
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Brian A Lewis
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - Fedor Kouzine
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20814, USA.
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
35
|
Papadopoulos D, Solvie D, Baluapuri A, Endres T, Ha SA, Herold S, Kalb J, Giansanti C, Schülein-Völk C, Ade CP, Schneider C, Gaballa A, Vos S, Fischer U, Dobbelstein M, Wolf E, Eilers M. MYCN recruits the nuclear exosome complex to RNA polymerase II to prevent transcription-replication conflicts. Mol Cell 2021; 82:159-176.e12. [PMID: 34847357 DOI: 10.1016/j.molcel.2021.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023]
Abstract
The MYCN oncoprotein drives the development of numerous neuroendocrine and pediatric tumors. Here we show that MYCN interacts with the nuclear RNA exosome, a 3'-5' exoribonuclease complex, and recruits the exosome to its target genes. In the absence of the exosome, MYCN-directed elongation by RNA polymerase II (RNAPII) is slow and non-productive on a large group of cell-cycle-regulated genes. During the S phase of MYCN-driven tumor cells, the exosome is required to prevent the accumulation of stalled replication forks and of double-strand breaks close to the transcription start sites. Upon depletion of the exosome, activation of ATM causes recruitment of BRCA1, which stabilizes nuclear mRNA decapping complexes, leading to MYCN-dependent transcription termination. Disruption of mRNA decapping in turn activates ATR, indicating transcription-replication conflicts. We propose that exosome recruitment by MYCN maintains productive transcription elongation during S phase and prevents transcription-replication conflicts to maintain the rapid proliferation of neuroendocrine tumor cells.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Daniel Solvie
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Endres
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefanie Anh Ha
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Steffi Herold
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jacqueline Kalb
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Celeste Giansanti
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Christina Schülein-Völk
- Core Unit High-Content Microscopy, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carsten Patrick Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Cornelius Schneider
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Abdallah Gaballa
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Seychelle Vos
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02142, USA
| | - Utz Fischer
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
36
|
TOP2B's contributions to transcription. Biochem Soc Trans 2021; 49:2483-2493. [PMID: 34747992 DOI: 10.1042/bst20200454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Transcription is regulated and mediated by multiprotein complexes in a chromatin context. Transcription causes changes in DNA topology which is modulated by DNA topoisomerases, enzymes that catalyse changes in DNA topology via transient breaking and re-joining of one or both strands of the phosphodiester backbone. Mammals have six DNA topoisomerases, this review focuses on one, DNA topoisomerase II beta (TOP2B). In the absence of TOP2B transcription of many developmentally regulated genes is altered. Long genes seem particularly susceptible to the lack of TOP2B. Biochemical studies of the role of TOP2B in transcription regulated by ligands such as nuclear hormones, growth factors and insulin has revealed PARP1 associated with TOP2B and also PRKDC, XRCC5 and XRCC6. Analysis of publicly available databases of protein interactions confirms these interactions and illustrates interactions with other key transcriptional regulators including TRIM28. TOP2B has been shown to interact with proteins involved in chromosome organisation including CTCF and RAD21. Comparison of publicly available Chip-seq datasets reveals the location at which these proteins interact with genes. The availability of resources such as large datasets of protein-protein interactions, e.g. BioGrid and IntAct and protein-DNA interactions such as Chip-seq in GEO enables scientists to extend models and propose new hypotheses.
Collapse
|
37
|
Inhibition of USP28 overcomes Cisplatin-resistance of squamous tumors by suppression of the Fanconi anemia pathway. Cell Death Differ 2021; 29:568-584. [PMID: 34611298 PMCID: PMC8901929 DOI: 10.1038/s41418-021-00875-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required. SCC express ∆Np63, which regulates the Fanconi Anemia (FA) DNA-damage response in cancer cells, thereby contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 is recruited to sites of DNA damage in cisplatin-treated cells. ATR phosphorylates USP28 and increases its enzymatic activity. This phosphorylation event is required to positively regulate the DNA damage repair in SCC by stabilizing ∆Np63. Knock-down or inhibition of USP28 by a specific inhibitor weakens the ability of SCC to cope with DNA damage during platin-based chemotherapy. Hence, our study presents a novel mechanism by which ∆Np63 expressing SCC can be targeted to overcome chemotherapy resistance. Limited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ∆Np63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-∆Np63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.
Collapse
|
38
|
De Wyn J, Zimmerman MW, Weichert-Leahey N, Nunes C, Cheung BB, Abraham BJ, Beckers A, Volders PJ, Decaesteker B, Carter DR, Look AT, De Preter K, Van Loocke W, Marshall GM, Durbin AD, Speleman F, Durinck K. MEIS2 Is an Adrenergic Core Regulatory Transcription Factor Involved in Early Initiation of TH-MYCN-Driven Neuroblastoma Formation. Cancers (Basel) 2021; 13:cancers13194783. [PMID: 34638267 PMCID: PMC8508013 DOI: 10.3390/cancers13194783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Neuroblastoma is a pediatric tumor originating from the sympathetic nervous system responsible for 10–15% of all childhood cancer deaths. Half of all neuroblastoma patients present with high-risk disease, of which nearly 50% relapse and die of their disease. In addition, standard therapies cause serious lifelong side effects and increased risk for secondary tumors. Further research is crucial to better understand the molecular basis of neuroblastomas and to identify novel druggable targets. Neuroblastoma tumorigenesis has to this end been modeled in both mice and zebrafish. Here, we present a detailed dissection of the gene expression patterns that underlie tumor formation in the murine TH-MYCN-driven neuroblastoma model. We identified key factors that are putatively important for neuroblastoma tumor initiation versus tumor progression, pinpointed crucial regulators of the observed expression patterns during neuroblastoma development and scrutinized which factors could be innovative and vulnerable nodes for therapeutic intervention. Abstract Roughly half of all high-risk neuroblastoma patients present with MYCN amplification. The molecular consequences of MYCN overexpression in this aggressive pediatric tumor have been studied for decades, but thus far, our understanding of the early initiating steps of MYCN-driven tumor formation is still enigmatic. We performed a detailed transcriptome landscaping during murine TH-MYCN-driven neuroblastoma tumor formation at different time points. The neuroblastoma dependency factor MEIS2, together with ASCL1, was identified as a candidate tumor-initiating factor and shown to be a novel core regulatory circuit member in adrenergic neuroblastomas. Of further interest, we found a KEOPS complex member (gm6890), implicated in homologous double-strand break repair and telomere maintenance, to be strongly upregulated during tumor formation, as well as the checkpoint adaptor Claspin (CLSPN) and three chromosome 17q loci CBX2, GJC1 and LIMD2. Finally, cross-species master regulator analysis identified FOXM1, together with additional hubs controlling transcriptome profiles of MYCN-driven neuroblastoma. In conclusion, time-resolved transcriptome analysis of early hyperplastic lesions and full-blown MYCN-driven neuroblastomas yielded novel components implicated in both tumor initiation and maintenance, providing putative novel drug targets for MYCN-driven neuroblastoma.
Collapse
Affiliation(s)
- Jolien De Wyn
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (M.W.Z.); (N.W.-L.); (A.T.L.)
| | - Nina Weichert-Leahey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (M.W.Z.); (N.W.-L.); (A.T.L.)
| | - Carolina Nunes
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Belamy B. Cheung
- Lowy Cancer Research Centre, Children’s Cancer Institute Australia for Medical Research, UNSW Sydney, Randwick, NSW 2031, Australia; (B.B.C.); (D.R.C.); (G.M.M.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick, NSW 2031, Australia
| | - Brian J. Abraham
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| | - Anneleen Beckers
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Pieter-Jan Volders
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Bieke Decaesteker
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Daniel R. Carter
- Lowy Cancer Research Centre, Children’s Cancer Institute Australia for Medical Research, UNSW Sydney, Randwick, NSW 2031, Australia; (B.B.C.); (D.R.C.); (G.M.M.)
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alfred Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (M.W.Z.); (N.W.-L.); (A.T.L.)
| | - Katleen De Preter
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Wouter Van Loocke
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Glenn M. Marshall
- Lowy Cancer Research Centre, Children’s Cancer Institute Australia for Medical Research, UNSW Sydney, Randwick, NSW 2031, Australia; (B.B.C.); (D.R.C.); (G.M.M.)
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Adam D. Durbin
- Department of Oncology, Division of Molecular Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| | - Frank Speleman
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Kaat Durinck
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
- Correspondence: ; Tel.: +32-9-332-24-51
| |
Collapse
|
39
|
Arslanhan MD, Rauniyar N, Yates JR, Firat-Karalar EN. Aurora Kinase A proximity map reveals centriolar satellites as regulators of its ciliary function. EMBO Rep 2021; 22:e51902. [PMID: 34169630 PMCID: PMC8339716 DOI: 10.15252/embr.202051902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Aurora kinase A (AURKA) is a conserved kinase that plays crucial roles in numerous cellular processes. Although AURKA overexpression is frequent in human cancers, its pleiotropic functions and multifaceted regulation present challenges in its therapeutic targeting. Key to overcoming these challenges is to identify and characterize the full range of AURKA interactors, which are often weak and transient. Previous proteomic studies were limited in monitoring dynamic and non-mitotic AURKA interactions. Here, we generate the proximity interactome of AURKA in asynchronous cells, which consists of 440 proteins involving multiple biological processes and cellular compartments. Importantly, AURKA has extensive proximate and physical interactions to centriolar satellites, key regulators of the primary cilium. Loss-of-function experiments identify satellites as negative regulators of AURKA activity, abundance, and localization in quiescent cells. Notably, loss of satellites activates AURKA at the basal body, decreases centrosomal IFT88 levels, and causes ciliogenesis defects. Collectively, our results provide a resource for dissecting spatiotemporal regulation of AURKA and uncover its proteostatic regulation by satellites as a new mechanism for its ciliary functions.
Collapse
Affiliation(s)
- Melis D Arslanhan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Navin Rauniyar
- Department of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
40
|
Naso FD, Boi D, Ascanelli C, Pamfil G, Lindon C, Paiardini A, Guarguaglini G. Nuclear localisation of Aurora-A: its regulation and significance for Aurora-A functions in cancer. Oncogene 2021; 40:3917-3928. [PMID: 33981003 PMCID: PMC8195736 DOI: 10.1038/s41388-021-01766-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
The Aurora-A kinase regulates cell division, by controlling centrosome biology and spindle assembly. Cancer cells often display elevated levels of the kinase, due to amplification of the gene locus, increased transcription or post-translational modifications. Several inhibitors of Aurora-A activity have been developed as anti-cancer agents and are under evaluation in clinical trials. Although the well-known mitotic roles of Aurora-A point at chromosomal instability, a hallmark of cancer, as a major link between Aurora-A overexpression and disease, recent evidence highlights the existence of non-mitotic functions of potential relevance. Here we focus on a nuclear-localised fraction of Aurora-A with oncogenic roles. Interestingly, this pool would identify not only non-mitotic, but also kinase-independent functions of the kinase. We review existing data in the literature and databases, examining potential links between Aurora-A stabilisation and localisation, and discuss them in the perspective of a more effective targeting of Aurora-A in cancer therapy.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Georgiana Pamfil
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
41
|
Wang R, Ascanelli C, Abdelbaki A, Fung A, Rasmusson T, Michaelides I, Roberts K, Lindon C. Selective targeting of non-centrosomal AURKA functions through use of a targeted protein degradation tool. Commun Biol 2021; 4:640. [PMID: 34050235 PMCID: PMC8163823 DOI: 10.1038/s42003-021-02158-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Targeted protein degradation tools are becoming a new therapeutic modality, allowing small molecule ligands to be reformulated as heterobifunctional molecules (PROteolysis Targeting Chimeras, PROTACs) that recruit ubiquitin ligases to targets of interest, leading to ubiquitination and destruction of the targets. Several PROTACs against targets of clinical interest have been described, but detailed descriptions of the cell biology modulated by PROTACs are missing from the literature. Here we describe the functional characterization of a PROTAC derived from AURKA inhibitor MLN8237 (alisertib). We demonstrate efficient and specific destruction of both endogenous and overexpressed AURKA by Cereblon-directed PROTACs. At the subcellular level, we find differential targeting of AURKA on the mitotic spindle compared to centrosomes. The phenotypic consequences of PROTAC treatment are therefore distinct from those mediated by alisertib, and in mitotic cells differentially regulate centrosome- and chromatin- based microtubule spindle assembly pathways. In interphase cells PROTAC-mediated clearance of non-centrosomal AURKA modulates the cytoplasmic role played by AURKA in mitochondrial dynamics, whilst the centrosomal pool is refractory to PROTAC-mediated clearance. Our results point to differential sensitivity of subcellular pools of substrate, governed by substrate conformation or localization-dependent accessibility to PROTAC action, a phenomenon not previously described for this new class of degrader compounds. Wang et al develop tools to target the mitotic regulator AURKA by synthesising PROTACs based on the inhibitor MLN8237. They find that the new PROTAC compound efficiently clears cytoplasmic and mitotic spindle-associated AURKA but does not eliminate AURKA activity from centrosomes, demonstrating the possibility of targeting subpopulations.
Collapse
Affiliation(s)
- Richard Wang
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Alex Fung
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Tim Rasmusson
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.,Bristol Myers Squibb, Cambridge, MA, USA
| | | | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Wolpaw AJ, Bayliss R, Büchel G, Dang CV, Eilers M, Gustafson WC, Hansen GH, Jura N, Knapp S, Lemmon MA, Levens D, Maris JM, Marmorstein R, Metallo SJ, Park JR, Penn LZ, Rape M, Roussel MF, Shokat KM, Tansey WP, Verba KA, Vos SM, Weiss WA, Wolf E, Mossé YP. Drugging the "Undruggable" MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Res 2021; 81:1627-1632. [PMID: 33509943 PMCID: PMC8392692 DOI: 10.1158/0008-5472.can-20-3108] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
Effective treatment of pediatric solid tumors has been hampered by the predominance of currently "undruggable" driver transcription factors. Improving outcomes while decreasing the toxicity of treatment necessitates the development of novel agents that can directly inhibit or degrade these elusive targets. MYCN in pediatric neural-derived tumors, including neuroblastoma and medulloblastoma, is a paradigmatic example of this problem. Attempts to directly and specifically target MYCN have failed due to its similarity to MYC, the unstructured nature of MYC family proteins in their monomeric form, the lack of an understanding of MYCN-interacting proteins and ability to test their relevance in vivo, the inability to obtain structural information on MYCN protein complexes, and the challenges of using traditional small molecules to inhibit protein-protein or protein-DNA interactions. However, there is now promise for directly targeting MYCN based on scientific and technological advances on all of these fronts. Here, we discuss prior challenges and the reasons for renewed optimism in directly targeting this "undruggable" transcription factor, which we hope will lead to improved outcomes for patients with pediatric cancer and create a framework for targeting driver oncoproteins regulating gene transcription.
Collapse
MESH Headings
- Age of Onset
- Antineoplastic Agents/history
- Antineoplastic Agents/isolation & purification
- Antineoplastic Agents/therapeutic use
- Child
- Drug Discovery/history
- Drug Discovery/methods
- Drug Discovery/trends
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Screening Assays, Antitumor/history
- Drug Screening Assays, Antitumor/methods
- Drug Screening Assays, Antitumor/trends
- Gene Expression Regulation, Neoplastic/drug effects
- History, 20th Century
- History, 21st Century
- Humans
- N-Myc Proto-Oncogene Protein/antagonists & inhibitors
- N-Myc Proto-Oncogene Protein/genetics
- N-Myc Proto-Oncogene Protein/physiology
- Neoplasms/drug therapy
- Neoplasms/epidemiology
- Neoplasms/genetics
- Therapies, Investigational/history
- Therapies, Investigational/methods
- Therapies, Investigational/trends
Collapse
Affiliation(s)
- Adam J Wolpaw
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Wistar Institute, Philadelphia, Pennsylvania
| | - Richard Bayliss
- Astbury Center for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Gabriele Büchel
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Wuürzburg, Wuürzburg, Germany
- Mildred Scheel Early Career Center, University Hospital Wuürzburg, Wuürzburg, Germany
| | - Chi V Dang
- Wistar Institute, Philadelphia, Pennsylvania
- Ludwig Institute for Cancer Research, New York, New York
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Wuürzburg, Wuürzburg, Germany
| | - W Clay Gustafson
- University of California San Francisco, UCSF Benioff Children's Hospital, San Francisco, California
| | | | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mark A Lemmon
- Department of Pharmacology and Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronen Marmorstein
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Julie R Park
- Department of Pediatrics, University of Washington School of Medicine and Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, Washington
| | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | | | - Kliment A Verba
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - William A Weiss
- Departments of Neurology and Pediatrics, Neurological Surgery and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Yaël P Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Hartmann O, Reissland M, Maier CR, Fischer T, Prieto-Garcia C, Baluapuri A, Schwarz J, Schmitz W, Garrido-Rodriguez M, Pahor N, Davies CC, Bassermann F, Orian A, Wolf E, Schulze A, Calzado MA, Rosenfeldt MT, Diefenbacher ME. Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease. Front Cell Dev Biol 2021; 9:641618. [PMID: 33738287 PMCID: PMC7961101 DOI: 10.3389/fcell.2021.641618] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53 fl/fl :lsl-KRas G12D/wt . Developing tumors were indistinguishable from Trp53 fl/fl :lsl-KRas G12D/ wt -derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.
Collapse
Affiliation(s)
- Oliver Hartmann
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Würzburg, Germany
| | - Michaela Reissland
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Würzburg, Germany
| | - Carina R. Maier
- Tumour Metabolism and Microenvironment Group, DKFZ Heidelberg, Heidelberg, Germany
| | - Thomas Fischer
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Cristian Prieto-Garcia
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Würzburg, Germany
- Faculty of Medicine, TICC, Technion Haifa, Haifa, Israel
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Jessica Schwarz
- Cancer Systems Biology Group, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Martin Garrido-Rodriguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Nikolett Pahor
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Würzburg, Germany
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Amir Orian
- Faculty of Medicine, TICC, Technion Haifa, Haifa, Israel
| | - Elmar Wolf
- Cancer Systems Biology Group, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Almut Schulze
- Tumour Metabolism and Microenvironment Group, DKFZ Heidelberg, Heidelberg, Germany
| | - Marco A. Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Mathias T. Rosenfeldt
- Mildred Scheel Early Career Center, Würzburg, Germany
- Institut für Pathologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Markus E. Diefenbacher
- Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Würzburg, Germany
| |
Collapse
|
44
|
Roeschert I, Poon E, Henssen AG, Garcia HD, Gatti M, Giansanti C, Jamin Y, Ade CP, Gallant P, Schülein-Völk C, Beli P, Richards M, Rosenfeldt M, Altmeyer M, Anderson J, Eggert A, Dobbelstein M, Bayliss R, Chesler L, Büchel G, Eilers M. Combined inhibition of Aurora-A and ATR kinase results in regression of MYCN-amplified neuroblastoma. NATURE CANCER 2021; 2:312-326. [PMID: 33768209 PMCID: PMC7610389 DOI: 10.1038/s43018-020-00171-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022]
Abstract
Amplification of MYCN is the driving oncogene in a subset of high-risk neuroblastoma. The MYCN protein and the Aurora-A kinase form a complex during S phase that stabilizes MYCN. Here we show that MYCN activates Aurora-A on chromatin, which phosphorylates histone H3 at serine 10 in S phase, promotes the deposition of histone H3.3 and suppresses R-loop formation. Inhibition of Aurora-A induces transcription-replication conflicts and activates the Ataxia telangiectasia and Rad3 related (ATR) kinase, which limits double-strand break accumulation upon Aurora-A inhibition. Combined inhibition of Aurora-A and ATR induces rampant tumor-specific apoptosis and tumor regression in mouse models of neuroblastoma, leading to permanent eradication in a subset of mice. The therapeutic efficacy is due to both tumor cell-intrinsic and immune cell-mediated mechanisms. We propose that targeting the ability of Aurora-A to resolve transcription-replication conflicts is an effective therapy for MYCN-driven neuroblastoma (141 words).
Collapse
Affiliation(s)
- Isabelle Roeschert
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Evon Poon
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Anton G. Henssen
- Experimental and Clinical Research Center, Max Delbrück Center and Charité Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Heathcliff Dorado Garcia
- Experimental and Clinical Research Center, Max Delbrück Center and Charité Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstraße 190, 8057 Zurich, Switzerland
| | - Celeste Giansanti
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Yann Jamin
- Divisions of Radiotherapy and Imaging, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Carsten P. Ade
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Gallant
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christina Schülein-Völk
- Theodor Boveri Institute, Core Unit High-Content Microscopy, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Petra Beli
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Mark Richards
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mathias Rosenfeldt
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Winterthurerstraße 190, 8057 Zurich, Switzerland
| | - John Anderson
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street London WC1N 1EH, UK
| | - Angelika Eggert
- Experimental and Clinical Research Center, Max Delbrück Center and Charité Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Richard Bayliss
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, The Royal Marsden NHS Trust, 15 Cotswold Rd. Belmont, Sutton, Surrey SM2 5NG, UK
| | - Gabriele Büchel
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
45
|
Liu Z, Chen SS, Clarke S, Veschi V, Thiele CJ. Targeting MYCN in Pediatric and Adult Cancers. Front Oncol 2021; 10:623679. [PMID: 33628735 PMCID: PMC7898977 DOI: 10.3389/fonc.2020.623679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
The deregulation of the MYC family of oncogenes, including c-MYC, MYCN and MYCL occurs in many types of cancers, and is frequently associated with a poor prognosis. The majority of functional studies have focused on c-MYC due to its broad expression profile in human cancers. The existence of highly conserved functional domains between MYCN and c-MYC suggests that MYCN participates in similar activities. MYC encodes a basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor (TF) whose central oncogenic role in many human cancers makes it a highly desirable therapeutic target. Historically, as a TF, MYC has been regarded as “undruggable”. Thus, recent efforts focus on investigating methods to indirectly target MYC to achieve anti-tumor effects. This review will primarily summarize the recent progress in understanding the function of MYCN. It will explore efforts at targeting MYCN, including strategies aimed at suppression of MYCN transcription, destabilization of MYCN protein, inhibition of MYCN transcriptional activity, repression of MYCN targets and utilization of MYCN overexpression dependent synthetic lethality.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Samuel S Chen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Saki Clarke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
46
|
Otte J, Dyberg C, Pepich A, Johnsen JI. MYCN Function in Neuroblastoma Development. Front Oncol 2021; 10:624079. [PMID: 33585251 PMCID: PMC7873735 DOI: 10.3389/fonc.2020.624079] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Dysregulated expression of the transcription factor MYCN is frequently detected in nervous system tumors such as childhood neuroblastoma. Here, gene amplification of MYCN is a single oncogenic driver inducing neoplastic transformation in neural crest-derived cells. This abnormal MYCN expression is one of the strongest predictors of poor prognosis. It is present at diagnosis and is never acquired during later tumorigenesis of MYCN non-amplified neuroblastoma. This suggests that increased MYCN expression is an early event in these cancers leading to a peculiar dysregulation of cells that results in embryonal or cancer stem-like qualities, such as increased self-renewal, apoptotic resistance, and metabolic flexibility.
Collapse
Affiliation(s)
- Jörg Otte
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Adena Pepich
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Ubiquitylation of MYC couples transcription elongation with double-strand break repair at active promoters. Mol Cell 2021; 81:830-844.e13. [PMID: 33453168 DOI: 10.1016/j.molcel.2020.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.
Collapse
|
48
|
Structure of the TFIIIC subcomplex τA provides insights into RNA polymerase III pre-initiation complex formation. Nat Commun 2020; 11:4905. [PMID: 32999288 PMCID: PMC7528018 DOI: 10.1038/s41467-020-18707-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Transcription factor (TF) IIIC is a conserved eukaryotic six-subunit protein complex with dual function. It serves as a general TF for most RNA polymerase (Pol) III genes by recruiting TFIIIB, but it is also involved in chromatin organization and regulation of Pol II genes through interaction with CTCF and condensin II. Here, we report the structure of the S. cerevisiae TFIIIC subcomplex τA, which contains the most conserved subunits of TFIIIC and is responsible for recruitment of TFIIIB and transcription start site (TSS) selection at Pol III genes. We show that τA binding to its promoter is auto-inhibited by a disordered acidic tail of subunit τ95. We further provide a negative-stain reconstruction of τA bound to the TFIIIB subunits Brf1 and TBP. This shows that a ruler element in τA achieves positioning of TFIIIB upstream of the TSS, and suggests remodeling of the complex during assembly of TFIIIB by TFIIIC.
Collapse
|
49
|
Adhikari B, Bozilovic J, Diebold M, Schwarz JD, Hofstetter J, Schröder M, Wanior M, Narain A, Vogt M, Dudvarski Stankovic N, Baluapuri A, Schönemann L, Eing L, Bhandare P, Kuster B, Schlosser A, Heinzlmeir S, Sotriffer C, Knapp S, Wolf E. PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nat Chem Biol 2020; 16:1179-1188. [PMID: 32989298 PMCID: PMC7610535 DOI: 10.1038/s41589-020-00652-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
The mitotic kinase AURORA-A is essential for cell cycle progression and is considered a priority cancer target. While the catalytic activity of AURORA-A is essential for its mitotic function, recent reports indicate an additional non-catalytic function, which is difficult to target by conventional small molecules. We therefore developed a series of chemical degraders (PROTACs) by connecting a clinical kinase inhibitor of AURORA-A to E3 ligase-binding molecules (e.g. thalidomide). One degrader induced rapid, durable and highly specific degradation of AURORA-A. In addition ,we found that the degrader complex was stabilized by cooperative binding between AURORA-A and CEREBLON. Degrader-mediated AURORA-A depletion caused an S-phase defect, which is not the cell cycle effect observed upon kinase inhibition, supporting an important non-catalytic function of AURORA-A during DNA replication. AURORA-A degradation induced rampant apoptosis in cancer cell lines, and thus represents a versatile starting point for developing new therapeutics to counter AURORA-A function in cancer.
Collapse
Affiliation(s)
- Bikash Adhikari
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Jelena Bozilovic
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Diebold
- Institut für Pharmazie und Lebensmittelchemie, University of Würzburg, Würzburg, Germany
| | - Jessica Denise Schwarz
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Martin Schröder
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Marek Wanior
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Ashwin Narain
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Markus Vogt
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | | | - Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Lars Schönemann
- Rudolf Virchow Center - Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Lorenz Eing
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Bernhard Kuster
- German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), Heidelberg, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center - Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Christoph Sotriffer
- Institut für Pharmazie und Lebensmittelchemie, University of Würzburg, Würzburg, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie und Structural Genomics Consortium, Goethe-Universität Frankfurt, Frankfurt am Main, Germany. .,German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
50
|
Moreno L, Barone G, DuBois SG, Molenaar J, Fischer M, Schulte J, Eggert A, Schleiermacher G, Speleman F, Chesler L, Geoerger B, Hogarty MD, Irwin MS, Bird N, Blanchard GB, Buckland S, Caron H, Davis S, De Wilde B, Deubzer HE, Dolman E, Eilers M, George RE, George S, Jaroslav Š, Maris JM, Marshall L, Merchant M, Mortimer P, Owens C, Philpott A, Poon E, Shay JW, Tonelli R, Valteau-Couanet D, Vassal G, Park JR, Pearson ADJ. Accelerating drug development for neuroblastoma: Summary of the Second Neuroblastoma Drug Development Strategy forum from Innovative Therapies for Children with Cancer and International Society of Paediatric Oncology Europe Neuroblastoma. Eur J Cancer 2020; 136:52-68. [PMID: 32653773 DOI: 10.1016/j.ejca.2020.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 01/18/2023]
Abstract
Only one class of targeted agents (anti-GD2 antibodies) has been incorporated into front-line therapy for neuroblastoma since the 1980s. The Neuroblastoma New Drug Development Strategy (NDDS) initiative commenced in 2012 to accelerate the development of new drugs for neuroblastoma. Advances have occurred, with eight of nine high-priority targets being evaluated in paediatric trials including anaplastic lymphoma kinase inhibitors being investigated in front-line, but significant challenges remain. This article reports the conclusions of the second NDDS forum, which expanded across the Atlantic to further develop the initiative. Pre-clinical and clinical data for 40 genetic targets and mechanisms of action were prioritised and drugs were identified for early-phase trials. Strategies to develop drugs targeting TERT, telomere maintenance, ATRX, alternative lengthening of telomeres (ALT), BRIP1 and RRM2 as well as direct targeting of MYCN are high priority and should be championed for drug discovery. Promising pre-clinical data suggest that targeting of ALT by ATM or PARP inhibition may be potential strategies. Drugs targeting CDK2/9, CDK7, ATR and telomere maintenance should enter paediatric clinical development rapidly. Optimising the response to anti-GD2 by combinations with chemotherapy, targeted agents and other immunological targets are crucial. Delivering this strategy in the face of small patient cohorts, genomically defined subpopulations and a large number of permutations of combination trials, demands even greater international collaboration. In conclusion, the NDDS provides an internationally agreed, biologically driven selection of prioritised genetic targets and drugs. Improvements in the strategy for conducting trials in neuroblastoma will accelerate bringing these new drugs more rapidly to front-line therapy.
Collapse
Affiliation(s)
- Lucas Moreno
- Paediatric Haematology & Oncology Division, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | - Giuseppe Barone
- Department of Paediatric Oncology, Great Ormond Street Hospital for Children, London, UK
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Jan Molenaar
- Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
| | - Matthias Fischer
- Experimental Pediatric Oncology, University Children's Hospital, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Johannes Schulte
- Department of Pediatric Oncology & Hematology, Charité University Hospital, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology & Hematology, Charité University Hospital, Berlin, Germany; German Cancer Consortium (DKTK Berlin), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Gudrun Schleiermacher
- SIREDO, Department of Paediatric, Adolescents and Young Adults Oncology and INSERM U830, Institut Curie, Paris, France
| | - Frank Speleman
- Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Cancer Research Institute Ghent (CRIG), Belgium
| | - Louis Chesler
- Paediatric Drug Development, Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK; Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, University Paris-Saclay & Inserm U1015, Villejuif, France
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania, USA; Perelman School of Medicine, University of Pennsylvania, USA
| | - Meredith S Irwin
- Department of Paediatrics, Medical Biophysics and Laboratory Medicine & Pathobiology, The Hospital for Sick Kids, Toronto, Canada
| | - Nick Bird
- Solving Kids' Cancer, UK and National Cancer Research Institute Children's Cancer & Leukaemia Clinical Studies Group, UK
| | - Guy B Blanchard
- Neuroblastoma UK & Department of Physiology, Development & Neuroscience, University of Cambridge, UK
| | | | | | | | - Bram De Wilde
- Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Cancer Research Institute Ghent (CRIG), Belgium
| | - Hedwig E Deubzer
- Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | - Emmy Dolman
- Department of Translational Research, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, University of Wuerzburg, Germany
| | - Rani E George
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Sally George
- Paediatric Drug Development, Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK; Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - Štěrba Jaroslav
- Pediatric Oncology Department, University Hospital Brno, School of Medicine Masaryk University Brno, Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, ICRC Brno, St Anna University Hospital Brno, Czech Republic
| | - John M Maris
- Division of Oncology, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania, USA; Perelman School of Medicine, University of Pennsylvania, USA
| | - Lynley Marshall
- Paediatric Drug Development, Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK; Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - Melinda Merchant
- Astrazeneca, Early Clinical Projects, Oncology Translation Medicines Unit, Innovative Medicines Unit, Cambridge, UK
| | - Peter Mortimer
- Astrazeneca, Early Clinical Projects, Oncology Translation Medicines Unit, Innovative Medicines Unit, Cambridge, UK
| | - Cormac Owens
- Department of Paediatric Haemaology/Oncology, Our Lady's Children's Hospital, Dublin, Ireland
| | | | - Evon Poon
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Roberto Tonelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Dominique Valteau-Couanet
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, University Paris-Saclay & Inserm U1015, Villejuif, France
| | - Gilles Vassal
- Department of Clinical Research, Gustave Roussy, Paris-Sud University, Paris, France
| | - Julie R Park
- Department of Pediatrics, University of Washington School of Medicine and Center for Clinical and Translational Research, Seattle Children's Hospital, USA
| | - Andrew D J Pearson
- Paediatric Drug Development, Children & Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, UK; Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, Sutton, UK
| |
Collapse
|