1
|
Ishak CA, Marhon SA, Tchrakian N, Hodgson A, Loo Yau H, Gonzaga IM, Peralta M, Lungu IM, Gomez S, Liang SB, Shen SY, Chen R, Chen J, Chatterjee B, Wanniarachchi KN, Lee J, Zehrbach N, Hosseini A, Mehdipour P, Sun S, Solovyov A, Ettayebi I, Francis KE, He A, Wu T, Feng S, da Silva Medina T, Campos de Almeida F, Bayani J, Li J, MacDonald S, Wang Y, Garcia SS, Arthofer E, Diab N, Srivastava A, Austin PT, Sabatini PJB, Greenbaum BD, O'Brien CA, Shepherd TG, Tsao MS, Chiappinelli KB, Oza AM, Clarke BA, Rottapel R, Lheureux S, De Carvalho DD. Chronic Viral Mimicry Induction following p53 Loss Promotes Immune Evasion. Cancer Discov 2025; 15:793-817. [PMID: 39776167 DOI: 10.1158/2159-8290.cd-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 10/02/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
SIGNIFICANCE Our landmark discovery of viral mimicry characterized repetitive elements as immunogenic stimuli that cull cancer cells. If expressed repetitive elements cull cancer cells, why does every human cancer express repetitive elements? Our report offers an exciting advancement toward understanding this paradox and how to exploit this mechanism for cancer interception. See related commentary by Murayama and Cañadas, p. 670.
Collapse
Affiliation(s)
- Charles A Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Naïri Tchrakian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Anjelica Hodgson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Helen Loo Yau
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Isabela M Gonzaga
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Melanie Peralta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ilinca M Lungu
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Stephanie Gomez
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Sheng-Ben Liang
- Princess Margaret Cancer Biobank, University Health Network, Toronto, Canada
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Raymond Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jocelyn Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Biji Chatterjee
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kevin N Wanniarachchi
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junwoo Lee
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas Zehrbach
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amir Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Siyu Sun
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Solovyov
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ilias Ettayebi
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kyle E Francis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Aobo He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Taiyi Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Shengrui Feng
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | - Jane Bayani
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Jason Li
- Diagnostic Development Program, Ontario Institute of Cancer Research, Toronto, Canada
| | - Spencer MacDonald
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Yadong Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sarah S Garcia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Elisa Arthofer
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Noor Diab
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Aneil Srivastava
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Paul Tran Austin
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Peter J B Sabatini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Benjamin D Greenbaum
- Department of Epidemiology and Biostatistics, Halvorsen Center for Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Trevor G Shepherd
- Department of Obstetrics and Gynaecology, Western University, London, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Blaise A Clarke
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Stephanie Lheureux
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Zhang T, Zhao W, Wirth C, Díaz-Gay M, Yin J, Cecati M, Marchegiani F, Hoang PH, Leduc C, Baine MK, Travis WD, Sholl LM, Joubert P, Sang J, McElderry JP, Klein A, Khandekar A, Hartman C, Rosenbaum J, Colón-Matos FJ, Miraftab M, Saha M, Lee OW, Jones KM, Caporaso NE, Wong MP, Leung KC, Agnes Hsiung C, Chen CY, Edell ES, Martínez Santamaría J, Schabath MB, Yendamuri SS, Manczuk M, Lissowska J, Świątkowska B, Mukeria A, Shangina O, Zaridze D, Holcatova I, Mates D, Milosavljevic S, Savic M, Bossé Y, Gould Rothberg BE, Christiani DC, Gaborieau V, Brennan P, Liu G, Hofman P, Homer R, Yang SR, Pesatori AC, Consonni D, Yang L, Zhu B, Shi J, Brown K, Rothman N, Chanock SJ, Alexandrov LB, Choi J, Cardelli M, Lan Q, Nowak MA, Wedge DC, Landi MT. Deciphering lung adenocarcinoma evolution and the role of LINE-1 retrotransposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643063. [PMID: 40161734 PMCID: PMC11952568 DOI: 10.1101/2025.03.14.643063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Understanding lung cancer evolution can identify tools for intercepting its growth. In a landscape analysis of 1024 lung adenocarcinomas (LUAD) with deep whole-genome sequencing integrated with multiomic data, we identified 542 LUAD that displayed diverse clonal architecture. In this group, we observed an interplay between mobile elements, endogenous and exogenous mutational processes, distinct driver genes, and epidemiological features. Our results revealed divergent evolutionary trajectories based on tobacco smoking exposure, ancestry, and sex. LUAD from smokers showed an abundance of tobacco-related C:G>A:T driver mutations in KRAS plus short subclonal diversification. LUAD in never smokers showed early occurrence of copy number alterations and EGFR mutations associated with SBS5 and SBS40a mutational signatures. Tumors harboring EGFR mutations exhibited long latency, particularly in females of European-ancestry (EU_N). In EU_N, EGFR mutations preceded the occurrence of other driver genes, including TP53 and RBM10. Tumors from Asian never smokers showed a short clonal evolution and presented with heterogeneous repetitive patterns for the inferred mutational order. Importantly, we found that the mutational signature ID2 is a marker of a previously unrecognized mechanism for LUAD evolution. Tumors with ID2 showed short latency and high L1 retrotransposon activity linked to L1 promoter demethylation. These tumors exhibited an aggressive phenotype, characterized by increased genomic instability, elevated hypoxia scores, low burden of neoantigens, propensity to develop metastasis, and poor overall survival. Reactivated L1 retrotransposition-induced mutagenesis can contribute to the origin of the mutational signature ID2, including through the regulation of the transcriptional factor ZNF695, a member of the KZFP family. The complex nature of LUAD evolution creates both challenges and opportunities for screening and treatment plans.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Wirth
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Digital Genomics Group, Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jinhu Yin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Monia Cecati
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | | | - Phuc H Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Charles Leduc
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Marina K Baine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William D Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Philippe Joubert
- Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec City, Canada
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John P McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Azhar Khandekar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Caleb Hartman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Frank J Colón-Matos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mona Miraftab
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Monjoy Saha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Olivia W Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kristine M Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maria Pik Wong
- Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kin Chung Leung
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Division of Thoracic Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Eric S Edell
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sai S Yendamuri
- Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marta Manczuk
- Department of Cancer Epidemiology and Primary Prevention, Maria Skłodowska-Curie National Research Institute of Oncology, Warshaw, Poland
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Primary Prevention, Maria Skłodowska-Curie National Research Institute of Oncology, Warshaw, Poland
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - Anush Mukeria
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Oxana Shangina
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - David Zaridze
- Department of Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Ivana Holcatova
- Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Dana Mates
- Department of Occupational Health and Toxicology, National Center for Environmental Risk Monitoring, National Institute of Public Health, Bucharest, Romania
| | - Sasa Milosavljevic
- International Organisation for Cancer Prevention and Research (IOCPR), Belgrade, Serbia
| | - Milan Savic
- Department of Thoracic Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Laval University, Quebec City, Canada
| | - Bonnie E Gould Rothberg
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Valerie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Geoffrey Liu
- Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Paul Hofman
- IHU RespirERA, Biobank-BB-0033-0025, Côte d'Azur University, Nice, France
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela C Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lixing Yang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Martin A Nowak
- Department of Mathematics, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - David C Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
- Manchester NIHR Biomedical Research Centre, Manchester, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
3
|
de Santiago PR, Sato S, Zhang SJ, Dougher MC, Devins KM, Bilecz AJ, Rayamajhi S, Mingo G, Rendulich HS, Feng Y, Wu C, Taylor MS, Zhuravlev Y, Jung E, Omran DK, Wang TL, Shih IM, Schwartz LE, Kim S, Morgan MA, Tanyi JL, Burns KH, Lengyel E, Parra-Herran C, Godwin AK, Walt DR, Drapkin R. LINE-1 ORF1p expression occurs in clear cell ovarian carcinoma precursors and is a candidate blood biomarker. NPJ Precis Oncol 2025; 9:62. [PMID: 40050409 PMCID: PMC11885553 DOI: 10.1038/s41698-025-00849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Long interspersed element 1 (LINE-1) retrotransposons are repetitive sequences that can move within the genome by an autonomous mechanism. To limit their mutagenic potential, benign cells restrict LINE-1 expression through molecular mechanisms such as DNA methylation and histone modification, but these mechanisms are usually impaired in cancer. Clear cell ovarian carcinoma (CCOC) represents 5-10% of ovarian cancers and is thought to arise from endometriosis. Women with advanced CCOC face poor prognoses, highlighting the importance of understanding early disease pathogenesis. In our study, 33 of 40 cases (over 82%) of CCOC tumors express ORF1p, a LINE-1-encoded protein. We found that LINE-1 de-repression is an early event in CCOC, as ORF1p is enhanced during the transition from typical to atypical endometriosis and persists in invasive cancer. Finally, using single-molecule array (Simoa) assays, we detected ORF1p in patient blood, suggesting it as a potential minimally invasive biomarker for this disease.
Collapse
Affiliation(s)
- Pamela R de Santiago
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sho Sato
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie J Zhang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Meaghan C Dougher
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle M Devins
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Agnes J Bilecz
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gabriel Mingo
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah S Rendulich
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Feng
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Connie Wu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yelena Zhuravlev
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Euihye Jung
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dalia K Omran
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tian-Li Wang
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren E Schwartz
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Kim
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Morgan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Janos L Tanyi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen H Burns
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL, USA
| | - Carlos Parra-Herran
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Lee M, Ahmad SF, Xu J. Regulation and function of transposable elements in cancer genomes. Cell Mol Life Sci 2024; 81:157. [PMID: 38556602 PMCID: PMC10982106 DOI: 10.1007/s00018-024-05195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Over half of human genomic DNA is composed of repetitive sequences generated throughout evolution by prolific mobile genetic parasites called transposable elements (TEs). Long disregarded as "junk" or "selfish" DNA, TEs are increasingly recognized as formative elements in genome evolution, wired intimately into the structure and function of the human genome. Advances in sequencing technologies and computational methods have ushered in an era of unprecedented insight into how TE activity impacts human biology in health and disease. Here we discuss the current views on how TEs have shaped the regulatory landscape of the human genome, how TE activity is implicated in human cancers, and how recent findings motivate novel strategies to leverage TE activity for improved cancer therapy. Given the crucial role of methodological advances in TE biology, we pair our conceptual discussions with an in-depth review of the inherent technical challenges in studying repeats, specifically related to structural variation, expression analyses, and chromatin regulation. Lastly, we provide a catalog of existing and emerging assays and bioinformatic software that altogether are enabling the most sophisticated and comprehensive investigations yet into the regulation and function of interspersed repeats in cancer genomes.
Collapse
Affiliation(s)
- Michael Lee
- Department of Pediatrics, Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Syed Farhan Ahmad
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place - MS 345, Memphis, TN, 38105, USA
| | - Jian Xu
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place - MS 345, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Li Y, Shen S, Guo H, Li H, Zhang L, Zhang B, Yu XF, Wei W. Pharmacological inhibition of neddylation impairs long interspersed element 1 retrotransposition. Cell Rep 2024; 43:113749. [PMID: 38329876 DOI: 10.1016/j.celrep.2024.113749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Aberrant long interspersed element 1 (LINE-1 or L1) activity can cause insertional mutagenesis and chromosomal rearrangements and has been detected in several types of cancers. Here, we show that neddylation, a post-translational modification process, is essential for L1 transposition. The antineoplastic drug MLN4924 is an L1 inhibitor that suppresses NEDD8-activating enzyme activity. Neddylation inhibition by MLN4924 selectively impairs ORF2p-mediated L1 reverse transcription and blocks the generation of L1 cDNA. Consistent with these results, MLN4924 treatment suppresses the retrotransposition activity of the non-autonomous retrotransposons short interspersed nuclear element R/variable number of tandem repeat/Alu and Alu, which rely on the reverse transcription activity of L1 ORF2p. The E2 enzyme UBE2M in the neddylation pathway, rather than UBE2F, is required for L1 ORF2p and retrotransposition. Interference with the functions of certain neddylation-dependent Cullin-really interesting new gene E3 ligases disrupts L1 reverse transcription and transposition activity. Our findings provide insights into the regulation of L1 retrotransposition and the identification of therapeutic targets for L1 dysfunctions.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China; Department of Pathology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Siyu Shen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Haoran Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Huili Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lili Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Boyin Zhang
- Department of Orthopedics Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Wei Wei
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin 130021, China; Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Lanciano S, Philippe C, Sarkar A, Pratella D, Domrane C, Doucet AJ, van Essen D, Saccani S, Ferry L, Defossez PA, Cristofari G. Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites. CELL GENOMICS 2024; 4:100498. [PMID: 38309261 PMCID: PMC10879037 DOI: 10.1016/j.xgen.2024.100498] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Long interspersed element 1 (L1) retrotransposons are implicated in human disease and evolution. Their global activity is repressed by DNA methylation, but deciphering the regulation of individual copies has been challenging. Here, we combine short- and long-read sequencing to unveil L1 methylation heterogeneity across cell types, families, and individual loci and elucidate key principles involved. We find that the youngest primate L1 families are specifically hypomethylated in pluripotent stem cells and the placenta but not in most tumors. Locally, intronic L1 methylation is intimately associated with gene transcription. Conversely, the L1 methylation state can propagate to the proximal region up to 300 bp. This phenomenon is accompanied by the binding of specific transcription factors, which drive the expression of L1 and chimeric transcripts. Finally, L1 hypomethylation alone is typically insufficient to trigger L1 expression due to redundant silencing pathways. Our results illuminate the epigenetic and transcriptional interplay between retrotransposons and their host genome.
Collapse
Affiliation(s)
- Sophie Lanciano
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Claude Philippe
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Arpita Sarkar
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - David Pratella
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Cécilia Domrane
- University Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Aurélien J Doucet
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Dominic van Essen
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Simona Saccani
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Laure Ferry
- University Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | | | - Gael Cristofari
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France.
| |
Collapse
|
7
|
Mendez-Dorantes C, Burns KH. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev 2023; 37:948-967. [PMID: 38092519 PMCID: PMC10760644 DOI: 10.1101/gad.351051.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Long interspersed element 1 (LINE-1) is the only protein-coding transposon that is active in humans. LINE-1 propagates in the genome using RNA intermediates via retrotransposition. This activity has resulted in LINE-1 sequences occupying approximately one-fifth of our genome. Although most copies of LINE-1 are immobile, ∼100 copies are retrotransposition-competent. Retrotransposition is normally limited via epigenetic silencing, DNA repair, and other host defense mechanisms. In contrast, LINE-1 overexpression and retrotransposition are hallmarks of cancers. Here, we review mechanisms of LINE-1 regulation and how LINE-1 may promote genetic heterogeneity in tumors. Finally, we discuss therapeutic strategies to exploit LINE-1 biology in cancers.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA;
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
8
|
Tam PLF, Leung D. The Molecular Impacts of Retrotransposons in Development and Diseases. Int J Mol Sci 2023; 24:16418. [PMID: 38003607 PMCID: PMC10671454 DOI: 10.3390/ijms242216418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Retrotransposons are invasive genetic elements that constitute substantial portions of mammalian genomes. They have the potential to influence nearby gene expression through their cis-regulatory sequences, reverse transcription machinery, and the ability to mold higher-order chromatin structures. Due to their multifaceted functions, it is crucial for host fitness to maintain strict regulation of these parasitic sequences to ensure proper growth and development. This review explores how subsets of retrotransposons have undergone evolutionary exaptation to enhance the complexity of mammalian genomes. It also highlights the significance of regulating these elements, drawing on recent studies conducted in human and murine systems.
Collapse
Affiliation(s)
- Phoebe Lut Fei Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
9
|
Gerdes P, Chan D, Lundberg M, Sanchez-Luque FJ, Bodea GO, Ewing AD, Faulkner GJ, Richardson SR. Locus-resolution analysis of L1 regulation and retrotransposition potential in mouse embryonic development. Genome Res 2023; 33:1465-1481. [PMID: 37798118 PMCID: PMC10620060 DOI: 10.1101/gr.278003.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023]
Abstract
Mice harbor ∼2800 intact copies of the retrotransposon Long Interspersed Element 1 (L1). The in vivo retrotransposition capacity of an L1 copy is defined by both its sequence integrity and epigenetic status, including DNA methylation of the monomeric units constituting young mouse L1 promoters. Locus-specific L1 methylation dynamics during development may therefore elucidate and explain spatiotemporal niches of endogenous retrotransposition but remain unresolved. Here, we interrogate the retrotransposition efficiency and epigenetic fate of source (donor) L1s, identified as mobile in vivo. We show that promoter monomer loss consistently attenuates the relative retrotransposition potential of their offspring (daughter) L1 insertions. We also observe that most donor/daughter L1 pairs are efficiently methylated upon differentiation in vivo and in vitro. We use Oxford Nanopore Technologies (ONT) long-read sequencing to resolve L1 methylation genome-wide and at individual L1 loci, revealing a distinctive "smile" pattern in methylation levels across the L1 promoter region. Using Pacific Biosciences (PacBio) SMRT sequencing of L1 5' RACE products, we then examine DNA methylation dynamics at the mouse L1 promoter in parallel with transcription start site (TSS) distribution at locus-specific resolution. Together, our results offer a novel perspective on the interplay between epigenetic repression, L1 evolution, and genome stability.
Collapse
Affiliation(s)
- Patricia Gerdes
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Dorothy Chan
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Mischa Lundberg
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
- Translational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, New South Wales 2113, Australia
| | - Francisco J Sanchez-Luque
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- GENYO. Centre for Genomics and Oncological Research (Pfizer-University of Granada-Andalusian Regional Government), PTS Granada, 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Gabriela O Bodea
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland 4102, Australia;
| |
Collapse
|
10
|
Alkailani MI, Gibbings D. The Regulation and Immune Signature of Retrotransposons in Cancer. Cancers (Basel) 2023; 15:4340. [PMID: 37686616 PMCID: PMC10486412 DOI: 10.3390/cancers15174340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Advances in sequencing technologies and the bioinformatic analysis of big data facilitate the study of jumping genes' activity in the human genome in cancer from a broad perspective. Retrotransposons, which move from one genomic site to another by a copy-and-paste mechanism, are regulated by various molecular pathways that may be disrupted during tumorigenesis. Active retrotransposons can stimulate type I IFN responses. Although accumulated evidence suggests that retrotransposons can induce inflammation, the research investigating the exact mechanism of triggering these responses is ongoing. Understanding these mechanisms could improve the therapeutic management of cancer through the use of retrotransposon-induced inflammation as a tool to instigate immune responses to tumors.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
11
|
Fu J, Qin T, Li C, Zhu J, Ding Y, Zhou M, Yang Q, Liu X, Zhou J, Chen F. Research progress of LINE-1 in the diagnosis, prognosis, and treatment of gynecologic tumors. Front Oncol 2023; 13:1201568. [PMID: 37546391 PMCID: PMC10399582 DOI: 10.3389/fonc.2023.1201568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
The retrotransposon known as long interspersed nuclear element-1 (LINE-1), which is currently the sole autonomously mobile transposon in the human genome, can result in insertional mutations, chromosomal rearrangements, and genomic instability. In recent years, numerous studies have shown that LINE-1 is involved in the development of various diseases and also plays an important role in the immune regulation of the organism. The expression of LINE-1 in gynecologic tumors suggests that it is expected to be an independent indicator for early diagnosis and prognosis, and also, as a therapeutic target, LINE-1 is closely associated with gynecologic tumor prognosis. This article discusses the function of LINE-1 in the diagnosis, treatment, and prognosis of ovarian, cervical, and endometrial malignancies, as well as other gynecologic malignancies. It offers fresh perspectives on the early detection of tumors and the creation of novel anti-tumor medications.
Collapse
Affiliation(s)
- Jiaojiao Fu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Tiansheng Qin
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- National Health Commission (NHC) Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Chaoming Li
- The First People’s Hospital of Longnan, Longnan City Hospital, Longnan, Gansu, China
| | - Jiaojiao Zhu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yaoyao Ding
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Meiying Zhou
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Qing Yang
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaofeng Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Juanhong Zhou
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Fan Chen
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Ricci M, Peona V, Boattini A, Taccioli C. Comparative analysis of bats and rodents' genomes suggests a relation between non-LTR retrotransposons, cancer incidence, and ageing. Sci Rep 2023; 13:9039. [PMID: 37270634 DOI: 10.1038/s41598-023-36006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
The presence in nature of species showing drastic differences in lifespan and cancer incidence has recently increased the interest of the scientific community. In particular, the adaptations and the genomic features underlying the evolution of cancer-resistant and long-lived organisms have recently focused on transposable elements (TEs). In this study, we compared the content and dynamics of TE activity in the genomes of four rodent and six bat species exhibiting different lifespans and cancer susceptibility. Mouse, rat, and guinea pig genomes (short-lived and cancer-prone organisms) were compared with that of naked mole rat (Heterocephalus glaber) which is a cancer-resistant organism and the rodent with the longest lifespan. The long-lived bats of the genera Myotis, Rhinolophus, Pteropus and Rousettus were instead compared with Molossus molossus, which is one of the organisms with the shortest lifespan among the order Chiroptera. Despite previous hypotheses stating a substantial tolerance of TEs in bats, we found that long-lived bats and the naked mole rat share a marked decrease of non-LTR retrotransposons (LINEs and SINEs) accumulation in recent evolutionary times.
Collapse
Affiliation(s)
| | - Valentina Peona
- Department of Organismal Biology, Systematic Biology, Uppsala University, Uppsala, Sweden.
| | - Alessio Boattini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Health and Production, University of Padova, Padua, Italy
| |
Collapse
|
13
|
Sato S, Gillette M, de Santiago PR, Kuhn E, Burgess M, Doucette K, Feng Y, Mendez-Dorantes C, Ippoliti PJ, Hobday S, Mitchell MA, Doberstein K, Gysler SM, Hirsch MS, Schwartz L, Birrer MJ, Skates SJ, Burns KH, Carr SA, Drapkin R. LINE-1 ORF1p as a candidate biomarker in high grade serous ovarian carcinoma. Sci Rep 2023; 13:1537. [PMID: 36707610 PMCID: PMC9883229 DOI: 10.1038/s41598-023-28840-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Long interspersed element 1 (LINE-1) open reading frame 1 protein (ORF1p) expression is a common feature of many cancer types, including high-grade serous ovarian carcinoma (HGSOC). Here, we report that ORF1p is not only expressed but also released by ovarian cancer and primary tumor cells. Immuno-multiple reaction monitoring-mass spectrometry assays showed that released ORF1p is confidently detectable in conditioned media, ascites, and patients' plasma, implicating ORF1p as a potential biomarker. Interestingly, ORF1p expression is detectable in fallopian tube (FT) epithelial precursors of HGSOC but not in benign FT, suggesting that ORF1p expression in an early event in HGSOC development. Finally, treatment of FT cells with DNA methyltransferase inhibitors led to robust expression and release of ORF1p, validating the regulatory role of DNA methylation in LINE-1 repression in non-tumorigenic tissue.
Collapse
Affiliation(s)
- Sho Sato
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michael Gillette
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela R de Santiago
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Eric Kuhn
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael Burgess
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kristen Doucette
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yi Feng
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | | | - Paul J Ippoliti
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sara Hobday
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Marilyn A Mitchell
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kai Doberstein
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren Schwartz
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Birrer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Steven J Skates
- Harvard Medical School, Boston, MA, 02115, USA.,Biostatistics and Computational Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen H Burns
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA. .,Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Billon V, Sanchez-Luque FJ, Rasmussen J, Bodea GO, Gerhardt DJ, Gerdes P, Cheetham SW, Schauer SN, Ajjikuttira P, Meyer TJ, Layman CE, Nevonen KA, Jansz N, Garcia-Perez JL, Richardson SR, Ewing AD, Carbone L, Faulkner GJ. Somatic retrotransposition in the developing rhesus macaque brain. Genome Res 2022; 32:1298-1314. [PMID: 35728967 PMCID: PMC9341517 DOI: 10.1101/gr.276451.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.
Collapse
Affiliation(s)
- Victor Billon
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Francisco J Sanchez-Luque
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Institute of Parasitology and Biomedicine "Lopez-Neyra"-Spanish National Research Council, PTS Granada 18016, Spain
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thomas J Meyer
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Natasha Jansz
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jose L Garcia-Perez
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
15
|
Payer LM, Steranka JP, Kryatova MS, Grillo G, Lupien M, Rocha PP, Burns KH. Alu insertion variants alter gene transcript levels. Genome Res 2021; 31:2236-2248. [PMID: 34799402 PMCID: PMC8647820 DOI: 10.1101/gr.261305.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Alu are high copy number interspersed repeats that have accumulated near genes during primate and human evolution. They are a pervasive source of structural variation in modern humans. Impacts that Alu insertions may have on gene expression are not well understood, although some have been associated with expression quantitative trait loci (eQTLs). Here, we directly test regulatory effects of polymorphic Alu insertions in isolation of other variants on the same haplotype. To screen insertion variants for those with such effects, we used ectopic luciferase reporter assays and evaluated 110 Alu insertion variants, including more than 40 with a potential role in disease risk. We observed a continuum of effects with significant outliers that up- or down-regulate luciferase activity. Using a series of reporter constructs, which included genomic context surrounding the Alu, we can distinguish between instances in which the Alu disrupts another regulator and those in which the Alu introduces new regulatory sequence. We next focused on three polymorphic Alu loci associated with breast cancer that display significant effects in the reporter assay. We used CRISPR to modify the endogenous sequences, establishing cell lines varying in the Alu genotype. Our findings indicate that Alu genotype can alter expression of genes implicated in cancer risk, including PTHLH, RANBP9, and MYC These data show that commonly occurring polymorphic Alu elements can alter transcript levels and potentially contribute to disease risk.
Collapse
Affiliation(s)
- Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Maria S Kryatova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Pedro P Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-4340, USA
- National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- McKusick-Nathans Institute of Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
16
|
Briggs EM, Mita P, Sun X, Ha S, Vasilyev N, Leopold ZR, Nudler E, Boeke JD, Logan SK. Unbiased proteomic mapping of the LINE-1 promoter using CRISPR Cas9. Mob DNA 2021; 12:21. [PMID: 34425899 PMCID: PMC8381588 DOI: 10.1186/s13100-021-00249-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The autonomous retroelement Long Interspersed Element-1 (LINE-1) mobilizes though a copy and paste mechanism using an RNA intermediate (retrotransposition). Throughout human evolution, around 500,000 LINE-1 sequences have accumulated in the genome. Most of these sequences belong to ancestral LINE-1 subfamilies, including L1PA2-L1PA7, and can no longer mobilize. Only a small fraction of LINE-1 sequences, approximately 80 to 100 copies belonging to the L1Hs subfamily, are complete and still capable of retrotransposition. While silenced in most cells, many questions remain regarding LINE-1 dysregulation in cancer cells. RESULTS Here, we optimized CRISPR Cas9 gRNAs to specifically target the regulatory sequence of the L1Hs 5'UTR promoter. We identified three gRNAs that were more specific to L1Hs, with limited binding to older LINE-1 sequences (L1PA2-L1PA7). We also adapted the C-BERST method (dCas9-APEX2 Biotinylation at genomic Elements by Restricted Spatial Tagging) to identify LINE-1 transcriptional regulators in cancer cells. Our LINE-1 C-BERST screen revealed both known and novel LINE-1 transcriptional regulators, including CTCF, YY1 and DUSP1. CONCLUSION Our optimization and evaluation of gRNA specificity and application of the C-BERST method creates a tool for studying the regulatory mechanisms of LINE-1 in cancer. Further, we identified the dual specificity protein phosphatase, DUSP1, as a novel regulator of LINE-1 transcription.
Collapse
Affiliation(s)
- Erica M Briggs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Present Address: Opentrons Labworks, Queens, NY, USA
| | - Paolo Mita
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Present Address: Opentrons Labworks, Queens, NY, USA
- Institute of Systems Genetics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiaoji Sun
- Institute of Systems Genetics, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Cellarity, Cambridge, MA, USA
| | - Susan Ha
- Department of Urology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
| | - Zev R Leopold
- Department of Urology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Institute of Systems Genetics, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Susan K Logan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA.
- Department of Urology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA.
| |
Collapse
|
17
|
Smits N, Rasmussen J, Bodea GO, Amarilla AA, Gerdes P, Sanchez-Luque FJ, Ajjikuttira P, Modhiran N, Liang B, Faivre J, Deveson IW, Khromykh AA, Watterson D, Ewing AD, Faulkner GJ. No evidence of human genome integration of SARS-CoV-2 found by long-read DNA sequencing. Cell Rep 2021; 36:109530. [PMID: 34380018 PMCID: PMC8316065 DOI: 10.1016/j.celrep.2021.109530] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/28/2023] Open
Abstract
A recent study proposed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we apply deep (>50×) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2 and do not find the virus integrated into the genome. By examining ONT data from separate HEK293T cultivars, we completely resolve 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV)-positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions by ONT sequencing. That we find no evidence of SARS-CoV-2 integration suggests that such events are, at most, extremely rare in vivo and therefore are unlikely to drive oncogenesis or explain post-recovery detection of the virus.
Collapse
Affiliation(s)
- Nathan Smits
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gabriela O Bodea
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
18
|
Jansz N, Faulkner GJ. Endogenous retroviruses in the origins and treatment of cancer. Genome Biol 2021; 22:147. [PMID: 33971937 PMCID: PMC8108463 DOI: 10.1186/s13059-021-02357-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Endogenous retroviruses (ERVs) are emerging as promising therapeutic targets in cancer. As remnants of ancient retroviral infections, ERV-derived regulatory elements coordinate expression from gene networks, including those underpinning embryogenesis and immune cell function. ERV activation can promote an interferon response, a phenomenon termed viral mimicry. Although ERV expression is associated with cancer, and provisionally with autoimmune and neurodegenerative diseases, ERV-mediated inflammation is being explored as a way to sensitize tumors to immunotherapy. Here we review ERV co-option in development and innate immunity, the aberrant contribution of ERVs to tumorigenesis, and the wider biomedical potential of therapies directed at ERVs.
Collapse
Affiliation(s)
- Natasha Jansz
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia. .,Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
19
|
Keegan RM, Talbot LR, Chang YH, Metzger MJ, Dubnau J. Intercellular viral spread and intracellular transposition of Drosophila gypsy. PLoS Genet 2021; 17:e1009535. [PMID: 33886543 PMCID: PMC8096092 DOI: 10.1371/journal.pgen.1009535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/04/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
It has become increasingly clear that retrotransposons (RTEs) are more widely expressed in somatic tissues than previously appreciated. RTE expression has been implicated in a myriad of biological processes ranging from normal development and aging, to age related diseases such as cancer and neurodegeneration. Long Terminal Repeat (LTR)-RTEs are evolutionary ancestors to, and share many features with, exogenous retroviruses. In fact, many organisms contain endogenous retroviruses (ERVs) derived from exogenous retroviruses that integrated into the germ line. These ERVs are inherited in Mendelian fashion like RTEs, and some retain the ability to transmit between cells like viruses, while others develop the ability to act as RTEs. The process of evolutionary transition between LTR-RTE and retroviruses is thought to involve multiple steps by which the element loses or gains the ability to transmit copies between cells versus the ability to replicate intracellularly. But, typically, these two modes of transmission are incompatible because they require assembly in different sub-cellular compartments. Like murine IAP/IAP-E elements, the gypsy family of retroelements in arthropods appear to sit along this evolutionary transition. Indeed, there is some evidence that gypsy may exhibit retroviral properties. Given that gypsy elements have been found to actively mobilize in neurons and glial cells during normal aging and in models of neurodegeneration, this raises the question of whether gypsy replication in somatic cells occurs via intracellular retrotransposition, intercellular viral spread, or some combination of the two. These modes of replication in somatic tissues would have quite different biological implications. Here, we demonstrate that Drosophila gypsy is capable of both cell-associated and cell-free viral transmission between cultured S2 cells of somatic origin. Further, we demonstrate that the ability of gypsy to move between cells is dependent upon a functional copy of its viral envelope protein. This argues that the gypsy element has transitioned from an RTE into a functional endogenous retrovirus with the acquisition of its envelope gene. On the other hand, we also find that intracellular retrotransposition of the same genomic copy of gypsy can occur in the absence of the Env protein. Thus, gypsy exhibits both intracellular retrotransposition and intercellular viral transmission as modes of replicating its genome.
Collapse
Affiliation(s)
- Richard M. Keegan
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
| | - Lillian R. Talbot
- Medical Scientist Training Program, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
| | - Yung-Heng Chang
- Department of Anesthesiology, Stony Brook School of Medicine, New York City, New York, United States of America
| | - Michael J. Metzger
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Josh Dubnau
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
- Department of Anesthesiology, Stony Brook School of Medicine, New York City, New York, United States of America
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
20
|
The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition. Nat Commun 2020; 11:5712. [PMID: 33177501 PMCID: PMC7658363 DOI: 10.1038/s41467-020-19430-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Nearly half of the human genome is made of transposable elements (TEs) whose activity continues to impact its structure and function. Among them, Long INterspersed Element class 1 (LINE-1 or L1) elements are the only autonomously active TEs in humans. L1s are expressed and mobilized in different cancers, generating mutagenic insertions that could affect tumor malignancy. Tumor suppressor microRNAs are ∼22nt RNAs that post-transcriptionally regulate oncogene expression and are frequently downregulated in cancer. Here we explore whether they also influence L1 mobilization. We show that downregulation of let-7 correlates with accumulation of L1 insertions in human lung cancer. Furthermore, we demonstrate that let-7 binds to the L1 mRNA and impairs the translation of the second L1-encoded protein, ORF2p, reducing its mobilization. Overall, our data reveals that let-7, one of the most relevant microRNAs, maintains somatic genome integrity by restricting L1 retrotransposition. Human Long INterspersed Element class 1 (LINE-1) elements are expressed and mobilized in many types of cancer, contributing to malignancy. Here the authors show that the tumor suppressor microRNA let-7 targets the LINE-1 mRNA and reduces LINE-1 mobilization.
Collapse
|
21
|
LeBien J, McCollam G, Atallah J. An in silico model of LINE-1-mediated neoplastic evolution. Bioinformatics 2020; 36:4144-4153. [PMID: 32365170 DOI: 10.1093/bioinformatics/btaa279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Recent research has uncovered roles for transposable elements (TEs) in multiple evolutionary processes, ranging from somatic evolution in cancer to putatively adaptive germline evolution across species. Most models of TE population dynamics, however, have not incorporated actual genome sequence data. The effect of site integration preferences of specific TEs on evolutionary outcomes and the effects of different selection regimes on TE dynamics in a specific genome are unknown. We present a stochastic model of LINE-1 (L1) transposition in human cancer. This system was chosen because the transposition of L1 elements is well understood, the population dynamics of cancer tumors has been modeled extensively, and the role of L1 elements in cancer progression has garnered interest in recent years. RESULTS Our model predicts that L1 retrotransposition (RT) can play either advantageous or deleterious roles in tumor progression, depending on the initial lesion size, L1 insertion rate and tumor driver genes. Small changes in the RT rate or set of driver tumor-suppressor genes (TSGs) were observed to alter the dynamics of tumorigenesis. We found high variation in the density of L1 target sites across human protein-coding genes. We also present an analysis, across three cancer types, of the frequency of homozygous TSG disruption in wild-type hosts compared to those with an inherited driver allele. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/atallah-lab/neoplastic-evolution. CONTACT jlebien@uno.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jack LeBien
- Department of Biological Sciences, The University of New, Orleans, New Orleans, LA 70148, USA
| | - Gerald McCollam
- Advanced Academic Programs, John Hopkins University, Baltimore, MD 21218, USA
| | - Joel Atallah
- Department of Biological Sciences, The University of New, Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
22
|
Zouggar A, Haebe JR, Benoit YD. Intestinal Microbiota Influences DNA Methylome and Susceptibility to Colorectal Cancer. Genes (Basel) 2020; 11:genes11070808. [PMID: 32708659 PMCID: PMC7397125 DOI: 10.3390/genes11070808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
In a recent publication, Ansari et al. identified gut microbiota as a critical mediator of the intestinal inflammatory response through epigenetic programming of host intestinal epithelium. Exposure to the microbiota induces Ten-Eleven-Translocation (TET)-dependent hypomethylation of genomic elements regulating genes associated with inflammatory response and colorectal cancer. Here, we discuss the impact of such a discovery on the understanding of how the intestinal microbiota may contribute to epigenetic reprogramming and influence the onset of colorectal tumorigenesis. Finally, we examine the prospect of TET inhibition strategies as a therapeutic and/or preventive approach for colorectal cancer in patients afflicted by inflammatory bowel disease.
Collapse
|
23
|
Zhao F, Yang G, Feng M, Cao Z, Liu Y, Qiu J, You L, Zheng L, Zhang T, Zhao Y. Expression, function and clinical application of stanniocalcin-1 in cancer. J Cell Mol Med 2020; 24:7686-7696. [PMID: 32468698 PMCID: PMC7348177 DOI: 10.1111/jcmm.15348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/10/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein stanniocalcin-1 functions as a regulatory endocrine hormone that maintains the balance of calcium and phosphorus in bony fish and as a paracrine/autocrine factor involved in many physiological/pathological processes in humans, including carcinogenesis. In this review, we provide an overview of (a) the possible mechanisms through which STC1 affects the malignant properties of cancer, (b) transcriptional and post-transcriptional regulation pathways of STC1 and (c) the potential clinical relevance of STC1 as a cancer biomarker and even a therapeutic target in the future. Exploring the role of STC1 in cancer development may provide a better understanding of the tumorigenesis process in humans and may facilitate finding an effective therapeutic method against cancer.
Collapse
Affiliation(s)
- Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueze Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Burns KH. Our Conflict with Transposable Elements and Its Implications for Human Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:51-70. [PMID: 31977294 DOI: 10.1146/annurev-pathmechdis-012419-032633] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our genome is a historic record of successive invasions of mobile genetic elements. Like other eukaryotes, we have evolved mechanisms to limit their propagation and minimize the functional impact of new insertions. Although these mechanisms are vitally important, they are imperfect, and a handful of retroelement families remain active in modern humans. This review introduces the intrinsic functions of transposons, the tactics employed in their restraint, and the relevance of this conflict to human pathology. The most straightforward examples of disease-causing transposable elements are germline insertions that disrupt a gene and result in a monogenic disease allele. More enigmatic are the abnormal patterns of transposable element expression in disease states. Changes in transposon regulation and cellular responses to their expression have implicated these sequences in diseases as diverse as cancer, autoimmunity, and neurodegeneration. Distinguishing their epiphenomenal from their pathogenic effects may provide wholly new perspectives on our understanding of disease.
Collapse
Affiliation(s)
- Kathleen H Burns
- Department of Pathology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
25
|
McKerrow W, Tang Z, Steranka JP, Payer LM, Boeke JD, Keefe D, Fenyö D, Burns KH, Liu C. Human transposon insertion profiling by sequencing (TIPseq) to map LINE-1 insertions in single cells. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190335. [PMID: 32075555 PMCID: PMC7061987 DOI: 10.1098/rstb.2019.0335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long interspersed element-1 (LINE-1, L1) sequences, which comprise about 17% of human genome, are the product of one of the most active types of mobile DNAs in modern humans. LINE-1 insertion alleles can cause inherited and de novo genetic diseases, and LINE-1-encoded proteins are highly expressed in some cancers. Genome-wide LINE-1 mapping in single cells could be useful for defining somatic and germline retrotransposition rates, and for enabling studies to characterize tumour heterogeneity, relate insertions to transcriptional and epigenetic effects at the cellular level, or describe cellular phylogenies in development. Our laboratories have reported a genome-wide LINE-1 insertion site mapping method for bulk DNA, named transposon insertion profiling by sequencing (TIPseq). There have been significant barriers applying LINE-1 mapping to single cells, owing to the chimeric artefacts and features of repetitive sequences. Here, we optimize a modified TIPseq protocol and show its utility for LINE-1 mapping in single lymphoblastoid cells. Results from single-cell TIPseq experiments compare well to known LINE-1 insertions found by whole-genome sequencing and TIPseq on bulk DNA. Among the several approaches we tested, whole-genome amplification by multiple displacement amplification followed by restriction enzyme digestion, vectorette ligation and LINE-1-targeted PCR had the best assay performance. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Wilson McKerrow
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Zuojian Tang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA
| | - Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - David Keefe
- Department of Obstetrics and Gynecology, New York University Langone School of Medicine, 462 First Avenue, New York, NY 10016, USA.,Department of Cell Biology, New York University Langone School of Medicine, 462 First Avenue, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.,High Throughput (HiT) Biology Center, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401N Broadway, Baltimore, MD 21231, USA
| | - Chunhong Liu
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Chalmers TJ, Wu LE. Transposable Elements Cross Kingdom Boundaries and Contribute to Inflammation and Ageing: Somatic Acquisition of Foreign Transposable Elements as a Catalyst of Genome Instability, Epigenetic Dysregulation, Inflammation, Senescence, and Ageing. Bioessays 2020; 42:e1900197. [PMID: 31994769 DOI: 10.1002/bies.201900197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Indexed: 01/07/2023]
Abstract
The de-repression of transposable elements (TEs) in mammalian genomes is thought to contribute to genome instability, inflammation, and ageing, yet is viewed as a cell-autonomous event. In contrast to mammalian cells, prokaryotes constantly exchange genetic material through TEs, crossing both cell and species barriers, contributing to rapid microbial evolution and diversity in complex communities such as the mammalian gut. Here, it is proposed that TEs released from prokaryotes in the microbiome or from pathogenic infections regularly cross the kingdom barrier to the somatic cells of their eukaryotic hosts. It is proposed this horizontal transfer of TEs from microbe to host is a stochastic, ongoing catalyst of genome destabilization, resulting in structural and epigenetic variations, and activation of well-evolved host defense mechanisms contributing to inflammation, senescence, and biological ageing. It is proposed that innate immunity pathways defend against the horizontal acquisition of microbial TEs, and that activation of this pathway during horizontal transposon transfer promotes chronic inflammation during ageing. Finally, it is suggested that horizontal acquisition of prokaryotic TEs into mammalian genomes has been masked and subsequently under-reported due to flaws in current sequencing pipelines, and new strategies to uncover these events are proposed.
Collapse
Affiliation(s)
| | - Lindsay E Wu
- School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
27
|
Ardeljan D, Wang X, Oghbaie M, Taylor MS, Husband D, Deshpande V, Steranka JP, Gorbounov M, Yang WR, Sie B, Larman HB, Jiang H, Molloy KR, Altukhov I, Li Z, McKerrow W, Fenyö D, Burns KH, LaCava J. LINE-1 ORF2p expression is nearly imperceptible in human cancers. Mob DNA 2019; 11:1. [PMID: 31892958 PMCID: PMC6937734 DOI: 10.1186/s13100-019-0191-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long interspersed element-1 (LINE-1, L1) is the major driver of mobile DNA activity in modern humans. When expressed, LINE-1 loci produce bicistronic transcripts encoding two proteins essential for retrotransposition, ORF1p and ORF2p. Many types of human cancers are characterized by L1 promoter hypomethylation, L1 transcription, L1 ORF1p protein expression, and somatic L1 retrotransposition. ORF2p encodes the endonuclease and reverse transcriptase activities required for L1 retrotransposition. Its expression is poorly characterized in human tissues and cell lines. RESULTS We report mass spectrometry-based tumor proteome profiling studies wherein ORF2p eludes detection. To test whether ORF2p could be detected with specific reagents, we developed and validated five rabbit monoclonal antibodies with immunoreactivity for specific epitopes on the protein. These reagents readily detect ectopic ORF2p expressed from bicistronic L1 constructs. However, endogenous ORF2p is not detected in human tumor samples or cell lines by western blot, immunoprecipitation, or immunohistochemistry despite high levels of ORF1p expression. Moreover, we report endogenous ORF1p-associated interactomes, affinity isolated from colorectal cancers, wherein we similarly fail to detect ORF2p. These samples include primary tumors harboring hundreds of somatically acquired L1 insertions. The new data are available via ProteomeXchange with identifier PXD013743. CONCLUSIONS Although somatic retrotransposition provides unequivocal genetic evidence for the expression of ORF2p in human cancers, we are unable to directly measure its presence using several standard methods. Experimental systems have previously indicated an unequal stoichiometry between ORF1p and ORF2p, but in vivo, the expression of these two proteins may be more strikingly uncoupled. These findings are consistent with observations that ORF2p is not tolerable for cell growth.
Collapse
Affiliation(s)
- Daniel Ardeljan
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Xuya Wang
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Mehrnoosh Oghbaie
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
| | - Martin S. Taylor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - David Husband
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jared P. Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Mikhail Gorbounov
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Wan Rou Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Brandon Sie
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
| | - Kelly R. Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 USA
| | - Ilya Altukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Zhi Li
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Wilson McKerrow
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - David Fenyö
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Kathleen H. Burns
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, 9713 AV The Netherlands
| |
Collapse
|
28
|
Adney EM, Ochmann MT, Sil S, Truong DM, Mita P, Wang X, Kahler DJ, Fenyö D, Holt LJ, Boeke JD. Comprehensive Scanning Mutagenesis of Human Retrotransposon LINE-1 Identifies Motifs Essential for Function. Genetics 2019; 213:1401-1414. [PMID: 31666291 PMCID: PMC6893370 DOI: 10.1534/genetics.119.302601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Long Interspersed Nuclear Element-1 (LINE-1, L1) is the only autonomous active transposable element in the human genome. The L1-encoded proteins ORF1p and ORF2p enable the element to jump from one locus to another via a "copy-and-paste" mechanism. ORF1p is an RNA-binding protein, and ORF2p has endonuclease and reverse transcriptase activities. The huge number of truncated L1 remnants in the human genome suggests that the host has likely evolved mechanisms to prevent full L1 replication, and thereby decrease the proliferation of active elements and reduce the mutagenic potential of L1. In turn, L1 appears to have a minimized length to increase the probability of successful full-length replication. This streamlining would be expected to lead to high information density. Here, we describe the construction and initial characterization of a library of 538 consecutive trialanine substitutions that scan along ORF1p and ORF2p to identify functionally important regions. In accordance with the streamlining hypothesis, retrotransposition was overall very sensitive to mutations in ORF1p and ORF2p; only 16% of trialanine mutants retained near-wild-type (WT) activity. All ORF1p mutants formed near-WT levels of mRNA transcripts and 75% formed near-WT levels of protein. Two ORF1p mutants presented a unique nucleolar-relocalization phenotype. Regions of ORF2p that are sensitive to mutagenesis but lack phylogenetic conservation were also identified. We provide comprehensive information on the regions most critical to retrotransposition. This resource will guide future studies of intermolecular interactions that form with RNA, proteins, and target DNA throughout the L1 life cycle.
Collapse
Affiliation(s)
- Emily M Adney
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Matthias T Ochmann
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Srinjoy Sil
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - David M Truong
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - Paolo Mita
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - Xuya Wang
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - David J Kahler
- High Throughput Biology Laboratory, NYU Langone Health, New York 10016
| | - David Fenyö
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - Liam J Holt
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York 10016
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
29
|
|
30
|
Abstract
Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-methylcytosine (5mC) in many species was driven by the requirement to silence TEs. Potential roles in TE regulation have also been suggested for other DNA modifications, such as N6-methyladenine and oxidation derivatives of 5mC, although the underlying mechanistic relationships are poorly understood. Here, we discuss current evidence implicating DNA modifications and DNA-modifying enzymes in TE regulation across different species.
Collapse
Affiliation(s)
- Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Jennifer M Frost
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK.
| |
Collapse
|
31
|
Sanchez-Luque FJ, Kempen MJHC, Gerdes P, Vargas-Landin DB, Richardson SR, Troskie RL, Jesuadian JS, Cheetham SW, Carreira PE, Salvador-Palomeque C, García-Cañadas M, Muñoz-Lopez M, Sanchez L, Lundberg M, Macia A, Heras SR, Brennan PM, Lister R, Garcia-Perez JL, Ewing AD, Faulkner GJ. LINE-1 Evasion of Epigenetic Repression in Humans. Mol Cell 2019; 75:590-604.e12. [PMID: 31230816 DOI: 10.1016/j.molcel.2019.05.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.
Collapse
Affiliation(s)
- Francisco J Sanchez-Luque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain.
| | - Marie-Jeanne H C Kempen
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Dulce B Vargas-Landin
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Robin-Lee Troskie
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - J Samuel Jesuadian
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Patricia E Carreira
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Carmen Salvador-Palomeque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Marta García-Cañadas
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Martin Muñoz-Lopez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Laura Sanchez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Mischa Lundberg
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara R Heras
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Paul M Brennan
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, EH4 2XR, UK
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Jose L Garcia-Perez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
32
|
Chang YH, Keegan RM, Prazak L, Dubnau J. Cellular labeling of endogenous retrovirus replication (CLEVR) reveals de novo insertions of the gypsy retrotransposable element in cell culture and in both neurons and glial cells of aging fruit flies. PLoS Biol 2019; 17:e3000278. [PMID: 31095565 PMCID: PMC6541305 DOI: 10.1371/journal.pbio.3000278] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/29/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Evidence is rapidly mounting that transposable element (TE) expression and replication may impact biology more widely than previously thought. This includes potential effects on normal physiology of somatic tissues and dysfunctional impacts in diseases associated with aging, such as cancer and neurodegeneration. Investigation of the biological impact of mobile elements in somatic cells will be greatly facilitated by the use of donor elements that are engineered to report de novo events in vivo. In multicellular organisms, reporter constructs demonstrating engineered long interspersed nuclear element (LINE-1; L1) mobilization have been in use for quite some time, and strategies similar to L1 retrotransposition reporter assays have been developed to report replication of Ty1 elements in yeast and mouse intracisternal A particle (IAP) long terminal repeat (LTR) retrotransposons in cultivated cells. We describe a novel approach termed cellular labeling of endogenous retrovirus replication (CLEVR), which reports replication of the gypsy element within specific cells in vivo in Drosophila. The gypsy-CLEVR reporter reveals gypsy replication both in cell culture and in individual neurons and glial cells of the aging adult fly. We also demonstrate that the gypsy-CLEVR replication rate is increased when the short interfering RNA (siRNA) silencing system is genetically disrupted. This CLEVR strategy makes use of universally conserved features of retroviruses and should be widely applicable to other LTR retrotransposons, endogenous retroviruses (ERVs), and exogenous retroviruses.
Collapse
Affiliation(s)
- Yung-Heng Chang
- Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, New York, United States of America
| | - Richard M. Keegan
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| | - Lisa Prazak
- Biology, Farmingdale State College, Farmingdale, New York, United States of America
| | - Josh Dubnau
- Department of Anesthesiology, Stony Brook School of Medicine, Stony Brook, New York, United States of America
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
33
|
Dynamic Methylation of an L1 Transduction Family during Reprogramming and Neurodifferentiation. Mol Cell Biol 2019; 39:MCB.00499-18. [PMID: 30692270 PMCID: PMC6425141 DOI: 10.1128/mcb.00499-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/11/2019] [Indexed: 01/28/2023] Open
Abstract
The retrotransposon LINE-1 (L1) is a significant source of endogenous mutagenesis in humans. In each individual genome, a few retrotransposition-competent L1s (RC-L1s) can generate new heritable L1 insertions in the early embryo, primordial germ line, and germ cells. L1 retrotransposition can also occur in the neuronal lineage and cause somatic mosaicism. Although DNA methylation mediates L1 promoter repression, the temporal pattern of methylation applied to individual RC-L1s during neurogenesis is unclear. Here, we identified a de novo L1 insertion in a human induced pluripotent stem cell (hiPSC) line via retrotransposon capture sequencing (RC-seq). The L1 insertion was full-length and carried 5' and 3' transductions. The corresponding donor RC-L1 was part of a large and recently active L1 transduction family and was highly mobile in a cultured-cell L1 retrotransposition reporter assay. Notably, we observed distinct and dynamic DNA methylation profiles for the de novo L1 and members of its extended transduction family during neuronal differentiation. These experiments reveal how a de novo L1 insertion in a pluripotent stem cell is rapidly recognized and repressed, albeit incompletely, by the host genome during neurodifferentiation, while retaining potential for further retrotransposition.
Collapse
|
34
|
Steranka JP, Tang Z, Grivainis M, Huang CRL, Payer LM, Rego FOR, Miller TLA, Galante PAF, Ramaswami S, Heguy A, Fenyö D, Boeke JD, Burns KH. Transposon insertion profiling by sequencing (TIPseq) for mapping LINE-1 insertions in the human genome. Mob DNA 2019; 10:8. [PMID: 30899333 PMCID: PMC6407172 DOI: 10.1186/s13100-019-0148-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Background Transposable elements make up a significant portion of the human genome. Accurately locating these mobile DNAs is vital to understand their role as a source of structural variation and somatic mutation. To this end, laboratories have developed strategies to selectively amplify or otherwise enrich transposable element insertion sites in genomic DNA. Results Here we describe a technique, Transposon Insertion Profiling by sequencing (TIPseq), to map Long INterspersed Element 1 (LINE-1, L1) retrotransposon insertions in the human genome. This method uses vectorette PCR to amplify species-specific L1 (L1PA1) insertion sites followed by paired-end Illumina sequencing. In addition to providing a step-by-step molecular biology protocol, we offer users a guide to our pipeline for data analysis, TIPseqHunter. Our recent studies in pancreatic and ovarian cancer demonstrate the ability of TIPseq to identify invariant (fixed), polymorphic (inherited variants), as well as somatically-acquired L1 insertions that distinguish cancer genomes from a patient’s constitutional make-up. Conclusions TIPseq provides an approach for amplifying evolutionarily young, active transposable element insertion sites from genomic DNA. Our rationale and variations on this protocol may be useful to those mapping L1 and other mobile elements in complex genomes. Electronic supplementary material The online version of this article (10.1186/s13100-019-0148-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jared P Steranka
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Zuojian Tang
- 3Department for Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016 USA.,4Institute for Systems Genetics, NYU Langone Health, New York, NY 10016 USA
| | - Mark Grivainis
- 3Department for Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016 USA.,4Institute for Systems Genetics, NYU Langone Health, New York, NY 10016 USA
| | - Cheng Ran Lisa Huang
- 2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Lindsay M Payer
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Fernanda O R Rego
- 5Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Thiago Luiz Araujo Miller
- 5Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paul, São Paulo, Brazil
| | - Pedro A F Galante
- 5Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Sitharam Ramaswami
- 7Genome Technology Center, Division of Advanced Research Technologies, NYU Langone Health, New York, NY USA
| | - Adriana Heguy
- 7Genome Technology Center, Division of Advanced Research Technologies, NYU Langone Health, New York, NY USA
| | - David Fenyö
- 3Department for Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016 USA.,4Institute for Systems Genetics, NYU Langone Health, New York, NY 10016 USA
| | - Jef D Boeke
- 4Institute for Systems Genetics, NYU Langone Health, New York, NY 10016 USA
| | - Kathleen H Burns
- 1Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
35
|
Faulkner GJ, Billon V. L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 2018; 9:22. [PMID: 30002735 PMCID: PMC6035798 DOI: 10.1186/s13100-018-0128-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition.
Collapse
Affiliation(s)
- Geoffrey J. Faulkner
- Mater Research Institute – University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
| |
Collapse
|