1
|
Morini R, Tagliatti E, Bizzotto M, Matteoli M. Microglial and TREM2 dialogues in the developing brain. Immunity 2025; 58:1068-1084. [PMID: 40324380 DOI: 10.1016/j.immuni.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
From the migration of precursor cells to the refinement of neural circuits, the immune system plays a critical role in the development of the central nervous system. As the brain resident macrophages, microglia are integral to these processes, influencing key developmental stages and contributing to circuit remodeling. Recent years have brought a wealth of new insights into how microglia regulate key stages of brain development, particularly through their continuous crosstalk with various brain cell types. In this review, we synthesize this growing body of literature on microglia and neurodevelopment, highlighting the involvement of the TREM2 receptor, known for its role in aging and neurodegeneration, which profoundly affects the state of microglia and guides target cells by shaping their transcriptional and functional fate. We examine microglial communication with four major cell types-neural precursors, neurons, astrocytes, and oligodendrocytes-also delving into the described mechanisms that underpin these interactions.
Collapse
Affiliation(s)
- Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Erica Tagliatti
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Matteo Bizzotto
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089 Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090 Milan, Italy.
| |
Collapse
|
2
|
Zhang Q, Yi Y, Chen T, Ai Y, Chen Z, Liu G, Tang Z, Chen J, Xu T, Chen X, Liu J, Xia Y. M2 microglia-derived small extracellular vesicles modulate NSC fate after ischemic stroke via miR-25-3p/miR-93-5p-TGFBR/PTEN/FOXO3 axis. J Nanobiotechnology 2025; 23:311. [PMID: 40270025 PMCID: PMC12020034 DOI: 10.1186/s12951-025-03390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Endogenous neurogenesis could promote stroke recovery. Furthermore, anti-inflammatory phenotypical microglia (M2-microglia) could facilitate Neural Stem Cell (NSC)-mediated neurogenesis following Ischemic Stroke (IS). Nonetheless, the mechanisms through which M2 microglia influence NSC-mediated neurogenesis post-IS remain unclear. On the other hand, M2 microglia-derived small Extracellular Vesicles (M2-sEVs) could exert phenomenal biological effects and play significant roles in cell-to-cell interactions, highlighting their potential involvement in NSC-mediated neurogenesis post-IS, forming the basis of this study. METHODS M2-sEVs were first isolated from IL-4-stimulated microglia. For in vivo tests, M2-sEVs were intravenously injected into mice every day for 14 days after transient Middle Cerebral Artery Occlusion (tMCAO). Following that, the infarct volume and neurological function, as well as NSC proliferation in the Subventricular Zone and dentate gyrus, migration, and differentiation in the infarct area, were examined. For in vitro tests, M2-sEVs were administered to NSC subjected to Oxygen-Glucose Deprivation (OGD) and then reoxygenation, after which NSC proliferation and differentiation were assessed. Finally, M2-sEVs were subjected to microRNA sequencing to explore the regulatory mechanisms. RESULTS Our findings revealed that M2-sEVs reduced the infarct volume and increased the neurological score in mice post-tMCAO. Furthermore, M2-sEV treatment promoted NSC proliferation and neuronal differentiation both in vivo and in vitro. Additionally, microRNA sequencing revealed miR-93-5p and miR-25-3p enrichment in M2-sEVs. Inhibitors of these miRNAs prevented TGFBR, PTEN, and FOXO3 downregulation in NSC, reversing M2-sEVs' beneficial effects on neurogenesis and sensorimotor recovery. CONCLUSIONS M2-sEVs increased NSC proliferation and neuronal differentiation, and protected against IS, at least partially, via delivering miR-25-3p and miR-93-5p to downregulate TGFBR, PTEN, and FOXO3 expression in NSC.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Yan Yi
- Reproductive Medicine Center, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Tiange Chen
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Ying Ai
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Ziyang Chen
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Ganzhi Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China
| | - Zexuan Tang
- School of Graduate Studies, Biomedical Science - Dental Scholars Track Program, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ, 07103, USA
| | - Jianwei Chen
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Tao Xu
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, CN, 410008, China.
| |
Collapse
|
3
|
Wang M, Chen D, Pan R, Sun Y, He X, Qiu Y, Hu Y, Wu X, Xi X, Hu R, Jiao Z. Neural stem cell-derived small extracellular vesicles: a new therapy approach in neurological diseases. Front Immunol 2025; 16:1548206. [PMID: 40308614 PMCID: PMC12040699 DOI: 10.3389/fimmu.2025.1548206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Neural stem cells (NSCs) possess pluripotent characteristics, proliferative capacity, and the ability to self-renew. In the context of neurological diseases, transplantation of NSCs has been shown to facilitate neurological repair through paracrine mechanisms. NSC-derived small extracellular vesicles (NSC-sEVs), a prominent component of the NSC secretome, play a crucial role in modulating various physiological and pathological processes, such as regulating the NSC microenvironment, promoting endogenous NSC differentiation, and facilitating the maturation of neurons and glial cells. Moreover, NSC-sEVs exhibit reduced immunogenicity, decreased tumorigenic potential, and enhanced ability to traverse the blood-brain barrier. Consequently, NSC-sEVs present novel therapeutic approaches as non-cellular treatments for neurological disorders and are poised to serve as a viable alternative to stem cell therapies. Furthermore, NSC-sEVs can be manipulated to enhance production efficiency, improve biological activity, and optimize targeting specificity, thereby significantly advancing the utilization of NSC-sEVs in clinical settings for neurological conditions. This review provides a comprehensive overview of the biological functions of NSC-sEVs, their therapeutic implications and underlying molecular mechanisms in diverse neurological disorders, as well as the potential for engineering NSC-sEVs as drug delivery platforms. Additionally, the limitations and challenges faced by NSC-sEVs in practical applications were discussed in depth, and targeted solutions were proposed.
Collapse
Affiliation(s)
- Mengyao Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- College of Medical Technology, Gannan Medical University, Ganzhou, China
| | - Dongdong Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- College of Medical Technology, Gannan Medical University, Ganzhou, China
| | - Renjie Pan
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- College of Medical Technology, Gannan Medical University, Ganzhou, China
| | - Yue Sun
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- College of Medical Technology, Gannan Medical University, Ganzhou, China
| | - Xinyu He
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- College of Medical Technology, Gannan Medical University, Ganzhou, China
| | - Youming Qiu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yuexin Hu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- College of Medical Technology, Gannan Medical University, Ganzhou, China
| | - Xiangsheng Wu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- College of Medical Technology, Gannan Medical University, Ganzhou, China
| | - Xuxiang Xi
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- College of Medical Technology, Gannan Medical University, Ganzhou, China
| | - Rong Hu
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- College of Medical Technology, Gannan Medical University, Ganzhou, China
| | - Zhigang Jiao
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- College of Medical Technology, Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Feliciano DM, Bordey A. TSC-mTORC1 Pathway in Postnatal V-SVZ Neurodevelopment. Biomolecules 2025; 15:573. [PMID: 40305300 PMCID: PMC12024678 DOI: 10.3390/biom15040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
In restricted regions of the rodent brain, neurogenesis persists throughout life, hinting that perhaps similar phenomena may exist in humans. Neural stem cells (NSCs) that reside within the ventricular-subventricular zone (V-SVZ) continually produce functional cells, including neurons that integrate into the olfactory bulb circuitry. The ability to achieve this feat is based on genetically encoded transcriptional programs that are controlled by environmentally regulated post-transcriptional signaling pathways. One such pathway that molds V-SVZ neurogenesis is the mTOR pathway. This pathway integrates nutrient sufficiency with growth factor signaling to control distinct steps of neurogenesis. Alterations in mTOR pathway signaling occur in numerous neurodevelopmental disorders. Here, we provide a narrative review for the role of the mTOR pathway in this process and discuss the use of this region to study the mTOR pathway in both health and disease.
Collapse
Affiliation(s)
- David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06520-8082, USA;
| |
Collapse
|
5
|
Zheng Y, Fuse H, Alzoubi I, Graeber MB. Microglia-Derived Brain Macrophages Associate with Glioblastoma Stem Cells: A Potential Mechanism for Tumor Progression Revealed by AI-Assisted Analysis. Cells 2025; 14:413. [PMID: 40136662 PMCID: PMC11940947 DOI: 10.3390/cells14060413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Malignant gliomas, and notably glioblastoma, are highly aggressive brain tumors. Understanding the mechanisms underlying their progression is crucial for developing more effective treatments. Recent studies have highlighted the role of microglia and brain macrophages in glioblastoma development, but the specific interactions between these immune cells and glioblastoma stem cells (GSCs) remain unclear. Methods: To address this question, we have utilized AI-assisted cell recognition to investigate the spatial relationship between GSCs expressing high levels of CD276 (B7-H3) and microglia- and bone marrow-derived brain macrophages, respectively. Results: Using PathoFusion, our previously developed open-source AI framework, we were able to map specific immunohistochemical phenotypes at the single-cell level within whole-slide images. This approach enabled us to selectively identify Iba1+ and CD163+ macrophages as well as CD276+ GSCs with high specificity and to study their co-localization. Our analysis suggests a closer association of Iba1+ macrophages with GSCs than between CD163+ macrophages and GSCs in glioblastoma. Conclusions: Our findings provide novel insights into the spatial context of tumor immunity in glioblastoma and point to microglia-GSC interactions as a potential mechanism for tumor progression, especially during diffuse tissue infiltration. These findings have significant implications for our understanding of glioblastoma biology, providing a foundation for a comprehensive analysis of microglia activation phenotypes during glioma development. This, in turn, may lead to new therapeutic strategies targeting the early stages of the immune microenvironment of glioblastoma.
Collapse
Affiliation(s)
- Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia;
| | - Haneya Fuse
- School of Medicine, Sydney Campus, University of Notre Dame, 160 Oxford Street, Darlinghurst, Sydney, NSW 2010, Australia;
| | - Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, NSW 2008, Australia;
| | - Manuel B. Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia;
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Spinelli M, Fusco S, Grassi C. Therapeutic potential of stem cell-derived extracellular vesicles in neurodegenerative diseases associated with cognitive decline. Stem Cells 2025; 43:sxae074. [PMID: 39541178 DOI: 10.1093/stmcls/sxae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
In the central nervous system, cell-to-cell interaction is essential for brain plassticity and repair, and its alteration is critically involved in the development of neurodegenerative diseases. Neural stem cells are a plentiful source of biological signals promoting neuroplasticity and the maintenance of cognitive functions. Extracellular vesicles (EVs) represent an additional strategy for cells to release signals in the surrounding cellular environment or to exchange information among both neighboring and distant cells. In the last years, rising attention has been devoted to the ability of stem cell (SC)-derived EVs to counteract inflammatory and degenerative brain disorders taking advantage of their immunomodulatory capacities and regenerative potential. Here, we review the role of adult neurogenesis impairment in the cognitive decline associated with neurodegenerative diseases and describe the beneficial effects of SC-derived EVs on brain plasticity and repair also discussing the advantages of SC-derived EV administration vs SC transplantation in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Matteo Spinelli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
7
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatial transcriptomic clocks reveal cell proximity effects in brain ageing. Nature 2025; 638:160-171. [PMID: 39695234 PMCID: PMC11798877 DOI: 10.1038/s41586-024-08334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions-exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell-cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease.
Collapse
Affiliation(s)
- Eric D Sun
- Biomedical Data Science Graduate Program, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biophysics Graduate Program, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Max Hauptschein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A Rando
- Department of Neurology, Stanford University, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Tariq H, Bukhari SZ, An R, Dong J, Ihsan A, Younis MR. Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy. Mater Today Bio 2025; 30:101440. [PMID: 39866781 PMCID: PMC11758955 DOI: 10.1016/j.mtbio.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/14/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently. Exosomes are involved in strategic phases of the onset and development of atherosclerosis because they have been identified to control pathophysiologic pathways including inflammation, angiogenesis, or senescence. This review investigates the potential role of stem cell-derived exosomes in atherosclerosis management. We briefly introduced atherosclerosis and stem cell therapy including stem cell-derived exosomes. The biogenesis of exosomes along with their secretion and isolation have been elaborated. The design engineering of exosomes has been summarized to present how drug loading and surface modification with targeting ligands can improve the therapeutic and targeting capacity of exosomes, demonstrating atheroprotective action. Moreover, the mechanism of action (endothelial dysfunction, reduction of dyslipidemia, macrophage polarization, vascular calcification, and angiogenesis) of drug-loaded exosomes to treat atherosclerosis has been discussed in detail. In the end, a comparative and balanced viewpoint has been given regarding the current challenges and potential solutions to advance exosome engineering for cardiovascular therapeutic applications.
Collapse
Affiliation(s)
- Hassan Tariq
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ruibing An
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Rizwan Younis
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
Bukatova S, Bacova Z, Osacka J, Bakos J. Mini review of molecules involved in altered postnatal neurogenesis in autism. Int J Neurosci 2024; 134:1429-1443. [PMID: 37815399 DOI: 10.1080/00207454.2023.2269304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/06/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
The neurobiology of autism is complex, but emerging research points to potential abnormalities and alterations in neurogenesis. The aim of the present review is to describe the advances in the understanding of the role of selected neurotrophins, neuropeptides, and other compounds secreted by neuronal cells in the processes of postnatal neurogenesis in conjunction with autism. We characterize the fundamental mechanisms of neuronal cell proliferation, generation of major neuronal cell types with special emphasis on neurogenic niches - the subventricular zone and hippocampal areas. We also discuss changes in intracellular calcium levels and calcium-dependent transcription factors in the context of the regulation of neurogenesis and cell fate determination. To sum up, this review provides specific insight into the known association between alterations in the function of the entire spectrum of molecules involved in neurogenesis and the etiology of autism pathogenesis.
Collapse
Affiliation(s)
- Stanislava Bukatova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Osacka
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
10
|
Madhu LN, Kodali M, Upadhya R, Rao S, Somayaji Y, Attaluri S, Shuai B, Kirmani M, Gupta S, Maness N, Rao X, Cai JJ, Shetty AK. Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease. J Extracell Vesicles 2024; 13:e12519. [PMID: 39499013 PMCID: PMC11536387 DOI: 10.1002/jev2.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 11/07/2024] Open
Abstract
As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.
Collapse
Affiliation(s)
- Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Maha Kirmani
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Shreyan Gupta
- Department of Veterinary Integrative BiosciencesTexas A&M College of Veterinary Medicine, College StationTexasUSA
| | - Nathaniel Maness
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| | - James J. Cai
- Department of Veterinary Integrative BiosciencesTexas A&M College of Veterinary Medicine, College StationTexasUSA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, College of MedicineTexas A&M University Health Science Center, College StationTexasUSA
| |
Collapse
|
11
|
D'Egidio F, Castelli V, d'Angelo M, Ammannito F, Quintiliani M, Cimini A. Brain incoming call from glia during neuroinflammation: Roles of extracellular vesicles. Neurobiol Dis 2024; 201:106663. [PMID: 39251030 DOI: 10.1016/j.nbd.2024.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
The functionality of the central nervous system (CNS) relies on the connection, integration, and the exchange of information among neural cells. The crosstalk among glial cells and neurons is pivotal for a series of neural functions, such as development of the nervous system, electric conduction, synaptic transmission, neural circuit establishment, and brain homeostasis. Glial cells are crucial players in the maintenance of brain functionality in physiological and disease conditions. Neuroinflammation is a common pathological process in various brain disorders, such as neurodegenerative diseases, and infections. Glial cells, including astrocytes, microglia, and oligodendrocytes, are the main mediators of neuroinflammation, as they can sense and respond to brain insults by releasing pro-inflammatory or anti-inflammatory factors. Recent evidence indicates that extracellular vesicles (EVs) are pivotal players in the intercellular communication that underlies physiological and pathological processes. In particular, glia-derived EVs play relevant roles in modulating neuroinflammation, either by promoting or inhibiting the activation of glial cells and neurons, or by facilitating the clearance or propagation of pathogenic proteins. The involvement of EVs in neurodegenerative diseases such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Multiple Sclerosis (MS)- which share hallmarks such as neuroinflammation and oxidative stress to DNA damage, alterations in neurotrophin levels, mitochondrial impairment, and altered protein dynamics- will be dissected, showing how EVs act as pivotal cell-cell mediators of toxic stimuli, thereby propagating degeneration and cell death signaling. Thus, this review focuses on the EVs secreted by microglia, astrocytes, oligodendrocytes and in neuroinflammatory conditions, emphasizing on their effects on neurons and on central nervous system functions, considering both their beneficial and detrimental effects.
Collapse
Affiliation(s)
- Francesco D'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo".
| | - Fabrizio Ammannito
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy 67100, Via Vetoio - Coppito1, Building "Renato Ricamo"
| |
Collapse
|
12
|
Sun ED, Zhou OY, Hauptschein M, Rappoport N, Xu L, Navarro Negredo P, Liu L, Rando TA, Zou J, Brunet A. Spatiotemporal transcriptomic profiling and modeling of mouse brain at single-cell resolution reveals cell proximity effects of aging and rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603809. [PMID: 39071282 PMCID: PMC11275735 DOI: 10.1101/2024.07.16.603809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain aging is complex and accompanied by many cellular changes2-20. However, the influence that aged cells have on neighboring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in aging tissues have not yet been developed. Here, we generate spatiotemporal data at single-cell resolution for the mouse brain across lifespan, and we develop the first machine learning models based on spatial transcriptomics ('spatial aging clocks') to reveal cell proximity effects during brain aging and rejuvenation. We collect a single-cell spatial transcriptomics brain atlas of 4.2 million cells from 20 distinct ages and across two rejuvenating interventions-exercise and partial reprogramming. We identify spatial and cell type-specific transcriptomic fingerprints of aging, rejuvenation, and disease, including for rare cell types. Using spatial aging clocks and deep learning models, we find that T cells, which infiltrate the brain with age, have a striking pro-aging proximity effect on neighboring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating effect on neighboring cells. By developing computational tools to identify mediators of these proximity effects, we find that pro-aging T cells trigger a local inflammatory response likely via interferon-γ whereas pro-rejuvenating neural stem cells impact the metabolism of neighboring cells possibly via growth factors (e.g. vascular endothelial growth factor) and extracellular vesicles, and we experimentally validate some of these predictions. These results suggest that rare cells can have a drastic influence on their neighbors and could be targeted to counter tissue aging. We anticipate that these spatial aging clocks will not only allow scalable assessment of the efficacy of interventions for aging and disease but also represent a new tool for studying cell-cell interactions in many spatial contexts.
Collapse
Affiliation(s)
- Eric D. Sun
- Department of Biomedical Data Science, Stanford University, CA, USA
- Department of Genetics, Stanford University, CA, USA
| | - Olivia Y. Zhou
- Department of Genetics, Stanford University, CA, USA
- Stanford Biophysics Program, Stanford University, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, CA, USA
| | | | | | - Lucy Xu
- Department of Genetics, Stanford University, CA, USA
- Department of Biology, Stanford University, CA, USA
| | | | - Ling Liu
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - Thomas A. Rando
- Department of Neurology, Stanford University, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, UCLA, Los Angeles, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| | - Anne Brunet
- Department of Genetics, Stanford University, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
- These authors contributed equally: James Zou, Anne Brunet
| |
Collapse
|
13
|
Schindler CR, Hörauf JA, Weber B, Schaible I, Marzi I, Henrich D, Leppik L. Identification of novel blood-based extracellular vesicles biomarker candidates with potential specificity for traumatic brain injury in polytrauma patients. Front Immunol 2024; 15:1347767. [PMID: 38533491 PMCID: PMC10963595 DOI: 10.3389/fimmu.2024.1347767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Objective The goal of this study was to identify changes in extracellular vesicles (EV) surface proteins specific to traumatic brain injury (TBI), which could be used as a diagnostic and prognostic tool in polytrauma patients. Summary Background Data Known serum TBI-specific biomarkers (S100B, NSE, and GFAP), which can predict the severity and outcome of isolated TBI, lose their predictive value in the presence of additional extracranial injuries. Extracellular vesicles (EVs) are released from cells in response to various stimuli and carry specific cargo/surface molecules that could be used for tracking injury-responding cells. Methods EVs were isolated using size exclusion chromatography (SEC) from the plasma of two groups of patients (with isolated TBI, ISS≥16, AIShead≥4, n=10; and polytraumatized patients without TBI ISS≥16, AIShead=0, n=10) collected in the emergency room and 48 h after trauma. EVs' surface epitope expression was investigated using a neurospecific multiplex flow cytometry assay and compared with healthy controls (n=10). Three enrichments of EV epitopes found to be specific to TBI were validated by western blot. Results The expression of 10 EV epitopes differed significantly among the patient and control groups, and five of these epitopes (CD13, CD196, MOG, CD133, and MBP) were TBI-specific. The increased expression of CD196, CD13, and MOG-positive EVs was validated by western blot. Conclusion Our data showed that TBI is characterized by a significant increase of CD13, CD196, MOG, CD133, and MBP-positive EVs in patients' plasma. A high level of MOG-positive EVs negatively correlated with the Glasgow Coma Scale score at admission and could be an indicator of poor neurological status.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liudmila Leppik
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Feliciano DM. Do Neural Stem Cell Extracellular Vesicles Help EVade Depression? Neuroscience 2024; 538:93-94. [PMID: 37591332 DOI: 10.1016/j.neuroscience.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Affiliation(s)
- David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA; Center for Human Genetics, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC 29646, USA.
| |
Collapse
|
15
|
Mallard C, Ferriero DM, Vexler ZS. Immune-Neurovascular Interactions in Experimental Perinatal and Childhood Arterial Ischemic Stroke. Stroke 2024; 55:506-518. [PMID: 38252757 DOI: 10.1161/strokeaha.123.043399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Emerging clinical and preclinical data have demonstrated that the pathophysiology of arterial ischemic stroke in the adult, neonates, and children share similar mechanisms that regulate brain damage but also have distinct molecular signatures and involved cellular pathways due to the maturational stage of the central nervous system and the immune system at the time of the insult. In this review, we discuss similarities and differences identified thus far in rodent models of 2 different diseases-neonatal (perinatal) and childhood arterial ischemic stroke. In particular, we review acquired knowledge of the role of resident and peripheral immune populations in modulating outcomes in models of perinatal and childhood arterial ischemic stroke and the most recent and relevant findings in relation to the immune-neurovascular crosstalk, and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we discuss the current state of treatments geared toward age-appropriate therapies that signal via the immune-neurovascular interaction and consider sex differences to achieve successful translation.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden (C.M.)
| | - Donna M Ferriero
- Department of Pediatrics, UCSF, San Francisco, CA (D.M.F.)
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| | - Zinaida S Vexler
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| |
Collapse
|
16
|
Madhu LN, Kodali M, Upadhya R, Rao S, Shuai B, Somayaji Y, Attaluri S, Kirmani M, Gupta S, Maness N, Rao X, Cai J, Shetty AK. Intranasally Administered EVs from hiPSC-derived NSCs Alter the Transcriptomic Profile of Activated Microglia and Conserve Brain Function in an Alzheimer's Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576313. [PMID: 38293018 PMCID: PMC10827207 DOI: 10.1101/2024.01.18.576313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antiinflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for Alzheimer's disease (AD). This study directly addressed this issue by examining the effects of intranasal administrations of hiPSC-NSC-EVs to 3-month-old 5xFAD mice. The EVs were internalized by all microglia, which led to reduced expression of multiple genes associated with disease-associated microglia, inflammasome, and interferon-1 signaling. Furthermore, the effects of hiPSC-NSC-EVs persisted for two months post-treatment in the hippocampus, evident from reduced microglial clusters, inflammasome complexes, and expression of proteins and/or genes linked to the activation of inflammasomes, p38/mitogen-activated protein kinase, and interferon-1 signaling. The amyloid-beta (Aβ) plaques, Aβ-42, and phosphorylated-tau concentrations were also diminished, leading to better cognitive and mood function in 5xFAD mice. Thus, early intervention with hiPSC-NSC-EVs in AD may help maintain better brain function by restraining the progression of adverse neuroinflammatory signaling cascades.
Collapse
|
17
|
Li Y, Fang B. Neural stem cell-derived extracellular vesicles: The light of central nervous system diseases. Biomed Pharmacother 2023; 165:115092. [PMID: 37406512 DOI: 10.1016/j.biopha.2023.115092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Central nervous system (CNS) diseases are the leading cause of death worldwide. By performing compensatory functions and improving the inflammatory microenvironment, the transplantation of neural stem cells (NSCs) can promote functional recovery from brain injury, aging, brain tumours, and other diseases. However, the ability of NSCs to differentiate into neurons is limited, and they are associated with a risk of tumourigenicity. NSC-derived extracellular vesicles (NSC-EVs) can modulate the local microenvironment of the nervous system as well as distant neuronal functions. Thus, cell-free therapy may be a novel remedy for CNS disorders. This article reviews the characteristics, contents, and mechanisms of action of NSC-EVs as well as their roles and application prospects in various CNS diseases.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
18
|
Luo X, Jean-Toussaint R, Tian Y, Balashov SV, Sacan A, Ajit SK. Small Extracellular Vesicles From Spared Nerve Injury Model and Sham Control Mice Differentially Regulate Gene Expression in Primary Microglia. THE JOURNAL OF PAIN 2023; 24:1570-1581. [PMID: 37044293 PMCID: PMC10524046 DOI: 10.1016/j.jpain.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Nerve injury outcomes might be predicted by examining small extracellular vesicles (sEVs) in circulation, as their biomolecular cargo facilitates cellular communication and can alter transcriptional state and behavior of recipient cells. We found that sEVs from the serum of spared nerve injury (SNI) model male mice had 7 differentially expressed miRNAs compared to sEVs from sham-operated control mice 4 weeks postsurgery. We investigated how these sEVs alter transcription in primary cortical microglia, a crucial mediator of neuropathic pain, using RNA sequencing. While the uptake of sEVs from both SNI model and sham groups changed gene expression in microglia compared to PBS treatment, sEVs from the sham group induced a more drastic change, particularly in genes involved in immune response. This was recapitulated by increased levels of pro-inflammatory cytokines and chemokines in microglia incubated with sEVs from sham control compared to sEVs from SNI model, naïve mice, or PBS. However, treating microglia with sEVs from female mice showed that serum sEVs derived from female SNI mice but not from female sham mice induced a more pronounced microglial secretion of pro-inflammatory mediators. Our data demonstrate that the molecular changes induced by sham surgery injuring skin and muscles are reflected in circulating sEVs in male mice 4 weeks later. Thus, when using sEVs from sham mice as control in comparative mechanistic studies after nerve injury, sex of mice should be taken into consideration. PERSPECTIVE: Microglial uptake of sEVs from male sham control mice induces higher pro-inflammatory responses compared to SNI sEVs but the reverse was observed upon treatment with sEVs from female mice. Wound healing may have a long-term impact on sEVs in male mice and should be considered for comparative studies using sEVs.
Collapse
Affiliation(s)
- Xuan Luo
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Renée Jean-Toussaint
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Yuzhen Tian
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Sergey V Balashov
- Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Seena K Ajit
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
19
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
20
|
Zhong L, Wang J, Wang P, Liu X, Liu P, Cheng X, Cao L, Wu H, Chen J, Zhou L. Neural stem cell-derived exosomes and regeneration: cell-free therapeutic strategies for traumatic brain injury. Stem Cell Res Ther 2023; 14:198. [PMID: 37553595 PMCID: PMC10408078 DOI: 10.1186/s13287-023-03409-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Regenerative repair of the brain after traumatic brain injury (TBI) remains an extensive clinical challenge, inspiring intensified interest in therapeutic approaches to explore superior repair strategies. Exosome therapy is another research hotspot following stem cell alternative therapy. Prior research verified that exosomes produced by neural stem cells can participate in the physiological and pathological changes associated with TBI and have potential neuroregulatory and repair functions. In comparison with their parental stem cells, exosomes have superior stability and immune tolerance and lower tumorigenic risk. In addition, they can readily penetrate the blood‒brain barrier, which makes their treatment efficiency superior to that of transplanted stem cells. Exosomes secreted by neural stem cells present a promising strategy for the development of novel regenerative therapies. Their tissue regeneration and immunomodulatory potential have made them encouraging candidates for TBI repair. The present review addresses the challenges, applications and potential mechanisms of neural stem cell exosomes in regenerating damaged brains.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jingjing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Peng Wang
- Department of Health Management, Tianjin Hospital, Tianjin, 300211, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Lujia Cao
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Hongwei Wu
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| | - Jing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
21
|
Banerjee A, Lino M, Jesus C, Ribeiro Q, Abrunhosa A, Ferreira L. Imaging platforms to dissect the in vivo communication, biodistribution and controlled release of extracellular vesicles. J Control Release 2023; 360:549-563. [PMID: 37406818 DOI: 10.1016/j.jconrel.2023.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Extracellular vesicles (EVs) work as communication vehicles, allowing the exchange of bioactive molecules (microRNAs, mRNAs, proteins, etc) between neighbouring and distant cells in the organism. EVs are thus important players in several physiological and pathological processes. Thus, it is critical to understand their role in cellular/organ communication to fully evaluate their biological, diagnosis and therapeutic potential. In addition, recent studies have explored the controlled release of EVs for regenerative medicine applications and thus the evaluation of their release profile is important to correlate with biological activity. Here, we give a brief introduction about EV imaging platforms in terms of their sensitivity, penetration depth, cost, and operational simplicity, followed by a discussion of different EV labelling processes with their advantages and limitations. Next, we cover the relevance of these imaging platforms to dissect the tropism and biological role of endogenous EVs. We also cover the relevance of imaging platforms to monitor the accumulation of exogenous EVs and their potential cellular targets. Finally, we highlight the importance of imaging platforms to investigate the release profile of EVs from different controlled systems.
Collapse
Affiliation(s)
- Arnab Banerjee
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Miguel Lino
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos Jesus
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Quélia Ribeiro
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Antero Abrunhosa
- ICNAS/CIBIT - Institute for Nuclear Sciences Applied to Health/Coimbra Institute for Biomedical Imaging and Translational research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
22
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
23
|
Russo MN, Whaley LA, Norton ES, Zarco N, Guerrero-Cázares H. Extracellular vesicles in the glioblastoma microenvironment: A diagnostic and therapeutic perspective. Mol Aspects Med 2023; 91:101167. [PMID: 36577547 PMCID: PMC10073317 DOI: 10.1016/j.mam.2022.101167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM), is the most malignant form of gliomas and the most common and lethal primary brain tumor in adults. Conventional cancer treatments have limited to no efficacy on GBM. GBM cells respond and adapt to the surrounding brain parenchyma known as tumor microenvironment (TME) to promote tumor preservation. Among specific TME, there are 3 of particular interest for GBM biology: the perivascular niche, the subventricular zone neurogenic niche, and the immune microenvironment. GBM cells and TME cells present a reciprocal feedback which results in tumor maintenance. One way that these cells can communicate is through extracellular vesicles. These vesicles include exosomes and microvesicles that have the ability to carry both cancerous and non-cancerous cargo, such as miRNA, RNA, proteins, lipids, and DNA. In this review we will discuss the booming topic that is extracellular vesicles, and how they have the novelty to be a diagnostic and targetable vehicle for GBM.
Collapse
Affiliation(s)
- Marissa N Russo
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Lauren A Whaley
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Biology Graduate Program, University of North Florida, Jacksonville, FL, USA
| | - Emily S Norton
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA; Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA; Regenerative Sciences Training Program, Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Natanael Zarco
- Neurosurgery Department, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
24
|
Bonetto V, Grilli M. Neural stem cell-derived extracellular vesicles: mini players with key roles in neurogenesis, immunomodulation, neuroprotection and aging. Front Mol Biosci 2023; 10:1187263. [PMID: 37228583 PMCID: PMC10203560 DOI: 10.3389/fmolb.2023.1187263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) are self-renewing and multipotent cells of the central nervous system where they give rise to neurons, astrocytes and oligodendrocytes both during embryogenesis and throughout adulthood, although only in a few discrete niches. NSPC can integrate and send a plethora of signals not only within the local microenvironment but also at distance, including the systemic macroenvironment. Extracellular vesicles (EVs) are currently envisioned as main players in cell-cell communication in basic and translational neuroscience where they are emerging as an acellular alternative in regenerative medicine. At present NSPC-derived EVs represent a largely unexplored area compared to EVs from other neural sources and EVs from other stem cells, i.e., mesenchymal stem cells. On the other hand, available data suggest that NSPC-derived EVs can play key roles on neurodevelopmental and adult neurogenesis, and they are endowed with neuroprotective and immunomodulatory properties, and even endocrine functions. In this review we specifically highlight major neurogenic and "non-neurogenic" properties of NSPC-EVs, the current knowledge on their peculiar cargos and their potential translational value.
Collapse
|
25
|
Han T, Song P, Wu Z, Wang C, Liu Y, Ying W, Li K, Shen C. Inflammatory stimulation of astrocytes affects the expression of miRNA-22-3p within NSCs-EVs regulating remyelination by targeting KDM3A. Stem Cell Res Ther 2023; 14:52. [PMID: 36959678 PMCID: PMC10035185 DOI: 10.1186/s13287-023-03284-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Endogenous neural stem cells (NSCs) are critical for the remyelination of axons following spinal cord injury (SCI). Cell-cell communication plays a key role in the regulation of the differentiation of NSCs. Astrocytes act as immune cells that encounter early inflammation, forming a glial barrier to prevent the spread of destructive inflammation following SCI. In addition, the cytokines released from astrocytes participate in the regulation of the differentiation of NSCs. The aim of this study was to investigate the effects of cytokines released from inflammation-stimulated astrocytes on the differentiation of NSCs following SCI and to explore the influence of these cytokines on NSC-NSC communication. RESULTS Lipopolysaccharide stimulation of astrocytes increased bone morphogenetic protein 2 (BMP2) release, which not only promoted the differentiation of NSCs into astrocytes and inhibited axon remyelination in SCI lesions but also enriched miRNA-22-3p within extracellular vesicles derived from NSCs. These miRNA-22 molecules function as a feedback loop to promote NSC differentiation into oligodendrocytes and the remyelination of axons following SCI by targeting KDM3A. CONCLUSIONS This study revealed that by releasing BMP2, astrocytes were able to regulate the differentiation of NSCs and NSC-NSC communication by enriching miRNA-22 within NSC-EVs, which in turn promoted the regeneration and remyelination of axons by targeting the KDM3A/TGF-beta axis and the recovery of neurological outcomes following SCI.
Collapse
Affiliation(s)
- Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Peiwen Song
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Zuomeng Wu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cancan Wang
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Yunlei Liu
- Department of Clinical Laboratory, No.2 People's Hospital of Fuyang, Fuyang city, China
| | - Wang Ying
- Department of Medical Imaging, The First Affiliated Hospital of Anhui Medical University, Hefei city, China
| | - Kaixuan Li
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, China.
| |
Collapse
|
26
|
Li X, Zhu Y, Wang Y, Xia X, Zheng JC. Neural stem/progenitor cell-derived extracellular vesicles: A novel therapy for neurological diseases and beyond. MedComm (Beijing) 2023; 4:e214. [PMID: 36776763 PMCID: PMC9905070 DOI: 10.1002/mco2.214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
As bilayer lipid membrane vesicles secreted by neural stem/progenitor cells (NSCs), NSC-derived extracellular vesicles (NSC-EVs) have attracted growing attention for their promising potential to serve as novel therapeutic agents in treatment of neurological diseases due to their unique physicochemical characteristics and biological functions. NSC-EVs exhibit advantages such as stable physical and chemical properties, low immunogenicity, and high penetration capacity to cross blood-brain barrier to avoid predicaments of the clinical applications of NSCs that include autoimmune responses, ethical/religious concerns, and the problematic logistics of acquiring fetal tissues. More importantly, NSC-EVs inherit excellent neuroprotective and neuroregenerative potential and immunomodulatory capabilities from parent cells, and display outstanding therapeutic effects on mitigating behavioral alterations and pathological phenotypes of patients or animals with neurological diseases. In this review, we first comprehensively summarize the progress in functional research and application of NSC-EVs in different neurological diseases, including neurodegenerative diseases, acute neurological diseases, dementia/cognitive dysfunction, and peripheral diseases. Next, we provide our thoughts on current limitations/concerns as well as tremendous potential of NSC-EVs in clinical applications. Last, we discuss future directions of further investigations on NSC-EVs and their probable applications in both basic and clinical research.
Collapse
Affiliation(s)
- Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yingbo Zhu
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative TherapyYangzhi Rehabilitation Hospital, Tongji UniversityShanghaiChina
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| |
Collapse
|
27
|
Ni W, Ramalingam M, Li Y, Park JH, Dashnyam K, Lee JH, Bloise N, Fassina L, Visai L, De Angelis MGC, Pedraz JL, Kim HW, Hu J. Immunomodulatory and Anti-inflammatory effect of Neural Stem/Progenitor Cells in the Central Nervous System. Stem Cell Rev Rep 2023; 19:866-885. [PMID: 36650367 DOI: 10.1007/s12015-022-10501-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Neuroinflammation is a critical event that responds to disturbed homeostasis and governs various neurological diseases in the central nervous system (CNS). The excessive inflammatory microenvironment in the CNS can adversely affect endogenous neural stem cells, thereby impeding neural self-repair. Therapies with neural stem/progenitor cells (NSPCs) have shown significant inhibitory effects on inflammation, which is mainly achieved through intercellular contact and paracrine signalings. The intercellular contact between NSPCs and immune cells, the activated CNS- resident microglia, and astrocyte plays a critical role in the therapeutic NSPCs homing and immunomodulatory effects. Moreover, the paracrine effect mainly regulates infiltrating innate and adaptive immune cells, activated microglia, and astrocyte through the secretion of bioactive molecules and extracellular vesicles. However, the molecular mechanism involved in the immunomodulatory effect of NSPCs is not well discussed. This article provides a systematic analysis of the immunomodulatory mechanism of NSPCs, discusses efficient ways to enhance its immunomodulatory ability, and gives suggestions on clinical therapy.
Collapse
Affiliation(s)
- Wei Ni
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea. .,School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Yumeng Li
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea.,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100, Pavia, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100, Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100, Pavia, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | | | - Jose Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain.,Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, 28029, Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea. .,Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
28
|
Extracellular vesicles throughout development: A potential roadmap for emerging glioblastoma therapies. Semin Cell Dev Biol 2023; 133:32-41. [PMID: 35697594 DOI: 10.1016/j.semcdb.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are membrane-delimited vesicular bodies carrying different molecules, classified according to their size, density, cargo, and origin. Research on this topic has been actively growing through the years, as EVs are associated with critical pathological processes such as neurodegenerative diseases and cancer. Despite that, studies exploring the physiological functions of EVs are sparse, with particular emphasis on their role in organismal development, initial cell differentiation, and morphogenesis. In this review, we explore the topic of EVs from a developmental perspective, discussing their role in the earliest cell-fate decisions and neural tissue morphogenesis. We focus on the function of EVs through development to highlight possible conserved or novel processes that can impact disease progression. Specifically, we take advantage of what was learned about their role in development so far to discuss EVs impact on glioblastoma, a particular brain tumor of stem-cell origin and poor prognosis, and how their function can be hijacked to improve current therapies.
Collapse
|
29
|
Dittmann NL, Torabi P, Watson AES, Yuzwa SA, Voronova A. Culture Protocol and Transcriptomic Analysis of Murine SVZ NPCs and OPCs. Stem Cell Rev Rep 2023; 19:983-1000. [PMID: 36617597 DOI: 10.1007/s12015-022-10492-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/10/2023]
Abstract
The mammalian adult brain contains two neural stem and precursor (NPC) niches: the subventricular zone [SVZ] lining the lateral ventricles and the subgranular zone [SGZ] in the hippocampus. From these, SVZ NPCs represent the largest NPC pool. While SGZ NPCs typically only produce neurons and astrocytes, SVZ NPCs produce neurons, astrocytes and oligodendrocytes throughout life. Of particular importance is the generation and replacement of oligodendrocytes, the only myelinating cells of the central nervous system (CNS). SVZ NPCs contribute to myelination by regenerating the parenchymal oligodendrocyte precursor cell (OPC) pool and by differentiating into oligodendrocytes in the developing and demyelinated brain. The neurosphere assay has been widely adopted by the scientific community to facilitate the study of NPCs in vitro. Here, we present a streamlined protocol for culturing postnatal and adult SVZ NPCs and OPCs from primary neurosphere cells. We characterize the purity and differentiation potential as well as provide RNA-sequencing profiles of postnatal SVZ NPCs, postnatal SVZ OPCs and adult SVZ NPCs. We show that primary neurospheres cells generated from postnatal and adult SVZ differentiate into neurons, astrocytes and oligodendrocytes concurrently and at comparable levels. SVZ OPCs are generated by subjecting primary neurosphere cells to OPC growth factors fibroblast growth factor (FGF) and platelet-derived growth factor-AA (PDGF-AA). We further show SVZ OPCs can differentiate into oligodendrocytes in the absence and presence of thyroid hormone T3. Transcriptomic analysis confirmed the identities of each cell population and revealed novel immune and signalling pathways expressed in an age and cell type specific manner.
Collapse
Affiliation(s)
- Nicole L Dittmann
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Pouria Torabi
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Scott A Yuzwa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Neuroscience and Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Women and Children's Health Research Institute5-083 Edmonton Clinic Health Academy, University of Alberta, 11405 87 Avenue NW, Edmonton, Alberta, T6G 1C9, Canada. .,Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Multiple Sclerosis Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
30
|
Juvenile social isolation affects the structure of the tanycyte-vascular interface in the hypophyseal portal system of the adult mice. Neurochem Int 2023; 162:105439. [PMID: 36356785 DOI: 10.1016/j.neuint.2022.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Accumulating evidence indicates that social stress in the juvenile period affects hypothalamic-pituitary-adrenal (HPA) axis activity in adulthood. The biological mechanisms underlying this phenomenon remain unclear. We aimed to elucidate them by comparing adult mice that had experienced social isolation from postnatal day 21-35 (juvenile social isolation (JSI) group) with those reared normally (control group). JSI group mice showed an attenuated HPA response to acute swim stress, while the control group had a normal response to this stress. Activity levels of the paraventricular nucleus in both groups were comparable, as shown by c-Fos immunoreactivities and mRNA expression of c-Fos, Corticotropin-releasing factor (CRF), Glucocorticoid receptor, and Mineralocorticoid receptor. We found greater vascular coverage by tanycytic endfeet in the median eminence of the JSI group mice than in that of the control group mice under basal condition and after acute swim stress. Moreover, CRF content after acute swim stress was greater in the median eminence of the JSI group mice than in that of the control group mice. The attenuated HPA response to acute swim stress was specific to JSI group mice, but not to control group mice. Although a direct link awaits further experiments, tanycyte morphological changes in the median eminence could be related to the HPA response.
Collapse
|
31
|
de Almeida MMA, Goodkey K, Voronova A. Regulation of microglia function by neural stem cells. Front Cell Neurosci 2023; 17:1130205. [PMID: 36937181 PMCID: PMC10014810 DOI: 10.3389/fncel.2023.1130205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Neural stem and precursor cells (NPCs) build and regenerate the central nervous system (CNS) by maintaining their pool (self-renewal) and differentiating into neurons, astrocytes, and oligodendrocytes (multipotency) throughout life. This has inspired research into pro-regenerative therapies that utilize transplantation of exogenous NPCs or recruitment of endogenous adult NPCs for CNS regeneration and repair. Recent advances in single-cell RNA sequencing and other "omics" have revealed that NPCs express not just traditional progenitor-related genes, but also genes involved in immune function. Here, we review how NPCs exert immunomodulatory function by regulating the biology of microglia, immune cells that are present in NPC niches and throughout the CNS. We discuss the role of transplanted and endogenous NPCs in regulating microglia fates, such as survival, proliferation, migration, phagocytosis and activation, in the developing, injured and degenerating CNS. We also provide a literature review on NPC-specific mediators that are responsible for modulating microglia biology. Our review highlights the immunomodulatory properties of NPCs and the significance of these findings in the context of designing pro-regenerative therapies for degenerating and diseased CNS.
Collapse
Affiliation(s)
- Monique M. A. de Almeida
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Multiple Sclerosis Centre and Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
| |
Collapse
|
32
|
Xia X, Wang Y, Zheng JC. Extracellular vesicles, from the pathogenesis to the therapy of neurodegenerative diseases. Transl Neurodegener 2022; 11:53. [PMID: 36510311 PMCID: PMC9743667 DOI: 10.1186/s40035-022-00330-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small bilipid layer-enclosed vesicles that can be secreted by all tested types of brain cells. Being a key intercellular communicator, EVs have emerged as a key contributor to the pathogenesis of various neurodegenerative diseases (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease through delivery of bioactive cargos within the central nervous system (CNS). Importantly, CNS cell-derived EVs can be purified via immunoprecipitation, and EV cargos with altered levels have been identified as potential biomarkers for the diagnosis and prognosis of NDs. Given the essential impact of EVs on the pathogenesis of NDs, pathological EVs have been considered as therapeutic targets and EVs with therapeutic effects have been utilized as potential therapeutic agents or drug delivery platforms for the treatment of NDs. In this review, we focus on recent research progress on the pathological roles of EVs released from CNS cells in the pathogenesis of NDs, summarize findings that identify CNS-derived EV cargos as potential biomarkers to diagnose NDs, and comprehensively discuss promising potential of EVs as therapeutic targets, agents, and drug delivery systems in treating NDs, together with current concerns and challenges for basic research and clinical applications of EVs regarding NDs.
Collapse
Affiliation(s)
- Xiaohuan Xia
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.24516.340000000123704535Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, 201613 China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China
| | - Jialin C. Zheng
- grid.24516.340000000123704535Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200072 China ,Shanghai Frontiers Science Center of Nanocatalytic Medicine, 200331 Shanghai, China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065 Shanghai, China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, 200434 Shanghai, China ,grid.24516.340000000123704535Collaborative Innovation Center for Brain Science, Tongji University, 200092 Shanghai, China ,grid.412793.a0000 0004 1799 5032Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065 China
| |
Collapse
|
33
|
Clarkson BDS, Grund E, David K, Johnson RK, Howe CL. ISGylation is induced in neurons by demyelination driving ISG15-dependent microglial activation. J Neuroinflammation 2022; 19:258. [PMID: 36261842 PMCID: PMC9583544 DOI: 10.1186/s12974-022-02618-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
The causes of grey matter pathology and diffuse neuron injury in MS remain incompletely understood. Axonal stress signals arising from white matter lesions has been suggested to play a role in initiating this diffuse grey matter pathology. Therefore, to identify the most upstream transcriptional responses in neurons arising from demyelinated axons, we analyzed the transcriptome of actively translating neuronal transcripts in mouse models of demyelinating disease. Among the most upregulated genes, we identified transcripts associated with the ISGylation pathway. ISGylation refers to the covalent attachment of the ubiquitin-like molecule interferon stimulated gene (ISG) 15 to lysine residues on substrates targeted by E1 ISG15-activating enzyme, E2 ISG15-conjugating enzymes and E3 ISG15-protein ligases. We further confirmed that ISG15 expression is increased in MS cortical and deep gray matter. Upon investigating the functional impact of neuronal ISG15 upregulation, we noted that ISG15 expression was associated changes in neuronal extracellular vesicle protein and miRNA cargo. Specifically, extracellular vesicle-associated miRNAs were skewed toward increased frequency of proinflammatory and neurotoxic miRNAs and decreased frequency of anti-inflammatory and neuroprotective miRNAs. Furthermore, we found that ISG15 directly activated microglia in a CD11b-dependent manner and that microglial activation was potentiated by treatment with EVs from neurons expressing ISG15. Further study of the role of ISG15 and ISGylation in neurons in MS and neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Benjamin D. S. Clarkson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN 55905 USA
| | - Ethan Grund
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XMayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and Mayo Clinic Medical Scientist Training Program, MN 55905 Rochester, USA
| | - Kenneth David
- grid.418935.20000 0004 0436 053XConcordia College, Moorhead, MN USA
| | - Renee K. Johnson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Charles L. Howe
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDivision of Experimental Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XCenter for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
34
|
Gustafson CM, Gammill LS. Extracellular Vesicles and Membrane Protrusions in Developmental Signaling. J Dev Biol 2022; 10:39. [PMID: 36278544 PMCID: PMC9589955 DOI: 10.3390/jdb10040039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/08/2023] Open
Abstract
During embryonic development, cells communicate with each other to determine cell fate, guide migration, and shape morphogenesis. While the relevant secreted factors and their downstream target genes have been characterized extensively, how these signals travel between embryonic cells is still emerging. Evidence is accumulating that extracellular vesicles (EVs), which are well defined in cell culture and cancer, offer a crucial means of communication in embryos. Moreover, the release and/or reception of EVs is often facilitated by fine cellular protrusions, which have a history of study in development. However, due in part to the complexities of identifying fragile nanometer-scale extracellular structures within the three-dimensional embryonic environment, the nomenclature of developmental EVs and protrusions can be ambiguous, confounding progress. In this review, we provide a robust guide to categorizing these structures in order to enable comparisons between developmental systems and stages. Then, we discuss existing evidence supporting a role for EVs and fine cellular protrusions throughout development.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
Riley VA, Holmberg JC, Sokolov AM, Feliciano DM. Tsc2 shapes olfactory bulb granule cell molecular and morphological characteristics. Front Mol Neurosci 2022; 15:970357. [PMID: 36277492 PMCID: PMC9581303 DOI: 10.3389/fnmol.2022.970357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a neurodevelopmental disorder caused by mutations that inactivate TSC1 or TSC2. Hamartin and tuberin are encoded by TSC1 and TSC2 which form a GTPase activating protein heteromer that inhibits the Rheb GTPase from activating a growth promoting protein kinase called mammalian target of rapamycin (mTOR). Growths and lesions occur in the ventricular-subventricular zone (V-SVZ), cortex, olfactory tract, and olfactory bulbs (OB) in TSC. A leading hypothesis is that mutations in inhibitory neural progenitor cells cause brain growths in TSC. OB granule cells (GCs) are GABAergic inhibitory neurons that are generated through infancy by inhibitory progenitor cells along the V-SVZ. Removal of Tsc1 from mouse OB GCs creates cellular phenotypes seen in TSC lesions. However, the role of Tsc2 in OB GC maturation requires clarification. Here, it is demonstrated that conditional loss of Tsc2 alters GC development. A mosaic model of TSC was created by performing neonatal CRE recombinase electroporation into inhibitory V-SVZ progenitors yielded clusters of ectopic cytomegalic neurons with hyperactive mTOR complex 1 (mTORC1) in homozygous Tsc2 mutant but not heterozygous or wild type mice. Similarly, homozygous Tsc2 mutant GC morphology was altered at postnatal days 30 and 60. Tsc2 mutant GCs had hypertrophic dendritic arbors that were established by postnatal day 30. In contrast, loss of Tsc2 from mature GCs had negligible effects on mTORC1, soma size, and dendrite arborization. OB transcriptome profiling revealed a network of significantly differentially expressed genes following loss of Tsc2 during development that altered neural circuitry. These results demonstrate that Tsc2 has a critical role in regulating neural development and shapes inhibitory GC molecular and morphological characteristics.
Collapse
Affiliation(s)
| | | | | | - David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
36
|
Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:307-327. [PMID: 35474734 PMCID: PMC9010519 DOI: 10.1016/j.omtn.2022.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
Abstract
Endothelial cell (EC) activity is essential for tissue regeneration in several (patho)physiological contexts. However, our capacity to deliver in vivo biomolecules capable of controlling EC fate is relatively limited. Here, we screened a library of microRNA (miR) mimics and identified 25 miRs capable of enhancing the survival of ECs exposed to ischemia-mimicking conditions. In vitro, we showed that miR-425-5p, one of the hits, was able to enhance EC survival and migration. In vivo, using a mouse Matrigel plug assay, we showed that ECs transfected with miR-425-5p displayed enhanced survival compared with scramble-transfected ECs. Mechanistically, we showed that miR-425-5p modulated the PTEN/PI3K/AKT pathway and inhibition of miR-425-5p target genes (DACH1, PTEN, RGS5, and VASH1) phenocopied the pro-survival. For the in vivo delivery of miR-425-5p, we modulated small extracellular vesicles (sEVs) with miR-425-5p and showed, in vitro, that miR-425-5p-modulated sEVs were (1) capable of enhancing the survival of ECs exposed to ischemia-mimic conditions, and (2) efficiently internalized by skin cells. Finally, using a streptozotocin-induced diabetic wound healing mouse model, we showed that, compared with miR-scrambled-modulated sEVs, topical administration of miR-425-5p-modulated sEVs significantly enhanced wound healing, a process mediated by enhanced vascularization and skin re-epithelialization.
Collapse
|
37
|
The neural stem cell secretome across neurodevelopment. Exp Neurol 2022; 355:114142. [PMID: 35709983 DOI: 10.1016/j.expneurol.2022.114142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Neural stem cell (NSC) based therapies are at the forefront of regenerative medicine strategies to combat illness and injury of the central nervous system (CNS). In addition to their ability to produce new cells, NSCs secrete a variety of products, known collectively as the NSC secretome, that have been shown to ameliorate CNS disease pathology and promote recovery. As pre-clinical and clinical research to harness the NSC secretome for therapeutic purposes advances, a more thorough understanding of the endogenous NSC secretome can provide useful insight into the functional capabilities of NSCs. In this review, we focus on research investigating the autocrine and paracrine functions of the endogenous NSC secretome across life. Throughout development and adulthood, we find evidence that the NSC secretome is a critical component of how endogenous NSCs regulate themselves and their niche. We also find gaps in current literature, most notably in the clinically-relevant domain of endogenous NSC paracrine function in the injured CNS. Future investigations to further define the endogenous NSC secretome and its role in CNS tissue regulation are necessary to bolster our understanding of NSC-niche interactions and to aid in the generation of safe and effective NSC-based therapies.
Collapse
|
38
|
Imanbekova M, Suarasan S, Lu Y, Jurchuk S, Wachsmann-Hogiu S. Recent advances in optical label-free characterization of extracellular vesicles. NANOPHOTONICS 2022; 11:2827-2863. [PMID: 35880114 PMCID: PMC9128385 DOI: 10.1515/nanoph-2022-0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) are complex biological nanoparticles endogenously secreted by all eukaryotic cells. EVs carry a specific molecular cargo of proteins, lipids, and nucleic acids derived from cells of origin and play a significant role in the physiology and pathology of cells, organs, and organisms. Upon release, they may be found in different body fluids that can be easily accessed via noninvasive methodologies. Due to the unique information encoded in their molecular cargo, they may reflect the state of the parent cell and therefore EVs are recognized as a rich source of biomarkers for early diagnostics involving liquid biopsy. However, body fluids contain a mixture of EVs released by different types of healthy and diseased cells, making the detection of the EVs of interest very challenging. Recent research efforts have been focused on the detection and characterization of diagnostically relevant subpopulations of EVs, with emphasis on label-free methods that simplify sample preparation and are free of interfering signals. Therefore, in this paper, we review the recent progress of the label-free optical methods employed for the detection, counting, and morphological and chemical characterization of EVs. We will first briefly discuss the biology and functions of EVs, and then introduce different optical label-free techniques for rapid, precise, and nondestructive characterization of EVs such as nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy, surface plasmon resonance spectroscopy, Raman spectroscopy, and SERS spectroscopy. In the end, we will discuss their applications in the detection of neurodegenerative diseases and cancer and provide an outlook on the future impact and challenges of these technologies to the field of liquid biopsy via EVs.
Collapse
Affiliation(s)
- Meruyert Imanbekova
- Bioengineering, McGill University Faculty of Engineering, Montreal, QC, Canada
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Yao Lu
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, 1006, Montreal, QC, H3C6W1, Canada
| | - Sarah Jurchuk
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, Rm#350, Montreal, QC, H3A 0E9, Canada
| | - Sebastian Wachsmann-Hogiu
- Bioengineering, McGill University Faculty of Engineering, 3480 University St., MC362, Montreal, H3A 0E9l, Canada
| |
Collapse
|
39
|
Derkus B, Isik M, Eylem CC, Ergin I, Camci CB, Bilgin S, Elbuken C, Arslan YE, Akkulak M, Adali O, Kiran F, Okesola BO, Nemutlu E, Emregul E. Xenogenic Neural Stem Cell-Derived Extracellular Nanovesicles Modulate Human Mesenchymal Stem Cell Fate and Reconstruct Metabolomic Structure. Adv Biol (Weinh) 2022; 6:e2101317. [PMID: 35347890 DOI: 10.1002/adbi.202101317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Indexed: 01/27/2023]
Abstract
Extracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue. Through immunocytochemistry, gene expression, and multi-omics analyses, the capability to use rSVZ-NSCExo to induce hMSCs into a neuroglial or neural stem cell phenotype and genotype in a temporal and dose-dependent manner via multiple signaling pathways is demonstrated. The current study presents a new and innovative strategy to modulate hMSCs fate by harnessing the molecular content of exosomes, thus suggesting future opportunities for rSVZ-NSCExo in nerve tissue regeneration.
Collapse
Affiliation(s)
- Burak Derkus
- Stem Cell Research Lab, Department of ChemistryFaculty of Science, Ankara University, Ankara, 06560, Turkey.,Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Melis Isik
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey
| | - Irem Ergin
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Turkey
| | - Can Berk Camci
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Sila Bilgin
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Caglar Elbuken
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey.,Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Merve Akkulak
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Orhan Adali
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Fadime Kiran
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Babatunde O Okesola
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Medicine, University of Liverpool, Liverpool, L7 8TX, UK
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey.,Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey
| | - Emel Emregul
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| |
Collapse
|
40
|
Abdi S, Javanmehr N, Ghasemi-Kasman M, Bali HY, Pirzadeh M. Stem Cell-based Therapeutic and Diagnostic Approaches in Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1093-1115. [PMID: 34970956 PMCID: PMC9886816 DOI: 10.2174/1570159x20666211231090659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative impairment mainly recognized by memory loss and cognitive deficits. However, the current therapies against AD are mostly limited to palliative medications, prompting researchers to investigate more efficient therapeutic approaches for AD, such as stem cell therapy. Recent evidence has proposed that extensive neuronal and synaptic loss and altered adult neurogenesis, which is perceived pivotal in terms of plasticity and network maintenance, occurs early in the course of AD, which exacerbates neuronal vulnerability to AD. Thus, regeneration and replenishing the depleted neuronal networks by strengthening the endogenous repair mechanisms or exogenous stem cells and their cargoes is a rational therapeutic approach. Currently, several stem cell-based therapies as well as stem cell products like exosomes, have shown promising results in the early diagnosis of AD. OBJECTIVE This review begins with a comparison between AD and normal aging pathophysiology and a discussion on open questions in the field. Next, summarizing the current stem cell-based therapeutic and diagnostic approaches, we declare the advantages and disadvantages of each method. Also, we comprehensively evaluate the human clinical trials of stem cell therapies for AD. METHODOLOGY Peer-reviewed reports were extracted through Embase, PubMed, and Google Scholar until 2021. RESULTS With several ongoing clinical trials, stem cells and their derivatives (e.g., exosomes) are an emerging and encouraging field in diagnosing and treating neurodegenerative diseases. Although stem cell therapies have been successful in animal models, numerous clinical trials in AD patients have yielded unpromising results, which we will further discuss.
Collapse
Affiliation(s)
- Sadaf Abdi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Address correspondence to this author at the Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran; Tel/Fax: +98-11-32190557; E-mail:
| | | | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
41
|
Exosomal microRNAs have great potential in the neurorestorative therapy for traumatic brain injury. Exp Neurol 2022; 352:114026. [DOI: 10.1016/j.expneurol.2022.114026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022]
|
42
|
Brégère C, Schwendele B, Radanovic B, Guzman R. Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Rev Rep 2022; 18:474-522. [PMID: 34382141 PMCID: PMC8930888 DOI: 10.1007/s12015-021-10213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxia-ischemia encephalopathy (HIE) refers to a brain injury in term infants that can lead to death or lifelong neurological deficits such as cerebral palsy (CP). The pathogenesis of this disease involves multiple cellular and molecular events, notably a neuroinflammatory response driven partly by microglia, the brain resident macrophages. Treatment options are currently very limited, but stem cell (SC) therapy holds promise, as beneficial outcomes are reported in animal studies and to a lesser degree in human trials. Among putative mechanisms of action, immunomodulation is considered a major contributor to SC associated benefits. The goal of this review is to examine whether microglia is a cellular target of SC-mediated immunomodulation and whether the recruitment of microglia is linked to brain repair. We will first provide an overview on microglial activation in the rodent model of neonatal HI, and highlight its sensitivity to developmental age. Two complementary questions are then addressed: (i) do immune-related treatments impact microglia and provide neuroprotection, (ii) does stem cell treatment modulates microglia? Finally, the immune-related findings in patients enrolled in SC based clinical trials are discussed. Our review points to an impact of SCs on the microglial phenotype, but heterogeneity in experimental designs and methodological limitations hamper our understanding of a potential contribution of microglia to SC associated benefits. Thorough analyses of the microglial phenotype are warranted to better address the relevance of the neuroimmune crosstalk in brain repair and improve or advance the development of SC protocols in humans.
Collapse
Affiliation(s)
- Catherine Brégère
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Bernd Schwendele
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Boris Radanovic
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
43
|
Xia X, Wang Y, Qin Y, Zhao S, Zheng JC. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res Rev 2022; 74:101558. [PMID: 34990846 DOI: 10.1016/j.arr.2021.101558] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/13/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Neurotransmission is the electrical impulse-triggered propagation of signals between neurons or between neurons and other cell types such as skeletal muscle cells. Recent studies point out the involvement of exosomes, a type of small bilipid layer-enclosed extracellular vesicles, in regulating neurotransmission. Through horizontally transferring proteins, lipids, and nucleic acids, exosomes can modulate synaptic activities rapidly by controlling neurotransmitter release or progressively by regulating neural plasticity including synapse formation, neurite growth & removal, and axon guidance & elongation. In this review, we summarize the similarities and differences between exosomes and synaptic vesicles in their biogenesis, contents, and release. We also highlight the recent progress made in demonstrating the biological roles of exosome in regulating neurotransmission, and propose a modified model of neurotransmission, in which exosomes act as novel neurotransmitters. Lastly, we provide a comprehensive discussion of the enlightenment of the current knowledge on neurotransmission to the future directions of exosome research.
Collapse
|
44
|
Nicaise AM, D'Angelo A, Ionescu RB, Krzak G, Willis CM, Pluchino S. The role of neural stem cells in regulating glial scar formation and repair. Cell Tissue Res 2021; 387:399-414. [PMID: 34820704 PMCID: PMC8975756 DOI: 10.1007/s00441-021-03554-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Glial scars are a common pathological occurrence in a variety of central nervous system (CNS) diseases and injuries. They are caused after severe damage and consist of reactive glia that form a barrier around the damaged tissue that leads to a non-permissive microenvironment which prevents proper endogenous regeneration. While there are a number of therapies that are able to address some components of disease, there are none that provide regenerative properties. Within the past decade, neural stem cells (NSCs) have been heavily studied due to their potent anti-inflammatory and reparative capabilities in disease and injury. Exogenously applied NSCs have been found to aid in glial scar healing by reducing inflammation and providing cell replacement. However, endogenous NSCs have also been found to contribute to the reactive environment by different means. Further understanding how NSCs can be leveraged to aid in the resolution of the glial scar is imperative in the use of these cells as regenerative therapies. To do so, humanised 3D model systems have been developed to study the development and maintenance of the glial scar. Herein, we explore the current work on endogenous and exogenous NSCs in the glial scar as well as the novel 3D stem cell–based technologies being used to model this pathology in a dish.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| | - Andrea D'Angelo
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Grzegorz Krzak
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Cory M Willis
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
45
|
Zhang J, Uchiyama J, Imami K, Ishihama Y, Kageyama R, Kobayashi T. Novel Roles of Small Extracellular Vesicles in Regulating the Quiescence and Proliferation of Neural Stem Cells. Front Cell Dev Biol 2021; 9:762293. [PMID: 34805169 PMCID: PMC8601375 DOI: 10.3389/fcell.2021.762293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Neural stem cell (NSC) quiescence plays pivotal roles in avoiding exhaustion of NSCs and securing sustainable neurogenesis in the adult brain. The maintenance of quiescence and transition between proliferation and quiescence are complex processes associated with multiple niche signals and environmental stimuli. Exosomes are small extracellular vesicles (sEVs) containing functional cargos such as proteins, microRNAs, and mRNAs. The role of sEVs in NSC quiescence has not been fully investigated. Here, we applied proteomics to analyze the protein cargos of sEVs derived from proliferating, quiescent, and reactivating NSCs. Our findings revealed fluctuation of expression levels and functional clusters of gene ontology annotations of differentially expressed proteins especially in protein translation and vesicular transport among three sources of exosomes. Moreover, the use of exosome inhibitors revealed exosome contribution to entrance into as well as maintenance of quiescence. Exosome inhibition delayed entrance into quiescence, induced quiescent NSCs to exit from the G0 phase of the cell cycle, and significantly upregulated protein translation in quiescent NSCs. Our results suggest that NSC exosomes are involved in attenuating protein synthesis and thereby regulating the quiescence of NSCs.
Collapse
Affiliation(s)
- Jingtian Zhang
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Junki Uchiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,PRESTO, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,RIKEN Center for Brain Science, Wako, Japan
| | - Taeko Kobayashi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Reséndiz-Castillo LJ, Minjarez B, Reza-Zaldívar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, Canales-Aguirre AA. The effects of altered neurogenic microRNA levels and their involvement in the aggressiveness of periventricular glioblastoma. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:781-793. [PMID: 34810139 DOI: 10.1016/j.nrleng.2019.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/08/2019] [Indexed: 10/19/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme is the most common primary brain tumour, with the least favourable prognosis. Despite numerous studies and medical advances, it continues to be lethal, with an average life expectancy of 15 months after chemo-radiotherapy. DEVELOPMENT Recent research has addressed several factors associated with the diagnosis and prognosis of glioblastoma; one significant factor is tumour localisation, particularly the subventricular zone, which represents one of the most active neurogenic niches of the adult human brain. Glioblastomas in this area are generally more aggressive, resulting in unfavourable prognosis and a shorter life expectancy. Currently, the research into microRNAs (miRNA) has intensified, revealing different expression patterns under physiological and pathophysiological conditions. It has been reported that the expression levels of certain miRNAs, mainly those related to neurogenic processes, are dysregulated in oncogenic events, thus favouring gliomagenesis and greater tumour aggressiveness. This review discusses some of the most important miRNAs involved in subventricular neurogenic processes and their association with glioblastoma aggressiveness. CONCLUSIONS MiRNA regulation and function play an important role in the development and progression of glioblastoma; understanding the alterations of certain miRNAs involved in both differentiation and neural and glial maturation could help us to better understand the malignant characteristics of glioblastoma.
Collapse
Affiliation(s)
- L J Reséndiz-Castillo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - B Minjarez
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - E E Reza-Zaldívar
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - M A Hernández-Sapiéns
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - Y K Gutiérrez-Mercado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico
| | - A A Canales-Aguirre
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico; Unidad de Evaluación Preclínica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
47
|
Gamage TKJB, Fraser M. The Role of Extracellular Vesicles in the Developing Brain: Current Perspective and Promising Source of Biomarkers and Therapy for Perinatal Brain Injury. Front Neurosci 2021; 15:744840. [PMID: 34630028 PMCID: PMC8498217 DOI: 10.3389/fnins.2021.744840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
This comprehensive review focuses on our current understanding of the proposed physiological and pathological functions of extracellular vesicles (EVs) in the developing brain. Furthermore, since EVs have attracted great interest as potential novel cell-free therapeutics, we discuss advances in the knowledge of stem cell- and astrocyte-derived EVs in relation to their potential for protection and repair following perinatal brain injury. This review identified 13 peer-reviewed studies evaluating the efficacy of EVs in animal models of perinatal brain injury; 12/13 utilized mesenchymal stem cell-derived EVs (MSC-EVs) and 1/13 utilized astrocyte-derived EVs. Animal model, method of EV isolation and size, route, timing, and dose administered varied between studies. Notwithstanding, EV treatment either improved and/or preserved perinatal brain structures both macroscopically and microscopically. Additionally, EV treatment modulated inflammatory responses and improved brain function. Collectively this suggests EVs can ameliorate, or repair damage associated with perinatal brain injury. These findings warrant further investigation to identify the optimal cell numbers, source, and dosage regimens of EVs, including long-term effects on functional outcomes.
Collapse
|
48
|
Huo L, Du X, Li X, Liu S, Xu Y. The Emerging Role of Neural Cell-Derived Exosomes in Intercellular Communication in Health and Neurodegenerative Diseases. Front Neurosci 2021; 15:738442. [PMID: 34531720 PMCID: PMC8438217 DOI: 10.3389/fnins.2021.738442] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023] Open
Abstract
Intercellular communication in the central nervous system (CNS) is essential for brain growth, development, and homeostasis maintenance and, when dysfunctional, is involved in the occurrence and development of neurodegenerative diseases. Increasing evidence indicates that extracellular vesicles, especially exosomes, are critical mediators of intercellular signal transduction. Under physiological and pathological conditions, neural cells secret exosomes with the influence of many factors. These exosomes can carry specific proteins, lipids, nucleic acids, and other bioactive substances to the recipient cells to regulate their function. Depending on the CNS environment, as well as the origin and physiological or pathological status of parental cells, exosomes can mediate a variety of different effects, including synaptic plasticity, nutritional metabolic support, nerve regeneration, inflammatory response, anti-stress effect, cellular waste disposal, and the propagation of toxic components, playing an important role in health and neurodegenerative diseases. This review will discuss the possible roles of exosomes in CNS intercellular communication in both physiologic and neurodegenerative conditions.
Collapse
Affiliation(s)
- Luyao Huo
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
49
|
Rayasam A, Fukuzaki Y, Vexler ZS. Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiol (Oxf) 2021; 233:e13674. [PMID: 33991400 DOI: 10.1111/apha.13674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Development of the Central Nervous System (CNS) is reliant on the proper function of numerous intricately orchestrated mechanisms that mature independently, including constant communication between the CNS and the peripheral immune system. This review summarizes experimental knowledge of how cerebral ischaemia in infants and children alters physiological communication between leucocytes, brain immune cells, microglia and the neurovascular unit (NVU)-the "microglia-leucocyte axis"-and contributes to acute and long-term brain injury. We outline physiological development of CNS barriers in relation to microglial and leucocyte maturation and the plethora of mechanisms by which microglia and peripheral leucocytes communicate during postnatal period, including receptor-mediated and intracellular inflammatory signalling, lipids, soluble factors and extracellular vesicles. We focus on the "microglia-leucocyte axis" in rodent models of most common ischaemic brain diseases in the at-term infants, hypoxic-ischaemic encephalopathy (HIE) and focal arterial stroke and discuss commonalities and distinctions of immune-neurovascular mechanisms in neonatal and childhood stroke compared to stroke in adults. Given that hypoxic and ischaemic brain damage involve Toll-like receptor (TLR) activation, we discuss the modulatory role of viral and bacterial TLR2/3/4-mediated infection in HIE, perinatal and childhood stroke. Furthermore, we provide perspective of the dynamics and contribution of the axis in cerebral ischaemia depending on the CNS maturational stage at the time of insult, and modulation independently and in consort by individual axis components and in a sex dependent ways. Improved understanding on how to modify crosstalk between microglia and leucocytes will aid in developing age-appropriate therapies for infants and children who suffered cerebral ischaemia.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Yumi Fukuzaki
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Zinaida S. Vexler
- Department of Neurology University of California San Francisco San Francisco CA USA
| |
Collapse
|
50
|
Chung DD, Pinson MR, Bhenderu LS, Lai MS, Patel RA, Miranda RC. Toxic and Teratogenic Effects of Prenatal Alcohol Exposure on Fetal Development, Adolescence, and Adulthood. Int J Mol Sci 2021; 22:ijms22168785. [PMID: 34445488 PMCID: PMC8395909 DOI: 10.3390/ijms22168785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can have immediate and long-lasting toxic and teratogenic effects on an individual’s development and health. As a toxicant, alcohol can lead to a variety of physical and neurological anomalies in the fetus that can lead to behavioral and other impairments which may last a lifetime. Recent studies have focused on identifying mechanisms that mediate the immediate teratogenic effects of alcohol on fetal development and mechanisms that facilitate the persistent toxic effects of alcohol on health and predisposition to disease later in life. This review focuses on the contribution of epigenetic modifications and intercellular transporters like extracellular vesicles to the toxicity of PAE and to immediate and long-term consequences on an individual’s health and risk of disease.
Collapse
|