1
|
Lagos-Monzon A, Ng S, Luca AM, Li H, Sabanayagam M, Benicio M, Moshiri H, Armstrong R, Tailor C, Kennedy M, Grunebaum E, Keller G, Dror Y. Aberrant early hematopoietic progenitor formation marks the onset of hematopoietic defects in Shwachman-Diamond syndrome. Eur J Haematol 2024; 113:530-542. [PMID: 38967591 DOI: 10.1111/ejh.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Shwachman-Diamond syndrome (SDS) is an inherited bone marrow failure disorder that often presents at infancy. Progress has been made in revealing causal mutated genes (SBDS and others), ribosome defects, and hematopoietic aberrations in SDS. However, the mechanism underlying the hematopoietic failure remained unknown, and treatment options are limited. Herein, we investigated the onset of SDS embryonic hematopoietic impairments. We generated SDS and control human-derived induced pluripotent stem cells (iPSCs). SDS iPSCs recapitulated the SDS hematological phenotype. Detailed stepwise evaluation of definitive hematopoiesis revealed defects that started at the early emerging hematopoietic progenitor (EHP) stage after mesoderm and hemogenic endothelium were normally induced. Hematopoietic potential of EHPs was markedly reduced, and the introduction of SBDS in SDS iPSCs improved colony formation. Transcriptome analysis revealed reduced expression of ribosome and oxidative phosphorylation-related genes in undifferentiated and differentiated iPSCs. However, certain pathways (e.g., DNA replication) and genes (e.g., CHCHD2) were exclusively or more severely dysregulated in EHPs compared with earlier and later stages. To our knowledge, this study offers for the first time an insight into the embryonic onset of human hematopoietic defects in an inherited bone marrow failure syndrome and reveals cellular and molecular aberrations at critical stages of hematopoietic development toward EHPs.
Collapse
Affiliation(s)
- Alejandra Lagos-Monzon
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Ng
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alice M Luca
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hongbing Li
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mathura Sabanayagam
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Benicio
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Houtan Moshiri
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Armstrong
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chetan Tailor
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marion Kennedy
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Eyal Grunebaum
- Division of Allergy and Immunology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yigal Dror
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Wang P, Jiang W, Lai T, Liu Q, Shen Y, Ye B, Wu D. Germline variants in acquired aplastic anemia: current knowledge and future perspectives. Haematologica 2024; 109:2778-2789. [PMID: 38988263 PMCID: PMC11367197 DOI: 10.3324/haematol.2023.284312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/09/2024] [Indexed: 07/12/2024] Open
Abstract
Aplastic anemia (AA) is a disease characterized by failure of hematopoiesis, bone marrow aplasia, and pancytopenia. It can be inherited or acquired. Although acquired AA is believed to be immune-mediated and random, new evidence suggests an underlying genetic predisposition. Besides confirmed genomic mutations that contribute to inherited AA (such as pathogenic mutations of TERT and TERC), germline variants, often in heterozygous states, also play a not negligible role in the onset and progression of acquired AA. These variants, associated with inherited bone marrow failure syndromes and inborn errors of immunity, contribute to the disease, possibly through mechanisms including gene homeostasis, DNA repair, and immune injury. This article explores the nuanced association between acquired AA and germline variants, detailing the clinical significance of germline variants in diagnosing and managing this condition. More work is encouraged to better understand the role of immunogenic pathogenic variants and whether somatic mutations participate as secondary "hits" in the development of bone marrow failure.
Collapse
Affiliation(s)
- Peicheng Wang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Wanzhi Jiang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Tianyi Lai
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang
| | - Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang.
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, China; Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang.
| |
Collapse
|
3
|
Wang C, Huang Y, Yang Y, Li R, Li Y, Qiu H, Wu J, Shi G, Ma W, Songyang Z. ILF3 safeguards telomeres from aberrant homologous recombination as a telomeric R-loop reader. Protein Cell 2024; 15:493-511. [PMID: 37991243 PMCID: PMC11214836 DOI: 10.1093/procel/pwad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/09/2023] [Indexed: 11/23/2023] Open
Abstract
Telomeres are specialized structures at the ends of linear chromosomes that protect genome stability. The telomeric repeat-containing RNA (TERRA) that is transcribed from subtelomeric regions can invade into double-stranded DNA regions and form RNA:DNA hybrid-containing structure called R-loop. In tumor cells, R-loop formation is closely linked to gene expression and the alternative lengthening of telomeres (ALT) pathway. Dysregulated R-loops can cause stalled replication forks and telomere instability. However, how R-loops are recognized and regulated, particularly at telomeres, is not well understood. We discovered that ILF3 selectively associates with telomeric R-loops and safeguards telomeres from abnormal homologous recombination. Knocking out ILF3 results in excessive R-loops at telomeres and triggers telomeric DNA damage responses. In addition, ILF3 deficiency disrupts telomere homeostasis and causes abnormalities in the ALT pathway. Using the proximity-dependent biotin identification (BioID) technology, we mapped the ILF3 interactome and discovered that ILF3 could interact with several DNA/RNA helicases, including DHX9. Importantly, ILF3 may aid in the resolution of telomeric R-loops through its interaction with DHX9. Our findings suggest that ILF3 may function as a reader of telomeric R-loops, helping to prevent abnormal homologous recombination and maintain telomere homeostasis.
Collapse
Affiliation(s)
- Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingying Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongxin Qiu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiali Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Li R, Chen Y, Yang B, Li Z, Li P, Chen Y, Li J, He J, Wu Y, Sun Y, Wang X, Guo X, Zhang W, Zhao Y, Guo G. DTX2 promotes glioma development via regulation of HLTF. Biol Direct 2024; 19:2. [PMID: 38163902 PMCID: PMC10759338 DOI: 10.1186/s13062-023-00447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Human Deltex 2 (DTX2) is a ubiquitin E3 ligase that functions as an oncogene and has been shown to participate in many human cancers. However, the role of DTX2 in glioma progression has remained obscure. In this study, we explore the mechanism underlying the function of DTX2 in glioma progression. METHODS The associations between DTX2 expression and clinical characteristics of glioma were determined by bioinformatic analysis of data from The Cancer Genome Atlas and Human Protein Atlas. The expression of DTX2 in glioma tissues was detected using immunohistochemistry and western blotting. Lentivirus-mediated gene knockdown and overexpression were used to determine the effects of DTX2 and helicase-like transcription element (HLTF) on glioma cell proliferation and migration with CCK-8, cell colony formation, transwell, and wound healing assays; flow cytometry in vitro; and animal models in vivo. The interaction of the DTX2 and HLTF proteins was verified by immunoprecipitation assay and confocal microscopy. RESULTS DTX2 was highly expressed in glioma samples, and this was correlated with worse overall survival. Silencing of DTX2 suppressed glioma cell viability, colony formation, and migration and induced cell apoptosis. In vitro ubiquitination assays confirmed that DTX2 could downregulate HLTF protein levels by increasing ubiquitination of the HLTF protein. We also observed that HLTF inhibited proliferation and migration of glioma cells. Subcutaneous xenografts with DTX2-overexpressing U87 cells showed significantly increased tumor volumes and weights. CONCLUSIONS We have identified DTX2/HLTF as a new axis in the development of glioma that could serve as a prognostic or therapeutic marker.
Collapse
Affiliation(s)
- Ren Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Peize Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jiayu Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianhang He
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yongqiang Wu
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanqi Sun
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
5
|
Cui Y, Wang K, Jiang D, Jiang Y, Shi D, DeGregori J, Waxman S, Ren R. Promoting longevity with less cancer: The 2022 International Conference on Aging and Cancer. AGING AND CANCER 2023; 4:111-120. [DOI: 10.1002/aac2.12068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2024]
Abstract
AbstractAging and cancer are increasingly becoming big challenges for public health worldwide due to increased human life expectancy. Meanwhile, aging is one of the major risk factors for cancer. In December 2019, the first International Conference on Aging and Cancer was held in Haikou, Hainan province (island), China, preluding the establishment of the International Center for Aging and Cancer (ICAC) at Hainan, an institute dedicated to the research at the intersection of aging and cancer. Since then, the ICAC has hosted the annual conference each December in Hainan. The 2022 ICAC conference, with the theme of “promoting longevity with less cancer,” invited 17 internationally renowned scientists to share their new research and insights. Topics included DNA methylation in rejuvenation, development, and cellular senescence; lifespan regulation and longevity manipulation; metabolism and aging; cellular senescence and diseases; and novel therapeutics for cancer and antiaging/anticancer drug discovery. The forum highlighted the interconnectedness of aging and senescence with cancer evolution and risk. Although there is hope for preventing diseases like cancer by modulating systems that also control lifespan, attention has to be paid to the conflicting needs and competing demands in human biology.
Collapse
Affiliation(s)
- Yan Cui
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Kai Wang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Danli Jiang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Yizhou Jiang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Dawei Shi
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora Colorado USA
| | - Samuel Waxman
- Department of Hematology/Oncology Icahn School of Medicine at Mount Sinai New York City New York USA
| | - Ruibao Ren
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| |
Collapse
|
6
|
Liu W, Chen S, Xie W, Wang Q, Luo Q, Huang M, Gu M, Lan P, Chen D. MCCC2 is a novel mediator between mitochondria and telomere and functions as an oncogene in colorectal cancer. Cell Mol Biol Lett 2023; 28:80. [PMID: 37828426 PMCID: PMC10571261 DOI: 10.1186/s11658-023-00487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The mitochondrial gene MCCC2, a subunit of the heterodimer of 3-methylcrotonyl-CoA carboxylase, plays a pivotal role in catabolism of leucine and isovaleric acid. The molecular mechanisms and prognostic value still need to be explored in the context of specific cancers, including colorectal cancer (CRC). METHODS In vitro and in vivo cell-based assays were performed to explore the role of MCCC2 in CRC cell proliferation, invasion, and migration. Mitochondrial morphology, membrane potential, intracellular reactive oxygen species (ROS), telomerase activity, and telomere length were examined and analyzed accordingly. Protein complex formation was detected by co-immunoprecipitation (CO-IP). Mitochondrial morphology was observed by transmission electron microscopy (TEM). The Cancer Genome Atlas (TCGA) CRC cohort analysis, qRT-PCR, and immunohistochemistry (IHC) were used to examine the MCCC2 expression level. The association between MCCC2 expression and various clinical characteristics was analyzed by chi-square tests. CRC patients' overall survival (OS) was analyzed by Kaplan-Meier analysis. RESULTS Ectopic overexpression of MCCC2 promoted cell proliferation, invasion, and migration, while MCCC2 knockdown (KD) or knockout (KO) inhibited cell proliferation, invasion, and migration. MCCC2 KD or KO resulted in reduced mitochondria numbers, but did not affect the gross ATP production in the cells. Mitochondrial fusion markers MFN1, MFN2, and OPA1 were all upregulated in MCCC2 KD or KO cells, which is in line with a phenomenon of more prominent mitochondrial fusion. Interestingly, telomere lengths of MCCC2 KD or KO cells were reduced more than control cells. Furthermore, we found that MCCC2 could specifically form a complex with telomere binding protein TRF2, and MCCC2 KD or KO did not affect the expression or activity of telomerase reverse transcriptase (TERT). Finally, MCCC2 expression was heightened in CRC, and patients with higher MCCC2 expression had favorable prognosis. CONCLUSIONS Together, we identified MCCC2 as a novel mediator between mitochondria and telomeres, and provided an additional biomarker for CRC stratification.
Collapse
Affiliation(s)
- Wanjun Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
| | - Wenqing Xie
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Wang
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Qianxin Luo
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Minghan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minyi Gu
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Scientific Journal Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, China.
| | - Daici Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Roka K, Solomou EE, Kattamis A. Telomere biology: from disorders to hematological diseases. Front Oncol 2023; 13:1167848. [PMID: 37274248 PMCID: PMC10235513 DOI: 10.3389/fonc.2023.1167848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Variations in the length of telomeres and pathogenic variants involved in telomere length maintenance have been correlated with several human diseases. Recent breakthroughs in telomere biology knowledge have contributed to the identification of illnesses named "telomeropathies" and revealed an association between telomere length and disease outcome. This review emphasizes the biology and physiology aspects of telomeres and describes prototype diseases in which telomeres are implicated in their pathophysiology. We also provide information on the role of telomeres in hematological diseases ranging from bone marrow failure syndromes to acute and chronic leukemias.
Collapse
Affiliation(s)
- Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National & Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Full Member of ERN GENTURIS, Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, Rion, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National & Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, Full Member of ERN GENTURIS, Athens, Greece
| |
Collapse
|
8
|
Chen CC, Liao RY, Yeh FY, Lin YR, Wu TY, Pastor AE, Zul DD, Hsu YC, Wu KY, Liu KF, Kannagi R, Chen JY, Cai BH. A Simple and Affordable Method to Create Nonsense Mutation Clones of p53 for Studying the Premature Termination Codon Readthrough Activity of PTC124. Biomedicines 2023; 11:biomedicines11051310. [PMID: 37238980 DOI: 10.3390/biomedicines11051310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: A premature termination codon (PTC) can be induced by a type of point mutation known as a nonsense mutation, which occurs within the coding region. Approximately 3.8% of human cancer patients have nonsense mutations of p53. However, the non-aminoglycoside drug PTC124 has shown potential to promote PTC readthrough and rescue full-length proteins. The COSMIC database contains 201 types of p53 nonsense mutations in cancers. We built a simple and affordable method to create different nonsense mutation clones of p53 for the study of the PTC readthrough activity of PTC124. (2) Methods: A modified inverse PCR-based site-directed mutagenesis method was used to clone the four nonsense mutations of p53, including W91X, S94X, R306X, and R342X. Each clone was transfected into p53 null H1299 cells and then treated with 50 μM of PTC124. (3) Results: PTC124 induced p53 re-expression in H1299-R306X and H1299-R342X clones but not in H1299-W91X and H1299-S94X clones. (4) Conclusions: Our data showed that PTC124 more effectively rescued the C-terminal of p53 nonsense mutations than the N-terminal of p53 nonsense mutations. We introduced a fast and low-cost site-directed mutagenesis method to clone the different nonsense mutations of p53 for drug screening.
Collapse
Affiliation(s)
- Chia-Chi Chen
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Physical Therapy, I-Shou University, Kaohsiung City 82445, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Pathology, E-Da Hospital, Kaohsiung City 82445, Taiwan
| | - Ruo-Yu Liao
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Fang-Yu Yeh
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yu-Rou Lin
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Tze-You Wu
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Alexa Escobar Pastor
- School of Medicine for International Students, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Danny Danilo Zul
- School of Medicine for International Students, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yun-Chien Hsu
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Kuan-Yo Wu
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Ke-Fang Liu
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
| | - Jang-Yi Chen
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei City 11529, Taiwan
| | - Bi-He Cai
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| |
Collapse
|
9
|
Zhou Z, Li Y, Xu H, Xie X, He Z, Lin S, Li R, Jin S, Cui J, Hu H, Liu F, Wu S, Ma W, Songyang Z. An inducible CRISPR/Cas9 screen identifies DTX2 as a transcriptional regulator of human telomerase. iScience 2022; 25:103813. [PMID: 35198878 PMCID: PMC8844827 DOI: 10.1016/j.isci.2022.103813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 01/12/2023] Open
Abstract
Most tumor cells reactivate telomerase to ensure unlimited proliferation, whereas the expression of human telomerase reverse transcriptase (hTERT) is tightly regulated and rate-limiting for telomerase activity maintenance. Several general transcription factors (TFs) have been found in regulating hTERT transcription; however, a systematic study is lacking. Here we performed an inducible CRISPR/Cas9 KO screen using an hTERT core promoter-driven reporter. We identified numerous positive regulators including an E3 ligase DTX2. In telomerase-positive cancer cells, DTX2 depletion downregulated hTERT transcription and telomerase activity, contributing to progressive telomere shortening, growth arrest, and increased apoptosis. Utilizing BioID, we characterized multiple TFs as DTX2 proximal proteins, among which NFIC functioned corporately with DTX2 in promoting hTERT transcription. Further analysis demonstrated that DTX2 mediated K63-linked ubiquitination of NFIC, which facilitated NFIC binding to the hTERT promoter and enhanced hTERT expression. These findings highlight a new hTERT regulatory pathway that may be exploited for potential cancer therapeutics. An inducible CRISPR/Cas9 screen identifies regulators for hTERT transcription DTX2 deficiency leads to telomere shortening and cell growth arrest DTX2 mediates ubiquitination on NFIC, stabilizing NFIC binding on hTERT promoter DTX2-NFIC functions corporately to promote hTERT transcription and tumorigenesis
Collapse
Affiliation(s)
- Zhifen Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yujing Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Huimin Xu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaowei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Song Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruofei Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hai Hu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Su Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Corresponding author
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Corresponding author
| | - Zhou Songyang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangzhou Key Laboratory of Healthy Aging Research, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
- Corresponding author
| |
Collapse
|
10
|
Genome-wide whole-blood transcriptome profiling across inherited bone marrow failure subtypes. Blood Adv 2021; 5:5360-5371. [PMID: 34625797 PMCID: PMC9153011 DOI: 10.1182/bloodadvances.2021005360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022] Open
Abstract
Gene expression profiling has long been used in understanding the contribution of genes and related pathways in disease pathogenesis and susceptibility. We have performed whole-blood transcriptomic profiling in a subset of patients with inherited bone marrow failure (IBMF) whose diseases are clinically and genetically characterized as Fanconi anemia (FA), Shwachman-Diamond syndrome (SDS), and dyskeratosis congenita (DC). We hypothesized that annotating whole-blood transcripts genome wide will aid in understanding the complexity of gene regulation across these IBMF subtypes. Initial analysis of these blood-derived transcriptomes revealed significant skewing toward upregulated genes in patients with FA when compared with controls. Patients with SDS or DC also showed similar skewing profiles in their transcriptional status revealing a common pattern across these different IBMF subtypes. Gene set enrichment analysis revealed shared pathways involved in protein translation and elongation (ribosome constituents), RNA metabolism (nonsense-mediated decay), and mitochondrial function (electron transport chain). We further identified a discovery set of 26 upregulated genes at stringent cutoff (false discovery rate < 0.05) that appeared as a unified signature across the IBMF subtypes. Subsequent transcriptomic analysis on genetically uncharacterized patients with BMF revealed a striking overlap of genes, including 22 from the discovery set, which indicates a unified transcriptional drive across the classic (FA, SDS, and DC) and uncharacterized BMF subtypes. This study has relevance in disease pathogenesis, for example, in explaining the features (including the BMF) common to all patients with IBMF and suggests harnessing this transcriptional signature for patient benefit.
Collapse
|
11
|
Frattini A, Bolamperti S, Valli R, Cipolli M, Pinto RM, Bergami E, Frau MR, Cesaro S, Signo M, Bezzerri V, Porta G, Khan AW, Rubinacci A, Villa I. Enhanced p53 Levels Are Involved in the Reduced Mineralization Capacity of Osteoblasts Derived from Shwachman-Diamond Syndrome Subjects. Int J Mol Sci 2021; 22:ijms222413331. [PMID: 34948128 PMCID: PMC8707819 DOI: 10.3390/ijms222413331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS-OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.
Collapse
Affiliation(s)
- Annalisa Frattini
- Institute for Genetic and Biomedical Research (IRGB), UOS Milano CNR, Via Fantoli, 15/16, 20138 Milano, Italy
- Department of Medicine and Surgery (DMC), Universita’ degli Studi dell’Insubria, Via J.H. Dunant, 5, 21100 Varese, Italy; (R.V.); (G.P.); (A.W.K.)
- Correspondence: ; Tel.: +39-0332217113
| | - Simona Bolamperti
- Bone Metabolism Unit, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milano, Italy; (S.B.); (M.S.); (A.R.); (I.V.)
| | - Roberto Valli
- Department of Medicine and Surgery (DMC), Universita’ degli Studi dell’Insubria, Via J.H. Dunant, 5, 21100 Varese, Italy; (R.V.); (G.P.); (A.W.K.)
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata di Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy;
| | - Rita Maria Pinto
- Department of Onco-Hematology, Ospedale Bambino Gesù IRCCS, Piazza S.Onofrio, 4, 00165 Roma, Italy;
| | - Elena Bergami
- Pediatric Onco-Hematology, IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy;
| | - Maria Rita Frau
- Pediatrics and Intensive Neonatal Therapy, Ospedale San Francesco, Via Salvatore Mannironi, 08100 Nuoro, Italy;
| | - Simone Cesaro
- Pediatric Hematology Oncology, Ospedale Donna Bambino, Azienda Ospedaliera Universitaria Integrata, Piazzale Aristide Stefani, 1, 37126 Verona, Italy;
| | - Michela Signo
- Bone Metabolism Unit, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milano, Italy; (S.B.); (M.S.); (A.R.); (I.V.)
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Via Conca, 71, 60126 Ancona, Italy;
| | - Giovanni Porta
- Department of Medicine and Surgery (DMC), Universita’ degli Studi dell’Insubria, Via J.H. Dunant, 5, 21100 Varese, Italy; (R.V.); (G.P.); (A.W.K.)
| | - Abdul Waheed Khan
- Department of Medicine and Surgery (DMC), Universita’ degli Studi dell’Insubria, Via J.H. Dunant, 5, 21100 Varese, Italy; (R.V.); (G.P.); (A.W.K.)
| | - Alessandro Rubinacci
- Bone Metabolism Unit, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milano, Italy; (S.B.); (M.S.); (A.R.); (I.V.)
| | - Isabella Villa
- Bone Metabolism Unit, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milano, Italy; (S.B.); (M.S.); (A.R.); (I.V.)
| |
Collapse
|
12
|
Wu ZW, Mou Q, Fang T, Wang Y, Liang H, Wang C, Du ZQ, Yang CX. Global 3'-untranslated region landscape mediated by alternative polyadenylation during meiotic maturation of pig oocytes. Reprod Domest Anim 2021; 57:33-44. [PMID: 34647356 DOI: 10.1111/rda.14026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
Alternative polyadenylation affects the length and composition of 3'-untranslated region (3'-UTR) and regulates mRNA stability or translational activity to affect important biological processes. However, global 3'-UTR landscape and its relationship with gamete maturation remain less studied. Here, we analysed our previously reported single-cell RNA-seq data of germinal vesicle and metaphase II stage oocytes in pigs to systematically catalogue the 3'-UTR dynamics during oocyte maturation. Two softwares (DaPars and APAtrap) were employed and identified 110 and 228 mRNAs with significantly different 3'-UTRs (adjusted p ≤ .05), respectively. Gene enrichment analyses found signalling pathways related with biological processes of female gametophyte production, methyltransferase activity and mRNA surveillance (DaPars) and cell cycle process, regulation of ERK1 and ERK2 cascade, regulation of translation, spindle organization, kinetochore, condensed chromosome and progesterone-mediated oocyte maturation (APAtrap), respectively. Moreover, 18 of 110 mRNAs (|△PDUI| ≥ 0.25 and |log2 PDUI ratio| ≥ 0.59) and 15 of 228 mRNAs (Perc. diff. ≥ 0.5) were with greater difference of 3'-UTR length or abundance, and integrative genomics viewer analysis further identified 4 (Alg10, Hadhb, Hsd17b4 and Sbds) of 18 mRNAs to be with 3'-UTR length differed ≥150 bp and 6 (Gcc1, Hnrnpa2b1, Lsm6, Prpf18, Sfr1 and Ust) of 15 mRNAs to be with 3'-UTR abundance extremely differed. Furthermore, the location, sequences and number of cis-elements were predicted, which were shown to derange cytoplasmic polyadenylation element, poly(A) site and microRNA binding sites within 3'-UTRs of Alg10, Hadhb, Hsd17b4 and Sbds mRNAs. Taken together, global 3'-UTR landscape changes dynamically with oocyte meiotic maturation, potentially involved in regulating oocyte meiotic process in pigs.
Collapse
Affiliation(s)
- Zi-Wei Wu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Qiao Mou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yi Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Wang C, Songyang Z, Huang Y. TRIM28 inhibits alternative lengthening of telomere phenotypes by protecting SETDB1 from degradation. Cell Biosci 2021; 11:149. [PMID: 34330324 PMCID: PMC8325274 DOI: 10.1186/s13578-021-00660-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Background About 10–15% of tumor cells extend telomeres through the alternative lengthening of telomeres (ALT) mechanism, which is a recombination-dependent replication pathway. It is generally believed that ALT cells are related to the chromatin modification of telomeres. However, the mechanism of ALT needs to be further explored. Results Here we found that TRIM28/KAP1 is preferentially located on the telomeres of ALT cells and interacts with telomeric shelterin/telosome complex. Knocking down TRIM28 in ALT cells delayed cell growth, decreased the level of C-circle which is one kind of extrachromosomal circular telomeric DNA, increased the frequency of ALT-associated promyelocytic leukemia bodies (APBs), led to telomere prolongation and increased the telomere sister chromatid exchange in ALT cells. Mechanistically, TRIM28 protects telomere histone methyltransferase SETDB1 from degradation, thus maintaining the H3K9me3 heterochromatin state of telomere DNA. Conclusions Our work provides a model that TRIM28 inhibits alternative lengthening of telomere phenotypes by protecting SETDB1 from degradation. In general, our results reveal the mechanism of telomere heterochromatin maintenance and its effect on ALT, and TRIM28 may serve as a target for the treatment of ALT tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00660-y.
Collapse
Affiliation(s)
- Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Yan Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
14
|
Abstract
RATIONALE The aim of this study was to analyze the genetic abnormalities and clinical manifestations of Shwachman-Diamond syndrome (SDS). PATIENT CONCERNS A Chinese infant with elevated transaminase and a novel mutation at of sbdsc.258 +2T>C and c.184a>Tc.292G>A. DIAGNOSES The female patient was 5 months' old at onset, with elevated transaminase as the first manifestation accompanied by restricted growth and development and oily stool. After sequencing the blood samples from patients and their parents, the heterozygous mutations of sbdsc.258 +2T>C and c.184a>T were detected. INTERVENTIONS After admission, the patient was provided compound glycyrrhizin, Newtide formula milk supplemented with probiotics, fat-soluble vitamins, oral medication to adjust the spleen and stomach, and other symptomatic treatments. OUTCOMES The stool traits improved, and the levels of liver function transaminases decreased compared with before. LESSONS SDS is a rare disease with a variety of clinical manifestations. Pancreatic exocrine dysfunction, blood system manifestations, and bone abnormalities are common clinical manifestations, and genetic testing is helpful for diagnosis.
Collapse
Affiliation(s)
| | | | - Zhiqiang Zhuo
- Infectious Department, Xiamen Children's Hospital, Xiamen, Fujian, China
| |
Collapse
|
15
|
Soubeyrand S, Nikpay M, Lau P, Turner A, Hoang HD, Alain T, McPherson R. CARMAL Is a Long Non-coding RNA Locus That Regulates MFGE8 Expression. Front Genet 2020; 11:631. [PMID: 32625236 PMCID: PMC7311772 DOI: 10.3389/fgene.2020.00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Genome-wide association studies have identified several genetic loci linked to coronary artery disease (CAD) most of them located in non-protein coding regions of the genome. One such locus is the CAD Associated Region between MFGE8 and ABHD2 (CARMA), a ∼18 kb haplotype that was recently shown to regulate vicinal protein coding genes. Here, we further investigate the region by examining a long non-coding RNA gene locus (CARMAL/RP11-326A19.4/AC013565) abutting the CARMA region. Expression-genotype correlation analyses of public databases indicate that CARMAL levels are influenced by CAD associated variants suggesting that it might have cardioprotective functions. We found CARMAL to be stably expressed at relatively low levels and enriched in the cytosol. CARMAL function was investigated by several gene targeting approaches in HEK293T: inactive CRISPR fusion proteins, antisense, overexpression and inactivation by CRISPR-mediated knock-out. Modest increases in CARMAL (3–4×) obtained via CRISPRa using distinct single-guided RNAs did not result in consistent transcriptome effects. By contrast, CARMAL deletion or reduced CARMAL expression via CRISPRi increased MFGE8 levels, suggesting that CARMAL is contributing to reduce MFGE8 expression under basal conditions. While future investigations are required to clarify the mechanism(s) by which CARMAL acts on MFGE8, integrative bioinformatic analyses of the transcriptome of CARMAL deleted cells suggest that this locus may also be involved in leucine metabolism, splicing, transcriptional regulation and Shwachman-Bodian-Diamond syndrome protein function.
Collapse
Affiliation(s)
- Sébastien Soubeyrand
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Majid Nikpay
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Paulina Lau
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Adam Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Huy-Dung Hoang
- Children Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- Children Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ruth McPherson
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
16
|
Tan LQ, Fu XY, Xie XT. [Clinical features, diagnosis, and treatment of Chinese children with Shwachman-Diamond syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:505-511. [PMID: 32434649 PMCID: PMC7389390 DOI: 10.7499/j.issn.1008-8830.1911111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
In order to clearly define the features of Shwachman-Diamond syndrome (SDS) in Chinese children, this article analyzes and summarizes the epidemiology, clinical features, and key points in the diagnosis and treatment of SDS in Chinese children with review of the clinical data of 27 children with SDS from related articles published previously. A comparative analysis was made between the Chinese and international data related to childhood SDS. The results showed a male/female ratio of about 2:1 in the Chinese children with SDS, with an age of onset of <1 month to 5 years (median 1 month) and an age of 3 months to 12 years (median 12 months) at the time of confirmed diagnosis. Reductions in peripheral blood cells due to myelopoiesis inhibition were observed in all 27 children with SDS, among whom 93% had neutropenia. Chronic diarrhea (85%), liver damage (78%), and short stature (83%) were the three main clinical features of SDS. Supplementation of pancreatin and component blood transfusion may temporarily alleviate the disease, while allogeneic hematopoietic stem cell transplantation is still an effective radical treatment. The comparative analysis of the Chinese and oversea data showed that compared with those in the European and American countries, the children with SDS in China had significantly higher incidence rates of chronic diarrhea, reductions in peripheral blood cells (three lineages), and liver damage, and there were also differences in the type of mutant genes.
Collapse
Affiliation(s)
- Li-Qun Tan
- Department of Pediatrics, Luodian Hospital, Baoshan District, Shanghai 201908, China.
| | | | | |
Collapse
|
17
|
|