1
|
Walker ME, Zhu W, Peterson JH, Wang H, Patteson J, Soriano A, Zhang H, Mayhood T, Hou Y, Mesbahi-Vasey S, Gu M, Frost J, Lu J, Johnston J, Hipolito C, Lin S, Painter RE, Klein D, Walji A, Weinglass A, Kelly TM, Saldanha A, Schubert J, Bernstein HD, Walker SS. Antibacterial macrocyclic peptides reveal a distinct mode of BamA inhibition. Nat Commun 2025; 16:3395. [PMID: 40210867 PMCID: PMC11986105 DOI: 10.1038/s41467-025-58086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Outer membrane proteins (OMPs) produced by Gram-negative bacteria contain a cylindrical amphipathic β-sheet ("β-barrel") that functions as a membrane spanning domain. The assembly (folding and membrane insertion) of OMPs is mediated by the heterooligomeric β-barrel assembly machine (BAM). The central BAM subunit (BamA) is an attractive antibacterial target because its structure and cell surface localization are conserved, it catalyzes an essential reaction, and potent bactericidal compounds that inhibit its activity have been described. Here we utilize mRNA display to discover cyclic peptides that bind to Escherichia coli BamA with high affinity. We describe three peptides that arrest the growth of BAM deficient E. coli strains, inhibit OMP assembly in live cells and in vitro, and bind to unique sites within the BamA β-barrel lumen. Remarkably, we find that if the peptides are added to cultures after a slowly assembling OMP mutant binds to BamA, they accelerate its biogenesis. The data strongly suggest that the peptides trap BamA in conformations that block the initiation of OMP assembly but favor a later assembly step. Molecular dynamics simulations provide further evidence that the peptides bind stably to BamA and function by a previously undescribed mechanism.
Collapse
Affiliation(s)
| | - Wei Zhu
- Merck & Co., Inc., Rahway, NJ, USA
| | - Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hao Wang
- Merck & Co., Inc., West Point, PA, USA
| | | | | | - Han Zhang
- Merck & Co., Inc., West Point, PA, USA
| | | | - Yan Hou
- Merck & Co., Inc., Rahway, NJ, USA
| | | | - Meigang Gu
- Evotec Ltd., Abingdon, Oxfordshire, OX14 4RZ, UK
| | | | - Jun Lu
- Merck & Co., Inc., West Point, PA, USA
| | | | | | | | | | | | | | | | | | | | | | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | | |
Collapse
|
2
|
Kumar S, Inns PG, Ward S, Lagage V, Wang J, Kaminska R, Booth MJ, Uphoff S, Cohen EAK, Mamou G, Kleanthous C. Immobile lipopolysaccharides and outer membrane proteins differentially segregate in growing Escherichia coli. Proc Natl Acad Sci U S A 2025; 122:e2414725122. [PMID: 40030021 PMCID: PMC11912417 DOI: 10.1073/pnas.2414725122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/07/2025] [Indexed: 03/19/2025] Open
Abstract
The outer membrane (OM) of gram-negative bacteria is a robust, impermeable barrier that excludes many classes of antibiotics. Contrary to the classical model of an asymmetric lipid bilayer, recent evidence suggests the OM is predominantly an asymmetric proteolipid membrane (APLM). Outer leaflet lipopolysaccharides (LPS) that surround integral β-barrel outer membrane proteins (OMPs) are shared with other OMPs to form a supramolecular network in which the levels of OMPs approach those of LPS. Some of the most abundant OMPs in the Escherichia coli OM are trimeric porins. How porins and LPS are incorporated into the OM of growing bacteria is poorly understood. Here, we use live-cell imaging and microfluidics to investigate how LPS, labeled using click chemistry, and the porin OmpF, labeled using the bacteriocin colicin N, are incorporated into the E. coli OM. Diffraction-limited fluorescence microscopy shows OmpF and LPS to be uniformly distributed and immobile. However, clustering of both macromolecules becomes evident by superresolution microscopy, which is also the case for their biogenesis proteins, BamA and LptD, respectively. Notwithstanding these common organizational features, OmpF insertion into the OM is cell-cycle-dependent leading to binary partitioning and strong polar accumulation of old OmpF. Old LPS on the other hand is diluted ~50% at each division cycle by new LPS, resulting in only mild polar accumulation of preexisting LPS. We conclude that although LPS and OMPs are destined to form the APLM their insertion dynamics are fundamentally different, which has major implications for understanding how the OM is assembled.
Collapse
Affiliation(s)
- Sandip Kumar
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Patrick G. Inns
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Scott Ward
- Department of Mathematics, Imperial College London, LondonSW7 1AZ, United Kingdom
| | - Valentine Lagage
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Jingyu Wang
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Martin J. Booth
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Edward A. K. Cohen
- Department of Mathematics, Imperial College London, LondonSW7 1AZ, United Kingdom
| | - Gideon Mamou
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
3
|
Li W, Ji B, Li B, Du M, Wang L, Tuo J, Zhou H, Gong J, Zhao Y. Nitazoxanide inhibits pili assembly by targeting BamB to synergize with polymyxin B against drug-resistant Escherichia coli. Biochimie 2025; 233:47-59. [PMID: 39984113 DOI: 10.1016/j.biochi.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Gram-negative bacteria rely on pili assembly for pathogenicity, with the chaperone-usher (CU) pathway regulating pilus biogenesis. Nitazoxanide (NTZ) inhibits CU pathway-mediated P pilus biogenesis by specifically interfering with the proper folding of the outer membrane protein (OMP) usher, primarily mediated by the β-barrel assembly machinery (BAM) complex. In this study, we identified the BAM complex components BamB and the BamA POTRA2 domain as key binding targets for NTZ. Molecular dynamics simulations and Bio-Layer Interferometry revealed that BamB residues S61 and R195 are critical for NTZ binding. NTZ activated the Cpx two-component system and induced inner membrane perturbations, which resulted from the accumulation of misfolded P pilus subunits. Upregulation of the ibpAB gene, which protects the bacteria against NTZ-induced oxidative stress, was also observed. Importantly, NTZ combined with polymyxin B enhanced the latter's antibacterial activity against both susceptible and MCR-positive E. coli strains. This enhancement was achieved through NTZ-induced increases in inner membrane permeability, oxidative stress, and inhibition of efflux pump activity and biofilm formation. This study provides new insights into the antimicrobial mechanism of NTZ and highlights its potential as an antibiotic adjuvant by targeting BamB to inhibit the CU pathway, restoring the efficacy of polymyxin B against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Bingjie Ji
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Boyu Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Minghui Du
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Linwei Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Jiale Tuo
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Hongmei Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China
| | - Jian Gong
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China.
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, China.
| |
Collapse
|
4
|
Tan WB, Chng SS. How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry. Annu Rev Microbiol 2024; 78:553-573. [PMID: 39270665 DOI: 10.1146/annurev-micro-032521-014507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| | - Shu-Sin Chng
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| |
Collapse
|
5
|
Hu XL, Gan HQ, Gui WZ, Yan KC, Sessler JL, Yi D, Tian H, He XP. Superresolution imaging of antibiotic-induced structural disruption of bacteria enabled by photochromic glycomicelles. Proc Natl Acad Sci U S A 2024; 121:e2408716121. [PMID: 39226360 PMCID: PMC11406247 DOI: 10.1073/pnas.2408716121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Bacterial evolution, particularly in hospital settings, is leading to an increase in multidrug resistance. Understanding the basis for this resistance is critical as it can drive discovery of new antibiotics while allowing the clinical use of known antibiotics to be optimized. Here, we report a photoactive chemical probe for superresolution microscopy that allows for the in situ probing of antibiotic-induced structural disruption of bacteria. Conjugation between a spiropyran (SP) and galactose via click chemistry produces an amphiphilic photochromic glycoprobe, which self-assembles into glycomicelles in water. The hydrophobic inner core of the glycomicelles allows encapsulation of antibiotics. Photoirradiation then serves to convert the SP to the corresponding merocyanine (MR) form. This results in micellar disassembly allowing for release of the antibiotic in an on-demand fashion. The glycomicelles of this study adhere selectively to the surface of a Gram-negative bacterium through multivalent sugar-lectin interaction. Antibiotic release from the glycomicelles then induces membrane collapse. This dynamic process can be imaged in situ by superresolution spectroscopy owing to the "fluorescence blinking" of the SP/MR photochromic pair. This research provides a high-precision imaging tool that may be used to visualize how antibiotics disrupt the structural integrity of bacteria in real time.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Wen-Zhen Gui
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
- National Center for Liver Cancer, The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai200438, China
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Dong Yi
- Research Center for Systems Biosynthesis, China State Institute of Pharmaceutical Industry, National Key Laboratory of Lead Druggability Research, Shanghai201203, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
- National Center for Liver Cancer, The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai200438, China
| |
Collapse
|
6
|
Hall KT, Kenedy MR, Johnson DK, Hefty PS, Akins DR. A conserved C-terminal domain of TamB interacts with multiple BamA POTRA domains in Borreliella burgdorferi. PLoS One 2024; 19:e0304839. [PMID: 39208212 PMCID: PMC11361582 DOI: 10.1371/journal.pone.0304839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 09/04/2024] Open
Abstract
Lyme disease is the leading tick-borne infection in the United States, caused by the pathogenic spirochete Borreliella burgdorferi, formerly known as Borrelia burgdorferi. Diderms, or bacteria with dual-membrane ultrastructure, such as B. burgdorferi, have multiple methods of transporting and integrating outer membrane proteins (OMPs). Most integral OMPs are transported through the β-barrel assembly machine (BAM) complex. This complex consists of the channel-forming OMP BamA and accessory lipoproteins that interact with the five periplasmic, polypeptide transport-associated (POTRA) domains of BamA. Another system, the translocation and assembly module (TAM) system, has also been implicated in OMP assembly and export. The TAM system consists of two proteins, the BamA paralog TamA which has three POTRA domains and the inner membrane protein TamB. TamB is characterized by a C-terminal DUF490 domain that interacts with the POTRA domains of TamA. Interestingly, while TamB is found in almost all diderms, including B. burgdorferi, TamA is found almost exclusively in Proteobacteria. This strongly suggests a TamA-independent role of TamB in most diderms. We previously demonstrated that BamA interacts with TamB in B. burgdorferi and hypothesized that this is facilitated by the BamA POTRA domains interacting with the TamB DUF490 domain. In this study, we utilized protein-protein co-purification assays to empirically demonstrate that the B. burgdorferi TamB DUF490 domain interacts with BamA POTRA2 and POTRA3. We also observed that the DUF490 domain of TamB interacts with the accessory lipoprotein BamB. To examine if the BamA-TamB interaction is more ubiquitous among diderms, we examined BamA-TamB interactions in Salmonella enterica serovar Typhimurium (St). Interestingly, even though St encodes a TamA protein that interacts with TamB, we observed that the TamB DUF490 of St interacts with BamA in this organism. Our combined findings strongly suggest that the TamB-BamA interaction occurs independent of the TamA component of the TAM protein export system.
Collapse
Affiliation(s)
- Kari T. Hall
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Melisha R. Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David K. Johnson
- Chemical Computational Biology Core and the Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, Kansas, United States of America
| | - P. Scott Hefty
- Department of Molecular Biosciences and the Center for Chemical Biology of Infectious Disease, University of Kansas, Lawrence, Kansas, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
7
|
Ikujuni AP, Dhar R, Cordova A, Bowman AM, Noga S, Slusky JSG. Discovery and Characterization of Two Folded Intermediates for Outer Membrane Protein TolC Biogenesis. J Mol Biol 2024; 436:168652. [PMID: 38871177 PMCID: PMC11297670 DOI: 10.1016/j.jmb.2024.168652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
TolC is the outer membrane protein responsible for antibiotic efflux in E. coli. Compared to other outer membrane proteins it has an unusual fold and has been shown to fold independently of commonly used periplasmic chaperones, SurA and Skp. Here we find that the assembly of TolC involves the formation of two folded intermediates using circular dichroism, gel electrophoresis, site-specific disulfide bond formation and radioactive labeling. First the TolC monomer folds, and then TolC assembles into a trimer both in detergent-free buffer and in the presence of detergent micelles. We find that a TolC trimer also forms in the periplasm and is present in the periplasm before it inserts in the outer membrane. The monomeric and trimeric folding intermediates may be used in the future to develop a new approach to antibiotic efflux pump inhibition by targeting the assembly pathway of TolC.
Collapse
Affiliation(s)
- Ayotunde Paul Ikujuni
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Andres Cordova
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Alexander M Bowman
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Sarah Noga
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Joanna S G Slusky
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States; Computational Biology Program, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66045-7534, United States.
| |
Collapse
|
8
|
Ariano K, Schweiger P. Determining the functional role of the Gluconobacter oxydans GOX1969 protein as a BamB homolog. Microbiol Spectr 2024; 12:e0106024. [PMID: 38916353 PMCID: PMC11302035 DOI: 10.1128/spectrum.01060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Acetic acid bacteria are used in many industrial processes such as the production of vinegar, vitamin C, the antidiabetic drug miglitol, and various artificial flavorings. These industrially important reactions are primarily carried out by an arsenal of periplasmic-facing membrane-bound dehydrogenases that incompletely oxidize their substrates and shuttle electrons directly into the respiratory chain. Among these dehydrogenases, GOX1969 in Gluconobacter oxydans was predicted to be a pyrroloquinoline quinone-dependent dehydrogenase of unknown function. However, after multiple analysis by a number of labs, no dehydrogenase activity has been detected. Reanalysis of GOX1969 sequence and structure reveals similarities to Escherichia coli BamB, which functions as a subunit of the β-barrel assembly machinery complex that is responsible for the assembly of β-barrel outer membrane proteins in Gram-negative bacteria. To test if the physiological function of GOX1969 is similar to BamB in E. coli, we introduced the gox1969 gene into an E. coli ∆bamB mutant. Growth deficiencies in the ∆bamB mutant were restored when gox1969 was expressed on the plasmid pGox1969. Furthermore, increased membrane permeability conferred by bamB deletion was restored upon gox1969 expression, which suggests a direct link between GOX1969 and a role in maintaining outer membrane stability. Together, this evidence strongly suggests that GOX1969 is functionally acting as a BamB in G. oxydans. As such, functional information on uncharacterized genes will provide new insights that will allow for more accurate modeling of acetic acid bacterial metabolism and further efforts to design rational strains for industrial use.IMPORTANCEGluconobacter oxydans is an industrially important member of the acetic acid bacteria. Experimental characterization of putative genes is necessary to identify targets for further engineering of rational acetic acid bacteria strains that can be used in the production of vitamin C, antidiabetic compounds, artificial flavorings, or novel compounds. In this study, we have identified an undefined dehydrogenase GOX1969 with no known substrate and defined structural similarities to outer membrane biogenesis protein BamB in E. coli K12. Furthermore, we demonstrate that GOX1969 is capable of complementing bamB knockout phenotypes in E. coli K12. Taken together, these findings enhance our understanding of G. oxydans physiology and expand the list of potential targets for future industrial strain design.
Collapse
Affiliation(s)
- Ky Ariano
- Department of Microbiology, University of Wisconsin–La Crosse, La Crosse, Wisconsin, USA
| | - Paul Schweiger
- Department of Microbiology, University of Wisconsin–La Crosse, La Crosse, Wisconsin, USA
| |
Collapse
|
9
|
Goh KJ, Stubenrauch CJ, Lithgow T. The TAM, a Translocation and Assembly Module for protein assembly and potential conduit for phospholipid transfer. EMBO Rep 2024; 25:1711-1720. [PMID: 38467907 PMCID: PMC11014939 DOI: 10.1038/s44319-024-00111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The assembly of β-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the β-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of β-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher J Stubenrauch
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, VIC, 3800, Australia.
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
10
|
Zanetti-Domingues LC, Hirsch M, Wang L, Eastwood TA, Baker K, Mulvihill DP, Radford S, Horne J, White P, Bateman B. Toward quantitative super-resolution methods for cryo-CLEM. Methods Cell Biol 2024; 187:249-292. [PMID: 38705627 DOI: 10.1016/bs.mcb.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cryogenic ultrastructural imaging techniques such as cryo-electron tomography have produced a revolution in how the structure of biological systems is investigated by enabling the determination of structures of protein complexes immersed in a complex biological matrix within vitrified cell and model organisms. However, so far, the portfolio of successes has been mostly limited to highly abundant complexes or to structures that are relatively unambiguous and easy to identify through electron microscopy. In order to realize the full potential of this revolution, researchers would have to be able to pinpoint lower abundance species and obtain functional annotations on the state of objects of interest which would then be correlated to ultrastructural information to build a complete picture of the structure-function relationships underpinning biological processes. Fluorescence imaging at cryogenic conditions has the potential to be able to meet these demands. However, wide-field images acquired at low numeric aperture (NA) using air immersion objective have a low resolving power and cannot provide accurate enough three-dimensional (3D) localization to enable the assignment of functional annotations to individual objects of interest or target sample debulking to ensure the preservation of the structures of interest. It is therefore necessary to develop super-resolved cryo-fluorescence workflows capable of fulfilling this role and enabling new biological discoveries. In this chapter, we present the current state of development of two super-resolution cryogenic fluorescence techniques, superSIL-STORM and astigmatism-based 3D STORM, show their application to a variety of biological systems and discuss their advantages and limitations. We further discuss the future applicability to cryo-CLEM workflows though examples of practical application to the study of membrane protein complexes both in mammalian cells and in Escherichia coli.
Collapse
Affiliation(s)
- Laura C Zanetti-Domingues
- CLF Octopus Facility, UKRI-Science and Technology Facilities Council, R92, Rutherford Appleton Laboratory, Didcot, United Kingdom.
| | - Michael Hirsch
- CLF Octopus Facility, UKRI-Science and Technology Facilities Council, R92, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Lin Wang
- CLF Octopus Facility, UKRI-Science and Technology Facilities Council, R92, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Tara A Eastwood
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Karen Baker
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Sheena Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Jim Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Benji Bateman
- CLF Octopus Facility, UKRI-Science and Technology Facilities Council, R92, Rutherford Appleton Laboratory, Didcot, United Kingdom
| |
Collapse
|
11
|
George A, Patil AG, Mahalakshmi R. ATP-independent assembly machinery of bacterial outer membranes: BAM complex structure and function set the stage for next-generation therapeutics. Protein Sci 2024; 33:e4896. [PMID: 38284489 PMCID: PMC10804688 DOI: 10.1002/pro.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024]
Abstract
Diderm bacteria employ β-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the β-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM β-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 β-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.
Collapse
Affiliation(s)
- Anjana George
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Akanksha Gajanan Patil
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological SciencesIndian Institute of Science Education and ResearchBhopalIndia
| |
Collapse
|
12
|
Vázquez‐Arias A, Vázquez‐Iglesias L, Pérez‐Juste I, Pérez‐Juste J, Pastoriza‐Santos I, Bodelon G. Bacterial surface display of human lectins in Escherichia coli. Microb Biotechnol 2024; 17:e14409. [PMID: 38380565 PMCID: PMC10884992 DOI: 10.1111/1751-7915.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
Lectin-glycan interactions sustain fundamental biological processes involved in development and disease. Owing to their unique sugar-binding properties, lectins have great potential in glycobiology and biomedicine. However, their relatively low affinities and broad specificities pose a significant challenge when used as analytical reagents. New approaches for expression and engineering of lectins are in demand to overcome current limitations. Herein, we report the application of bacterial display for the expression of human galectin-3 and mannose-binding lectin in Escherichia coli. The analysis of the cell surface expression and binding activity of the surface-displayed lectins, including point and deletion mutants, in combination with molecular dynamics simulation, demonstrate the robustness and suitability of this approach. Furthermore, the display of functional mannose-binding lectin in the bacterial surface proved the feasibility of this method for disulfide bond-containing lectins. This work establishes for the first time bacterial display as an efficient means for the expression and engineering of human lectins, thereby increasing the available toolbox for glycobiology research.
Collapse
Affiliation(s)
- Alba Vázquez‐Arias
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | - Lorena Vázquez‐Iglesias
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
| | | | - Jorge Pérez‐Juste
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Química FísicaUniversidade de VigoVigoSpain
| | - Isabel Pastoriza‐Santos
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Química FísicaUniversidade de VigoVigoSpain
| | - Gustavo Bodelon
- CINBIOUniversidade de VigoVigoSpain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS‐UVIGOVigoSpain
- Departamento de Biología Funcional y Ciencias de la SaludUniversidade de VigoVigoSpain
| |
Collapse
|
13
|
Germany EM, Thewasano N, Imai K, Maruno Y, Bamert RS, Stubenrauch CJ, Dunstan RA, Ding Y, Nakajima Y, Lai X, Webb CT, Hidaka K, Tan KS, Shen H, Lithgow T, Shiota T. Dual recognition of multiple signals in bacterial outer membrane proteins enhances assembly and maintains membrane integrity. eLife 2024; 12:RP90274. [PMID: 38226797 PMCID: PMC10945584 DOI: 10.7554/elife.90274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Outer membrane proteins (OMPs) are essential components of the outer membrane of Gram-negative bacteria. In terms of protein targeting and assembly, the current dogma holds that a 'β-signal' imprinted in the final β-strand of the OMP engages the β-barrel assembly machinery (BAM) complex to initiate membrane insertion and assembly of the OMP into the outer membrane. Here, we revealed an additional rule that signals equivalent to the β-signal are repeated in other, internal β-strands within bacterial OMPs, by peptidomimetic and mutational analysis. The internal signal is needed to promote the efficiency of the assembly reaction of these OMPs. BamD, an essential subunit of the BAM complex, recognizes the internal signal and the β-signal, arranging several β-strands and partial folding for rapid OMP assembly. The internal signal-BamD ordering system is not essential for bacterial viability but is necessary to retain the integrity of the outer membrane against antibiotics and other environmental insults.
Collapse
Affiliation(s)
- Edward M Germany
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Nakajohn Thewasano
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan
| | - Yuki Maruno
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Rebecca S Bamert
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Christopher J Stubenrauch
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Rhys A Dunstan
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Yue Ding
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Yukari Nakajima
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - XiangFeng Lai
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
| | - Chaille T Webb
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Kentaro Hidaka
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| | - Kher Shing Tan
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Hsinhui Shen
- Department of Materials Science and Engineering, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash UniversityClaytonAustralia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash UniversityClaytonAustralia
- Infection Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash UniversityClaytonAustralia
| | - Takuya Shiota
- Frontier Science Research Center, University of MiyazakiMiyazakiJapan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazakiJapan
| |
Collapse
|
14
|
Dunstan RA, Hay ID, Lithgow T. Defining Membrane Protein Localization by Isopycnic Density Gradients. Methods Mol Biol 2024; 2715:91-98. [PMID: 37930523 DOI: 10.1007/978-1-0716-3445-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacterial membrane proteins account for around one-third of the proteome in many species and can represent much more than half of the mass of the membranes. Classic techniques in cell biology can be applied to characterize bacterial membranes and their membrane protein constituents, and here we describe a protocol for the purification of outer membranes and inner membranes from Escherichia coli. This allows for compositional analysis of the membranes as well as functional analyses. The procedure can be applied with minor modifications to other bacterial species including those carrying capsular polysaccharide attached to the outer membrane.
Collapse
Affiliation(s)
- Rhys A Dunstan
- Centre to Impact AMR, Monash University, Melbourne, VIC, Australia
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Iain D Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, VIC, Australia.
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Lee Upton S, Tay JW, Schwartz DK, Sousa MC. Similarly slow diffusion of BAM and SecYEG complexes in live E. coli cells observed with 3D spt-PALM. Biophys J 2023; 122:4382-4394. [PMID: 37853695 PMCID: PMC10698321 DOI: 10.1016/j.bpj.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
The β-barrel assembly machinery (BAM) complex is responsible for inserting outer membrane proteins (OMPs) into the Escherichia coli outer membrane. The SecYEG translocon inserts inner membrane proteins into the inner membrane and translocates both soluble proteins and nascent OMPs into the periplasm. Recent reports describe Sec possibly playing a direct role in OMP biogenesis through interactions with the soluble polypeptide transport-associated (POTRA) domains of BamA (the central OMP component of BAM). Here we probe the diffusion behavior of these protein complexes using photoactivatable super-resolution localization microscopy and single-particle tracking in live E. coli cells of BAM and SecYEG components BamA and SecE and compare them to other outer and inner membrane proteins. To accurately measure trajectories on the highly curved cell surface, three-dimensional tracking was performed using double-helix point-spread function microscopy. All proteins tested exhibit two diffusive modes characterized by "slow" and "fast" diffusion coefficients. We implement a diffusion coefficient analysis as a function of the measurement lag time to separate positional uncertainty from true mobility. The resulting true diffusion coefficients of the slow and fast modes showed a complete immobility of full-length BamA constructs in the time frame of the experiment, whereas the OMP OmpLA displayed a slow diffusion consistent with the high viscosity of the outer membrane. The periplasmic POTRA domains of BamA were found to anchor BAM to other cellular structures and render it immobile. However, deletion of individual distal POTRA domains resulted in increased mobility, suggesting that these domains are required for the full set of cellular interactions. SecE diffusion was much slower than that of the inner membrane protein PgpB and was more like OMPs and BamA. Strikingly, SecE diffused faster upon POTRA domain deletion. These results are consistent with the existence of a BAM-SecYEG trans-periplasmic assembly in live E. coli cells.
Collapse
Affiliation(s)
- Stephen Lee Upton
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Daniel Keith Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | | |
Collapse
|
16
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
17
|
Thewasano N, Germany EM, Maruno Y, Nakajima Y, Shiota T. Categorization of Escherichia coli Outer Membrane Proteins by Dependence on Accessory Proteins of the β-barrel Assembly Machinery Complex. J Biol Chem 2023:104821. [PMID: 37196764 PMCID: PMC10300371 DOI: 10.1016/j.jbc.2023.104821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is populated by various outer membrane proteins (OMPs) that fold into a unique β-barrel transmembrane domain. Most OMPs are assembled into the OM by the β-barrel assembly machinery (BAM) complex. In Escherichia coli, the BAM complex is composed of two essential proteins (BamA and BamD) and three non-essential accessory proteins (BamB, BamC, and BamE). The currently proposed molecular mechanisms of the BAM complex involve only essential subunits, with the function of the accessory proteins remaining largely unknown. Here, we compared the accessory protein requirements for the assembly of seven different OMPs, 8- to 22-stranded, by our in vitro reconstitution assay using an E. coli mid-density membrane (EMM). BamE was responsible for the full efficiency of the assembly of all tested OMPs, as it enhanced the stability of essential subunit binding. BamB increased the assembly efficiency of more than 16-stranded OMPs, whereas BamC was not required for the assembly of any tested OMPs. Our categorization of the requirements of BAM complex accessory proteins in the assembly of substrate OMPs enables us to identify potential targets for the development of new antibiotics.
Collapse
Affiliation(s)
- Nakajohn Thewasano
- Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen Kibanadai, Miyazaki, 889-2192, Japan; Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Edward M Germany
- Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen Kibanadai, Miyazaki, 889-2192, Japan; Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yuki Maruno
- Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen Kibanadai, Miyazaki, 889-2192, Japan; Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yukari Nakajima
- Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen Kibanadai, Miyazaki, 889-2192, Japan; Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takuya Shiota
- Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen Kibanadai, Miyazaki, 889-2192, Japan; Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
18
|
Xu Q, Guo M, Yu F. β-Barrel Assembly Machinery (BAM) Complex as Novel Antibacterial Drug Target. Molecules 2023; 28:molecules28093758. [PMID: 37175168 PMCID: PMC10180388 DOI: 10.3390/molecules28093758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 05/15/2023] Open
Abstract
The outer membrane of Gram-negative bacteria is closely related to the pathogenicity and drug resistance of bacteria. Outer membrane proteins (OMPs) are a class of proteins with important biological functions on the outer membrane. The β-barrel assembly machinery (BAM) complex plays a key role in OMP biogenesis, which ensures that the OMP is inserted into the outer membrane in a correct folding manner and performs nutrient uptake, antibiotic resistance, cell adhesion, cell signaling, and maintenance of membrane stability and other functions. The BAM complex is highly conserved among Gram-negative bacteria. The abnormality of the BAM complex will lead to the obstruction of OMP folding, affect the function of the outer membrane, and eventually lead to bacterial death. In view of the important role of the BAM complex in OMP biogenesis, the BAM complex has become an attractive target for the development of new antibacterial drugs against Gram-negative bacteria. Here, we summarize the structure and function of the BAM complex and review the latest research progress of antibacterial drugs targeting BAM in order to provide a new perspective for the development of antibiotics.
Collapse
Affiliation(s)
- Qian Xu
- Laboratory of Molecular Pathology, Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Min Guo
- Allergy Clinic, Zibo Central Hospital, Zibo 255000, China
| | - Feiyuan Yu
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
19
|
Miyazaki R, Akiyama Y. Analyzing protein intermediate interactions in living E. coli cells using site-specific photo-crosslinking combined with chemical crosslinking. STAR Protoc 2023; 4:102178. [PMID: 36933223 PMCID: PMC10034496 DOI: 10.1016/j.xpro.2023.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Information on protein-protein interactions is crucial in understanding protein-mediated cellular processes; however, analyzing transient and unstable interactions in living cells is challenging. Here, we present a protocol capturing the interaction between an assembly intermediate form of a bacterial outer membrane protein and β-barrel assembly machinery complex components. We describe steps for expression of a protein target, chemical crosslinking combined with in vivo photo-crosslinking and crosslinking detection procedures including immunoblotting. This protocol can be adapted to analyze interprotein interactions in other processes. For complete details on the use and execution of this protocol, please refer to Miyazaki et al. (2021).1.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
20
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
21
|
Webby MN, Oluwole AO, Pedebos C, Inns PG, Olerinyova A, Prakaash D, Housden NG, Benn G, Sun D, Hoogenboom BW, Kukura P, Mohammed S, Robinson CV, Khalid S, Kleanthous C. Lipids mediate supramolecular outer membrane protein assembly in bacteria. SCIENCE ADVANCES 2022; 8:eadc9566. [PMID: 36322653 PMCID: PMC9629720 DOI: 10.1126/sciadv.adc9566] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
β Barrel outer membrane proteins (OMPs) cluster into supramolecular assemblies that give function to the outer membrane (OM) of Gram-negative bacteria. How such assemblies form is unknown. Here, through photoactivatable cross-linking into the Escherichia coli OM, coupled with simulations, and biochemical and biophysical analysis, we uncover the basis for OMP clustering in vivo. OMPs are typically surrounded by an annular shell of asymmetric lipids that mediate higher-order complexes with neighboring OMPs. OMP assemblies center on the abundant porins OmpF and OmpC, against which low-abundance monomeric β barrels, such as TonB-dependent transporters, are packed. Our study reveals OMP-lipid-OMP complexes to be the basic unit of supramolecular OMP assembly that, by extending across the entire cell surface, couples the requisite multifunctionality of the OM to its stability and impermeability.
Collapse
Affiliation(s)
- Melissa N. Webby
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Abraham O. Oluwole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QZ, UK
| | - Conrado Pedebos
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Patrick G. Inns
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Anna Olerinyova
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Dheeraj Prakaash
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Nicholas G. Housden
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Georgina Benn
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Dawei Sun
- Structural Biology, Genentech Inc., South San Francisco, USA
| | - Bart W. Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
- Department of Physics and Astronomy, University College London, WC1E 6BT London, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Shabaz Mohammed
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3QZ, UK
- Mechanistic Proteomics, Rosalind Franklin Institute, Harwell Campus, Didcot OX11 OFA, UK
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QZ, UK
| | - Syma Khalid
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
22
|
Miyazaki R, Ai M, Tanaka N, Suzuki T, Dhomae N, Tsukazaki T, Akiyama Y, Mori H. Inner membrane YfgM–PpiD heterodimer acts as a functional unit that associates with the SecY/E/G translocon and promotes protein translocation. J Biol Chem 2022; 298:102572. [PMID: 36209828 PMCID: PMC9643414 DOI: 10.1016/j.jbc.2022.102572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
PpiD and YfgM are inner membrane proteins that are both composed of an N-terminal transmembrane segment and a C-terminal periplasmic domain. Escherichia coli YfgM and PpiD form a stable complex that interacts with the SecY/E/G (Sec) translocon, a channel that allows protein translocation across the cytoplasmic membrane. Although PpiD is known to function in protein translocation, the functional significance of PpiD–YfgM complex formation as well as the molecular mechanisms of PpiD–YfgM and PpiD/YfgM–Sec translocon interactions remain unclear. Here, we conducted genetic and biochemical studies using yfgM and ppiD mutants and demonstrated that a lack of YfgM caused partial PpiD degradation at its C-terminal region and hindered the membrane translocation of Vibrio protein export monitoring polypeptide (VemP), a Vibrio secretory protein, in both E. coli and Vibrio alginolyticus. While ppiD disruption also impaired VemP translocation, we found that the yfgM and ppiD double deletion exhibited no additive or synergistic effects. Together, these results strongly suggest that both PpiD and YfgM are required for efficient VemP translocation. Furthermore, our site-directed in vivo photocrosslinking analysis revealed that the tetratricopeptide repeat domain of YfgM and a conserved structural domain (NC domain) in PpiD interact with each other and that YfgM, like PpiD, directly interacts with the SecG translocon subunit. Crosslinking analysis also suggested that PpiD–YfgM complex formation is required for these proteins to interact with SecG. In summary, we propose that PpiD and YfgM form a functional unit that stimulates protein translocation by facilitating their proper interactions with the Sec translocon.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mengting Ai
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Natsuko Tanaka
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Naoshi Dhomae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Tomoya Tsukazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
23
|
Xiang S, Pinto C, Baldus M. Divide and Conquer: A Tailored Solid‐state NMR Approach to Study Large Membrane Protein Complexes. Angew Chem Int Ed Engl 2022; 61:e202203319. [PMID: 35712982 PMCID: PMC9540533 DOI: 10.1002/anie.202203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/18/2022]
Abstract
Membrane proteins are known to exert many essential biological functions by forming complexes in cell membranes. An example refers to the β‐barrel assembly machinery (BAM), a 200 kDa pentameric complex containing BAM proteins A–E that catalyzes the essential process of protein insertion into the outer membrane of gram‐negative bacteria. While progress has been made in capturing three‐dimensional structural snapshots of the BAM complex, the role of the lipoprotein BamC in the complex assembly in functional lipid bilayers has remained unclear. We have devised a component‐selective preparation scheme to directly study BamC as part of the entire BAM complex in lipid bilayers. Combination with proton‐detected solid‐state NMR methods allowed us to probe the structure, dynamics, and supramolecular topology of full‐length BamC embedded in the entire complex in lipid bilayers. Our approach may help decipher how individual proteins contribute to the dynamic formation and functioning of membrane protein complexes in membranes.
Collapse
Affiliation(s)
- ShengQi Xiang
- NMR Spectroscopy Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
- MOE Key Lab for Cellular Dynamics School of Life Sciences University of Science and Technology of China 96 Jinzhai Road Hefei 230026 Anhui China
| | - Cecilia Pinto
- NMR Spectroscopy Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
- Current address: Department of Bionanoscience Kavli Institute of Nanoscience Delft University of Technology Van der Maasweg 9 2629 H. Z. Delft The Netherlands
| | - Marc Baldus
- NMR Spectroscopy Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| |
Collapse
|
24
|
Overexpression of the Bam Complex Improves the Production of Chlamydia trachomatis MOMP in the E. coli Outer Membrane. Int J Mol Sci 2022; 23:ijms23137393. [PMID: 35806397 PMCID: PMC9266984 DOI: 10.3390/ijms23137393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
A licensed Chlamydia trachomatis (Ct) vaccine is not yet available. Recombinant Chlamydia trachomatis major outer membrane protein (Ct-MOMP), the most abundant constituent of the chlamydial outer membrane complex, is considered the most attractive candidate for subunit-based vaccine formulations. Unfortunately, Ct-MOMP is difficult to express in its native structure in the E. coli outer membrane (OM). Here, by co-expression of the Bam complex, we improved the expression and localization of recombinant Ct-MOMP in the E. coli OM. Under these conditions, recombinant Ct-MOMP appeared to assemble into a β-barrel conformation and express domains at the cell surface indicative of correct folding. The data indicate that limited availability of the Bam complex can be a bottleneck for the production of heterologous OM vaccine antigens, information that is also relevant for strategies aimed at producing recombinant OMV-based vaccines.
Collapse
|
25
|
Xiang S, Pinto C, Baldus M. Divide and Conquer: A Tailored Solid‐state NMR Approach to Study Large Membrane Protein Complexes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- ShengQi Xiang
- University of Science and Technology of China, Anhui, MOE Key lab for Cellular Dynamics CHINA
| | - Cecilia Pinto
- Delft University of Technology: Technische Universiteit Delft Department of Bionanoscience NETHERLANDS
| | - Marc Baldus
- Utrecht University Bijvoet Center for Biomolecular Research Padualaan 8 3584 Utrecht NETHERLANDS
| |
Collapse
|
26
|
Dynamic interplay between the periplasmic chaperone SurA and the BAM complex in outer membrane protein folding. Commun Biol 2022; 5:560. [PMID: 35676411 PMCID: PMC9177699 DOI: 10.1038/s42003-022-03502-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Correct folding of outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria depends on delivery of unfolded OMPs to the β-barrel assembly machinery (BAM). How unfolded substrates are presented to BAM remains elusive, but the major OMP chaperone SurA is proposed to play a key role. Here, we have used hydrogen deuterium exchange mass spectrometry (HDX-MS), crosslinking, in vitro folding and binding assays and computational modelling to show that the core domain of SurA and one of its two PPIase domains are key to the SurA-BAM interaction and are required for maximal catalysis of OMP folding. We reveal that binding causes changes in BAM and SurA conformation and/or dynamics distal to the sites of binding, including at the BamA β1-β16 seam. We propose a model for OMP biogenesis in which SurA plays a crucial role in OMP delivery and primes BAM to accept substrates for folding. Interaction of the outer membrane protein (OMP) chaperone SurA and the OMP folding catalyst BAM results in changes in the conformational ensembles of both species, suggesting a mechanism for delivery of OMPs to BAM in Gram-negative bacteria.
Collapse
|
27
|
Mamou G, Corona F, Cohen-Khait R, Housden NG, Yeung V, Sun D, Sridhar P, Pazos M, Knowles TJ, Kleanthous C, Vollmer W. Peptidoglycan maturation controls outer membrane protein assembly. Nature 2022; 606:953-959. [PMID: 35705811 PMCID: PMC9242858 DOI: 10.1038/s41586-022-04834-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Linkages between the outer membrane of Gram-negative bacteria and the peptidoglycan layer are crucial for the maintenance of cellular integrity and enable survival in challenging environments1–5. The function of the outer membrane is dependent on outer membrane proteins (OMPs), which are inserted into the membrane by the β-barrel assembly machine6,7 (BAM). Growing Escherichia coli cells segregate old OMPs towards the poles by a process known as binary partitioning, the basis of which is unknown8. Here we demonstrate that peptidoglycan underpins the spatiotemporal organization of OMPs. Mature, tetrapeptide-rich peptidoglycan binds to BAM components and suppresses OMP foldase activity. Nascent peptidoglycan, which is enriched in pentapeptides and concentrated at septa9, associates with BAM poorly and has little effect on its activity, leading to preferential insertion of OMPs at division sites. The synchronization of OMP biogenesis with cell wall growth results in the binary partitioning of OMPs as cells divide. Our study reveals that Gram-negative bacteria coordinate the assembly of two major cell envelope layers by rendering OMP biogenesis responsive to peptidoglycan maturation, a potential vulnerability that could be exploited in future antibiotic design. Peptidoglycan stem peptides in the Gram-negative bacterial cell wall regulate the insertion of essential outer membrane proteins, thus representing a potential target for antibiotic design.
Collapse
Affiliation(s)
- Gideon Mamou
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Federico Corona
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruth Cohen-Khait
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Nicholas G Housden
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Vivian Yeung
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Dawei Sun
- Structural Biology, Genentech, South San Francisco, CA, USA
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Manuel Pazos
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Molecular Biology, Center of Molecular Biology 'Severo Ochoa' (UAM-CSIC), Autonomous University of Madrid, Madrid, Spain
| | | | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK.
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
28
|
Doyle MT, Bernstein HD. Function of the Omp85 Superfamily of Outer Membrane Protein Assembly Factors and Polypeptide Transporters. Annu Rev Microbiol 2022; 76:259-279. [PMID: 35650668 DOI: 10.1146/annurev-micro-033021-023719] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Omp85 protein superfamily is found in the outer membrane (OM) of all gram-negative bacteria and eukaryotic organelles of bacterial origin. Members of the family catalyze both the membrane insertion of β-barrel proteins and the translocation of proteins across the OM. Although the mechanism(s) by which these proteins function is unclear, striking new insights have emerged from recent biochemical and structural studies. In this review we discuss the entire Omp85 superfamily but focus on the function of the best-studied member, BamA, which is an essential and highly conserved component of the bacterial barrel assembly machinery (BAM). Because BamA has multiple functions that overlap with those of other Omp85 proteins, it is likely the prototypical member of the Omp85 superfamily. Furthermore, BamA has become a protein of great interest because of the recent discovery of small-molecule inhibitors that potentially represent an important new class of antibiotics. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
29
|
Doyle MT, Jimah JR, Dowdy T, Ohlemacher SI, Larion M, Hinshaw JE, Bernstein HD. Cryo-EM structures reveal multiple stages of bacterial outer membrane protein folding. Cell 2022; 185:1143-1156.e13. [PMID: 35294859 DOI: 10.1016/j.cell.2022.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 02/13/2022] [Indexed: 02/08/2023]
Abstract
Transmembrane β barrel proteins are folded into the outer membrane (OM) of Gram-negative bacteria by the β barrel assembly machinery (BAM) via a poorly understood process that occurs without known external energy sources. Here, we used single-particle cryo-EM to visualize the folding dynamics of a model β barrel protein (EspP) by BAM. We found that BAM binds the highly conserved "β signal" motif of EspP to correctly orient β strands in the OM during folding. We also found that the folding of EspP proceeds via "hybrid-barrel" intermediates in which membrane integrated β sheets are attached to the essential BAM subunit, BamA. The structures show an unprecedented deflection of the membrane surrounding the EspP intermediates and suggest that β sheets progressively fold toward BamA to form a β barrel. Along with in vivo experiments that tracked β barrel folding while the OM tension was modified, our results support a model in which BAM harnesses OM elasticity to accelerate β barrel folding.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Jimah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shannon I Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Mandela E, Stubenrauch CJ, Ryoo D, Hwang H, Cohen EJ, Torres VVL, Deo P, Webb CT, Huang C, Schittenhelm RB, Beeby M, Gumbart JC, Lithgow T, Hay ID. Adaptation of the periplasm to maintain spatial constraints essential for cell envelope processes and cell viability. eLife 2022; 11:73516. [PMID: 35084330 PMCID: PMC8824477 DOI: 10.7554/elife.73516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes surrounding a periplasm and peptidoglycan layer. Molecular machines spanning the cell envelope depend on spatial constraints and load-bearing forces across the cell envelope and surface. The mechanisms dictating spatial constraints across the cell envelope remain incompletely defined. In Escherichia coli, the coiled-coil lipoprotein Lpp contributes the only covalent linkage between the outer membrane and the underlying peptidoglycan layer. Using proteomics, molecular dynamics, and a synthetic lethal screen, we show that lengthening Lpp to the upper limit does not change the spatial constraint but is accommodated by other factors which thereby become essential for viability. Our findings demonstrate E. coli expressing elongated Lpp does not simply enlarge the periplasm in response, but the bacteria accommodate by a combination of tilting Lpp and reducing the amount of the covalent bridge. By genetic screening, we identified all of the genes in E. coli that become essential in order to enact this adaptation, and by quantitative proteomics discovered that very few proteins need to be up- or down-regulated in steady-state levels in order to accommodate the longer Lpp. We observed increased levels of factors determining cell stiffness, a decrease in membrane integrity, an increased membrane vesiculation and a dependance on otherwise non-essential tethers to maintain lipid transport and peptidoglycan biosynthesis. Further this has implications for understanding how spatial constraint across the envelope controls processes such as flagellum-driven motility, cellular signaling, and protein translocation
Collapse
Affiliation(s)
- Eric Mandela
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Pankaj Deo
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Chaille T Webb
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Morgan Beeby
- Department of Life Sciencesa, Imperial College London, London, United Kingdom
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, United States
| | - Trevor Lithgow
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Iain D Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
A noncanonical chaperone interacts with drug efflux pumps during their assembly into bacterial outer membranes. PLoS Biol 2022; 20:e3001523. [PMID: 35061668 PMCID: PMC8809574 DOI: 10.1371/journal.pbio.3001523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/02/2022] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteria have membrane-spanning efflux pumps to secrete toxic compounds ranging from heavy metal ions to organic chemicals, including antibiotic drugs. The overall architecture of these efflux pumps is highly conserved: with an inner membrane energy-transducing subunit coupled via an adaptor protein to an outer membrane conduit subunit that enables toxic compounds to be expelled into the environment. Here, we map the distribution of efflux pumps across bacterial lineages to show these proteins are more widespread than previously recognised. Complex phylogenetics support the concept that gene cassettes encoding the subunits for these pumps are commonly acquired by horizontal gene transfer. Using TolC as a model protein, we demonstrate that assembly of conduit subunits into the outer membrane uses the chaperone TAM to physically organise the membrane-embedded staves of the conduit subunit of the efflux pump. The characteristics of this assembly pathway have impact for the acquisition of efflux pumps across bacterial species and for the development of new antimicrobial compounds that inhibit efflux pump function. A crosslinking study reveals novel insights into how the chaperone TAM helps Gram-negative bacteria insert the drug efflux pump subunit TolC into their outer membrane. Bioinformatic analyses show that TolC-like proteins can be found in all LPS-containing bacteria, but also in some monodermic Firmicutes.
Collapse
|
32
|
Plasticity within the barrel domain of BamA mediates a hybrid-barrel mechanism by BAM. Nat Commun 2021; 12:7131. [PMID: 34880256 PMCID: PMC8655018 DOI: 10.1038/s41467-021-27449-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
In Gram-negative bacteria, the biogenesis of β-barrel outer membrane proteins is mediated by the β-barrel assembly machinery (BAM). The mechanism employed by BAM is complex and so far- incompletely understood. Here, we report the structures of BAM in nanodiscs, prepared using polar lipids and native membranes, where we observe an outward-open state. Mutations in the barrel domain of BamA reveal that plasticity in BAM is essential, particularly along the lateral seam of the barrel domain, which is further supported by molecular dynamics simulations that show conformational dynamics in BAM are modulated by the accessory proteins. We also report the structure of BAM in complex with EspP, which reveals an early folding intermediate where EspP threads from the underside of BAM and incorporates into the barrel domain of BamA, supporting a hybrid-barrel budding mechanism in which the substrate is folded into the membrane sequentially rather than as a single unit.
Collapse
|
33
|
Troman LA, Collinson I. Pushing the Envelope: The Mysterious Journey Through the Bacterial Secretory Machinery, and Beyond. Front Microbiol 2021; 12:782900. [PMID: 34917061 PMCID: PMC8669966 DOI: 10.3389/fmicb.2021.782900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria are contained by an envelope composed of inner and outer-membranes with the peptidoglycan (PG) layer between them. Protein translocation across the inner membrane for secretion, or insertion into the inner membrane is primarily conducted using the highly conserved, hourglass-shaped channel, SecYEG: the core-complex of the Sec translocon. This transport process is facilitated by interactions with ancillary subcomplex SecDF-YajC (secretion) and YidC (insertion) forming the holo-translocon (HTL). This review recaps the transport process across the inner-membrane and then further explores how delivery and folding into the periplasm or outer-membrane is achieved. It seems very unlikely that proteins are jettisoned into the periplasm and left to their own devices. Indeed, chaperones such as SurA, Skp, DegP are known to play a part in protein folding, quality control and, if necessary degradation. YfgM and PpiD, by their association at the periplasmic surface of the Sec machinery, most probably are also involved in some way. Yet, it is not entirely clear how outer-membrane proteins are smuggled past the proteases and across the PG to the barrel-assembly machinery (BAM) and their final destination. Moreover, how can this be achieved, as is thought, without the input of energy? Recently, we proposed that the Sec and BAM translocons interact with one another, and most likely other factors, to provide a conduit to the periplasm and the outer-membrane. As it happens, numerous other specialized proteins secretion systems also form trans-envelope structures for this very purpose. The direct interaction between components across the envelope raises the prospect of energy coupling from the inner membrane for active transport to the outer-membrane. Indeed, this kind of long-range energy coupling through large inter-membrane assemblies occurs for small molecule import (e.g., nutrient import by the Ton complex) and export (e.g., drug efflux by the AcrAB-TolC complex). This review will consider this hypothetical prospect in the context of outer-membrane protein biogenesis.
Collapse
Affiliation(s)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
34
|
Thoma J, Burmann BM. Architects of their own environment: How membrane proteins shape the Gram-negative cell envelope. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:1-34. [PMID: 35034716 DOI: 10.1016/bs.apcsb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gram-negative bacteria are surrounded by a complex multilayered cell envelope, consisting of an inner and an outer membrane, and separated by the aqueous periplasm, which contains a thin peptidoglycan cell wall. These bacteria employ an arsenal of highly specialized membrane protein machineries to ensure the correct assembly and maintenance of the membranes forming the cell envelope. Here, we review the diverse protein systems, which perform these functions in Escherichia coli, such as the folding and insertion of membrane proteins, the transport of lipoproteins and lipopolysaccharide within the cell envelope, the targeting of phospholipids, and the regulation of mistargeted envelope components. Some of these protein machineries have been known for a long time, yet still hold surprises. Others have only recently been described and some are still missing pieces or yet remain to be discovered.
Collapse
Affiliation(s)
- Johannes Thoma
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
35
|
The Escherichia coli Outer Membrane β-Barrel Assembly Machinery (BAM) Crosstalks with the Divisome. Int J Mol Sci 2021; 22:ijms222212101. [PMID: 34829983 PMCID: PMC8620860 DOI: 10.3390/ijms222212101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane β-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.
Collapse
|
36
|
Benn G, Mikheyeva IV, Inns PG, Forster JC, Ojkic N, Bortolini C, Ryadnov MG, Kleanthous C, Silhavy TJ, Hoogenboom BW. Phase separation in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:e2112237118. [PMID: 34716276 PMCID: PMC8612244 DOI: 10.1073/pnas.2112237118] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria are surrounded by a protective outer membrane (OM) with phospholipids in its inner leaflet and lipopolysaccharides (LPS) in its outer leaflet. The OM is also populated with many β-barrel outer-membrane proteins (OMPs), some of which have been shown to cluster into supramolecular assemblies. However, it remains unknown how abundant OMPs are organized across the entire bacterial surface and how this relates to the lipids in the membrane. Here, we reveal how the OM is organized from molecular to cellular length scales, using atomic force microscopy to visualize the OM of live bacteria, including engineered Escherichia coli strains and complemented by specific labeling of abundant OMPs. We find that a predominant OMP in the E. coli OM, the porin OmpF, forms a near-static network across the surface, which is interspersed with barren patches of LPS that grow and merge with other patches during cell elongation. Embedded within the porin network is OmpA, which forms noncovalent interactions to the underlying cell wall. When the OM is destabilized by mislocalization of phospholipids to the outer leaflet, a new phase appears, correlating with bacterial sensitivity to harsh environments. We conclude that the OM is a mosaic of phase-separated LPS-rich and OMP-rich regions, the maintenance of which is essential to the integrity of the membrane and hence to the lifestyle of a gram-negative bacterium.
Collapse
Affiliation(s)
- Georgina Benn
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- National Physical Laboratory, Teddington TW11 0LW, United Kingdom
| | - Irina V Mikheyeva
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Patrick George Inns
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joel C Forster
- Department of Physics and Astronomy, University College London WC1E 6BT London, United Kingdom
- Institute for the Physics of Living Systems, University College London WC1E 6BT London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Nikola Ojkic
- Department of Physics and Astronomy, University College London WC1E 6BT London, United Kingdom
| | - Christian Bortolini
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Maxim G Ryadnov
- National Physical Laboratory, Teddington TW11 0LW, United Kingdom
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom;
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544;
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom;
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Physics and Astronomy, University College London WC1E 6BT London, United Kingdom
- Institute for the Physics of Living Systems, University College London WC1E 6BT London, United Kingdom
| |
Collapse
|
37
|
Miyazaki R, Watanabe T, Yoshitani K, Akiyama Y. Edge-strand of BepA interacts with immature LptD on the β-barrel assembly machine to direct it to on- and off-pathways. eLife 2021; 10:70541. [PMID: 34463613 PMCID: PMC8423444 DOI: 10.7554/elife.70541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria functions as a selective permeability barrier. Escherichia coli periplasmic Zn-metallopeptidase BepA contributes to the maintenance of OM integrity through its involvement in the biogenesis and degradation of LptD, a β-barrel protein component of the lipopolysaccharide translocon. BepA either promotes the maturation of LptD when it is on the normal assembly pathway (on-pathway) or degrades it when its assembly is compromised (off-pathway). BepA performs these functions probably on the β‐barrel assembly machinery (BAM) complex. However, how BepA recognizes and directs an immature LptD to different pathways remains unclear. Here, we explored the interactions among BepA, LptD, and the BAM complex. We found that the interaction of the BepA edge-strand located adjacent to the active site with LptD was crucial not only for proteolysis but also, unexpectedly, for assembly promotion of LptD. Site-directed crosslinking analyses indicated that the unstructured N-terminal half of the β-barrel-forming domain of an immature LptD contacts with the BepA edge-strand. Furthermore, the C-terminal region of the β-barrel-forming domain of the BepA-bound LptD intermediate interacted with a ‘seam’ strand of BamA, suggesting that BepA recognized LptD assembling on the BAM complex. Our findings provide important insights into the functional mechanism of BepA.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tetsuro Watanabe
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kohei Yoshitani
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. Nat Commun 2021; 12:4174. [PMID: 34234105 PMCID: PMC8263589 DOI: 10.1038/s41467-021-24432-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
The folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.
Collapse
|
39
|
Ghavamian S, Hay ID, Habibi R, Lithgow T, Cadarso VJ. Three-Dimensional Micropatterning Deters Early Bacterial Adherence and Can Eliminate Colonization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23339-23351. [PMID: 33974396 DOI: 10.1021/acsami.1c01902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing strategies to prevent bacterial infections that do not rely on the use of drugs is regarded globally as an important means to stem the tide of antimicrobial resistance, as argued by the World Health Organization (WHO) (Mendelson, M.; Matsoso, M. P. The World Health Organization Global Action Plan for Antimicrobial Resistance. S. Afr. Med. J. 2015, 105 (5), 325-325. DOI: 10.7196/SAMJ.9644). Given that many antimicrobial-resistant infections are caused by the bacterial colonization of indwelling medical devices such as catheters and ventilators, the use of microengineered surfaces to prevent the initial attachment of microbes to these devices is a promising solution. In this work, it is demonstrated that 3D engineered surfaces can inhibit the initial phases of surface colonization for Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, representing the three most common catheter-associated urinary tract bacterial infections, identified by the WHO as urgent threats. A variety of designs including 11 different topographies and configurations that exhibited random distributions, sharp protrusions, and/or curvilinear shapes with dimensions ranging between 500 nm and 2 μm were tested to better understand the initial stages of surface colonization and how to optimize the design of fabricated surfaces for improved inhibition. These topographies were fabricated in two configurations to obtain either a standard 2D cross section or a 3D engineered topography using a novel UV lithography process enabling cost-efficient high-throughput manufacturing. Evaluating both the number of adhered bacteria and microcolonies formed by all three bacterial pathogens on the different surfaces provides insight into the initial colonization phase of bacterial growth on the various surfaces. The results demonstrate that both initial attachment and subsequent colonization can be significantly reduced on concrete 3D engineered patterns when compared to flat substrates and standard 2D micropatterns. Thus, this technology has great potential to reduce the colonization of bacteria on surfaces in clinical settings without the need for chemical treatments that might enhance antimicrobial resistance.
Collapse
Affiliation(s)
- Sara Ghavamian
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Iain D Hay
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Ruhollah Habibi
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Clayton, Victoria 3800, Australia
| |
Collapse
|
40
|
Ranava D, Yang Y, Orenday-Tapia L, Rousset F, Turlan C, Morales V, Cui L, Moulin C, Froment C, Munoz G, Rech J, Marcoux J, Caumont-Sarcos A, Albenne C, Bikard D, Ieva R. Lipoprotein DolP supports proper folding of BamA in the bacterial outer membrane promoting fitness upon envelope stress. eLife 2021; 10:67817. [PMID: 33847565 PMCID: PMC8081527 DOI: 10.7554/elife.67817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/04/2021] [Indexed: 01/03/2023] Open
Abstract
In Proteobacteria, integral outer membrane proteins (OMPs) are crucial for the maintenance of the envelope permeability barrier to some antibiotics and detergents. In Enterobacteria, envelope stress caused by unfolded OMPs activates the sigmaE (σE) transcriptional response. σE upregulates OMP biogenesis factors, including the β-barrel assembly machinery (BAM) that catalyses OMP folding. Here we report that DolP (formerly YraP), a σE-upregulated and poorly understood outer membrane lipoprotein, is crucial for fitness in cells that undergo envelope stress. We demonstrate that DolP interacts with the BAM complex by associating with outer membrane-assembled BamA. We provide evidence that DolP is important for proper folding of BamA that overaccumulates in the outer membrane, thus supporting OMP biogenesis and envelope integrity. Notably, mid-cell recruitment of DolP had been linked to regulation of septal peptidoglycan remodelling by an unknown mechanism. We now reveal that, during envelope stress, DolP loses its association with the mid-cell, thereby suggesting a mechanistic link between envelope stress caused by impaired OMP biogenesis and the regulation of a late step of cell division.
Collapse
Affiliation(s)
- David Ranava
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yiying Yang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luis Orenday-Tapia
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - François Rousset
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Catherine Turlan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Violette Morales
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lun Cui
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Cyril Moulin
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gladys Munoz
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - David Bikard
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
41
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Chen X, Ding Y, Bamert RS, Le Brun AP, Duff AP, Wu CM, Hsu HY, Shiota T, Lithgow T, Shen HH. Substrate-dependent arrangements of the subunits of the BAM complex determined by neutron reflectometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183587. [PMID: 33639106 DOI: 10.1016/j.bbamem.2021.183587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/22/2022]
Abstract
In Gram-negative bacteria, the β-barrel assembly machinery (BAM) complex catalyses the assembly of β-barrel proteins into the outer membrane, and is composed of five subunits: BamA, BamB, BamC, BamD and BamE. Once assembled, - β-barrel proteins can be involved in various functions including uptake of nutrients, export of toxins and mediating host-pathogen interactions, but the precise mechanism by which these ubiquitous and often essential β-barrel proteins are assembled is yet to be established. In order to determine the relative positions of BAM subunits in the membrane environment we reconstituted each subunit into a biomimetic membrane, characterizing their interaction and structural changes by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and neutron reflectometry. Our results suggested that the binding of BamE, or a BamDE dimer, to BamA induced conformational changes in the polypeptide transported-associated (POTRA) domains of BamA, but that BamB or BamD alone did not promote any such changes. As monitored by neutron reflectometry, addition of an unfolded substrate protein extended the length of POTRA domains further away from the membrane interface as part of the mechanism whereby the substrate protein was folded into the membrane.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yue Ding
- Department of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Rebecca S Bamert
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Anthony P Duff
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Chun-Ming Wu
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, PR China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, PR China
| | - Takuya Shiota
- Institute for Tenure Track Promotion, Organization for Promotion of Career Management, University of Miyazaki, Miyazaki, Japan
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| | - Hsin-Hui Shen
- Department of Materials Science & Engineering, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
43
|
Consoli E, Collet JF, den Blaauwen T. The Escherichia coli Outer Membrane β-Barrel Assembly Machinery (BAM) Anchors the Peptidoglycan Layer by Spanning It with All Subunits. Int J Mol Sci 2021; 22:ijms22041853. [PMID: 33673366 PMCID: PMC7918090 DOI: 10.3390/ijms22041853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Gram-negative bacteria possess a three-layered envelope composed of an inner membrane, surrounded by a peptidoglycan (PG) layer, enclosed by an outer membrane. The envelope ensures protection against diverse hostile milieus and offers an effective barrier against antibiotics. The layers are connected to each other through many protein interactions. Bacteria evolved sophisticated machineries that maintain the integrity and the functionality of each layer. The β-barrel assembly machinery (BAM), for example, is responsible for the insertion of the outer membrane integral proteins including the lipopolysaccharide transport machinery protein LptD. Labelling bacterial cells with BAM-specific fluorescent antibodies revealed the spatial arrangement between the machinery and the PG layer. The antibody detection of each BAM subunit required the enzymatic digestion of the PG layer. Enhancing the spacing between the outer membrane and PG does not abolish this prerequisite. This suggests that BAM locally sets the distance between OM and the PG layer. Our results shed new light on the local organization of the envelope.
Collapse
Affiliation(s)
- Elisa Consoli
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Jean-François Collet
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium;
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), B-1200 Brussels, Belgium
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
44
|
Tomasek D, Kahne D. The assembly of β-barrel outer membrane proteins. Curr Opin Microbiol 2021; 60:16-23. [PMID: 33561734 DOI: 10.1016/j.mib.2021.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
The outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts contain β-barrel integral membrane proteins. In bacteria, the five-protein β-barrel assembly machine (Bam) accelerates the folding and membrane integration of these proteins. The central component of the machine, BamA, contains a β-barrel domain that can adopt a lateral-open state with its N-terminal and C-terminal β-strands unpaired. Recently, strategies have been developed to capture β-barrel folding intermediates on the Bam complex. Biochemical and structural studies provide support for a model in which substrates assemble at the lateral opening of BamA. In this model, the N-terminal β-strand of BamA captures the C-terminal β-strand of substrates by hydrogen bonding to allow their directional folding and subsequent release into the membrane.
Collapse
Affiliation(s)
- David Tomasek
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel Kahne
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Lundquist K, Billings E, Bi M, Wellnitz J, Noinaj N. The assembly of β-barrel membrane proteins by BAM and SAM. Mol Microbiol 2020; 115:425-435. [PMID: 33314350 DOI: 10.1111/mmi.14666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Gram-negative bacteria, mitochondria, and chloroplasts all possess an outer membrane populated with a host of β-barrel outer-membrane proteins (βOMPs). These βOMPs play crucial roles in maintaining viability of their hosts, and therefore, it is essential to understand the biogenesis of this class of membrane proteins. In recent years, significant structural and functional advancements have been made toward elucidating this process, which is mediated by the β-barrel assembly machinery (BAM) in Gram-negative bacteria, and by the sorting and assembly machinery (SAM) in mitochondria. Structures of both BAM and SAM have now been reported, allowing a comparison and dissection of the two machineries, with other studies reporting on functional aspects of each. Together, these new insights provide compelling support for the proposed budding mechanism, where each nascent βOMP forms a hybrid-barrel intermediate with BAM/SAM in route to its biogenesis into the membrane. Here, we will review these recent studies and highlight their contributions toward understanding βOMP biogenesis in Gram-negative bacteria and in mitochondria. We will also weigh the evidence supporting each of the two leading mechanistic models for how BAM/SAM function, and offer an outlook on future studies within the field.
Collapse
Affiliation(s)
- Karl Lundquist
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Evan Billings
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Maxine Bi
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - James Wellnitz
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
46
|
Bryant JA, Morris FC, Knowles TJ, Maderbocus R, Heinz E, Boelter G, Alodaini D, Colyer A, Wotherspoon PJ, Staunton KA, Jeeves M, Browning DF, Sevastsyanovich YR, Wells TJ, Rossiter AE, Bavro VN, Sridhar P, Ward DG, Chong ZS, Goodall EC, Icke C, Teo AC, Chng SS, Roper DI, Lithgow T, Cunningham AF, Banzhaf M, Overduin M, Henderson IR. Structure of dual BON-domain protein DolP identifies phospholipid binding as a new mechanism for protein localisation. eLife 2020; 9:62614. [PMID: 33315009 PMCID: PMC7806268 DOI: 10.7554/elife.62614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The Gram-negative outer-membrane envelops the bacterium and functions as a permeability barrier against antibiotics, detergents, and environmental stresses. Some virulence factors serve to maintain the integrity of the outer membrane, including DolP (formerly YraP) a protein of unresolved structure and function. Here, we reveal DolP is a lipoprotein functionally conserved amongst Gram-negative bacteria and that loss of DolP increases membrane fluidity. We present the NMR solution structure for Escherichia coli DolP, which is composed of two BON domains that form an interconnected opposing pair. The C-terminal BON domain binds anionic phospholipids through an extensive membrane:protein interface. This interaction is essential for DolP function and is required for sub-cellular localisation of the protein to the cell division site, providing evidence of subcellular localisation of these phospholipids within the outer membrane. The structure of DolP provides a new target for developing therapies that disrupt the integrity of the bacterial cell envelope.
Collapse
Affiliation(s)
- Jack Alfred Bryant
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Faye C Morris
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Timothy J Knowles
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Riyaz Maderbocus
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Eva Heinz
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Gabriela Boelter
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Dema Alodaini
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Adam Colyer
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Peter J Wotherspoon
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Kara A Staunton
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Mark Jeeves
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Douglas F Browning
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | | | - Timothy J Wells
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Amanda E Rossiter
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Vassiliy N Bavro
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Douglas G Ward
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Zhi-Soon Chong
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Emily Ca Goodall
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia
| | - Christopher Icke
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,Institute for Molecular Bioscience, University of Queensland, St. Lucia, Australia
| | - Alvin Ck Teo
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - David I Roper
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Adam F Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,Institute of Inflammation and Immunotherapy, University of Birmingham, Edgbaston, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom
| | - Michael Overduin
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom.,Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, United Kingdom.,Department of Chemistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
47
|
Iadanza MG, Schiffrin B, White P, Watson MA, Horne JE, Higgins AJ, Calabrese AN, Brockwell DJ, Tuma R, Kalli AC, Radford SE, Ranson NA. Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. Commun Biol 2020; 3:766. [PMID: 33318620 PMCID: PMC7736308 DOI: 10.1038/s42003-020-01419-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022] Open
Abstract
The β-barrel assembly machinery (BAM) catalyses the folding and insertion of β-barrel outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria by mechanisms that remain unclear. Here, we present an ensemble of cryoEM structures of the E. coli BamABCDE (BAM) complex in lipid nanodiscs, determined using multi-body refinement techniques. These structures, supported by single-molecule FRET measurements, describe a range of motions in the BAM complex, mostly localised within the periplasmic region of the major subunit BamA. The β-barrel domain of BamA is in a 'lateral open' conformation in all of the determined structures, suggesting that this is the most energetically favourable species in this bilayer. Strikingly, the BAM-containing lipid nanodisc is deformed, especially around BAM's lateral gate. This distortion is also captured in molecular dynamics simulations, and provides direct structural evidence for the lipid 'disruptase' activity of BAM, suggested to be an important part of its functional mechanism.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew A Watson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Anna J Higgins
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
48
|
Vijaya Kumar S, Abraham PE, Hurst GB, Chourey K, Bible AN, Hettich RL, Doktycz MJ, Morrell-Falvey JL. A carotenoid-deficient mutant of the plant-associated microbe Pantoea sp. YR343 displays an altered membrane proteome. Sci Rep 2020; 10:14985. [PMID: 32917935 PMCID: PMC7486946 DOI: 10.1038/s41598-020-71672-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023] Open
Abstract
Membrane organization plays an important role in signaling, transport, and defense. In eukaryotes, the stability, organization, and function of membrane proteins are influenced by certain lipids and sterols, such as cholesterol. Bacteria lack cholesterol, but carotenoids and hopanoids are predicted to play a similar role in modulating membrane properties. We have previously shown that the loss of carotenoids in the plant-associated bacteria Pantoea sp. YR343 results in changes to membrane biophysical properties and leads to physiological changes, including increased sensitivity to reactive oxygen species, reduced indole-3-acetic acid secretion, reduced biofilm and pellicle formation, and reduced plant colonization. Here, using whole cell and membrane proteomics, we show that the deletion of carotenoid production in Pantoea sp. YR343 results in altered membrane protein distribution and abundance. Moreover, we observe significant differences in the protein composition of detergent-resistant membrane fractions from wildtype and mutant cells, consistent with the prediction that carotenoids play a role in organizing membrane microdomains. These data provide new insights into the function of carotenoids in bacterial membrane organization and identify cellular functions that are affected by the loss of carotenoids.
Collapse
Affiliation(s)
- Sushmitha Vijaya Kumar
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gregory B Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Amber N Bible
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mitchel J Doktycz
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jennifer L Morrell-Falvey
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA. .,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. .,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
49
|
Ding Y, Shiota T, Le Brun AP, Dunstan RA, Wang B, Hsu HY, Lithgow T, Shen HH. Characterization of BamA reconstituted into a solid-supported lipid bilayer as a platform for measuring dynamics during substrate protein assembly into the membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183317. [DOI: 10.1016/j.bbamem.2020.183317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
|
50
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|