1
|
Nakaya T. Release of FUS into the extracellular space is regulated by its amino-terminal prion-like domain. FEBS Lett 2025; 599:1046-1054. [PMID: 39737526 DOI: 10.1002/1873-3468.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025]
Abstract
Fused in sarcoma (FUS) is a causative factor of amyotrophic lateral sclerosis (ALS) and is believed to propagate pathologically by transmission from cell to cell. However, the mechanism underlying FUS release from cells, which is a critical step for the propagation system, remains poorly understood. This study conducted an analysis of the release of human and mouse FUS from neurons, revealing that human FUS is significantly released into the media compared to its mouse counterpart. Further study using chimeric FUS proteins identified the amino-terminal region of human FUS as essential for its release. These findings indicate that human FUS is released directly from neurons and underscore the novel functional role of its amino-terminal region in this process.
Collapse
Affiliation(s)
- Tadashi Nakaya
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
2
|
Moens TG, Da Cruz S, Neumann M, Shelkovnikova TA, Shneider NA, Van Den Bosch L. Amyotrophic lateral sclerosis caused by FUS mutations: advances with broad implications. Lancet Neurol 2025; 24:166-178. [PMID: 39862884 DOI: 10.1016/s1474-4422(24)00517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Autosomal dominant mutations in the gene encoding the DNA and RNA binding protein FUS are a cause of amyotrophic lateral sclerosis (ALS), and about 0·3-0·9% of patients with ALS are FUS mutation carriers. FUS-mutation-associated ALS (FUS-ALS) is characterised by early onset and rapid progression, compared with other forms of ALS. However, different pathogenic mutations in FUS can result in markedly different age at symptom onset and rate of disease progression. Most FUS mutations disrupt its nuclear localisation, leading to its cytoplasmic accumulation in the CNS. FUS also forms inclusions in around 5% of patients with the related neurodegenerative condition frontotemporal dementia. However, there are key differences between the two diseases at the genetic and neuropathological level, which suggest distinct pathogenic processes. Experimental models have uncovered potential pathogenic mechanisms in FUS-ALS and informed therapeutic strategies that are currently in development, including the silencing of FUS expression using an intrathecally administered antisense oligonucleotide.
Collapse
Affiliation(s)
- Thomas G Moens
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium; CRUK Scotland Institute, Glasgow, UK
| | - Sandrine Da Cruz
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurophysiology in Neurodegenerative Disorders, Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Manuela Neumann
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Department of Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute (SITraN), University of Sheffield, Sheffield, UK
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease and Eleanor and Lou Gehrig ALS Center, Columbia University, New York, NY, USA
| | - Ludo Van Den Bosch
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium.
| |
Collapse
|
3
|
Kim KM, Girdhar A, Cicardi ME, Kankate V, Hayashi M, Yang R, Carey JL, Fare CM, Shorter J, Cingolani G, Trotti D, Guo L. NLS-binding deficient Kapβ2 reduces neurotoxicity via selective interaction with C9orf72-ALS/FTD dipeptide repeats. Commun Biol 2025; 8:2. [PMID: 39747573 PMCID: PMC11696677 DOI: 10.1038/s42003-024-07412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Arginine-rich dipeptide repeat proteins (R-DPRs) are highly toxic proteins found in patients with C9orf72-linked amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). R-DPRs can cause toxicity by disrupting the natural phase behavior of RNA-binding proteins (RBPs). Mitigating this abnormal phase behavior is, therefore, crucial to reduce R-DPR-induced toxicity. Here, we use FUS as a model RBP to investigate the mechanism of R-DPR-induced aberrant RBP phase transition. We find that this phase transition can be mitigated by Kapβ2. However, as a nuclear import receptor and phase modifier for PY-NLS-containing RBPs, the function of WT Kapβ2 could lead to undesired interaction with its native substrates when used as therapeutics for C9-ALS/FTD. To address this issue, it is crucial to devise effective strategies that allow Kapβ2 to selectively target its binding to the R-DPRs, instead of the RBPs. We show that NLS-binding deficient Kapβ2W460A:W730A can indeed selectively interact with R-DPRs in FUS assembly without affecting normal FUS phase separation. Importantly, Kapβ2W460A:W730A prevents enrichment of poly(GR) in stress granules and mitigates R-DPR neurotoxicity. Thus, NLS-binding deficient Kapβ2 may be implemented as a potential therapeutic for C9-ALS/FTD.
Collapse
Grants
- R35GM138109 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- F31 NS111870 NINDS NIH HHS
- R21 NS128396 NINDS NIH HHS
- 628389 Muscular Dystrophy Association (Muscular Dystrophy Association Inc.)
- R01 NS121143 NINDS NIH HHS
- F31NS111870 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R35 GM140733 NIGMS NIH HHS
- R35GM140733 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- RF1NS121143 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R21-NS090912 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R21NS128396 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01GM099836 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R21 NS090912 NINDS NIH HHS
- RF1 NS121143 NINDS NIH HHS
- T32GM008275 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 GM099836 NIGMS NIH HHS
- RF1 AG057882 NIA NIH HHS
- T32 GM008275 NIGMS NIH HHS
- R35 GM138109 NIGMS NIH HHS
- Dr. Ralph and Marian Falk Medical Research Trust (Falk Medical Research Trust)
- Bruno and Ilse Frick Foundation for Research on ALS
- U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- Johns Hopkins | SOM, JHU | Robert Packard Center for ALS Research, Johns Hopkins University (Robert Packard Center)
- Target ALS (Target ALS Foundation)
- J.S. is supported by grants from The Packard Center for ALS Research at Johns Hopkins, Target ALS, The Association for Frontotemporal Degeneration, the Amyotrophic Lateral Sclerosis Association, the Office of the Assistant Secretary of Defense for Health Affairs through the Amyotrophic Lateral Sclerosis Research Program (W81XWH-20-1-0242 and W81XWH-17-1-0237), and NIH grant R01GM099836.
- D.T. was supported by NIH grants R21-NS090912 and RF1-AG057882, DoD grant AL220064, Muscular Dystrophy Association grant 628389, the Farber Family Foundation, and the Family Strong for ALS Foundation.
Collapse
Affiliation(s)
- Kevin M Kim
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amandeep Girdhar
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria E Cicardi
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vaishnavi Kankate
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Miyuki Hayashi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruoyu Yang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jenny L Carey
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
5
|
Nicy, Morgan JWR, Wales DJ. Energy landscapes for clusters of hexapeptides. J Chem Phys 2024; 161:054112. [PMID: 39092941 DOI: 10.1063/5.0220652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
We present the results for energy landscapes of hexapeptides obtained using interfaces to the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) program. We have used basin-hopping global optimization and discrete path sampling to explore the landscapes of hexapeptide monomers, dimers, and oligomers containing 10, 100, and 200 monomers modeled using a residue-level coarse-grained potential, Mpipi, implemented in LAMMPS. We find that the dimers of peptides containing amino acid residues that are better at promoting phase separation, such as tyrosine and arginine, have melting peaks at higher temperature in their heat capacity compared to phenylalanine and lysine, respectively. This observation correlates with previous work on the same uncapped hexapeptide monomers modeled using atomistic potential. For oligomers, we compare the variation in monomer conformations with radial distance and observe trends for selected angles calculated for each monomer. The LAMMPS interfaces to the GMIN and OPTIM programs for landscape exploration offer new opportunities to investigate larger systems and provide access to the coarse-grained potentials implemented within LAMMPS.
Collapse
Affiliation(s)
- Nicy
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John W R Morgan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Chen L, Chen G, Zhang M, Zhang X. Modeling sporadic juvenile ALS in iPSC-derived motor neurons explores the pathogenesis of FUS R503fs mutation. Front Cell Neurosci 2024; 18:1364164. [PMID: 38711616 PMCID: PMC11070534 DOI: 10.3389/fncel.2024.1364164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Fused in sarcoma (FUS) mutations represent the most common genetic etiology of juvenile amyotrophic lateral sclerosis (JALS), for which effective treatments are lacking. In a prior report, we identified a novel FUS mutation, c.1509dupA: p. R503fs (FUSR503fs), in a sporadic JALS patient. Methods The physicochemical properties and structure of FUSR503fs protein were analyzed by software: Multi-electrode array (MEA) assay, calcium activity imaging assay and transcriptome analysis were used to explore the pathophysiological mechanism of iPSC derived motor neurons. Results Structural analysis and predictions regarding physical and chemical properties of this mutation suggest that the reduction of phosphorylation and glycosylation sites, along with alterations in the amino acid sequence, may contribute to abnormal FUS accumulation within the cytoplasm and nucleus of induced pluripotent stem cell- derived motor neurons (MNs). Multi-electrode array and calcium activity imaging indicate diminished spontaneous electrical and calcium activity signals in MNs harboring the FUSR503fs mutation. Transcriptomic analysis reveals upregulation of genes associated with viral infection and downregulation of genes involved in neural function maintenance, such as the ATP6V1C2 gene. Treatment with ropinirole marginally mitigates the electrophysiological decline in FUSR503fs MNs, suggesting the utility of this cell model for mechanistic exploration and drug screening. Discussion iPSCs-derived motor neurons from JALS patients are promising tools for drug screening. The pathological changes in motor neurons of FUSR503fs may occur earlier than in other known mutation types that have been reported.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Guojie Chen
- Hunan YoBon Biotechnology Limited Company, Changsha, Hunan, China
| | - Mengting Zhang
- College of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
7
|
Zhou L, Xu R. Invertebrate genetic models of amyotrophic lateral sclerosis. Front Mol Neurosci 2024; 17:1328578. [PMID: 38500677 PMCID: PMC10944931 DOI: 10.3389/fnmol.2024.1328578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by the progressive death of motor neurons in the cerebral cortex, brain stem, and spinal cord. The exact mechanisms underlying the pathogenesis of ALS remain unclear. The current consensus regarding the pathogenesis of ALS suggests that the interaction between genetic susceptibility and harmful environmental factors is a promising cause of ALS onset. The investigation of putative harmful environmental factors has been the subject of several ongoing studies, but the use of transgenic animal models to study ALS has provided valuable information on the onset of ALS. Here, we review the current common invertebrate genetic models used to study the pathology, pathophysiology, and pathogenesis of ALS. The considerations of the usage, advantages, disadvantages, costs, and availability of each invertebrate model will also be discussed.
Collapse
Affiliation(s)
- LiJun Zhou
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| | - RenShi Xu
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Lao Z, Tang Y, Dong X, Tan Y, Li X, Liu X, Li L, Guo C, Wei G. Elucidating the reversible and irreversible self-assembly mechanisms of low-complexity aromatic-rich kinked peptides and steric zipper peptides. NANOSCALE 2024; 16:4025-4038. [PMID: 38347806 DOI: 10.1039/d3nr05130g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Many RNA-binding proteins such as fused-in sarcoma (FUS) can self-assemble into reversible liquid droplets and fibrils through the self-association of their low-complexity (LC) domains. Recent experiments have revealed that SYG-rich segments in the FUS LC domains play critical roles in the reversible self-assembly behaviors of FUS. These FUS LC segments alone can self-assemble into reversible kinked fibrils, which are markedly different from the canonical irreversible steric zipper β-sheet fibrils. However, the molecular determinants underlying the reversible and irreversible self-assembly are poorly understood. Herein we conducted extensive all-atom and coarse-grained molecular dynamics simulations of four representative hexapeptides: two low-complexity aromatic-rich kinked peptides from the amyotrophic lateral sclerosis-related FUS protein, FUS37-42 (SYSGYS) and FUS54-59 (SYSSYG); and two steric zipper peptides from Alzheimer's-associated Aβ and Tau proteins, Aβ16-21 (KLVFFA) and Tau306-311 (VQIVYK). We dissected their reversible and irreversible self-assembly dynamics, predicted their phase separation behaviors, and elucidated the underpinning molecular interactions. Our simulations showed that alternating stickers (Tyr) and spacers (Gly and Ser) in FUS37-42 and FUS54-59 facilitate the formation of highly dynamic coil-rich oligomers and lead to reversible self-assembly, while consecutive hydrophobic residues of LVFF in Aβ16-21 and IVY in Tau306-311 act as hydrophobic patches, favoring the formation of stable β-sheet-rich oligomers and driving the irreversible self-assembly. Intriguingly, we found that FUS37-42 and FUS54-59 peptides, possessing the same amino acid composition and the same number of sticker and spacer residues, display differential self-assembly propensities. This finding suggests that the self-assembly behaviors of FUS peptides are fine-tuned by the site-specific patterning of spacer residues (Ser and Gly). This study provides significant mechanistic insights into reversible and irreversible peptide self-assembly, which would be helpful for understanding the molecular mechanisms underlying the formation of biological liquid condensates and pathological solid amyloid fibrils.
Collapse
Affiliation(s)
- Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Xuewei Dong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yuan Tan
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Le Li
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai, China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Tziortzouda P, Steyaert J, Scheveneels W, Sicart A, Stoklund Dittlau K, Barbosa Correia AM, Burg T, Pal A, Hermann A, Van Damme P, Moens TG, Van Den Bosch L. PP2A and GSK3 act as modifiers of FUS-ALS by modulating mitochondrial transport. Acta Neuropathol 2024; 147:41. [PMID: 38363426 PMCID: PMC10873455 DOI: 10.1007/s00401-024-02689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS. We have previously observed that overexpression of wild-type or ALS-mutant FUS in Drosophila motor neurons is toxic, which allowed us to screen for novel genetic modifiers of the disease. Using a genome-wide screening approach, we identified Protein Phosphatase 2A (PP2A) and Glycogen Synthase Kinase 3 (GSK3) as novel modifiers of FUS-ALS. Loss of function or pharmacological inhibition of either protein rescued FUS-associated lethality in Drosophila. Consistent with a conserved role in disease pathogenesis, pharmacological inhibition of both proteins rescued disease-relevant phenotypes, including mitochondrial trafficking defects and neuromuscular junction failure, in patient iPSC-derived spinal motor neurons (iPSC-sMNs). In FUS-ALS flies, mice, and human iPSC-sMNs, we observed reduced GSK3 inhibitory phosphorylation, suggesting that FUS dysfunction results in GSK3 hyperactivity. Furthermore, we found that PP2A acts upstream of GSK3, affecting its inhibitory phosphorylation. GSK3 has previously been linked to kinesin-1 hyperphosphorylation. We observed this in both flies and iPSC-sMNs, and we rescued this hyperphosphorylation by inhibiting GSK3 or PP2A. Moreover, increasing the level of kinesin-1 expression in our Drosophila model strongly rescued toxicity, confirming the relevance of kinesin-1 hyperphosphorylation. Our data provide in vivo evidence that PP2A and GSK3 are disease modifiers, and reveal an unexplored mechanistic link between PP2A, GSK3, and kinesin-1, that may be central to the pathogenesis of FUS-ALS and sporadic forms of the disease.
Collapse
Affiliation(s)
- Paraskevi Tziortzouda
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Jolien Steyaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Wendy Scheveneels
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Adria Sicart
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Katarina Stoklund Dittlau
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Adriana Margarida Barbosa Correia
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Thibaut Burg
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Arun Pal
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden Rossendorf, 01328, Dresden, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307, Dresden, Germany
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- Deutsches Zentrum Fur Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Thomas G Moens
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Ganser LR, Niaki AG, Yuan X, Huang E, Deng D, Djaja NA, Ge Y, Craig A, Langlois O, Myong S. The roles of FUS-RNA binding domain and low complexity domain in RNA-dependent phase separation. Structure 2024; 32:177-187.e5. [PMID: 38070499 PMCID: PMC10997494 DOI: 10.1016/j.str.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 02/04/2024]
Abstract
Fused in sarcoma (FUS) is an archetypal phase separating protein asymmetrically divided into a low complexity domain (LCD) and an RNA binding domain (RBD). Here, we explore how the two domains contribute to RNA-dependent phase separation, RNA recognition, and multivalent complex formation. We find that RBD drives RNA-dependent phase separation but forms large and irregularly shaped droplets that are rescued by LCD in trans. Electrophoretic mobility shift assay (EMSA) and single-molecule fluorescence assays reveal that, while both LCD and RBD bind RNA, RBD drives RNA engagement and multivalent complex formation. While RBD alone exhibits delayed RNA recognition and a less dynamic RNP complex compared to full-length FUS, LCD in trans rescues full-length FUS activity. Likewise, cell-based data show RBD forms nucleolar condensates while LCD in trans rescues the diffuse nucleoplasm localization of full-length FUS. Our results point to a regulatory role of LCD in tuning the RNP interaction and buffering phase separation.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Xincheng Yuan
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Ethan Huang
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dahlia Deng
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Nathalie A Djaja
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Yingda Ge
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alanna Craig
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Olivia Langlois
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| |
Collapse
|
11
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
12
|
Guo L, Mann JR, Mauna JC, Copley KE, Wang H, Rubien JD, Odeh HM, Lin J, Lee BL, Ganser L, Robinson E, Kim KM, Murthy AC, Paul T, Portz B, Gleixner AM, Diaz Z, Carey JL, Smirnov A, Padilla G, Lavorando E, Espy C, Shang Y, Huang EJ, Chesi A, Fawzi NL, Myong S, Donnelly CJ, Shorter J. Defining RNA oligonucleotides that reverse deleterious phase transitions of RNA-binding proteins with prion-like domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.555754. [PMID: 37732211 PMCID: PMC10508739 DOI: 10.1101/2023.09.04.555754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
RNA-binding proteins with prion-like domains, such as FUS and TDP-43, condense into functional liquids, which can transform into pathological fibrils that underpin fatal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Here, we define short RNAs (24-48 nucleotides) that prevent FUS fibrillization by promoting liquid phases, and distinct short RNAs that prevent and, remarkably, reverse FUS condensation and fibrillization. These activities require interactions with multiple RNA-binding domains of FUS and are encoded by RNA sequence, length, and structure. Importantly, we define a short RNA that dissolves aberrant cytoplasmic FUS condensates, restores nuclear FUS, and mitigates FUS proteotoxicity in optogenetic models and human motor neurons. Another short RNA dissolves aberrant cytoplasmic TDP-43 condensates, restores nuclear TDP-43, and mitigates TDP-43 proteotoxicity. Since short RNAs can be effectively delivered to the human brain, these oligonucleotides could have therapeutic utility for ALS/FTD and related disorders.
Collapse
|
13
|
Boeynaems S, Dorone Y, Zhuang Y, Shabardina V, Huang G, Marian A, Kim G, Sanyal A, Şen NE, Griffith D, Docampo R, Lasker K, Ruiz-Trillo I, Auburger G, Holehouse AS, Kabashi E, Lin Y, Gitler AD. Poly(A)-binding protein is an ataxin-2 chaperone that regulates biomolecular condensates. Mol Cell 2023; 83:2020-2034.e6. [PMID: 37295429 PMCID: PMC10318123 DOI: 10.1016/j.molcel.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases (CAND), Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yanrong Zhuang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003 Catalonia, Spain
| | - Guozhong Huang
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Anca Marian
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France
| | - Garam Kim
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anushka Sanyal
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nesli-Ece Şen
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Keren Lasker
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003 Catalonia, Spain; ICREA, Passeig Lluís Companys 23, Barcelona 08010 Catalonia, Spain
| | - Georg Auburger
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
14
|
Kinger S, Dubey AR, Kumar P, Jagtap YA, Choudhary A, Kumar A, Prajapati VK, Dhiman R, Mishra A. Molecular Chaperones' Potential against Defective Proteostasis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12091302. [PMID: 37174703 PMCID: PMC10177248 DOI: 10.3390/cells12091302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuronal degenerative condition identified via a build-up of mutant aberrantly folded proteins. The native folding of polypeptides is mediated by molecular chaperones, preventing their pathogenic aggregation. The mutant protein expression in ALS is linked with the entrapment and depletion of chaperone capacity. The lack of a thorough understanding of chaperones' involvement in ALS pathogenesis presents a significant challenge in its treatment. Here, we review how the accumulation of the ALS-linked mutant FUS, TDP-43, SOD1, and C9orf72 proteins damage cellular homeostasis mechanisms leading to neuronal loss. Further, we discuss how the HSP70 and DNAJ family co-chaperones can act as potential targets for reducing misfolded protein accumulation in ALS. Moreover, small HSPB1 and HSPB8 chaperones can facilitate neuroprotection and prevent stress-associated misfolded protein apoptosis. Designing therapeutic strategies by pharmacologically enhancing cellular chaperone capacity to reduce mutant protein proteotoxic effects on ALS pathomechanisms can be a considerable advancement. Chaperones, apart from directly interacting with misfolded proteins for protein quality control, can also filter their toxicity by initiating strong stress-response pathways, modulating transcriptional expression profiles, and promoting anti-apoptotic functions. Overall, these properties of chaperones make them an attractive target for gaining fundamental insights into misfolded protein disorders and designing more effective therapies against ALS.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
15
|
Boeynaems S, Ma XR, Yeong V, Ginell GM, Chen JH, Blum JA, Nakayama L, Sanyal A, Briner A, Haver DV, Pauwels J, Ekman A, Schmidt HB, Sundararajan K, Porta L, Lasker K, Larabell C, Hayashi MAF, Kundaje A, Impens F, Obermeyer A, Holehouse AS, Gitler AD. Aberrant phase separation is a common killing strategy of positively charged peptides in biology and human disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531820. [PMID: 36945394 PMCID: PMC10028949 DOI: 10.1101/2023.03.09.531820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Positively charged repeat peptides are emerging as key players in neurodegenerative diseases. These peptides can perturb diverse cellular pathways but a unifying framework for how such promiscuous toxicity arises has remained elusive. We used mass-spectrometry-based proteomics to define the protein targets of these neurotoxic peptides and found that they all share similar sequence features that drive their aberrant condensation with these positively charged peptides. We trained a machine learning algorithm to detect such sequence features and unexpectedly discovered that this mode of toxicity is not limited to human repeat expansion disorders but has evolved countless times across the tree of life in the form of cationic antimicrobial and venom peptides. We demonstrate that an excess in positive charge is necessary and sufficient for this killer activity, which we name 'polycation poisoning'. These findings reveal an ancient and conserved mechanism and inform ways to leverage its design rules for new generations of bioactive peptides.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Alzheimer’s and Neurodegenerative Diseases (CAND), Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - X. Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivian Yeong
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Jacob A. Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushka Sanyal
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam Briner
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - H. Broder Schmidt
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kousik Sundararajan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucas Porta
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Keren Lasker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Mirian A. F. Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Allie Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
17
|
Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac145. [PMID: 35783556 PMCID: PMC9242622 DOI: 10.1093/braincomms/fcac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer’s and Parkinson’s disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis. As with other neurodegenerative diseases, the condition typically begins at an initial point and then spreads along neuroanatomical tracts. This feature of disease progression suggests the spreading of prion-like proteins called prionoids in the affected tissues, which is similar to the spread of prion observed in Creutzfeldt-Jakob disease. Intensive research over the last decade has proposed the ALS-causing gene products Cu/Zn superoxide dismutase 1, TAR DNA-binding protein of 43 kDa, and fused in sarcoma as very plausible prionoids contributing to the spread of the pathology. In this review, we will discuss the molecular and cellular mechanisms leading to the propagation of these prionoids in ALS.
Collapse
Affiliation(s)
- Philippe Gosset
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - William Camu
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | | |
Collapse
|
18
|
Kishino Y, Matsukawa K, Matsumoto T, Miyazaki R, Wakabayashi T, Nonaka T, Kametani F, Hasegawa M, Hashimoto T, Iwatsubo T. Casein kinase 1δ/ε phosphorylates fused in sarcoma (FUS) and ameliorates FUS-mediated neurodegeneration. J Biol Chem 2022; 298:102191. [PMID: 35753345 PMCID: PMC9293781 DOI: 10.1016/j.jbc.2022.102191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Aberrant cytoplasmic accumulation of an RNA-binding protein, fused in sarcoma (FUS), characterizes the neuropathology of subtypes of ALS and frontotemporal lobar degeneration, although the effects of post-translational modifications of FUS, especially phosphorylation, on its neurotoxicity have not been fully characterized. Here, we show that casein kinase 1δ (CK1δ) phosphorylates FUS at 10 serine/threonine residues in vitro using mass spectrometric analyses. We also show that phosphorylation by CK1δ or CK1ε significantly increased the solubility of FUS in human embryonic kidney 293 cells. In transgenic Drosophila that overexpress wt or P525L ALS-mutant human FUS in the retina or in neurons, we found coexpression of human CK1δ or its Drosophila isologue Dco in the photoreceptor neurons significantly ameliorated the observed retinal degeneration, and neuronal coexpression of human CK1δ extended fly life span. Taken together, our data suggest a novel regulatory mechanism of the assembly and toxicity of FUS through CK1δ/CK1ε-mediated phosphorylation, which could represent a potential therapeutic target in FUS proteinopathies.
Collapse
Affiliation(s)
- Yuya Kishino
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Pathology, Graduate School of Medicine, The University of Tokyo; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Koji Matsukawa
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo
| | - Taisei Matsumoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo
| | - Ryota Miyazaki
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Fuyuki Kametani
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry; Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo.
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo.
| |
Collapse
|
19
|
Tsai YL, Mu YC, Manley JL. Nuclear RNA transcript levels modulate nucleocytoplasmic distribution of ALS/FTD-associated protein FUS. Sci Rep 2022; 12:8180. [PMID: 35581240 PMCID: PMC9114323 DOI: 10.1038/s41598-022-12098-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Fused in Sarcoma (FUS) is a nuclear RNA/DNA binding protein that mislocalizes to the cytoplasm in the neurodegenerative diseases ALS and FTD. Despite the existence of FUS pathogenic mutations that result in nuclear import defects, a subset of ALS/FTD patients display cytoplasmic accumulation of wild-type FUS, although the underlying mechanism is unclear. Here we confirm that transcriptional inhibition, specifically of RNA polymerase II (RNAP II), induces FUS cytoplasmic translocation, but we show that several other stresses do not. We found unexpectedly that the epitope specificity of different FUS antibodies significantly affects the apparent FUS nucleocytoplasmic ratio as determined by immunofluorescence, explaining inconsistent observations in previous studies. Significantly, depletion of the nuclear mRNA export factor NXF1 or RNA exosome cofactor MTR4 promotes FUS nuclear retention, even when transcription is repressed, while mislocalization was independent of the nuclear protein export factor CRM1 and import factor TNPO1. Finally, we report that levels of nascent RNAP II transcripts, including those known to bind FUS, are reduced in sporadic ALS iPS cells, linking possible aberrant transcriptional control and FUS cytoplasmic mislocalization. Our findings thus reveal that factors that influence accumulation of nuclear RNAP II transcripts modulate FUS nucleocytoplasmic homeostasis, and provide evidence that reduced RNAP II transcription can contribute to FUS mislocalization to the cytoplasm in ALS.
Collapse
Affiliation(s)
- Yueh-Lin Tsai
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Yu Chun Mu
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
20
|
Abstract
Biomolecular condensates are intracellular organelles that are not bounded by membranes and often show liquid-like, dynamic material properties. They typically contain various types of proteins and nucleic acids. How the interaction of proteins and nucleic acids finally results in dynamic condensates is not fully understood. Here we use optical tweezers and fluorescence microscopy to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) condenses with individual molecules of single- and double-stranded DNA. We find that FUS adsorbs on DNA in a monolayer and hence generates an effectively sticky FUS–DNA polymer that collapses and finally forms a dynamic, reversible FUS–DNA co-condensate. We speculate that protein monolayer-based protein–nucleic acid co-condensation is a general mechanism for forming intracellular membraneless organelles. Biomolecular condensates provide distinct compartments that can localize and organize biochemistry inside cells. Recent evidence suggests that condensate formation is prevalent in the cell nucleus. To understand how different components of the nucleus interact during condensate formation is an important challenge. In particular, the physics of co-condensation of proteins together with nucleic acids remains elusive. Here we use optical tweezers to study how the prototypical prion-like protein Fused-in-Sarcoma (FUS) forms liquid-like assemblies in vitro, by co-condensing together with individual DNA molecules. Through progressive force-induced peeling of dsDNA, buffer exchange, and force measurements, we show that FUS adsorbing in a single layer on DNA effectively generates a sticky FUS–DNA polymer that can collapse to form a liquid-like FUS–DNA co-condensate. Condensation occurs at constant DNA tension for double-stranded DNA, which is a signature of phase separation. We suggest that co-condensation mediated by protein monolayer adsorption on nucleic acids is an important mechanism for intracellular compartmentalization.
Collapse
|
21
|
Rhine K, Dasovich M, Yoniles J, Badiee M, Skanchy S, Ganser L, Ge Y, Fare CM, Shorter J, Leung AKL, Myong S. Poly(ADP-ribose) drives condensation of FUS via a transient interaction. Mol Cell 2022; 82:969-985.e11. [PMID: 35182479 PMCID: PMC9330637 DOI: 10.1016/j.molcel.2022.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) (PAR) is an RNA-like polymer that regulates an increasing number of biological processes. Dysregulation of PAR is implicated in neurodegenerative diseases characterized by abnormal protein aggregation, including amyotrophic lateral sclerosis (ALS). PAR forms condensates with FUS, an RNA-binding protein linked with ALS, through an unknown mechanism. Here, we demonstrate that a strikingly low concentration of PAR (1 nM) is sufficient to trigger condensation of FUS near its physiological concentration (1 μM), which is three orders of magnitude lower than the concentration at which RNA induces condensation (1 μM). Unlike RNA, which associates with FUS stably, PAR interacts with FUS transiently, triggering FUS to oligomerize into condensates. Moreover, inhibition of a major PAR-synthesizing enzyme, PARP5a, diminishes FUS condensation in cells. Despite their structural similarity, PAR and RNA co-condense with FUS, driven by disparate modes of interaction with FUS. Thus, we uncover a mechanism by which PAR potently seeds FUS condensation.
Collapse
Affiliation(s)
- Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Morgan Dasovich
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joey Yoniles
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sophie Skanchy
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Laura Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yingda Ge
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charlotte M. Fare
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony K. L. Leung
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.,Corresponding Authors; &
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Physics Frontier Center (Center for the Physics of Living Cells), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
22
|
The Novel Protease Activities of JMJD5–JMJD6–JMJD7 and Arginine Methylation Activities of Arginine Methyltransferases Are Likely Coupled. Biomolecules 2022; 12:biom12030347. [PMID: 35327545 PMCID: PMC8945206 DOI: 10.3390/biom12030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
The surreptitious discoveries of the protease activities on arginine-methylated targets of a subfamily of Jumonji domain-containing family including JMJD5, JMJD6, and JMJD7 pose several questions regarding their authenticity, function, purpose, and relations with others. At the same time, despite several decades of efforts and massive accumulating data regarding the roles of the arginine methyltransferase family (PRMTs), the exact function of this protein family still remains a mystery, though it seems to play critical roles in transcription regulation, including activation and inactivation of a large group of genes, as well as other biological activities. In this review, we aim to elucidate that the function of JMJD5/6/7 and PRMTs are likely coupled. Besides roles in the regulation of the biogenesis of membrane-less organelles in cells, they are major players in regulating stimulating transcription factors to control the activities of RNA Polymerase II in higher eukaryotes, especially in the animal kingdom. Furthermore, we propose that arginine methylation by PRMTs could be a ubiquitous action marked for destruction after missions by a subfamily of the Jumonji protein family.
Collapse
|
23
|
Carey JL, Guo L. Liquid-Liquid Phase Separation of TDP-43 and FUS in Physiology and Pathology of Neurodegenerative Diseases. Front Mol Biosci 2022; 9:826719. [PMID: 35187086 PMCID: PMC8847598 DOI: 10.3389/fmolb.2022.826719] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation of RNA-binding proteins mediates the formation of numerous membraneless organelles with essential cellular function. However, aberrant phase transition of these proteins leads to the formation of insoluble protein aggregates, which are pathological hallmarks of neurodegenerative diseases including ALS and FTD. TDP-43 and FUS are two such RNA-binding proteins that mislocalize and aggregate in patients of ALS and FTD. They have similar domain structures that provide multivalent interactions driving their phase separation in vitro and in the cellular environment. In this article, we review the factors that mediate and regulate phase separation of TDP-43 and FUS. We also review evidences that connect the phase separation property of TDP-43 and FUS to their functional roles in cells. Aberrant phase transition of TDP-43 and FUS leads to protein aggregation and disrupts their regular cell function. Therefore, restoration of functional protein phase of TDP-43 and FUS could be beneficial for neuronal cells. We discuss possible mechanisms for TDP-43 and FUS aberrant phase transition and aggregation while reviewing the methods that are currently being explored as potential therapeutic strategies to mitigate aberrant phase transition and aggregation of TDP-43 and FUS.
Collapse
Affiliation(s)
| | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
24
|
Baskoylu SN, Chapkis N, Unsal B, Lins J, Schuch K, Simon J, Hart AC. Disrupted autophagy and neuronal dysfunction in C. elegans knockin models of FUS amyotrophic lateral sclerosis. Cell Rep 2022; 38:110195. [PMID: 35081350 DOI: 10.1016/j.celrep.2021.110195] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2021] [Accepted: 12/10/2021] [Indexed: 11/18/2022] Open
Abstract
How mutations in FUS lead to neuronal dysfunction in amyotrophic lateral sclerosis (ALS) patients remains unclear. To examine mechanisms underlying ALS FUS dysfunction, we generate C. elegans knockin models using CRISPR-Cas9-mediated genome editing, creating R524S and P525L ALS FUS models. Although FUS inclusions are not detected, ALS FUS animals show defective neuromuscular function and locomotion under stress. Unlike animals lacking the endogenous FUS ortholog, ALS FUS animals have impaired neuronal autophagy and increased SQST-1 accumulation in motor neurons. Loss of sqst-1, the C. elegans ortholog for ALS-linked, autophagy adaptor protein SQSTM1/p62, suppresses both neuromuscular and stress-induced locomotion defects in ALS FUS animals, but does not suppress neuronal autophagy defects. Therefore, autophagy dysfunction is upstream of, and not dependent on, SQSTM1 function in ALS FUS pathogenesis. Combined, our findings demonstrate that autophagy dysfunction likely contributes to protein homeostasis and neuromuscular defects in ALS FUS knockin animals.
Collapse
Affiliation(s)
- Saba N Baskoylu
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA
| | - Natalie Chapkis
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA
| | - Burak Unsal
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA; Department of Molecular Biology and Genetics, Bogazici University, Istanbul 34342, Turkey
| | - Jeremy Lins
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA
| | - Kelsey Schuch
- Department of Molecular Biology, Cellular Biology & Biochemistry, Brown University, Providence, RI 02906, USA
| | - Jonah Simon
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA
| | - Anne C Hart
- Department of Neuroscience and the Robert J. & Nancy D. Carney Institute for Brain Sciences, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
25
|
Pasha T, Zatorska A, Sharipov D, Rogelj B, Hortobágyi T, Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021; 144:2915-2932. [PMID: 34019093 PMCID: PMC8194669 DOI: 10.1093/brain/awab201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by progressive cell loss that is preceded by the mislocalization and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, α-synuclein, TAR DNA binding protein-43, fused in sarcoma and mutant huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalized aggregates that characterize the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalization and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalization and aggregation of karyopherin α and β proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalization and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Terouz Pasha
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Anna Zatorska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Daulet Sharipov
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Tibor Hortobágyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| |
Collapse
|
26
|
Vanneste J, Van Den Bosch L. The Role of Nucleocytoplasmic Transport Defects in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:12175. [PMID: 34830069 PMCID: PMC8620263 DOI: 10.3390/ijms222212175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
There is ample evidence that nucleocytoplasmic-transport deficits could play an important role in the pathology of amyotrophic lateral sclerosis (ALS). However, the currently available data are often circumstantial and do not fully clarify the exact causal and temporal role of nucleocytoplasmic transport deficits in ALS patients. Gaining this knowledge will be of great significance in order to be able to target therapeutically nucleocytoplasmic transport and/or the proteins involved in this process. The availability of good model systems to study the nucleocytoplasmic transport process in detail will be especially crucial in investigating the effect of different mutations, as well as of other forms of stress. In this review, we discuss the evidence for the involvement of nucleocytoplasmic transport defects in ALS and the methods used to obtain these data. In addition, we provide an overview of the therapeutic strategies which could potentially counteract these defects.
Collapse
Affiliation(s)
- Joni Vanneste
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| |
Collapse
|
27
|
Murthy AC, Tang WS, Jovic N, Janke AM, Seo DH, Perdikari TM, Mittal J, Fawzi NL. Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads. Nat Struct Mol Biol 2021; 28:923-935. [PMID: 34759379 PMCID: PMC8654040 DOI: 10.1038/s41594-021-00677-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/28/2021] [Indexed: 01/23/2023]
Abstract
The RNA-binding protein FUS (Fused in Sarcoma) mediates phase separation in biomolecular condensates and functions in transcription by clustering with RNA polymerase II. Specific contact residues and interaction modes formed by FUS and the C-terminal heptad repeats of RNA polymerase II (CTD) have been suggested but not probed directly. Here we show how RGG domains contribute to phase separation with the FUS N-terminal low-complexity domain (SYGQ LC) and RNA polymerase II CTD. Using NMR spectroscopy and molecular simulations, we demonstrate that many residue types, not solely arginine-tyrosine pairs, form condensed-phase contacts via several interaction modes including, but not only sp2-π and cation-π interactions. In phases also containing RNA polymerase II CTD, many residue types form contacts, including both cation-π and hydrogen-bonding interactions formed by the conserved human CTD lysines. Hence, our data suggest a surprisingly broad array of residue types and modes explain co-phase separation of FUS and RNA polymerase II.
Collapse
Affiliation(s)
- Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Wai Shing Tang
- Graduate Program in Physics, Brown University, Providence, RI, USA
| | - Nina Jovic
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Abigail M Janke
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Da Hee Seo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | | | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
28
|
Yoneda R, Ueda N, Kurokawa R. m 6A Modified Short RNA Fragments Inhibit Cytoplasmic TLS/FUS Aggregation Induced by Hyperosmotic Stress. Int J Mol Sci 2021; 22:ijms222011014. [PMID: 34681673 PMCID: PMC8539258 DOI: 10.3390/ijms222011014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Translocated in LipoSarcoma/Fused in Sarcoma (TLS/FUS) is a nuclear RNA binding protein whose mutations cause amyotrophic lateral sclerosis. TLS/FUS undergoes LLPS and forms membraneless particles with other proteins and nucleic acids. Interaction with RNA alters conformation of TLS/FUS, which affects binding with proteins, but the effect of m6A RNA modification on the TLS/FUS–RNA interaction remains elusive. Here, we investigated the binding specificity of TLS/FUS to m6A RNA fragments by RNA pull down assay, and elucidated that both wild type and ALS-related TLS/FUS mutants strongly bound to m6A modified RNAs. TLS/FUS formed cytoplasmic foci by treating hyperosmotic stress, but the cells transfected with m6A-modified RNAs had a smaller number of foci. Moreover, m6A-modified RNA transfection resulted in the cells obtaining higher resistance to the stress. In summary, we propose TLS/FUS as a novel candidate of m6A recognition protein, and m6A-modified RNA fragments diffuse cytoplasmic TLS/FUS foci and thereby enhance cell viability.
Collapse
|
29
|
Kumar A, Chakraborty D, Mugnai ML, Straub JE, Thirumalai D. Sequence Determines the Switch in the Fibril Forming Regions in the Low-Complexity FUS Protein and Its Variants. J Phys Chem Lett 2021; 12:9026-9032. [PMID: 34516126 PMCID: PMC8826754 DOI: 10.1021/acs.jpclett.1c02310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Residues spanning distinct regions of the low-complexity domain of the RNA-binding protein, Fused in Sarcoma (FUS-LC), form fibril structures with different core morphologies. Solid-state NMR experiments show that the 214-residue FUS-LC forms a fibril with an S-bend (core-1, residues 39-95), while the rest of the protein is disordered. In contrast, the fibrils of the C-terminal variant (FUS-LC-C; residues 111-214) have a U-bend topology (core-2, residues 112-150). Absence of the U-bend in FUS-LC implies that the two fibril cores do not coexist. Computer simulations show that these perplexing findings could be understood in terms of the population of sparsely populated fibril-like excited states in the monomer. The propensity to form core-1 is higher compared to core-2. We predict that core-2 forms only in truncated variants that do not contain the core-1 sequence. At the monomer level, sequence-dependent enthalpic effects determine the relative stabilities of the core-1 and core-2 topologies.
Collapse
Affiliation(s)
- Abhinaw Kumar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mauro Lorenzo Mugnai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
30
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
31
|
Tejido C, Pakravan D, Bosch LVD. Potential Therapeutic Role of HDAC Inhibitors in FUS-ALS. Front Mol Neurosci 2021; 14:686995. [PMID: 34434087 PMCID: PMC8380926 DOI: 10.3389/fnmol.2021.686995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/29/2021] [Indexed: 01/05/2023] Open
Abstract
Mutations in the FUS gene cause amyotrophic lateral sclerosis (ALS-FUS). However, the exact pathogenic mechanism of mutant fused in sarcoma (FUS) protein is not completely understood. FUS is an RNA binding protein (RBP) localized predominantly in the nucleus, but ALS-linked FUS mutations can affect its nuclear localization signal impairing its import into the nucleus. This mislocalization to the cytoplasm facilitates FUS aggregation in cytoplasmic inclusions. Therapies targeting post translational modifications are rising as new treatments for ALS, in particular acetylation which could have a role in the dynamics of RBPs. Research using histone deacetylase (HDAC) inhibitors in FUS-ALS models showed that HDACs can influence cytoplasmic FUS localization. Inhibition of HDACs could promote acetylation of the FUS RNA binding domain (RRM) and altering its RNA interactions resulting in FUS maintenance in the nucleus. In addition, acetylation of FUS RRMs might also favor or disfavor its incorporation into pathological inclusions. In this review, we summarize and discuss the evidence for the potential role of HDACs in the context of FUS-ALS and we propose a new hypothesis based on this overview.
Collapse
Affiliation(s)
- Clara Tejido
- Vlaams Instituut voor Biotechnologie (VIB), Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Donya Pakravan
- Vlaams Instituut voor Biotechnologie (VIB), Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurosciences, Experimental Neurology, Leuven Brain Institute, Katholieke Universiteit Leuven (KU Leuven)-University of Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- Vlaams Instituut voor Biotechnologie (VIB), Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurosciences, Experimental Neurology, Leuven Brain Institute, Katholieke Universiteit Leuven (KU Leuven)-University of Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Sternburg EL, Gruijs da Silva LA, Dormann D. Post-translational modifications on RNA-binding proteins: accelerators, brakes, or passengers in neurodegeneration? Trends Biochem Sci 2021; 47:6-22. [PMID: 34366183 DOI: 10.1016/j.tibs.2021.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are critical players in RNA expression and metabolism, thus, the proper regulation of this class of proteins is critical for cellular health. Regulation of RBPs often occurs through post-translational modifications (PTMs), which allow the cell to quickly and efficiently respond to cellular and environmental stimuli. PTMs have recently emerged as important regulators of RBPs implicated in neurodegenerative disorders, in particular amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we summarize how disease-associated PTMs influence the biophysical properties, molecular interactions, subcellular localization, and function of ALS/FTD-linked RBPs, such as FUS and TDP-43. We will discuss how PTMs are believed to play pathological, protective, or ambiguous roles in these neurodegenerative disorders.
Collapse
Affiliation(s)
- Erin L Sternburg
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
| | - Lara A Gruijs da Silva
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Dorothee Dormann
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
33
|
Ismail H, Liu X, Yang F, Li J, Zahid A, Dou Z, Liu X, Yao X. Mechanisms and regulation underlying membraneless organelle plasticity control. J Mol Cell Biol 2021; 13:239-258. [PMID: 33914074 PMCID: PMC8339361 DOI: 10.1093/jmcb/mjab028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution has enabled living cells to adopt their structural and functional complexity by organizing intricate cellular compartments, such as membrane-bound and membraneless organelles (MLOs), for spatiotemporal catalysis of physiochemical reactions essential for cell plasticity control. Emerging evidence and view support the notion that MLOs are built by multivalent interactions of biomolecules via phase separation and transition mechanisms. In healthy cells, dynamic chemical modifications regulate MLO plasticity, and reversible phase separation is essential for cell homeostasis. Emerging evidence revealed that aberrant phase separation results in numerous neurodegenerative disorders, cancer, and other diseases. In this review, we provide molecular underpinnings on (i) mechanistic understanding of phase separation, (ii) unifying structural and mechanistic principles that underlie this phenomenon, (iii) various mechanisms that are used by cells for the regulation of phase separation, and (iv) emerging therapeutic and other applications.
Collapse
Affiliation(s)
- Hazrat Ismail
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xu Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Keck Center for Organoids Plasticity Control, Atlanta, GA 30310, USA
| | - Junying Li
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Ayesha Zahid
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and CAS Center for Excellence in Molecular Cell Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
- Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, Hefei 230027, China
| |
Collapse
|
34
|
Friedman AK, Boeynaems S, Baker LA. Synthetic hydrogel mimics of the nuclear pore complex for the study of nucleocytoplasmic transport defects in C9orf72 ALS/FTD. Anal Bioanal Chem 2021; 414:525-532. [PMID: 34170347 DOI: 10.1007/s00216-021-03478-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
Dipeptide repeats (DPRs) associated with C9orf72 repeat expansions perturb nucleocytoplasmic transport and are implicated in the pathogenesis of amyotrophic lateral sclerosis. We present a synthetic hydrogel platform that can be used to analyze aspects of the molecular interaction of dipeptide repeats and the phenylalanine-glycine (FG) phase of the nuclear pore complex (NPC). Hydrogel scaffolds composed of acrylamide and copolymerized with FG monomers are first formed to recapitulate key FG interactions found in the NPC. With labeled probes, we find evidence that toxic arginine-rich DPRs (poly-GR and poly-PR), but not the non-toxic poly-GP, target NPC hydrogel mimics and block selective entry of a key nuclear transport receptor, importin beta (Impβ). The ease with which these synthetic hydrogel mimics can be adjusted/altered makes them an invaluable tool to dissect complex molecular interactions that underlie cellular transport processes and their perturbation in disease.
Collapse
Affiliation(s)
- Alicia K Friedman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana, 47405, USA.
| |
Collapse
|
35
|
Braems E, Tziortzouda P, Van Den Bosch L. Exploring the alternative: Fish, flies and worms as preclinical models for ALS. Neurosci Lett 2021; 759:136041. [PMID: 34118308 DOI: 10.1016/j.neulet.2021.136041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterized by the loss of upper and lower motor neurons. In general, patients succumb to respiratory insufficiency due to respiratory muscle weakness. Despite many promising therapeutic strategies primarily identified in rodent models, patient trials remain rather unsuccessful. There is a clear need for alternative approaches, which could provide directions towards the justified use of rodents and which increase the likelihood to identify new promising clinical candidates. In the last decades, the use of fast genetic approaches and the development of high-throughput screening platforms in the nematode Caenorhabditis elegans, in the fruit fly (Drosophila melanogaster) and in zebrafish (Danio rerio) have contributed to new insights into ALS pathomechanisms, disease modifiers and therapeutic targets. In this mini-review, we provide an overview of these alternative small animal studies, modeling the most common ALS genes and discuss the most recent preclinical discoveries. We conclude that small animal models will not replace rodent models, yet they clearly represent an important asset for preclinical studies.
Collapse
Affiliation(s)
- Elke Braems
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Paraskevi Tziortzouda
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
36
|
Levone BR, Lenzken SC, Antonaci M, Maiser A, Rapp A, Conte F, Reber S, Mechtersheimer J, Ronchi AE, Mühlemann O, Leonhardt H, Cardoso MC, Ruepp MD, Barabino SM. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J Cell Biol 2021; 220:e202008030. [PMID: 33704371 PMCID: PMC7953258 DOI: 10.1083/jcb.202008030] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/17/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important effectors of the cellular DNA damage response (DDR). The RBP FUS is implicated in RNA metabolism and DNA repair, and it undergoes reversible liquid-liquid phase separation (LLPS) in vitro. Here, we demonstrate that FUS-dependent LLPS is necessary for the initiation of the DDR. Using laser microirradiation in FUS-knockout cells, we show that FUS is required for the recruitment to DNA damage sites of the DDR factors KU80, NBS1, and 53BP1 and of SFPQ, another RBP implicated in the DDR. The relocation of KU80, NBS1, and SFPQ is similarly impaired by LLPS inhibitors, or LLPS-deficient FUS variants. We also show that LLPS is necessary for efficient γH2AX foci formation. Finally, using superresolution structured illumination microscopy, we demonstrate that the absence of FUS impairs the proper arrangement of γH2AX nanofoci into higher-order clusters. These findings demonstrate the early requirement for FUS-dependent LLPS in the activation of the DDR and the proper assembly of DSB repair complexes.
Collapse
Affiliation(s)
- Brunno R. Levone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Silvia C. Lenzken
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marco Antonaci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andreas Maiser
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Alexander Rapp
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Francesca Conte
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefan Reber
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Jonas Mechtersheimer
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Antonella E. Ronchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Marc-David Ruepp
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Silvia M.L. Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
37
|
Solomon DA, Smikle R, Reid MJ, Mizielinska S. Altered Phase Separation and Cellular Impact in C9orf72-Linked ALS/FTD. Front Cell Neurosci 2021; 15:664151. [PMID: 33967699 PMCID: PMC8096919 DOI: 10.3389/fncel.2021.664151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of the C9orf72 repeat expansion mutation as causative for chromosome 9-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in 2011, a multitude of cellular pathways have been implicated. However, evidence has also been accumulating for a key mechanism of cellular compartmentalization—phase separation. Liquid-liquid phase separation (LLPS) is fundamental for the formation of membraneless organelles including stress granules, the nucleolus, Cajal bodies, nuclear speckles and the central channel of the nuclear pore. Evidence has now accumulated showing that the formation and function of these membraneless organelles is impaired by both the toxic arginine rich dipeptide repeat proteins (DPRs), translated from the C9orf72 repeat RNA transcript, and the repeat RNA itself. Both the arginine rich DPRs and repeat RNA themselves undergo phase separation and disrupt the physiological phase separation of proteins involved in the formation of these liquid-like organelles. Hence abnormal phase separation may explain a number of pathological cellular phenomena associated with C9orf72-ALS/FTD. In this review article, we will discuss the principles of phase separation, phase separation of the DPRs and repeat RNA themselves and how they perturb LLPS associated with membraneless organelles and the functional consequences of this. We will then discuss how phase separation may impact the major pathological feature of C9orf72-ALS/FTD, TDP-43 proteinopathy, and how LLPS may be targeted therapeutically in disease.
Collapse
Affiliation(s)
- Daniel A Solomon
- UK Dementia Research Institute at King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Rebekah Smikle
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Sarah Mizielinska
- UK Dementia Research Institute at King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| |
Collapse
|
38
|
Baade I, Hutten S, Sternburg EL, Pörschke M, Hofweber M, Dormann D, Kehlenbach RH. The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors. J Biol Chem 2021; 296:100659. [PMID: 33857479 PMCID: PMC8131929 DOI: 10.1016/j.jbc.2021.100659] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Fused in sarcoma (FUS) is a predominantly nuclear RNA-binding protein with key functions in RNA processing and DNA damage repair. Defects in nuclear import of FUS have been linked to severe neurodegenerative diseases; hence, it is of great interest to understand this process and how it is dysregulated in disease. Transportin-1 (TNPO1) and the closely related transportin-2 have been identified as major nuclear import receptors of FUS. They bind to the C-terminal nuclear localization signal of FUS and mediate the protein's nuclear import and at the same time also suppress aberrant phase transitions of FUS in the cytoplasm. Whether FUS can utilize other nuclear transport receptors for the purpose of import and chaperoning has not been examined so far. Here, we show that FUS directly binds to different import receptors in vitro. FUS formed stable complexes not only with TNPO1 but also with transportin-3, importin β, importin 7, or the importin β/7 heterodimer. Binding of these alternative import receptors required arginine residues within FUS-RG/RGG motifs and was weakened by arginine methylation. Interaction with these importins suppressed FUS phase separation and reduced its sequestration into stress granules. In a permeabilized cell system, we further showed that transportin-3 had the capacity to import FUS into the nucleus, albeit with lower efficiency than TNPO1. Our data suggest that aggregation-prone RNA-binding proteins such as FUS may utilize a network of importins for chaperoning and import, similar to histones and ribosomal proteins.
Collapse
Affiliation(s)
- Imke Baade
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Saskia Hutten
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Erin L Sternburg
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Marius Pörschke
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Mario Hofweber
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Cell Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
39
|
Darling AL, Shorter J. Combating deleterious phase transitions in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118984. [PMID: 33549703 PMCID: PMC7965345 DOI: 10.1016/j.bbamcr.2021.118984] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases. However, the mechanism that induces pathogenic aggregation is not well understood. Recently, it has emerged that several of the pathological proteins found in an aggregated or mislocalized state in neurodegenerative diseases are also able to undergo liquid-liquid phase separation (LLPS) under physiological conditions. Although these phase transitions are likely important for various physiological functions, neurodegenerative disease-related mutations and conditions can alter the LLPS behavior of these proteins, which can elicit toxicity. Therefore, therapeutics that antagonize aberrant LLPS may be able to mitigate toxicity and aggregation that is ubiquitous in neurodegenerative disease. Here, we discuss the mechanisms by which aberrant protein phase transitions may contribute to neurodegenerative disease. We also outline potential therapeutic strategies to counter deleterious phases. State without borders: Membrane-less organelles and liquid-liquid phase transitions edited by Vladimir N Uversky.
Collapse
Affiliation(s)
- April L Darling
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Characterization of design grammar of peptides for regulating liquid droplets and aggregates of FUS. Sci Rep 2021; 11:6643. [PMID: 33758287 PMCID: PMC7988016 DOI: 10.1038/s41598-021-86098-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Liquid droplets of aggregation-prone proteins, which become hydrogels or form amyloid fibrils, are a potential target for drug discovery. In this study, we proposed an experiment-guided protocol for characterizing the design grammar of peptides that can regulate droplet formation and aggregation. The protocol essentially involves investigation of 19 amino acid additives and polymerization of the identified amino acids. As a proof of concept, we applied this protocol to fused in sarcoma (FUS). First, we evaluated 19 amino acid additives for an FUS solution and identified Arg and Tyr as suppressors of droplet formation. Molecular dynamics simulations suggested that the Arg additive interacts with specific residues of FUS, thereby inhibiting the cation-π and electrostatic interactions between the FUS molecules. Second, we observed that Arg polymers promote FUS droplet formation, unlike Arg monomers, by bridging the FUS molecules. Third, we found that the Arg additive suppressed solid aggregate formation of FUS, while Arg polymer enhanced it. Finally, we observed that amyloid-forming peptides induced the conversion of FUS droplets to solid aggregates of FUS. The developed protocol could be used for the primary design of peptides controlling liquid droplets and aggregates of proteins.
Collapse
|
41
|
Guo W, Vandoorne T, Steyaert J, Staats KA, Van Den Bosch L. The multifaceted role of kinases in amyotrophic lateral sclerosis: genetic, pathological and therapeutic implications. Brain 2021; 143:1651-1673. [PMID: 32206784 PMCID: PMC7296858 DOI: 10.1093/brain/awaa022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis is the most common degenerative disorder of motor neurons in adults. As there is no cure, thousands of individuals who are alive at present will succumb to the disease. In recent years, numerous causative genes and risk factors for amyotrophic lateral sclerosis have been identified. Several of the recently identified genes encode kinases. In addition, the hypothesis that (de)phosphorylation processes drive the disease process resulting in selective motor neuron degeneration in different disease variants has been postulated. We re-evaluate the evidence for this hypothesis based on recent findings and discuss the multiple roles of kinases in amyotrophic lateral sclerosis pathogenesis. We propose that kinases could represent promising therapeutic targets. Mainly due to the comprehensive regulation of kinases, however, a better understanding of the disturbances in the kinome network in amyotrophic lateral sclerosis is needed to properly target specific kinases in the clinic.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jolien Steyaert
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Kim A Staats
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, USA
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
42
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
43
|
Brunet MA, Jacques J, Nassari S, Tyzack GE, McGoldrick P, Zinman L, Jean S, Robertson J, Patani R, Roucou X. The FUS gene is dual-coding with both proteins contributing to FUS-mediated toxicity. EMBO Rep 2021; 22:e50640. [PMID: 33226175 PMCID: PMC7788448 DOI: 10.15252/embr.202050640] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Novel functional coding sequences (altORFs) are camouflaged within annotated ones (CDS) in a different reading frame. We show here that an altORF is nested in the FUS CDS, encoding a conserved 170 amino acid protein, altFUS. AltFUS is endogenously expressed in human tissues, notably in the motor cortex and motor neurons. Over-expression of wild-type FUS and/or amyotrophic lateral sclerosis-linked FUS mutants is known to trigger toxic mechanisms in different models. These include inhibition of autophagy, loss of mitochondrial potential and accumulation of cytoplasmic aggregates. We find that altFUS, not FUS, is responsible for the inhibition of autophagy, and pivotal in mitochondrial potential loss and accumulation of cytoplasmic aggregates. Suppression of altFUS expression in a Drosophila model of FUS-related toxicity protects against neurodegeneration. Some mutations found in ALS patients are overlooked because of their synonymous effect on the FUS protein. Yet, we show they exert a deleterious effect causing missense mutations in the overlapping altFUS protein. These findings demonstrate that FUS is a bicistronic gene and suggests that both proteins, FUS and altFUS, cooperate in toxic mechanisms.
Collapse
Affiliation(s)
- Marie A Brunet
- Department of Biochemistry and Functional GenomicsUniversité de SherbrookeSherbrookeQCCanada
- PROTEOQuebec Network for Research on Protein Function, Structure, and EngineeringQuebecQCCanada
| | - Jean‐Francois Jacques
- Department of Biochemistry and Functional GenomicsUniversité de SherbrookeSherbrookeQCCanada
- PROTEOQuebec Network for Research on Protein Function, Structure, and EngineeringQuebecQCCanada
| | - Sonya Nassari
- Immunology and Cell Biology DepartmentUniversité de SherbrookeSherbrookeQCCanada
| | - Giulia E Tyzack
- The Francis Crick InstituteLondonUK
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoONCanada
| | - Lorne Zinman
- Division of NeurologyDepartment of MedicineSunnybrook Health Sciences CentreUniversity of TorontoTorontoONCanada
| | - Steve Jean
- Immunology and Cell Biology DepartmentUniversité de SherbrookeSherbrookeQCCanada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoONCanada
| | - Rickie Patani
- The Francis Crick InstituteLondonUK
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Xavier Roucou
- Department of Biochemistry and Functional GenomicsUniversité de SherbrookeSherbrookeQCCanada
- PROTEOQuebec Network for Research on Protein Function, Structure, and EngineeringQuebecQCCanada
| |
Collapse
|
44
|
Sévigny M, Bourdeau Julien I, Venkatasubramani JP, Hui JB, Dutchak PA, Sephton CF. FUS contributes to mTOR-dependent inhibition of translation. J Biol Chem 2020; 295:18459-18473. [PMID: 33082139 PMCID: PMC7939483 DOI: 10.1074/jbc.ra120.013801] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
The amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)-linked RNA-binding protein called FUS (fused in sarcoma) has been implicated in several aspects of RNA regulation, including mRNA translation. The mechanism by which FUS affects the translation of polyribosomes has not been established. Here we show that FUS can associate with stalled polyribosomes and that this association is sensitive to mTOR (mammalian target of rapamycin) kinase activity. Specifically, we show that FUS association with polyribosomes is increased by Torin1 treatment or when cells are cultured in nutrient-deficient media, but not when cells are treated with rapamycin, the allosteric inhibitor of mTORC1. Moreover, we report that FUS is necessary for efficient stalling of translation because deficient cells are refractory to the inhibition of mTOR-dependent signaling by Torin1. We also show that ALS-linked FUS mutants R521G and P525L associate abundantly with polyribosomes and decrease global protein synthesis. Importantly, the inhibitory effect on translation by FUS is impaired by mutations that reduce its RNA-binding affinity. These findings demonstrate that FUS is an important RNA-binding protein that mediates translational repression through mTOR-dependent signaling and that ALS-linked FUS mutants can cause a toxic gain of function in the cytoplasm by repressing the translation of mRNA at polyribosomes.
Collapse
Affiliation(s)
- Myriam Sévigny
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Isabelle Bourdeau Julien
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Janani Priya Venkatasubramani
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Jeremy B Hui
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Paul A Dutchak
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
45
|
Zhang X, Wang F, Hu Y, Chen R, Meng D, Guo L, Lv H, Guan J, Jia Y. In vivo stress granule misprocessing evidenced in a FUS knock-in ALS mouse model. Brain 2020; 143:1350-1367. [PMID: 32358598 DOI: 10.1093/brain/awaa076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022] Open
Abstract
Many RNA-binding proteins, including TDP-43, FUS, and TIA1, are stress granule components, dysfunction of which causes amyotrophic lateral sclerosis (ALS). However, whether a mutant RNA-binding protein disrupts stress granule processing in vivo in pathogenesis is unknown. Here we establish a FUS ALS mutation, p.R521C, knock-in mouse model that carries impaired motor ability and late-onset motor neuron loss. In disease-susceptible neurons, stress induces mislocalization of mutant FUS into stress granules and upregulation of ubiquitin, two hallmarks of disease pathology. Additionally, stress aggravates motor performance decline in the mutant mouse. By using two-photon imaging in TIA1-EGFP transduced animals, we document more intensely TIA1-EGFP-positive granules formed hours but cleared weeks after stress challenge in neurons in the mutant cortex. Moreover, neurons with severe granule misprocessing die days after stress challenge. Therefore, we argue that stress granule misprocessing is pathogenic in ALS, and the model we provide here is sound for further disease mechanistic study.
Collapse
Affiliation(s)
- Xue Zhang
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Fengchao Wang
- Animal core facility, National Institute of Biological Sciences, Beijing, China
| | - Yi Hu
- School of Life Sciences, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Runze Chen
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Dawei Meng
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Liang Guo
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Hailong Lv
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| | - Jisong Guan
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Science, Beijing, China.,School of Medicine, Medical Science Building, Room D204, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research at Tsinghua Beijing, China
| |
Collapse
|
46
|
Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet 2020; 22:185-198. [PMID: 33235359 DOI: 10.1038/s41576-020-00302-y] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
RNA-binding proteins (RBPs) are critical effectors of gene expression, and as such their malfunction underlies the origin of many diseases. RBPs can recognize hundreds of transcripts and form extensive regulatory networks that help to maintain cell homeostasis. System-wide unbiased identification of RBPs has increased the number of recognized RBPs into the four-digit range and revealed new paradigms: from the prevalence of structurally disordered RNA-binding regions with roles in the formation of membraneless organelles to unsuspected and potentially pervasive connections between intermediary metabolism and RNA regulation. Together with an increasingly detailed understanding of molecular mechanisms of RBP function, these insights are facilitating the development of new therapies to treat malignancies. Here, we provide an overview of RBPs involved in human genetic disorders, both Mendelian and somatic, and discuss emerging aspects in the field with emphasis on molecular mechanisms of disease and therapeutic interventions.
Collapse
Affiliation(s)
- Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain. .,University Pompeu Fabra (UPF), Barcelona, Spain.
| | - Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Juan Valcárcel
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,University Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | |
Collapse
|
47
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
48
|
Pakravan D, Orlando G, Bercier V, Van Den Bosch L. Role and therapeutic potential of liquid-liquid phase separation in amyotrophic lateral sclerosis. J Mol Cell Biol 2020; 13:15-28. [PMID: 32976566 PMCID: PMC8036000 DOI: 10.1093/jmcb/mjaa049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disease selectively affecting motor neurons, leading to progressive paralysis. Although most cases are sporadic, ∼10% are familial. Similar proteins are found in aggregates in sporadic and familial ALS, and over the last decade, research has been focused on the underlying nature of this common pathology. Notably, TDP-43 inclusions are found in almost all ALS patients, while FUS inclusions have been reported in some familial ALS patients. Both TDP-43 and FUS possess ‘low-complexity domains’ (LCDs) and are considered as ‘intrinsically disordered proteins’, which form liquid droplets in vitro due to the weak interactions caused by the LCDs. Dysfunctional ‘liquid–liquid phase separation’ (LLPS) emerged as a new mechanism linking ALS-related proteins to pathogenesis. Here, we review the current state of knowledge on ALS-related gene products associated with a proteinopathy and discuss their status as LLPS proteins. In addition, we highlight the therapeutic potential of targeting LLPS for treating ALS.
Collapse
Affiliation(s)
- Donya Pakravan
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Gabriele Orlando
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Correspondence to: Ludo Van Den Bosch, E-mail:
| |
Collapse
|
49
|
Cao X, Jin X, Liu B. The involvement of stress granules in aging and aging-associated diseases. Aging Cell 2020; 19:e13136. [PMID: 32170904 PMCID: PMC7189987 DOI: 10.1111/acel.13136] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are nonmembrane assemblies formed in cells in response to stress conditions. SGs mainly contain untranslated mRNA and a variety of proteins. RNAs and scaffold proteins with intrinsically disordered regions or RNA-binding domains are essential for the assembly of SGs, and multivalent macromolecular interactions among these components are thought to be the driving forces for SG assembly. The SG assembly process includes regulation through post-translational modification and involvement of the cytoskeletal system. During aging, many intracellular bioprocesses become disrupted by factors such as cellular environmental changes, mitochondrial dysfunction, and decline in the protein quality control system. Such changes could lead to the formation of aberrant SGs, as well as alterations in their maintenance, disassembly, and clearance. These aberrant SGs might in turn promote aging and aging-associated diseases. In this paper, we first review the latest progress on the molecular mechanisms underlying SG assembly and SG functioning under stress conditions. Then, we provide a detailed discussion of the relevance of SGs to aging and aging-associated diseases.
Collapse
Affiliation(s)
- Xiuling Cao
- State Key Laboratory of Subtropical Silviculture School of Forestry and Biotechnology Zhejiang A&F University Hangzhou China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture School of Forestry and Biotechnology Zhejiang A&F University Hangzhou China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture School of Forestry and Biotechnology Zhejiang A&F University Hangzhou China
- Department of Chemistry and Molecular Biology University of Gothenburg Goteborg Sweden
- Center for Large‐scale Cell‐based Screening Faculty of Science University of Gothenburg Goteborg Sweden
| |
Collapse
|
50
|
Abstract
The specific interaction of importins with nuclear localization signals (NLSs) of cargo proteins not only mediates nuclear import but also, prevents their aberrant phase separation and stress granule recruitment in the cytoplasm. The importin Transportin-1 (TNPO1) plays a key role in the (patho-)physiology of both processes. Here, we report that both TNPO1 and Transportin-3 (TNPO3) recognize two nonclassical NLSs within the cold-inducible RNA-binding protein (CIRBP). Our biophysical investigations show that TNPO1 recognizes an arginine-glycine(-glycine) (RG/RGG)-rich region, whereas TNPO3 recognizes a region rich in arginine-serine-tyrosine (RSY) residues. These interactions regulate nuclear localization, phase separation, and stress granule recruitment of CIRBP in cells. The presence of both RG/RGG and RSY regions in numerous other RNA-binding proteins suggests that the interaction of TNPO1 and TNPO3 with these nonclassical NLSs may regulate the formation of membraneless organelles and subcellular localization of numerous proteins.
Collapse
|