1
|
Wu KP, Yan ZJ, Zhuang XX, Hua JL, Li MX, Huang K, Qi YX. Dynamic structure and function of nuclear pore protein complex: Potential roles of lipid and lamins regulated nuclear membrane curvature. Int J Biol Macromol 2025; 313:144104. [PMID: 40350114 DOI: 10.1016/j.ijbiomac.2025.144104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The nuclear pore complex (NPC), a massive and highly sophisticated protein assembly, forms a channel embedded in the nuclear envelope (NE) of eukaryotic cells. As a critical gateway, NPC mediates the bidirectional transport of macromolecules between the cytoplasm and the nucleus. Here, we overview the structure and transport function of this protein complex, and highlight the selective barrier model of NPC transport functional modules. Nuclear membrane curvature (NMC) is a critical parameter for quantifying nuclear deformation. We discuss the mechanism by which NMC regulates dynamic NPC structure, function and distribution. Furthermore we highlight the role of two key factors, i.e. lipid composition and lamins distribution, in NMC and NPC dynamics while elucidating their regulatory mechanisms. The investigations on the dynamic structure and function of NPC modulated by NMC provide a new avenue for understanding the role of NPC in different pathological conditions. This knowledge could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kun-Peng Wu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China
| | - Zhi-Jie Yan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China
| | - Xiao-Xi Zhuang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China
| | - Jin-Liang Hua
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China
| | - Meng-Xiao Li
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China.
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China.
| |
Collapse
|
2
|
Taniguchi R, Orniacki C, Kreysing JP, Zila V, Zimmerli CE, Böhm S, Turoňová B, Kräusslich HG, Doye V, Beck M. Nuclear pores safeguard the integrity of the nuclear envelope. Nat Cell Biol 2025; 27:762-775. [PMID: 40205196 DOI: 10.1038/s41556-025-01648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
Nuclear pore complexes (NPCs) mediate nucleocytoplasmic exchange, which is essential for eukaryotes. Mutations in the central scaffolding components of NPCs are associated with genetic diseases, but how they manifest only in specific tissues remains unclear. This is exemplified in Nup133-deficient mouse embryonic stem cells, which grow normally during pluripotency, but differentiate poorly into neurons. Here, using an innovative in situ structural biology approach, we show that Nup133-/- mouse embryonic stem cells have heterogeneous NPCs with non-canonical symmetries and missing subunits. During neuronal differentiation, Nup133-deficient NPCs frequently disintegrate, resulting in abnormally large nuclear envelope openings. We propose that the elasticity of the NPC scaffold has a protective function for the nuclear envelope and that its perturbation becomes critical under conditions that impose an increased mechanical load onto nuclei.
Collapse
Affiliation(s)
- Reiya Taniguchi
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Clarisse Orniacki
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- The Neuro - Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Frankfurt am Main, Germany
| | - Vojtech Zila
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- AskBio GmbH, Heidelberg, Germany
| | - Christian E Zimmerli
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefanie Böhm
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Valérie Doye
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Bansal VA, Tan JM, Soon HR, Zainolabidin N, Saido T, Ch'ng TH. Aβ-driven nuclear pore complex dysfunction alters activation of necroptosis proteins in a mouse model of Alzheimer's disease. eLife 2025; 13:RP92069. [PMID: 40132021 PMCID: PMC11936419 DOI: 10.7554/elife.92069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The emergence of Aβ pathology is one of the hallmarks of Alzheimer's disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis - a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.
Collapse
Affiliation(s)
| | - Jia Min Tan
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- School of Biological Science, Nanyang Technological UniversitySingaporeSingapore
| | - Hui Rong Soon
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- School of Biological Science, Nanyang Technological UniversitySingaporeSingapore
| | | | - Takaomi Saido
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- School of Biological Science, Nanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
4
|
Dultz E, Doye V. Opening the gate: Complexity and modularity of the nuclear pore scaffold and basket. Curr Opin Cell Biol 2025; 92:102461. [PMID: 39826239 DOI: 10.1016/j.ceb.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Nuclear pore complexes (NPCs) are giant molecular assemblies that form the gateway between the nucleus and the cytoplasm and accommodate the bidirectional transport of a large variety of cargoes. Recent years have seen tremendous advances in our understanding of their building principles and have in particular called attention to the flexibility and variability of NPC composition and structure. Here, we review these recent advances and discuss how the newest technologies push the boundaries of nuclear pore research forward, with a specific highlight on the NPC scaffold and a prominent pore appendage, the nuclear basket, whose architecture has long been elusive.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, ETH Zürich, 8093 Zürich, Switzerland.
| | - Valérie Doye
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
| |
Collapse
|
5
|
Zsok J, Simon F, Bayrak G, Isaki L, Kerff N, Kicheva Y, Wolstenholme A, Weiss LE, Dultz E. Nuclear basket proteins regulate the distribution and mobility of nuclear pore complexes in budding yeast. Mol Biol Cell 2024; 35:ar143. [PMID: 39320946 PMCID: PMC11617099 DOI: 10.1091/mbc.e24-08-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Nuclear pore complexes (NPCs) mediate all traffic between the nucleus and the cytoplasm and are among the most stable protein assemblies in cells. Budding yeast cells carry two variants of NPCs which differ in the presence or absence of the nuclear basket proteins Mlp1, Mlp2, and Pml39. The binding of these basket proteins occurs very late in NPC assembly and Mlp-positive NPCs are excluded from the region of the nuclear envelope that borders the nucleolus. Here, we use recombination-induced tag exchange to investigate the stability of all the NPC subcomplexes within individual NPCs. We show that the nuclear basket proteins Mlp1, Mlp2, and Pml39 remain stably associated with NPCs through multiple cell-division cycles, and that Mlp1/2 are responsible for the exclusion of NPCs from the nucleolar territory. In addition, we demonstrate that binding of the FG-nucleoporins Nup1 and Nup2 depletes also Mlp-negative NPCs from this region by an independent pathway. We develop a method for single NPC tracking in budding yeast and observe that NPCs exhibit increased mobility in the absence of nuclear basket components. Our data suggest that the distribution of NPCs on the nucleus is governed by multiple interaction of nuclear basket proteins with the nuclear interior.
Collapse
Affiliation(s)
- Janka Zsok
- Institute of Biochemistry, ETH Zurich, Zurich 8092, Switzerland
| | - Francois Simon
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Göksu Bayrak
- Institute of Biochemistry, ETH Zurich, Zurich 8092, Switzerland
| | - Luljeta Isaki
- Institute of Biochemistry, ETH Zurich, Zurich 8092, Switzerland
| | - Nina Kerff
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Yoana Kicheva
- Institute of Biochemistry, ETH Zurich, Zurich 8092, Switzerland
| | | | - Lucien E. Weiss
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Elisa Dultz
- Institute of Biochemistry, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
6
|
Mohamadynejad P, Moghanibashi M, Bagheri K. Identification of novel nuclear pore complex associated proteins in esophageal carcinoma by an integrated bioinformatics analysis. J Biomol Struct Dyn 2024; 42:7221-7232. [PMID: 37504972 DOI: 10.1080/07391102.2023.2240414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Nucleoporins (NUPs) are components of the nuclear pore complex (NPC) that participate in the nucleocytoplasmic transport of macromolecules as well as in many essential processes that may be led to carcinogenesis. We selected three expression profile microarray datasets from GEO and as well as TCGA data to identify differentially expressed NUPs genes in esophageal carcinoma. Our findings indicated that NUP133, NUP37, NUP43, NUP50, GLE1 and NDC1 are overexpressed in esophageal carcinoma, among which NUP50 and GLE1genes are reported for the first time in esophageal carcinoma. All identified NUPs were also associated with distant metastasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kambiz Bagheri
- Department of Immunology, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
7
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
8
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
9
|
Neely AE, Zhang Y, Blumensaadt LA, Mao H, Brenner B, Sun C, Zhang HF, Bao X. Nucleoporin downregulation modulates progenitor differentiation independent of nuclear pore numbers. Commun Biol 2023; 6:1033. [PMID: 37853046 PMCID: PMC10584948 DOI: 10.1038/s42003-023-05398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Nucleoporins (NUPs) comprise nuclear pore complexes, gateways for nucleocytoplasmic transport. As primary human keratinocytes switch from the progenitor state towards differentiation, most NUPs are strongly downregulated, with NUP93 being the most downregulated NUP in this process. To determine if this NUP downregulation is accompanied by a reduction in nuclear pore numbers, we leveraged Stochastic Optical Reconstruction Microscopy. No significant changes in nuclear pore numbers were detected using three independent NUP antibodies; however, NUP reduction in other subcellular compartments such as the cytoplasm was identified. To investigate how NUP reduction influences keratinocyte differentiation, we knocked down NUP93 in keratinocytes in the progenitor-state culture condition. NUP93 knockdown diminished keratinocytes' clonogenicity and epidermal regenerative capacity, without drastically affecting nuclear pore numbers or permeability. Using transcriptome profiling, we identified that NUP93 knockdown induces differentiation genes related to both mechanical and immune barrier functions, including the activation of known NF-κB target genes. Consistently, keratinocytes with NUP93 knockdown exhibited increased nuclear localization of the NF-κB p65/p50 transcription factors, and increased NF-κB reporter activity. Taken together, these findings highlight the gene regulatory roles contributed by differential NUP expression levels in keratinocyte differentiation, independent of nuclear pore numbers.
Collapse
Affiliation(s)
- Amy E Neely
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Molecular Analytics and Photonics (MAP) Lab, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Laura A Blumensaadt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Hongjing Mao
- Molecular Analytics and Photonics (MAP) Lab, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Benjamin Brenner
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Demeneva VV, Tolmacheva EN, Nikitina TV, Sazhenova EA, Yuriev SY, Makhmutkhodzhaev AS, Zuev AS, Filatova SA, Dmitriev AE, Darkova YA, Nazarenko LP, Lebedev IN, Vasilyev SA. Expression of the NUP153 and YWHAB genes from their canonical promoters and alternative promoters of the LINE-1 retrotransposon in the placenta of the first trimester of pregnancy. Vavilovskii Zhurnal Genet Selektsii 2023; 27:63-71. [PMID: 36923475 PMCID: PMC10009475 DOI: 10.18699/vjgb-23-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 03/11/2023] Open
Abstract
The placenta has a unique hypomethylated genome. Due to this feature of the placenta, there is a potential possibility of using regulatory elements derived from retroviruses and retrotransposons, which are suppressed by DNA methylation in the adult body. In addition, there is an abnormal increase in the level of methylation of the LINE-1 retrotransposon in the chorionic trophoblast in spontaneous abortions with both normal karyotype and aneuploidy on different chromosomes, which may be associated with impaired gene transcription using LINE-1 regulatory elements. To date, 988 genes that can be expressed from alternative LINE-1 promoters have been identified. Using the STRING tool, genes (NUP153 and YWHAB) were selected, the products of which have significant functional relationships with proteins highly expressed in the placenta and involved in trophoblast differentiation. This study aimed to analyze the expression of the NUP153 and YWHAB genes, highly active in the placenta, from canonical and alternative LINE-1 promoters in the germinal part of the placenta of spontaneous and induced abortions. Gene expression analysis was performed using real-time PCR in chorionic villi and extraembryonic mesoderm of induced abortions (n = 10), adult lymphocytes (n = 10), spontaneous abortions with normal karyotype (n = 10), and with the most frequent aneuploidies in the first trimester of pregnancy (trisomy 16 (n = 8) and monosomy X (n = 6)). The LINE-1 methylation index was assessed in the chorionic villi of spontaneous abortions using targeted bisulfite massive parallel sequencing. The level of expression of both genes from canonical promoters was higher in blood lymphocytes than in placental tissues (p < 0.05). However, the expression level of the NUP153 gene from the alternative LINE-1 promoter was 17 times higher in chorionic villi and 23 times higher in extraembryonic mesoderm than in lymphocytes (p < 0.05). The expression level of NUP153 and YWHAB from canonical promoters was higher in the group of spontaneous abortions with monosomy X compared to all other groups (p <0.05). The LINE-1 methylation index negatively correlated with the level of gene expression from both canonical (NUP153 - R = -0.59, YWHAB - R = -0.52, p < 0.05) and alternative LINE-1 promoters (NUP153 - R = -0.46, YWHAB - R = -0.66, p < 0.05). Thus, the observed increase in the LINE-1 methylation index in the placenta of spontaneous abortions is associated with the level of expression of the NUP153 and YWHAB genes not only from alternative but also from canonical promoters, which can subsequently lead to negative consequences for normal embryogenesis.
Collapse
Affiliation(s)
- V V Demeneva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - T V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S Yu Yuriev
- Siberian State Medical University, Tomsk, Russia
| | | | - A S Zuev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - S A Filatova
- National Research Tomsk State University, Tomsk, Russia
| | - A E Dmitriev
- National Research Tomsk State University, Tomsk, Russia
| | - Ya A Darkova
- National Research Tomsk State University, Tomsk, Russia
| | - L P Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia Siberian State Medical University, Tomsk, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
11
|
Yang HJ, Asakawa H, Li FA, Haraguchi T, Shih HM, Hiraoka Y. A nuclear pore complex-associated regulation of SUMOylation in meiosis. Genes Cells 2023; 28:188-201. [PMID: 36562208 DOI: 10.1111/gtc.13003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The nuclear pore complex (NPC) provides a permeable barrier between the nucleoplasm and cytoplasm. In a subset of NPC constituents that regulate meiosis in the fission yeast Schizosaccharomyces pombe, we found that nucleoporin Nup132 (homolog of human Nup133) deficiency resulted in transient leakage of nuclear proteins during meiosis I, as observed in the nup132 gene-deleted mutant. The nuclear protein leakage accompanied the liberation of the small ubiquitin-like modifier (SUMO)-specific ubiquitin-like protease 1 (Ulp1) from the NPC. Ulp1 retention at the nuclear pore prevented nuclear protein leakage and restored normal meiosis in a mutant lacking Nup132. Furthermore, using mass spectrometry analysis, we identified DNA topoisomerase 2 (Top2) and RCC1-related protein (Pim1) as the target proteins for SUMOylation. SUMOylation levels of Top2 and Pim1 were altered in meiotic cells lacking Nup132. HyperSUMOylated Top2 increased the binding affinity at the centromeres of nup132 gene-deleted meiotic cells. The Top2-12KR sumoylation mutant was less localized to the centromeric regions. Our results suggest that SUMOylation of chromatin-binding proteins is regulated by the NPC-bound SUMO-specific protease and is important for the progression of meiosis.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Nuclear envelope assembly and dynamics during development. Semin Cell Dev Biol 2023; 133:96-106. [PMID: 35249812 DOI: 10.1016/j.semcdb.2022.02.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/22/2023]
Abstract
The nuclear envelope (NE) protects but also organizes the eukaryotic genome. In this review we will discuss recent literature on how the NE disassembles and reassembles, how it varies in surface area and protein composition and how this translates into chromatin organization and gene expression in the context of animal development.
Collapse
|
13
|
Borah S, Dhanasekaran K, Kumar S. The LEM-ESCRT toolkit: Repair and maintenance of the nucleus. Front Cell Dev Biol 2022; 10:989217. [PMID: 36172278 PMCID: PMC9512039 DOI: 10.3389/fcell.2022.989217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic genome is enclosed in a nuclear envelope that protects it from potentially damaging cellular activities and physically segregates transcription and translation.Transport across the NE is highly regulated and occurs primarily via the macromolecular nuclear pore complexes.Loss of nuclear compartmentalization due to defects in NPC function and NE integrity are tied to neurological and ageing disorders like Alzheimer’s, viral pathogenesis, immune disorders, and cancer progression.Recent work implicates inner-nuclear membrane proteins of the conserved LEM domain family and the ESCRT machinery in NE reformation during cell division and NE repair upon rupture in migrating cancer cells, and generating seals over defective NPCs. In this review, we discuss the recent in-roads made into defining the molecular mechanisms and biochemical networks engaged by LEM and many other integral inner nuclear membrane proteins to preserve the nuclear barrier.
Collapse
Affiliation(s)
- Sapan Borah
- National Institute of Immunohaematology, Mumbai, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Karthigeyan Dhanasekaran
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| | - Santosh Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
- *Correspondence: Sapan Borah, ; Karthigeyan Dhanasekaran, ; Santosh Kumar,
| |
Collapse
|
14
|
Dultz E, Wojtynek M, Medalia O, Onischenko E. The Nuclear Pore Complex: Birth, Life, and Death of a Cellular Behemoth. Cells 2022; 11:1456. [PMID: 35563762 PMCID: PMC9100368 DOI: 10.3390/cells11091456] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the only transport channels that cross the nuclear envelope. Constructed from ~500-1000 nucleoporin proteins each, they are among the largest macromolecular assemblies in eukaryotic cells. Thanks to advances in structural analysis approaches, the construction principles and architecture of the NPC have recently been revealed at submolecular resolution. Although the overall structure and inventory of nucleoporins are conserved, NPCs exhibit significant compositional and functional plasticity even within single cells and surprising variability in their assembly pathways. Once assembled, NPCs remain seemingly unexchangeable in post-mitotic cells. There are a number of as yet unresolved questions about how the versatility of NPC assembly and composition is established, how cells monitor the functional state of NPCs or how they could be renewed. Here, we review current progress in our understanding of the key aspects of NPC architecture and lifecycle.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Evgeny Onischenko
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
15
|
Hamed M, Antonin W. Dunking into the Lipid Bilayer: How Direct Membrane Binding of Nucleoporins Can Contribute to Nuclear Pore Complex Structure and Assembly. Cells 2021; 10:3601. [PMID: 34944108 PMCID: PMC8700311 DOI: 10.3390/cells10123601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Nuclear pore complexes (NPCs) mediate the selective and highly efficient transport between the cytoplasm and the nucleus. They are embedded in the two membrane structure of the nuclear envelope at sites where these two membranes are fused to pores. A few transmembrane proteins are an integral part of NPCs and thought to anchor these complexes in the nuclear envelope. In addition, a number of nucleoporins without membrane spanning domains interact with the pore membrane. Here we review our current knowledge of how these proteins interact with the membrane and how this interaction can contribute to NPC assembly, stability and function as well as shaping of the pore membrane.
Collapse
Affiliation(s)
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
16
|
Zhang W, Khan A, Vitale J, Neuner A, Rink K, Lüchtenborg C, Brügger B, Söllner TH, Schiebel E. A short perinuclear amphipathic α-helix in Apq12 promotes nuclear pore complex biogenesis. Open Biol 2021; 11:210250. [PMID: 34814743 PMCID: PMC8611336 DOI: 10.1098/rsob.210250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The integral membrane protein Apq12 is an important nuclear envelope (NE)/endoplasmic reticulum (ER) modulator that cooperates with the nuclear pore complex (NPC) biogenesis factors Brl1 and Brr6. How Apq12 executes these functions is unknown. Here, we identified a short amphipathic α-helix (AαH) in Apq12 that links the two transmembrane domains in the perinuclear space and has liposome-binding properties. Cells expressing an APQ12 (apq12-ah) version in which AαH is disrupted show NPC biogenesis and NE integrity defects, without impacting Apq12-ah topology or NE/ER localization. Overexpression of APQ12 but not apq12-ah triggers striking over-proliferation of the outer nuclear membrane (ONM)/ER and promotes accumulation of phosphatidic acid (PA) at the NE. Apq12 and Apq12-ah both associate with NPC biogenesis intermediates and removal of AαH increases both Brl1 levels and the interaction between Brl1 and Brr6. We conclude that the short amphipathic α-helix of Apq12 regulates the function of Brl1 and Brr6 and promotes PA accumulation at the NE possibly during NPC biogenesis.
Collapse
Affiliation(s)
- Wanlu Zhang
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Azqa Khan
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Jlenia Vitale
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Kerstin Rink
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Christian Lüchtenborg
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Britta Brügger
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Thomas H. Söllner
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Gonzalez-Estevez A, Verrico A, Orniacki C, Reina-San-Martin B, Doye V. Integrity of the short arm of the nuclear pore Y-complex is required for mouse embryonic stem cell growth and differentiation. J Cell Sci 2021; 134:268378. [PMID: 34037234 DOI: 10.1242/jcs.258340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Many cellular processes, ranging from cell division to differentiation, are controlled by nuclear pore complexes (NPCs). However, studying the contributions of individual NPC subunits to these processes in vertebrates has long been impeded by their complexity and the lack of efficient genetic tools. Here, we use genome editing in mouse embryonic stem cells (mESCs) to characterize the role of NPC structural components, focusing on the short arm of the Y-complex that comprises Nup85, Seh1 and Nup43. We show that Seh1 and Nup43, although dispensable in pluripotent mESCs, are required for their normal cell growth rates, their viability upon differentiation and for the maintenance of proper NPC density. mESCs with an N-terminally truncated Nup85 mutation (in which interaction with Seh1 is greatly impaired) feature a similar reduction of NPC density. However, their proliferation and differentiation are unaltered, indicating that it is the integrity of the Y-complex, rather than the number of NPCs, that is critical to ensure these processes.
Collapse
Affiliation(s)
- Alba Gonzalez-Estevez
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, F-75006 Paris, France.,Ecole Doctorale BioSPC, Université de Paris, Paris, France
| | - Annalisa Verrico
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, F-75006 Paris, France
| | - Clarisse Orniacki
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, F-75006 Paris, France.,Ecole Doctorale BioSPC, Université de Paris, Paris, France
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France.,Inserm U 1258, Illkirch 67404, France.,Centre National de la Recherche Scientifique UMR (Unité Mixte de Recherche) 7104, Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Valérie Doye
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, F-75006 Paris, France.,Ecole Doctorale BioSPC, Université de Paris, Paris, France
| |
Collapse
|
18
|
Abstract
Nuclear pore complexes are multiprotein channels that span the nuclear envelope, which connects the nucleus to the cytoplasm. In addition to their main role in the regulation of nucleocytoplasmic molecule exchange, it has become evident that nuclear pore complexes and their components also have multiple transport-independent functions. In recent years, an increasing number of studies have reported the involvement of nuclear pore complex components in embryogenesis, cell differentiation and tissue-specific processes. Here, we review the findings that highlight the dynamic nature of nuclear pore complexes and their roles in many cell type-specific functions during development and tissue homeostasis.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Maximiliano A D'Angelo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Mossaid I, Chatel G, Martinelli V, Vaz M, Fahrenkrog B. Mitotic checkpoint protein Mad1 is required for early Nup153 recruitment to chromatin and nuclear envelope integrity. J Cell Sci 2020; 133:jcs249243. [PMID: 33023979 DOI: 10.1242/jcs.249243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Nucleoporin Nup153 is a multifunctional protein and a known binding partner of mitotic checkpoint protein Mad1 (also known as MAD1L1). The functional relevance of their interaction has remained elusive. Here, we have further dissected the interface and functional interplay of Nup153 and Mad1. Using in situ proximity ligation assays, we found that the presence of a nuclear envelope (NE) is a prerequisite for the Nup153-Mad1 association. Time-lapse microscopy revealed that depletion of Mad1 delayed recruitment of Nup153 to anaphase chromatin, which was often accompanied by a prolongation of anaphase. Furthermore, as seen by electron microscopic and three-dimensional structured illumination investigations, Nup153 and Mad1 depletion led to alterations in NE architecture, characterised by a change of membrane curvature at nuclear pore complexes (NPCs) and an expansion of the spacing between inner and outer nuclear membranes. Nup153 depletion, but not Mad1 depletion, caused defects in interphase NPC assembly, with partial displacement of cytoplasmic nucleoporins and a reduction in NPC density. Taken together, our results suggest that Nup153 has separable roles in NE and NPC formation: in post-mitotic NE re-formation in concert with Mad1 and in interphase NPC assembly, independent of Mad1.
Collapse
Affiliation(s)
- Ikram Mossaid
- Institute of Molecular Biology and Medicine, Laboratory Biologie du Noyau, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Guillaume Chatel
- Institute of Molecular Biology and Medicine, Laboratory Biologie du Noyau, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Laboratory Biologie du Noyau, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Marcela Vaz
- Institute of Molecular Biology and Medicine, Laboratory Biologie du Noyau, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Laboratory Biologie du Noyau, Université Libre de Bruxelles, 6041 Charleroi, Belgium
| |
Collapse
|
20
|
Abstract
Nuclear pore complexes (NPCs) mediate nucleocytoplasmic exchange. They are exceptionally large protein complexes that fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. About 30 different protein components, termed nucleoporins, assemble in multiple copies into an intricate cylindrical architecture. Here, we review our current knowledge of the structure of nucleoporins and how those come together in situ. We delineate architectural principles on several hierarchical organization levels, including isoforms, posttranslational modifications, nucleoporins, and higher-order oligomerization of nucleoporin subcomplexes. We discuss how cells exploit this modularity to faithfully assemble NPCs.
Collapse
Affiliation(s)
- Bernhard Hampoelz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; , ,
| | - Amparo Andres-Pons
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; , , .,Current affiliation: Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
| | - Panagiotis Kastritis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; , , .,Current affiliation: ZIK HALOmem, Martin Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; , , .,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Cianciolo Cosentino C, Berto A, Pelletier S, Hari M, Loffing J, Neuhauss SCF, Doye V. Moderate Nucleoporin 133 deficiency leads to glomerular damage in zebrafish. Sci Rep 2019; 9:4750. [PMID: 30894603 PMCID: PMC6426968 DOI: 10.1038/s41598-019-41202-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/26/2019] [Indexed: 01/13/2023] Open
Abstract
Although structural nuclear pore proteins (nucleoporins) are seemingly required in every cell type to assemble a functional nuclear transport machinery, mutations or deregulation of a subset of them have been associated with specific human hereditary diseases. In particular, previous genetic studies of patients with nephrotic syndrome identified mutations in Nup107 that impaired the expression or the localization of its direct partner at nuclear pores, Nup133. In the present study, we characterized the zebrafish nup133 orthologous gene and its expression pattern during larval development. Using a morpholino-mediated gene knockdown, we show that partial depletion of Nup133 in zebrafish larvae leads to the formation of kidney cysts, a phenotype that can be rescued by co-injection of wild type mRNA. Analysis of different markers for tubular and glomerular development shows that the overall kidney development is not affected by nup133 knockdown. Likewise, no gross defect in nuclear pore complex assembly was observed in these nup133 morphants. On the other hand, nup133 downregulation results in proteinuria and moderate foot process effacement, mimicking some of the abnormalities typically featured by patients with nephrotic syndrome. These data indicate that nup133 is a new gene required for proper glomerular structure and function in zebrafish.
Collapse
Affiliation(s)
- Chiara Cianciolo Cosentino
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Fondazione RiMED, Palermo, Italy
| | - Alessandro Berto
- Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France.,Ecole Doctorale SDSV, Université Paris Sud, F-91405, Orsay, France
| | - Stéphane Pelletier
- Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Michelle Hari
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | - Valérie Doye
- Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France.
| |
Collapse
|