1
|
Vidi PA, Liu J, Bonin K, Bloom K. Closing the loops: chromatin loop dynamics after DNA damage. Nucleus 2025; 16:2438633. [PMID: 39720924 DOI: 10.1080/19491034.2024.2438633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/26/2024] Open
Abstract
Chromatin is a dynamic polymer in constant motion. These motions are heterogeneous between cells and within individual cell nuclei and are profoundly altered in response to DNA damage. The shifts in chromatin motions following genomic insults depend on the temporal and physical scales considered. They are also distinct in damaged and undamaged regions. In this review, we emphasize the role of chromatin tethering and loop formation in chromatin dynamics, with the view that pulsing loops are key contributors to chromatin motions. Chromatin tethers likely mediate micron-scale chromatin coherence predicted by polymer models and measured experimentally, and we propose that remodeling of the tethers in response to DNA breaks enables uncoupling of damaged and undamaged chromatin regions.
Collapse
Affiliation(s)
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Chen JK, Liu T, Cai S, Ruan W, Ng CT, Shi J, Surana U, Gan L. Nanoscale analysis of human G1 and metaphase chromatin in situ. EMBO J 2025; 44:2658-2694. [PMID: 40097852 PMCID: PMC12048539 DOI: 10.1038/s44318-025-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
The structure of chromatin at the nucleosome level inside cells is still incompletely understood. Here we present in situ electron cryotomography analyses of chromatin in both G1 and metaphase RPE-1 cells. G1 nucleosomes are concentrated in globular chromatin domains, and metaphase nucleosomes are concentrated in the chromatids. Classification analysis reveals that canonical mononucleosomes, and in some conditions ordered stacked dinucleosomes and mononucleosomes with a disordered gyre-proximal density, are abundant in both cell-cycle states. We do not detect class averages that have more than two stacked nucleosomes or side-by-side dinucleosomes, suggesting that groups of more than two nucleosomes are heterogeneous. Large multi-megadalton structures are abundant in G1 nucleoplasm, but not found in G1 chromatin domains and metaphase chromatin. The macromolecular phenotypes studied here represent a starting point for the comparative analysis of compaction in normal vs. unhealthy human cells, in other cell-cycle states, other organisms, and in vitro chromatin assemblies.
Collapse
Affiliation(s)
- Jon Ken Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Weimei Ruan
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
3
|
Maeshima K. The shifting paradigm of chromatin structure: from the 30-nm chromatin fiber to liquid-like organization. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025:pjab.101.020. [PMID: 40301047 DOI: 10.2183/pjab.101.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The organization and dynamics of chromatin are critical for genome functions such as transcription and DNA replication/repair. Historically, chromatin was assumed to fold into the 30-nm fiber and progressively arrange into larger helical structures, as described in the textbook model. However, over the past 15 years, extensive evidence including our studies has dramatically transformed the view of chromatin from a static, regular structure to one that is more variable and dynamic. In higher eukaryotic cells, chromatin forms condensed yet liquid-like domains, which appear to be the basic unit of chromatin structure, replacing the 30-nm fiber. These domains maintain proper accessibility, ensuring the regulation of DNA reaction processes. During mitosis, these domains assemble to form more gel-like mitotic chromosomes, which are further constrained by condensins and other factors. Based on the available evidence, I discuss the physical properties of chromatin in live cells, emphasizing its viscoelastic nature-balancing local fluidity with global stability to support genome functions.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS
- Graduate Institute for Advanced Studies, SOKENDAI
| |
Collapse
|
4
|
Benhassoun R, Morel AP, Jacquot V, Puisieux A, Ouzounova M. The epipliancy journey: Tumor initiation at the mercy of identity crisis and epigenetic drift. Biochim Biophys Acta Rev Cancer 2025; 1880:189307. [PMID: 40174706 DOI: 10.1016/j.bbcan.2025.189307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Cellular pliancy refers to the unique disposition of different stages of cellular differentiation to transform when exposed to specific oncogenic insults. This concept highlights a strong interconnection between cellular identity and tumorigenesis, and implies overcoming of epigenetic barriers defining cellular states. Emerging evidence suggests that the cell-type-specific response to intrinsic and extrinsic stresses is modulated by accessibility to certain areas of the genome. Understanding the interplay between epigenetic mechanisms, cellular differentiation, and oncogenic insults is crucial for deciphering the complex nature of tumorigenesis and developing targeted therapies. Hence, cellular pliancy relies on a dynamic cooperation between the cellular identity and the cellular context through epigenetic control, including the reactivation of cellular mechanisms, such as epithelial-to-mesenchymal transition (EMT). Such mechanisms and pathways confer plasticity to the cell allowing it to adapt to a hostile environment in a context of tumor initiation, thus changing its cellular identity. Indeed, growing evidence suggests that cancer is a disease of cell identity crisis, whereby differentiated cells lose their defined identity and gain progenitor characteristics. The loss of cell fate commitment is a central feature of tumorigenesis and appears to be a prerequisite for neoplastic transformation. In this context, EMT-inducing transcription factors (EMT-TFs) cooperate with mitogenic oncoproteins to foster malignant transformation. The aberrant activation of EMT-TFs plays an active role in tumor initiation by alleviating key oncosuppressive mechanisms and by endowing cancer cells with stem cell-like properties, including the ability to self-renew, thus changing the course of tumorigenesis. This highly dynamic phenotypic change occurs concomitantly to major epigenome reorganization, a key component of cell differentiation and cancer cell plasticity regulation. The concept of pliancy was initially proposed to address a fundamental question in cancer biology: why are some cells more likely to become cancerous in response to specific oncogenic events at particular developmental stages? We propose the concept of epipliancy, whereby a difference in epigenetic configuration leads to malignant transformation following an oncogenic insult. Here, we present recent studies furthering our understanding of how the epigenetic landscape may impact the modulation of cellular pliancy during early stages of cancer initiation.
Collapse
Affiliation(s)
- Rahma Benhassoun
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France
| | - Anne-Pierre Morel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France
| | - Victoria Jacquot
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France
| | - Alain Puisieux
- Equipe labellisée Ligue contre le cancer, U1339 Inserm - UMR3666 CNRS, Paris, France; Institut Curie, PSL Research University, Paris, France
| | - Maria Ouzounova
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France.
| |
Collapse
|
5
|
Acosta N, Gong R, Su Y, Frederick J, Medina KI, Li WS, Mohammadian K, Almassalha L, Wang G, Backman V. Three-color single-molecule localization microscopy in chromatin. LIGHT, SCIENCE & APPLICATIONS 2025; 14:123. [PMID: 40091134 PMCID: PMC11911409 DOI: 10.1038/s41377-025-01786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Super-resolution microscopy has revolutionized our ability to visualize structures below the diffraction limit of conventional optical microscopy and is particularly useful for investigating complex biological targets like chromatin. Chromatin exhibits a hierarchical organization with structural compartments and domains at different length scales, from nanometers to micrometers. Single molecule localization microscopy (SMLM) methods, such as STORM, are essential for studying chromatin at the supra-nucleosome level due to their ability to target epigenetic marks that determine chromatin organization. Multi-label imaging of chromatin is necessary to unpack its structural complexity. However, these efforts are challenged by the high-density nuclear environment, which can affect antibody binding affinities, diffusivity and non-specific interactions. Optimizing buffer conditions, fluorophore stability, and antibody specificity is crucial for achieving effective antibody conjugates. Here, we demonstrate a sequential immunolabeling protocol that reliably enables three-color studies within the dense nuclear environment. This protocol couples multiplexed localization datasets with a robust analysis algorithm, which utilizes localizations from one target as seed points for distance, density and multi-label joint affinity measurements to explore complex organization of all three targets. Applying this multiplexed algorithm to analyze distance and joint density reveals that heterochromatin and euchromatin are not-distinct territories, but that localization of transcription and euchromatin couple with the periphery of heterochromatic clusters. This work is a crucial step in molecular imaging of the dense nuclear environment as multi-label capacity enables for investigation of complex multi-component systems like chromatin with enhanced accuracy.
Collapse
Affiliation(s)
- Nicolas Acosta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ruyi Gong
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yuanzhe Su
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Karla I Medina
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- IBIS Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Wing Shun Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Applied Physics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Kiana Mohammadian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Luay Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Geng Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
6
|
Merino MF, Cosma MP, Neguembor MV. Super-resolving chromatin in its own terms: Recent approaches to portray genomic organization. Curr Opin Struct Biol 2025; 92:103021. [PMID: 40037101 DOI: 10.1016/j.sbi.2025.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Chromatin organizes in a highly hierarchical manner that affects gene regulation. While many discoveries in the field have been driven by genomic techniques, super-resolution microscopy has proved to be an essential method to fully understand folding in single cells. In this article we summarize the main strategies to probe chromatin architecture using single-molecule localization microscopy and some of the key findings this has enabled. We specifically focus on the recent developments in techniques using oligonucleotide libraries and how their versatility drives multiplexing. These multiplexed libraries allow to super-resolve architectural proteins, DNA folding and transcription. We compare the latest results in this field and reflect about the future of these methods.
Collapse
Affiliation(s)
- Manuel Fernández Merino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain; Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Barcelona, 08028, Spain.
| |
Collapse
|
7
|
Britto LS, Balasubramani D, Desai S, Phillips P, Trehan N, Cesarman E, Koff JL, Singh A. T Cells Spatially Regulate B Cell Receptor Signaling in Lymphomas through H3K9me3 Modifications. Adv Healthc Mater 2025; 14:e2401192. [PMID: 38837879 PMCID: PMC11617604 DOI: 10.1002/adhm.202401192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is a subtype associated with poor survival outcomes. Despite identifying therapeutic targets through molecular characterization, targeted therapies have limited success. New strategies using immune-competent tissue models are needed to understand how DLBCL cells evade treatment. Here, synthetic hydrogel-based lymphoma organoids are used to demonstrate how signals in the lymphoid tumor microenvironment (Ly-TME) can alter B cell receptor (BCR) signaling and specific histone modifications, tri-methylation of histone 3 at lysine 9 (H3K9me3), dampening the effects of BCR pathway inhibition. Using imaging modalities, T cells increase DNA methyltransferase 3A expression and cytoskeleton formation in proximal ABC-DLBCL cells, regulated by H3K9me3. Expansion microscopy on lymphoma organoids reveals T cells increase the size and quantity of segregated H3K9me3 clusters in ABC-DLBCL cells. Findings suggest the re-organization of higher-order chromatin structures that may contribute to evasion or resistance to therapy via the emergence of novel transcriptional states. Treating ABC-DLBCL cells with a G9α histone methyltransferase inhibitor reverses T cell-mediated modulation of H3K9me3 and overcomes T cell-mediated attenuation of treatment response to BCR pathway inhibition. This study emphasizes the Ly-TME's role in altering DLBCL fate and suggests targeting aberrant signaling and microenvironmental cross-talk that can benefit high-risk patients.
Collapse
Affiliation(s)
- Lucy S. Britto
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Deepali Balasubramani
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Sona Desai
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Phunterion Phillips
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Neev Trehan
- St Richards HospitalUniversity Hospitals Sussex NHS Foundation TrustChichesterWest SussexPO19 6SEUK
| | - Ethel Cesarman
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNY10065USA
| | - Jean L. Koff
- Winship Cancer CenterEmory University School of MedicineAtlantaGA30307USA
| | - Ankur Singh
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30318USA
- Petit Institute for Bioengineering and BiosciencesGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
8
|
Ma G, Fu X, Zhou L, Babarinde IA, Shi L, Yang W, Chen J, Xiao Z, Qiao Y, Ma L, Ou Y, Li Y, Chang C, Deng B, Zhang R, Sun L, Tong G, Li D, Li Y, Hutchins AP. The nuclear matrix stabilizes primed-specific genes in human pluripotent stem cells. Nat Cell Biol 2025; 27:232-245. [PMID: 39789220 DOI: 10.1038/s41556-024-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size. Mechanistically, HNRNPU acts as a transcriptional co-factor that anchors promoters of primed-specific genes to the nuclear matrix with POLII to promote their expression and their RNA stability. Overall, HNRNPU promotes cell-type stability and when reduced promotes conversion to earlier embryonic states.
Collapse
Affiliation(s)
- Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Qiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lisha Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Ou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chen Chang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guoqing Tong
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
9
|
Sugo N, Atsumi Y, Yamamoto N. Transcription and epigenetic factor dynamics in neuronal activity-dependent gene regulation. Trends Genet 2025:S0168-9525(24)00316-0. [PMID: 39875312 DOI: 10.1016/j.tig.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
Neuronal activity, including sensory-evoked and spontaneous firing, regulates the expression of a subset of genes known as activity-dependent genes. A key issue in this process is the activation and accumulation of transcription factors (TFs), which bind to cis-elements at specific enhancers and promoters, ultimately driving RNA synthesis through transcription machinery. Epigenetic factors such as histone modifiers also play a crucial role in facilitating the specific binding of TFs. Recent evidence from epigenome analyses and imaging studies have revealed intriguing mechanisms: the default chromatin structure at activity-dependent genes is formed independently of neuronal activity, while neuronal activity modulates spatiotemporal dynamics of TFs and their interactions with epigenetic factors (EFs). In this article we review new insights into activity-dependent gene regulation that affects brain development and plasticity.
Collapse
Affiliation(s)
- Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yuri Atsumi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuhiko Yamamoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| |
Collapse
|
10
|
Anjum F, Kaushik K, Salam A, Nandi CK. Chromatin Marks H3K4me3 and H3K9me3 in Triple-Negative Breast Cancer Cell Lines. Adv Biol (Weinh) 2025:e2400752. [PMID: 39841002 DOI: 10.1002/adbi.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/03/2025] [Indexed: 01/23/2025]
Abstract
Triple-negative breast cancer (TNBC) is the most lethal and aggressive breast cancer among all the breast cancer subtypes. Despite several attempts, to date, there is an extensive lack of therapeutic intervention. Hence, there is a dire need for an effective biomarker to timely diagnose TNBC. Here, utilizing super-resolution microscopy, the remodeling structural aspects of euchromatin and heterochromatin in TNBC are studied and the results are compared with non-cancerous and non-TNBC cell lines. The nanoscopic visualization reveals a distinct difference in chromatin remodeling in TNBC in comparison to the other two cell lines. While the euchromatin density is found to increase, the heterochromatin is found to decrease. A complete switching of the heterochromatin-euchromatin ratio is observed in TNBC cells thus proposing that chromatin remodeling and chromatin morphological changes can be pursued as one of the targets for diagnostic purposes. Increased expression of structure specific recognition protein-1(SSRP-1) protein supports the increased rate of chromatin remodeling in breast cancer cell lines. The results may lead to developing a new strategy for diagnosing TNBC patients.
Collapse
Affiliation(s)
- Farhan Anjum
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| |
Collapse
|
11
|
Wall BPG, Nguyen M, Harrell JC, Dozmorov MG. Machine and Deep Learning Methods for Predicting 3D Genome Organization. Methods Mol Biol 2025; 2856:357-400. [PMID: 39283464 DOI: 10.1007/978-1-0716-4136-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Three-dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, topologically associating domains (TADs), and A/B compartments, play critical roles in a wide range of cellular processes by regulating gene expression. Recent development of chromatin conformation capture technologies has enabled genome-wide profiling of various 3D structures, even with single cells. However, current catalogs of 3D structures remain incomplete and unreliable due to differences in technology, tools, and low data resolution. Machine learning methods have emerged as an alternative to obtain missing 3D interactions and/or improve resolution. Such methods frequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA sequencing information (k-mers and transcription factor binding site (TFBS) motifs), and other genomic properties to learn the associations between genomic features and chromatin interactions. In this review, we discuss computational tools for predicting three types of 3D interactions (EPIs, chromatin interactions, and TAD boundaries) and analyze their pros and cons. We also point out obstacles to the computational prediction of 3D interactions and suggest future research directions.
Collapse
Affiliation(s)
- Brydon P G Wall
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - My Nguyen
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Center for Pharmaceutical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
12
|
Chen L, Maristany MJ, Farr SE, Luo J, Gibson BA, Doolittle LK, Espinosa JR, Huertas J, Redding S, Collepardo-Guevara R, Rosen MK. Nucleosome Spacing Can Fine-Tune Higher Order Chromatin Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.627571. [PMID: 39763792 PMCID: PMC11703229 DOI: 10.1101/2024.12.23.627571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization in vivo. Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation. We show that as DNA linkers extend from 25 bp to 30 bp, as examplars of 10N+5 and 10N (integer N) bp lengths, chromatin condensates become less thermodynamically stable and nucleosome mobility increases. Simulations reveal that this is due to trade-offs between inter- and intramolecular nucleosome stacking, favored by rigid 10N+5 and 10N bp linkers, respectively. A remodeler can induce or inhibit phase separation by moving nucleosomes, changing the balance between intra- and intermolecular stacking. The intrinsic phase separation capacity of chromatin enables fine tuning of compaction and dynamics, likely contributing to heterogeneous chromatin organization in vivo.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - M. Julia Maristany
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Equal contributions
| | - Stephen E. Farr
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Equal contributions
| | - Jinyue Luo
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bryan A. Gibson
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Current address: Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN. 38105-3678, USA
| | - Lynda K. Doolittle
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jorge R. Espinosa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sy Redding
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Michael K. Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
13
|
Dong Y, Peng J, Zhang X, Wang Q, Lyu X. SAHA inhibits lung fibroblast activation by increasing p66Shc expression epigenetically. Aging Med (Milton) 2024; 7:790-801. [PMID: 39777101 PMCID: PMC11702475 DOI: 10.1002/agm2.12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives To investigate the effects of suberoylanilide hydroxamic acid (SAHA) on lung fibroblast activation and to examine the role of p66Shc in this process. Methods An in vitro pulmonary fibrosis model was established using transforming growth factor-β (TGF-β)-induced MRC-5 lung fibroblasts. The proliferation and migration capacities of MRC-5 cells, along with the expression of fibrosis-related genes, were assessed following treatment with SAHA and/or silence of p66Shc. Results In TGF-β-induced MRC-5 lung fibroblasts, SAHA treatment significantly inhibited cell proliferation and migration, as well as the expression of fibrosis-related genes, including collagen I and α-smooth muscle actin (SMA). Western blot and immunofluorescence assays revealed that SAHA increased p66Shc expression in both whole cells and mitochondria. Additionally, mito-SOX assay confirmed that SAHA treatment led to a marked accumulation of mitochondrial reactive oxygen species (ROS). However, silencing of p66Shc significantly reversed the aforementioned effects of SAHA on MRC-5 cells. Furthermore, chromatin immunoprecipitation (ChIP) assays demonstrated that SAHA enhanced active histone markers, H3K9Ac and H3K4Me3, in the p66Shc gene region. Conclusions SAHA alleviates lung fibroblast activation and migration by increasing p66Shc expression and mitochondrial ROS generation through epigenetic modifications of histone 3.
Collapse
Affiliation(s)
- Yiheng Dong
- Department of GeriatricsThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Jieting Peng
- Department of Geriatric Respiratory and SleepThe First Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouHenanChina
| | - Xiangyu Zhang
- Department of GeriatricsThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Qiong Wang
- Department of GeriatricsThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Xing Lyu
- Department of Laboratory MedicineThe Second Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
14
|
Attar AG, Paturej J, Banigan EJ, Erbaş A. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus. Nucleus 2024; 15:2351957. [PMID: 38753956 PMCID: PMC11407394 DOI: 10.1080/19491034.2024.2351957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a "wetting"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.
Collapse
Affiliation(s)
- Ali Goktug Attar
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | | | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Institute of Physics, University of Silesia, Chorzów, Poland
| |
Collapse
|
15
|
Gupta R, Goswami Y, Yuan L, Roy B, Pereiro E, Shivashankar GV. Correlative light and soft X-ray tomography of in situ mesoscale heterochromatin structure in intact cells. Sci Rep 2024; 14:27706. [PMID: 39532928 PMCID: PMC11557596 DOI: 10.1038/s41598-024-77361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Heterochromatin organization is critical to many genome-related programs including transcriptional silencing and DNA repair. While super-resolution imaging, electron microscopy, and multiomics methods have provided indirect insights into the heterochromatin organization, a direct measurement of mesoscale heterochromatin ultrastructure is still missing. We use a combination of correlative light microscopy and cryo-soft X-ray tomography (CLXT) to analyze heterochromatin organization in the intact hydrated state of human mammary fibroblast cells. Our analysis reveals that the heterochromatin ultra-structure has a typical mean domain size of approximately 80 nm and a mean separation of approximately 120 nm between domains. Functional perturbations yield further insights into the molecular density and alterations in the mesoscale organization of the heterochromatin regions. Furthermore, our polymer simulations provide a mechanistic basis for the experimentally observed size and separation distributions of the mesoscale chromatin domains. Collectively, our results provide direct, label-free observation of heterochromatin organization in the intact hydrated state of cells.
Collapse
Affiliation(s)
- Rajshikhar Gupta
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Yagyik Goswami
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
| | - Luezhen Yuan
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Bibhas Roy
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Secunderabad, India
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona, Spain
| | - G V Shivashankar
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
16
|
Kendek A, Sandron A, Lambooij JP, Colmenares S, Pociunaite S, Gooijers I, de Groot L, Karpen G, Janssen A. DNA double-strand break movement in heterochromatin depends on the histone acetyltransferase dGcn5. Nucleic Acids Res 2024; 52:11753-11767. [PMID: 39258543 PMCID: PMC11514474 DOI: 10.1093/nar/gkae775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Cells employ diverse strategies to repair double-strand breaks (DSBs), a dangerous form of DNA damage that threatens genome integrity. Eukaryotic nuclei consist of different chromatin environments, each displaying distinct molecular and biophysical properties that can significantly influence the DSB-repair process. DSBs arising in the compact and silenced heterochromatin domains have been found to move to the heterochromatin periphery in mouse and Drosophila to prevent aberrant recombination events. However, it is poorly understood how chromatin components, such as histone post-translational modifications, contribute to these DSB movements within heterochromatin. Using irradiation as well as locus-specific DSB induction in Drosophila tissues and cultured cells, we find enrichment of histone H3 lysine 9 acetylation (H3K9ac) at DSBs in heterochromatin but not euchromatin. We find this increase is mediated by the histone acetyltransferase dGcn5, which rapidly localizes to heterochromatic DSBs. Moreover, we demonstrate that in the absence of dGcn5, heterochromatic DSBs display impaired recruitment of the SUMO E3 ligase Nse2/Qjt and fail to relocate to the heterochromatin periphery to complete repair. In summary, our results reveal a previously unidentified role for dGcn5 and H3K9ac in heterochromatic DSB repair and underscore the importance of differential chromatin responses at heterochromatic and euchromatic DSBs to promote safe repair.
Collapse
Affiliation(s)
- Apfrida Kendek
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Arianna Sandron
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Jan-Paul Lambooij
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Serafin U Colmenares
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,Berkeley, California, USA
| | - Severina M Pociunaite
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Iris Gooijers
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Lars de Groot
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Gary H Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,Berkeley, California, USA
- Division of Biological Sciences and the Environment, Lawrence Berkeley National Laboratory, CA 94720, Berkeley, California, USA
| | - Aniek Janssen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| |
Collapse
|
17
|
Lacen A, Lee HT. Tracing the Chromatin: From 3C to Live-Cell Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:659-682. [PMID: 39483638 PMCID: PMC11523001 DOI: 10.1021/cbmi.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 11/03/2024]
Abstract
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| | - Hui-Ting Lee
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
18
|
Labade AS, Chiang ZD, Comenho C, Reginato PL, Payne AC, Earl AS, Shrestha R, Duarte FM, Habibi E, Zhang R, Church GM, Boyden ES, Chen F, Buenrostro JD. Expansion in situ genome sequencing links nuclear abnormalities to hotspots of aberrant euchromatin repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614614. [PMID: 39386718 PMCID: PMC11463693 DOI: 10.1101/2024.09.24.614614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microscopy and genomics are both used to characterize cell function, but approaches to connect the two types of information are lacking, particularly at subnuclear resolution. While emerging multiplexed imaging methods can simultaneously localize genomic regions and nuclear proteins, their ability to accurately measure DNA-protein interactions is constrained by the diffraction limit of optical microscopy. Here, we describe expansion in situ genome sequencing (ExIGS), a technology that enables sequencing of genomic DNA and superresolution localization of nuclear proteins in single cells. We applied ExIGS to fibroblast cells derived from an individual with Hutchinson-Gilford progeria syndrome to characterize how variation in nuclear morphology affects spatial chromatin organization. Using this data, we discovered that lamin abnormalities are linked to hotspots of aberrant euchromatin repression that may erode cell identity. Further, we show that lamin abnormalities heterogeneously increase the repressive environment of the nucleus in tissues and aged cells. These results demonstrate that ExIGS may serve as a generalizable platform for connecting nuclear abnormalities to changes in gene regulation across disease contexts.
Collapse
|
19
|
Iida S, Ide S, Tamura S, Sasai M, Tani T, Goto T, Shribak M, Maeshima K. Orientation-independent-DIC imaging reveals that a transient rise in depletion attraction contributes to mitotic chromosome condensation. Proc Natl Acad Sci U S A 2024; 121:e2403153121. [PMID: 39190347 PMCID: PMC11388287 DOI: 10.1073/pnas.2403153121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Genomic information must be faithfully transmitted into two daughter cells during mitosis. To ensure the transmission process, interphase chromatin is further condensed into mitotic chromosomes. Although protein factors like condensins and topoisomerase IIα are involved in the assembly of mitotic chromosomes, the physical bases of the condensation process remain unclear. Depletion attraction/macromolecular crowding, an effective attractive force that arises between large structures in crowded environments around chromosomes, may contribute to the condensation process. To approach this issue, we investigated the "chromosome milieu" during mitosis of living human cells using an orientation-independent-differential interference contrast module combined with a confocal laser scanning microscope, which is capable of precisely mapping optical path differences and estimating molecular densities. We found that the molecular density surrounding chromosomes increased with the progression from prophase to anaphase, concurring with chromosome condensation. However, the molecular density went down in telophase, when chromosome decondensation began. Changes in the molecular density around chromosomes by hypotonic or hypertonic treatment consistently altered the condensation levels of chromosomes. In vitro, native chromatin was converted into liquid droplets of chromatin in the presence of cations and a macromolecular crowder. Additional crowder made the chromatin droplets stiffer and more solid-like. These results suggest that a transient rise in depletion attraction, likely triggered by the relocation of macromolecules (proteins, RNAs, and others) via nuclear envelope breakdown and by a subsequent decrease in cell volumes, contributes to mitotic chromosome condensation, shedding light on a different aspect of the condensation mechanism in living human cells.
Collapse
Affiliation(s)
- Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
- Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
- Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
| | - Masaki Sasai
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto606-8103, Japan
- Department of Complex Systems Science, Nagoya University, Nagoya464-8603, Japan
| | - Tomomi Tani
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka563-8577, Japan
| | - Tatsuhiko Goto
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido080-8555, Japan
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido080-8555, Japan
| | | | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
- Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| |
Collapse
|
20
|
Rahman F, Augoustides V, Tyler E, Daugird TA, Arthur C, Legant WR. Mapping the nuclear landscape with multiplexed super-resolution fluorescence microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605159. [PMID: 39211261 PMCID: PMC11360932 DOI: 10.1101/2024.07.27.605159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The nucleus coordinates many different processes. Visualizing how these are spatially organized requires imaging protein complexes, epigenetic marks, and DNA across scales from single molecules to the whole nucleus. To accomplish this, we developed a multiplexed imaging protocol to localize 13 different nuclear targets with nanometer precision in single cells. We show that nuclear specification into active and repressive states exists along a spectrum of length scales, emerging below one micron and becoming strengthened at the nanoscale with unique organizational principles in both heterochromatin and euchromatin. HP1-α was positively correlated with DNA at the microscale but uncorrelated at the nanoscale. RNA Polymerase II, p300, and CDK9 were positively correlated at the microscale but became partitioned below 300 nm. Perturbing histone acetylation or transcription disrupted nanoscale organization but had less effect at the microscale. We envision that our imaging and analysis pipeline will be useful to reveal the organizational principles not only of the cell nucleus but also other cellular compartments.
Collapse
|
21
|
Lakadamyali M. From feulgen to modern methods: marking a century of DNA imaging advances. Histochem Cell Biol 2024; 162:13-22. [PMID: 38753186 PMCID: PMC11227465 DOI: 10.1007/s00418-024-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/07/2024]
Abstract
The mystery of how human DNA is compactly packaged into a nucleus-a space a hundred thousand times smaller-while still allowing for the regulation of gene function, has long been one of the greatest enigmas in cell biology. This puzzle is gradually being solved, thanks in part to the advent of new technologies. Among these, innovative genome-labeling techniques combined with high-resolution imaging methods have been pivotal. These methods facilitate the visualization of DNA within intact nuclei and have significantly contributed to our current understanding of genome organization. This review will explore various labeling and imaging approaches that are revolutionizing our understanding of the three-dimensional organization of the genome, shedding light on the relationship between its structure and function.
Collapse
Affiliation(s)
- Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
22
|
Xu J, Sun X, Chen Z, Ma H, Liu Y. Super-resolution imaging of T lymphocyte activation reveals chromatin decondensation and disrupted nuclear envelope. Commun Biol 2024; 7:717. [PMID: 38858440 PMCID: PMC11164909 DOI: 10.1038/s42003-024-06393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
T lymphocyte activation plays a pivotal role in adaptive immune response and alters the spatial organization of nuclear architecture that subsequently impacts transcription activities. Here, using stochastic optical reconstruction microscopy (STORM), we observe dramatic de-condensation of chromatin and the disruption of nuclear envelope at a nanoscale resolution upon T lymphocyte activation. Super-resolution imaging reveals that such alterations in nuclear architecture are accompanied by the release of nuclear DNA into the cytoplasm, correlating with the degree of chromatin decompaction within the nucleus. The authors show that under the influence of metabolism, T lymphocyte activation de-condenses chromatin, disrupts the nuclear envelope, and releases DNA into the cytoplasm. Taken together, this result provides a direct, molecular-scale insight into the alteration in nuclear architecture. It suggests the release of nuclear DNA into the cytoplasm as a general consequence of chromatin decompaction after lymphocyte activation.
Collapse
Affiliation(s)
- Jianquan Xu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xuejiao Sun
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zhangguo Chen
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hongqiang Ma
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Bioengineering, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
23
|
Hildebrand EM, Polovnikov K, Dekker B, Liu Y, Lafontaine DL, Fox AN, Li Y, Venev SV, Mirny LA, Dekker J. Mitotic chromosomes are self-entangled and disentangle through a topoisomerase-II-dependent two-stage exit from mitosis. Mol Cell 2024; 84:1422-1441.e14. [PMID: 38521067 PMCID: PMC11756355 DOI: 10.1016/j.molcel.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/23/2023] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.
Collapse
Affiliation(s)
- Erica M Hildebrand
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Bastiaan Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yu Liu
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| | - Denis L Lafontaine
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - A Nicole Fox
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ying Li
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
24
|
Del Blanco B, Niñerola S, Martín-González AM, Paraíso-Luna J, Kim M, Muñoz-Viana R, Racovac C, Sanchez-Mut JV, Ruan Y, Barco Á. Kdm1a safeguards the topological boundaries of PRC2-repressed genes and prevents aging-related euchromatinization in neurons. Nat Commun 2024; 15:1781. [PMID: 38453932 PMCID: PMC10920760 DOI: 10.1038/s41467-024-45773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Kdm1a is a histone demethylase linked to intellectual disability with essential roles during gastrulation and the terminal differentiation of specialized cell types, including neurons, that remains highly expressed in the adult brain. To explore Kdm1a's function in adult neurons, we develop inducible and forebrain-restricted Kdm1a knockouts. By applying multi-omic transcriptome, epigenome and chromatin conformation data, combined with super-resolution microscopy, we find that Kdm1a elimination causes the neuronal activation of nonneuronal genes that are silenced by the polycomb repressor complex and interspersed with active genes. Functional assays demonstrate that the N-terminus of Kdm1a contains an intrinsically disordered region that is essential to segregate Kdm1a-repressed genes from the neighboring active chromatin environment. Finally, we show that the segregation of Kdm1a-target genes is weakened in neurons during natural aging, underscoring the role of Kdm1a safeguarding neuronal genome organization and gene silencing throughout life.
Collapse
Affiliation(s)
- Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| | - Sergio Niñerola
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Ana M Martín-González
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Juan Paraíso-Luna
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
- Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Minji Kim
- The Jackson laboratory for Genomic Medicine, Farmington, CT, 06030, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rafael Muñoz-Viana
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
- Bioinformatics Unit, Hospital universitario Puerta de Hierro Majadahonda, 28220, Majadahonda, Spain
| | - Carina Racovac
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Jose V Sanchez-Mut
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Yijun Ruan
- The Jackson laboratory for Genomic Medicine, Farmington, CT, 06030, USA
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, P.R. China
| | - Ángel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
25
|
Wall BPG, Nguyen M, Harrell JC, Dozmorov MG. Machine and deep learning methods for predicting 3D genome organization. ARXIV 2024:arXiv:2403.03231v1. [PMID: 38495565 PMCID: PMC10942493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Three-Dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, Topologically Associating Domains (TADs), and A/B compartments play critical roles in a wide range of cellular processes by regulating gene expression. Recent development of chromatin conformation capture technologies has enabled genome-wide profiling of various 3D structures, even with single cells. However, current catalogs of 3D structures remain incomplete and unreliable due to differences in technology, tools, and low data resolution. Machine learning methods have emerged as an alternative to obtain missing 3D interactions and/or improve resolution. Such methods frequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA sequencing information (k-mers, Transcription Factor Binding Site (TFBS) motifs), and other genomic properties to learn the associations between genomic features and chromatin interactions. In this review, we discuss computational tools for predicting three types of 3D interactions (EPIs, chromatin interactions, TAD boundaries) and analyze their pros and cons. We also point out obstacles of computational prediction of 3D interactions and suggest future research directions.
Collapse
Affiliation(s)
- Brydon P. G. Wall
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - My Nguyen
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - J. Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Pharmaceutical Engineering, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
26
|
Iida S, Ide S, Tamura S, Tani T, Goto T, Shribak M, Maeshima K. Orientation-Independent-DIC imaging reveals that a transient rise in depletion force contributes to mitotic chromosome condensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.11.566679. [PMID: 37986866 PMCID: PMC10659371 DOI: 10.1101/2023.11.11.566679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Genomic information must be faithfully transmitted into two daughter cells during mitosis. To ensure the transmission process, interphase chromatin is further condensed into mitotic chromosomes. Although protein factors like condensins and topoisomerase IIα are involved in the assembly of mitotic chromosomes, the physical bases of the condensation process remain unclear. Depletion force/macromolecular crowding, an effective attractive force that arises between large structures in crowded environments around chromosomes, may contribute to the condensation process. To approach this issue, we investigated the "chromosome milieu" during mitosis of living human cells using orientation-independent-differential interference contrast (OI-DIC) module combined with a confocal laser scanning microscope, which is capable of precisely mapping optical path differences and estimating molecular densities. We found that the molecular density surrounding chromosomes increased with the progression from prometaphase to anaphase, concurring with chromosome condensation. However, the molecular density went down in telophase, when chromosome decondensation began. Changes in the molecular density around chromosomes by hypotonic or hypertonic treatment consistently altered the condensation levels of chromosomes. In vitro, native chromatin was converted into liquid droplets of chromatin in the presence of cations and a macromolecular crowder. Additional crowder made the chromatin droplets stiffer and more solid-like, with further condensation. These results suggest that a transient rise in depletion force, likely triggered by the relocation of macromolecules (proteins, RNAs and others) via nuclear envelope breakdown and also by a subsequent decrease in cell-volumes, contributes to mitotic chromosome condensation, shedding light on a new aspect of the condensation mechanism in living human cells.
Collapse
Affiliation(s)
- Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tomomi Tani
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| | - Tatsuhiko Goto
- Research Center for Global Agromedicine and Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Michael Shribak
- Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543, USA
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
27
|
Maeshima K, Iida S, Shimazoe MA, Tamura S, Ide S. Is euchromatin really open in the cell? Trends Cell Biol 2024; 34:7-17. [PMID: 37385880 DOI: 10.1016/j.tcb.2023.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Genomic DNA is wrapped around a core histone octamer and forms a nucleosome. In higher eukaryotic cells, strings of nucleosomes are irregularly folded as chromatin domains that act as functional genome units. According to a typical textbook model, chromatin can be categorized into two types, euchromatin and heterochromatin, based on its degree of compaction. Euchromatin is open, while heterochromatin is closed and condensed. However, is euchromatin really open in the cell? New evidence from genomics and advanced imaging studies has revealed that euchromatin consists of condensed liquid-like domains. Condensed chromatin seems to be the default chromatin state in higher eukaryotic cells. We discuss this novel view of euchromatin in the cell and how the revealed organization is relevant to genome functions.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Masa A Shimazoe
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
28
|
Demmerle J, Hao S, Cai D. Transcriptional condensates and phase separation: condensing information across scales and mechanisms. Nucleus 2023; 14:2213551. [PMID: 37218279 PMCID: PMC10208215 DOI: 10.1080/19491034.2023.2213551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Transcription is the fundamental process of gene expression, which in eukaryotes occurs within the complex physicochemical environment of the nucleus. Decades of research have provided extreme detail in the molecular and functional mechanisms of transcription, but the spatial and genomic organization of transcription remains mysterious. Recent discoveries show that transcriptional components can undergo phase separation and create distinct compartments inside the nucleus, providing new models through which to view the transcription process in eukaryotes. In this review, we focus on transcriptional condensates and their phase separation-like behaviors. We suggest differentiation between physical descriptions of phase separation and the complex and dynamic biomolecular assemblies required for productive gene expression, and we discuss how transcriptional condensates are central to organizing the three-dimensional genome across spatial and temporal scales. Finally, we map approaches for therapeutic manipulation of transcriptional condensates and ask what technical advances are needed to understand transcriptional condensates more completely.
Collapse
Affiliation(s)
- Justin Demmerle
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Siyuan Hao
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Xu L, Kan S, Yu X, Liu Y, Fu Y, Peng Y, Liang Y, Cen Y, Zhu C, Jiang W. Deep learning enables stochastic optical reconstruction microscopy-like superresolution image reconstruction from conventional microscopy. iScience 2023; 26:108145. [PMID: 37867953 PMCID: PMC10587619 DOI: 10.1016/j.isci.2023.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/05/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
Despite its remarkable potential for transforming low-resolution images, deep learning faces significant challenges in achieving high-quality superresolution microscopy imaging from wide-field (conventional) microscopy. Here, we present X-Microscopy, a computational tool comprising two deep learning subnets, UR-Net-8 and X-Net, which enables STORM-like superresolution microscopy image reconstruction from wide-field images with input-size flexibility. X-Microscopy was trained using samples of various subcellular structures, including cytoskeletal filaments, dot-like, beehive-like, and nanocluster-like structures, to generate prediction models capable of producing images of comparable quality to STORM-like images. In addition to enabling multicolour superresolution image reconstructions, X-Microscopy also facilitates superresolution image reconstruction from different conventional microscopic systems. The capabilities of X-Microscopy offer promising prospects for making superresolution microscopy accessible to a broader range of users, going beyond the confines of well-equipped laboratories.
Collapse
Affiliation(s)
- Lei Xu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Shichao Kan
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiying Yu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ye Liu
- HAMD (Ningbo) Intelligent Medical Technology Co., Ltd, Ningbo 315194, China
| | - Yuxia Fu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiqiang Peng
- HAMD (Ningbo) Intelligent Medical Technology Co., Ltd, Ningbo 315194, China
| | - Yanhui Liang
- HAMD (Ningbo) Intelligent Medical Technology Co., Ltd, Ningbo 315194, China
| | - Yigang Cen
- Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
| | - Changjun Zhu
- Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
30
|
García Fernández F, Huet S, Miné-Hattab J. Multi-Scale Imaging of the Dynamic Organization of Chromatin. Int J Mol Sci 2023; 24:15975. [PMID: 37958958 PMCID: PMC10649806 DOI: 10.3390/ijms242115975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chromatin is now regarded as a heterogeneous and dynamic structure occupying a non-random position within the cell nucleus, where it plays a key role in regulating various functions of the genome. This current view of chromatin has emerged thanks to high spatiotemporal resolution imaging, among other new technologies developed in the last decade. In addition to challenging early assumptions of chromatin being regular and static, high spatiotemporal resolution imaging made it possible to visualize and characterize different chromatin structures such as clutches, domains and compartments. More specifically, super-resolution microscopy facilitates the study of different cellular processes at a nucleosome scale, providing a multi-scale view of chromatin behavior within the nucleus in different environments. In this review, we describe recent imaging techniques to study the dynamic organization of chromatin at high spatiotemporal resolution. We also discuss recent findings, elucidated by these techniques, on the chromatin landscape during different cellular processes, with an emphasis on the DNA damage response.
Collapse
Affiliation(s)
- Fabiola García Fernández
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, 75005 Paris, France;
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, 35000 Rennes, France;
- Institut Universitaire de France, 75231 Paris, France
| | - Judith Miné-Hattab
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, 75005 Paris, France;
| |
Collapse
|
31
|
Shevelyov YY. Interactions of Chromatin with the Nuclear Lamina and Nuclear Pore Complexes. Int J Mol Sci 2023; 24:15771. [PMID: 37958755 PMCID: PMC10649103 DOI: 10.3390/ijms242115771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Heterochromatin and euchromatin form different spatial compartments in the interphase nucleus, with heterochromatin being localized mainly at the nuclear periphery. The mechanisms responsible for peripheral localization of heterochromatin are still not fully understood. The nuclear lamina and nuclear pore complexes were obvious candidates for the role of heterochromatin binders. This review is focused on recent studies showing that heterochromatin interactions with the nuclear lamina and nuclear pore complexes maintain its peripheral localization. Differences in chromatin interactions with the nuclear envelope in cell populations and in individual cells are also discussed.
Collapse
Affiliation(s)
- Yuri Y Shevelyov
- Laboratory of Analysis of Gene Regulation, National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
32
|
Hehmeyer J, Spitz F, Marlow H. Shifting landscapes: the role of 3D genomic organizations in gene regulatory strategies. Curr Opin Genet Dev 2023; 81:102064. [PMID: 37390583 PMCID: PMC10547022 DOI: 10.1016/j.gde.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023]
Abstract
3D genome folding enables the physical storage of chromosomes into the compact volume of a cell's nucleus, allows for the accurate segregation of chromatin to daughter cells, and has been shown to be tightly coupled to the way in which genetic information is converted into transcriptional programs [1-3]. Importantly, this link between chromatin architecture and gene regulation is a selectable feature in which modifications to chromatin organization accompany, or perhaps even drive the establishment of new regulatory strategies with enduring impacts on animal body plan complexity. Here, we discuss the nature of different 3D genome folding systems found across the tree of life, with particular emphasis on metazoans, and the relative influence of these systems on gene regulation. We suggest how the properties of these folding systems have influenced regulatory strategies employed by different lineages and may have catalyzed the partitioning and specialization of genetic programs that enabled multicellularity and organ-grade body plan complexity.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Department of Organismal Biology and Anatomy, The University of Chicago, USA
| | - François Spitz
- Department of Human Genetics, The University of Chicago, USA
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, USA.
| |
Collapse
|
33
|
Pradhan S, Apaydin S, Bucevičius J, Gerasimaitė R, Kostiuk G, Lukinavičius G. Sequence-specific DNA labelling for fluorescence microscopy. Biosens Bioelectron 2023; 230:115256. [PMID: 36989663 DOI: 10.1016/j.bios.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.
Collapse
|
34
|
Erdel F. Phase transitions in heterochromatin organization. Curr Opin Struct Biol 2023; 80:102597. [PMID: 37087823 DOI: 10.1016/j.sbi.2023.102597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Heterochromatin formation has been proposed to involve phase transitions on the level of the three-dimensional folding of heterochromatin regions and the liquid-liquid demixing of heterochromatin proteins. Here, I outline the hallmarks of such transitions and the current challenges to detect them in living cells. I further discuss the abundance and properties of prominent heterochromatin proteins and relate them to their potential role in driving phase transitions. Recent data from mouse fibroblasts indicate that pericentric heterochromatin is organized via a reordering transition on the level of heterochromatin regions that does not necessarily involve liquid-liquid demixing of heterochromatin proteins. Evaluating key hallmarks of the different candidate phase transition mechanisms across cell types and species will be needed to complete the current picture.
Collapse
Affiliation(s)
- Fabian Erdel
- MCD, Center for Integrative Biology (CBI), CNRS, UPS, Toulouse, France.
| |
Collapse
|
35
|
Nozaki T, Shinkai S, Ide S, Higashi K, Tamura S, Shimazoe MA, Nakagawa M, Suzuki Y, Okada Y, Sasai M, Onami S, Kurokawa K, Iida S, Maeshima K. Condensed but liquid-like domain organization of active chromatin regions in living human cells. SCIENCE ADVANCES 2023; 9:eadf1488. [PMID: 37018405 PMCID: PMC10075990 DOI: 10.1126/sciadv.adf1488] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/07/2023] [Indexed: 05/31/2023]
Abstract
In eukaryotes, higher-order chromatin organization is spatiotemporally regulated as domains, for various cellular functions. However, their physical nature in living cells remains unclear (e.g., condensed domains or extended fiber loops; liquid-like or solid-like). Using novel approaches combining genomics, single-nucleosome imaging, and computational modeling, we investigated the physical organization and behavior of early DNA replicated regions in human cells, which correspond to Hi-C contact domains with active chromatin marks. Motion correlation analysis of two neighbor nucleosomes shows that nucleosomes form physically condensed domains with ~150-nm diameters, even in active chromatin regions. The mean-square displacement analysis between two neighbor nucleosomes demonstrates that nucleosomes behave like a liquid in the condensed domain on the ~150 nm/~0.5 s spatiotemporal scale, which facilitates chromatin accessibility. Beyond the micrometers/minutes scale, chromatin seems solid-like, which may contribute to maintaining genome integrity. Our study reveals the viscoelastic principle of the chromatin polymer; chromatin is locally dynamic and reactive but globally stable.
Collapse
Affiliation(s)
- Tadasu Nozaki
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Soya Shinkai
- Laboratory for Developmental Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Koichi Higashi
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
- Genome Evolution Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masa A. Shimazoe
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Masaki Nakagawa
- Department of Computer Science and Engineering, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, University of Tokyo, 5-1-5 Kashiwanoha Kashiwa, Chiba 277-8562, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka 565-0874, Japan
| | - Masaki Sasai
- Department of Complex Systems Science, Nagoya University, Nagoya 464-8601, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Ken Kurokawa
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
- Genome Evolution Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
36
|
Wang S, Luo Z, Liu W, Hu T, Zhao Z, Rosenfeld MG, Song X. The 3D genome and its impacts on human health and disease. LIFE MEDICINE 2023; 2:lnad012. [PMID: 39872109 PMCID: PMC11749360 DOI: 10.1093/lifemedi/lnad012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 03/20/2023] [Indexed: 01/29/2025]
Abstract
Eukaryotic genomes are highly compacted in the cell nucleus. Two loci separated by a long linear distance can be brought into proximity in space through DNA-binding proteins and RNAs, which contributes profoundly to the regulation of gene expression. Recent technology advances have enabled the development and application of the chromosome conformation capture (3C) technique and a host of 3C-based methods that enable genome-scale investigations into changes in chromatin high-order structures during diverse physiological processes and diseases. In this review, we introduce 3C-based technologies and discuss how they can be utilized to glean insights into the impacts of three-dimensional (3D) genome organization in normal physiological and disease processes.
Collapse
Affiliation(s)
- Siqi Wang
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhengyu Luo
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Weiguang Liu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tengfei Hu
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
37
|
Attenuation of Ventilation-Enhanced Epithelial–Mesenchymal Transition through the Phosphoinositide 3-Kinase-γ in a Murine Bleomycin-Induced Acute Lung Injury Model. Int J Mol Sci 2023; 24:ijms24065538. [PMID: 36982609 PMCID: PMC10053679 DOI: 10.3390/ijms24065538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Mechanical ventilation (MV) used in patients with acute lung injury (ALI) induces lung inflammation and causes fibroblast proliferation and excessive collagen deposition—a process termed epithelial–mesenchymal transition (EMT). Phosphoinositide 3-kinase-γ (PI3K-γ) is crucial in modulating EMT during the reparative phase of ALI; however, the mechanisms regulating the interactions among MV, EMT, and PI3K-γ remain unclear. We hypothesized that MV with or without bleomycin treatment would increase EMT through the PI3K-γ pathway. C57BL/6 mice, either wild-type or PI3K-γ-deficient, were exposed to 6 or 30 mL/kg MV for 5 h after receiving 5 mg/kg AS605240 intraperitoneally 5 days after bleomycin administration. We found that, after bleomycin exposure in wild-type mice, high-tidal-volume MV induced substantial increases in inflammatory cytokine production, oxidative loads, Masson’s trichrome staining level, positive staining of α-smooth muscle actin, PI3K-γ expression, and bronchial epithelial apoptosis (p < 0.05). Decreased respiratory function, antioxidants, and staining of the epithelial marker Zonula occludens-1 were also observed (p < 0.05). MV-augmented bleomycin-induced pulmonary fibrogenesis and epithelial apoptosis were attenuated in PI3K-γ-deficient mice, and we found pharmacological inhibition of PI3K-γ activity through AS605240 (p < 0.05). Our data suggest that MV augmented EMT after bleomycin-induced ALI, partially through the PI3K-γ pathway. Therapy targeting PI3K-γ may ameliorate MV-associated EMT.
Collapse
|
38
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
39
|
Ma F, Akolkar H, Xu J, Liu Y, Popova D, Xie J, Youssef MM, Benosman R, Hart RP, Herrup K. The Amyloid Precursor Protein Modulates the Position and Length of the Axon Initial Segment. J Neurosci 2023; 43:1830-1844. [PMID: 36717226 PMCID: PMC10010458 DOI: 10.1523/jneurosci.0172-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the β-amyloid (Aβ) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aβ are intensively studied, yet the normal functions of APP itself have generated less interest. We report here that glutamate stimulation of neuronal activity leads to a rapid increase in App gene expression. In mouse and human neurons, elevated APP protein changes the structure of the axon initial segment (AIS) where action potentials are initiated. The AIS is shortened in length and shifts away from the cell body. The GCaMP8f Ca2+ reporter confirms the predicted decrease in neuronal activity. NMDA antagonists or knockdown of App block the glutamate effects. The actions of APP on the AIS are cell-autonomous; exogenous Aβ, either fibrillar or oligomeric, has no effect. In culture, APPSwe (a familial AD mutation) induces larger AIS changes than wild type APP. Ankyrin G and βIV-spectrin, scaffolding proteins of the AIS, both physically associate with APP, more so in AD brains. Finally, in humans with sporadic AD or in the R1.40 AD mouse model, both females and males, neurons have elevated levels of APP protein that invade the AIS. In vivo as in vitro, this increased APP is associated with a significant shortening of the AIS. The findings outline a new role for the APP and encourage a reconsideration of its relationship to AD.SIGNIFICANCE STATEMENT While the amyloid precursor protein (APP) has long been associated with Alzheimer's disease (AD), the normal functions of the full-length Type I membrane protein have been largely unexplored. We report here that the levels of APP protein increase with neuronal activity. In vivo and in vitro, modest amounts of excess APP alter the properties of the axon initial segment. The β-amyloid peptide derived from APP is without effect. Consistent with the observed changes in the axon initial segment which would be expected to decrease action potential firing, we show that APP expression depresses neuronal activity. In mouse AD models and human sporadic AD, APP physically associates with the scaffolding proteins of the axon initial segment, suggesting a relationship with AD dementia.
Collapse
Affiliation(s)
- Fulin Ma
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Himanshu Akolkar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Dina Popova
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
| | - Jiaan Xie
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mark M Youssef
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Ryad Benosman
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Ronald P Hart
- Human Genetics Institute, Rutgers University, Piscataway, NJ 08854
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Departments of Medicine and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
40
|
Ball ML, Koestler SA, Muresan L, Rehman SA, O’Holleran K, White R. The anatomy of transcriptionally active chromatin loops in Drosophila primary spermatocytes using super-resolution microscopy. PLoS Genet 2023; 19:e1010654. [PMID: 36867662 PMCID: PMC10016678 DOI: 10.1371/journal.pgen.1010654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 02/04/2023] [Indexed: 03/04/2023] Open
Abstract
While the biochemistry of gene transcription has been well studied, our understanding of how this process is organised in 3D within the intact nucleus is less well understood. Here we investigate the structure of actively transcribed chromatin and the architecture of its interaction with active RNA polymerase. For this analysis, we have used super-resolution microscopy to image the Drosophila melanogaster Y loops which represent huge, several megabases long, single transcription units. The Y loops provide a particularly amenable model system for transcriptionally active chromatin. We find that, although these transcribed loops are decondensed they are not organised as extended 10nm fibres, but rather they largely consist of chains of nucleosome clusters. The average width of each cluster is around 50nm. We find that foci of active RNA polymerase are generally located off the main fibre axis on the periphery of the nucleosome clusters. Foci of RNA polymerase and nascent transcripts are distributed around the Y loops rather than being clustered in individual transcription factories. However, as the RNA polymerase foci are considerably less prevalent than the nucleosome clusters, the organisation of this active chromatin into chains of nucleosome clusters is unlikely to be determined by the activity of the polymerases transcribing the Y loops. These results provide a foundation for understanding the topological relationship between chromatin and the process of gene transcription.
Collapse
Affiliation(s)
- Madeleine L. Ball
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Stefan A. Koestler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Sohaib Abdul Rehman
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Kevin O’Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Mansisidor AR, Risca VI. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 2022; 13:236-276. [PMID: 36404679 PMCID: PMC9683059 DOI: 10.1080/19491034.2022.2143106] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022] Open
Abstract
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
Collapse
Affiliation(s)
- Andrés R. Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
42
|
Han L, Mich-Basso JD, Li Y, Ammanamanchi N, Xu J, Bargaje AP, Liu H, Wu L, Jeong JH, Franks J, Stolz DB, Wu YL, Rajasundaram D, Liu Y, Kühn B. Changes in nuclear pore numbers control nuclear import and stress response of mouse hearts. Dev Cell 2022; 57:2397-2411.e9. [PMID: 36283391 PMCID: PMC9614572 DOI: 10.1016/j.devcel.2022.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/24/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Nuclear pores are essential for nuclear-cytoplasmic transport. Whether and how cells change nuclear pores to alter nuclear transport and cellular function is unknown. Here, we show that rat heart muscle cells (cardiomyocytes) undergo a 63% decrease in nuclear pore numbers during maturation, and this changes their responses to extracellular signals. The maturation-associated decline in nuclear pore numbers is associated with lower nuclear import of signaling proteins such as mitogen-activated protein kinase (MAPK). Experimental reduction of nuclear pore numbers decreased nuclear import of signaling proteins, resulting in decreased expression of immediate-early genes. In a mouse model of high blood pressure, reduction of nuclear pore numbers improved adverse heart remodeling and reduced progression to lethal heart failure. The decrease in nuclear pore numbers in cardiomyocyte maturation and resulting functional changes demonstrate how terminally differentiated cells permanently alter their handling of information flux across the nuclear envelope and, with that, their behavior.
Collapse
Affiliation(s)
- Lu Han
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jocelyn D Mich-Basso
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yao Li
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Niyatie Ammanamanchi
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anita P Bargaje
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Honghai Liu
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Liwen Wu
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jong-Hyeon Jeong
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jonathan Franks
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Donna B Stolz
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bernhard Kühn
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA 15219-3110, USA.
| |
Collapse
|
43
|
Zhang Y, Wang G, Huang P, Sun E, Kweon J, Li Q, Zhe J, Ying LL, Zhang HF. Minimizing Molecular Misidentification in Imaging Low-Abundance Protein Interactions Using Spectroscopic Single-Molecule Localization Microscopy. Anal Chem 2022; 94:13834-13841. [PMID: 36165784 PMCID: PMC9859736 DOI: 10.1021/acs.analchem.2c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Super-resolution microscopy can capture spatiotemporal organizations of protein interactions with resolution down to 10 nm; however, the analyses of more than two proteins involving low-abundance protein are challenging because spectral crosstalk and heterogeneities of individual fluorescent labels result in molecular misidentification. Here we developed a deep learning-based imaging analysis method for spectroscopic single-molecule localization microscopy to minimize molecular misidentification in three-color super-resolution imaging. We characterized the 3-fold reduction of molecular misidentification in the new imaging method using pure samples of different photoswitchable fluorophores and visualized three distinct subcellular proteins in U2-OS cell lines. We further validated the protein counts and interactions of TOMM20, DRP1, and SUMO1 in a well-studied biological process, Staurosporine-induced apoptosis, by comparing the imaging results with Western-blot analyses of different subcellular portions.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL, 60208, USA
| | - Gaoxiang Wang
- Department of Biomedical Engineering, Northwestern University, Evanston IL, 60208, USA
- Department of Hematology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, 430030, China
| | - Peizhou Huang
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Edison Sun
- Department of Biomedical Engineering, Northwestern University, Evanston IL, 60208, USA
| | - Junghun Kweon
- Department of Biomedical Engineering, Northwestern University, Evanston IL, 60208, USA
| | - Qianru Li
- Department of Biomedical Engineering, Northwestern University, Evanston IL, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago IL, 60611, USA
| | - Ji Zhe
- Department of Biomedical Engineering, Northwestern University, Evanston IL, 60208, USA
- Department of Pharmacology, Northwestern University, Chicago IL, 60611, USA
| | - Leslie L. Ying
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
- Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL, 60208, USA
| |
Collapse
|
44
|
Guo Y, Wang GG. Modulation of the high-order chromatin structure by Polycomb complexes. Front Cell Dev Biol 2022; 10:1021658. [PMID: 36274840 PMCID: PMC9579376 DOI: 10.3389/fcell.2022.1021658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The multi-subunit Polycomb Repressive Complex (PRC) 1 and 2 act, either independently or synergistically, to maintain and enforce a repressive state of the target chromatin, thereby regulating the processes of cell lineage specification and organismal development. In recent years, deep sequencing-based and imaging-based technologies, especially those tailored for mapping three-dimensional (3D) chromatin organization and structure, have allowed a better understanding of the PRC complex-mediated long-range chromatin contacts and DNA looping. In this review, we review current advances as for how Polycomb complexes function to modulate and help define the high-order chromatin structure and topology, highlighting the multi-faceted roles of Polycomb proteins in gene and genome regulation.
Collapse
Affiliation(s)
- Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| |
Collapse
|
45
|
Abstract
Genomic DNA is organized three-dimensionally in the nucleus as chromatin. Recent accumulating evidence has demonstrated that chromatin organizes into numerous dynamic domains in higher eukaryotic cells, which act as functional units of the genome. These compacted domains facilitate DNA replication and gene regulation. Undamaged chromatin is critical for healthy cells to function and divide. However, the cellular genome is constantly threatened by many sources of DNA damage (e.g., radiation). How do cells maintain their genome integrity when subjected to DNA damage? This chapter describes how the compact state of chromatin safeguards the genome from radiation damage and chemical attacks. Together with recent genomics data, our finding suggests that DNA compaction, such as chromatin domain formation, plays a critical role in maintaining genome integrity. But does the formation of such domains limit DNA accessibility inside the domain and hinder the recruitment of repair machinery to the damaged site(s) during DNA repair? To approach this issue, we first describe a sensitive imaging method to detect changes in chromatin states in living cells (single-nucleosome imaging/tracking). We then use this method to explain how cells can overcome potential recruiting difficulties; cells can decompact chromatin domains following DNA damage and temporarily increase chromatin motion (∼DNA accessibility) to perform efficient DNA repair. We also speculate on how chromatin compaction affects DNA damage-resistance in the clinical setting.
Collapse
Affiliation(s)
- Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan.
| |
Collapse
|
46
|
Portela M, Jimenez-Carretero D, Labrador V, Andreu MJ, Arza E, Caiolfa VR, Manzanares M. Chromatin dynamics through mouse preimplantation development revealed by single molecule localisation microscopy. Biol Open 2022; 11:275915. [PMID: 35876820 PMCID: PMC9346283 DOI: 10.1242/bio.059401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/30/2022] [Indexed: 01/07/2023] Open
Abstract
Most studies addressing chromatin behaviour during preimplantation development are based on biochemical assays that lack spatial and cell-specific information, crucial during early development. Here, we describe the changes in chromatin taking place at the transition from totipotency to lineage specification, by using direct stochastical optical reconstruction microscopy (dSTORM) in whole-mount embryos during the first stages of mouse development. Through the study of two post-translational modifications of Histone 3 related to active and repressed chromatin, H3K4me3 and H3K9me3 respectively, we obtained a time-course of chromatin states, showing spatial differences between cell types, related to their differentiation state. This analysis adds a new layer of information to previous biochemical studies and provides novel insight to current models of chromatin organisation during the first stages of development. SUMMARY: We have applied super-resolution microscopy to analyse changes in the state of chromatin during the first stages of mouse development, from the two-cell stage to the blastocyst.
Collapse
Affiliation(s)
- Marta Portela
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid 28049, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Daniel Jimenez-Carretero
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Veronica Labrador
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Elvira Arza
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Valeria R Caiolfa
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,Center for Experimental Imaging, Ospedale San Raffaele, Milan 20132, Italy
| | - Miguel Manzanares
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid 28049, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| |
Collapse
|
47
|
Stepanov AI, Besedovskaia ZV, Moshareva MA, Lukyanov KA, Putlyaeva LV. Studying Chromatin Epigenetics with Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms23168988. [PMID: 36012253 PMCID: PMC9409072 DOI: 10.3390/ijms23168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Epigenetic modifications of histones (methylation, acetylation, phosphorylation, etc.) are of great importance in determining the functional state of chromatin. Changes in epigenome underlay all basic biological processes, such as cell division, differentiation, aging, and cancerous transformation. Post-translational histone modifications are mainly studied by immunoprecipitation with high-throughput sequencing (ChIP-Seq). It enables an accurate profiling of target modifications along the genome, but suffers from the high cost of analysis and the inability to work with living cells. Fluorescence microscopy represents an attractive complementary approach to characterize epigenetics. It can be applied to both live and fixed cells, easily compatible with high-throughput screening, and provide access to rich spatial information down to the single cell level. In this review, we discuss various fluorescent probes for histone modification detection. Various types of live-cell imaging epigenetic sensors suitable for conventional as well as super-resolution fluorescence microscopy are described. We also focus on problems and future perspectives in the development of fluorescent probes for epigenetics.
Collapse
Affiliation(s)
- Afanasii I. Stepanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Zlata V. Besedovskaia
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
| | - Maria A. Moshareva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklay St. 16/10, 117997 Moscow, Russia
| | - Konstantin A. Lukyanov
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| | - Lidia V. Putlyaeva
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoi Blvd. 30, Bld. 1, 121205 Moscow, Russia
- Correspondence: (K.A.L.); (L.V.P.)
| |
Collapse
|
48
|
Abstract
Eukaryotic genomes are structurally organized via the formation of multiple loops that create gene expression regulatory units called topologically associating domains (TADs). Here we revealed the KSHV TAD structure at 500 bp resolution and constructed a 3D KSHV genomic structural model with 2 kb binning. The latent KSHV genome formed very similar genomic architectures in three different naturally infected PEL cell lines and in an experimentally infected epithelial cell line. The majority of the TAD boundaries were occupied by structural maintenance of chromosomes (SMC1) cohesin complex and CCCTC-binding factor (CTCF), and the KSHV transactivator was recruited to those sites during reactivation. Triggering KSHV gene expression decreased prewired genomic loops within the regulatory unit, while contacts extending outside of regulatory borders increased, leading to formation of a larger regulatory unit with a shift from repressive to active compartments (B to A). The 3D genomic structural model proposes that the immediate early promoter region is localized on the periphery of the 3D viral genome during latency, while highly inducible noncoding RNA regions moved toward the inner space of the structure, resembling the configuration of a "bird cage" during reactivation. The compartment-like properties of viral episomal chromatin structure and its reorganization during the transition from latency may help facilitate viral gene transcription. IMPORTANCE The 3D architecture of chromatin allows for efficient arrangement, expression, and replication of genetic material. The genomes of all organisms studied to date have been found to be organized through some form of tiered domain structures. However, the architectural framework of the genomes of large double-stranded DNA viruses such as the herpesvirus family has not been reported. Prior studies with Kaposi's sarcoma-associated herpesvirus (KSHV) have indicated that the viral chromatin shares many biological properties exhibited by the host cell genome, essentially behaving as a mini human chromosome. Thus, we hypothesized that the KSHV genome may be organized in a similar manner. In this report, we describe the domain structure of the latent and lytic KSHV genome at 500 bp resolution and present a 3D genomic structural model for KSHV under each condition. These results add new insights into the complex regulation of the viral life cycle.
Collapse
|
49
|
Liu W, Padhi A, Zhang X, Narendran J, Anastasio MA, Nain AS, Irudayaraj J. Dynamic Heterochromatin States in Anisotropic Nuclei of Cells on Aligned Nanofibers. ACS NANO 2022; 16:10754-10767. [PMID: 35803582 PMCID: PMC9332347 DOI: 10.1021/acsnano.2c02660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cancer cell nucleus deforms as it invades the interstitial spaces in tissues and the tumor microenvironment. While alteration of the chromatin structure in a deformed nucleus is expected and documented, the chromatin structure in the nuclei of cells on aligned matrices has not been elucidated. In this work we elucidate the spatiotemporal organization of heterochromatin in the elongated nuclei of cells on aligned nanofibers with stimulated emission depletion nanoscopy and fluorescence correlation spectroscopy. We show that the anisotropy of nuclei is sufficient to drive H3K9me3-heterochromatin alterations, with enhanced H3K9me3 nanocluster compaction and aggregation states that otherwise are indistinguishable from diffraction-limited microscopy. We interrogated the higher-order heterochromatin structures within major chromatin compartments in anisotropic nuclei and discovered a wider spatial dispersion of nanodomain clusters in the nucleoplasm and condensed larger nanoclusters near the periphery and pericentromeric heterochromatin. Upon examining the spatiotemporal dynamics of heterochromatin in anisotropic nuclei, we observed reduced mobility of the constitutive heterochromatin mark H3K9me3 and the associated heterochromatin protein 1 (HP1α) at the nucleoplasm and periphery regions, correlating with increased viscosity and changes in gene expression. Since heterochromatin remodeling is crucial to genome integrity, our results reveal an unconventional H3K9me3 heterochromatin distribution, providing cues to an altered chromatin state due to perturbations of the nuclei in aligned fiber configurations.
Collapse
Affiliation(s)
- Wenjie Liu
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Cancer Center at Illinois,
Micro and Nanotechnology Laboratory, Beckman
Institute, Carl Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| | - Abinash Padhi
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaohui Zhang
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Jairaj Narendran
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Mark A. Anastasio
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Amrinder S. Nain
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Cancer Center at Illinois,
Micro and Nanotechnology Laboratory, Beckman
Institute, Carl Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Acke A, Van Belle S, Louis B, Vitale R, Rocha S, Voet T, Debyser Z, Hofkens J. Expansion microscopy allows high resolution single cell analysis of epigenetic readers. Nucleic Acids Res 2022; 50:e100. [PMID: 35716125 PMCID: PMC9508849 DOI: 10.1093/nar/gkac521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/04/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions between epigenetic readers and histone modifications play a pivotal role in gene expression regulation and aberrations can enact etiopathogenic roles in both developmental and acquired disorders like cancer. Typically, epigenetic interactions are studied by mass spectrometry or chromatin immunoprecipitation sequencing. However, in these methods, spatial information is completely lost. Here, we devise an expansion microscopy based method, termed Expansion Microscopy for Epigenetics or ExEpi, to preserve spatial information and improve resolution. We calculated relative co-localization ratios for two epigenetic readers, lens epithelium derived growth factor (LEDGF) and bromodomain containing protein 4 (BRD4), with marks for heterochromatin (H3K9me3 and H3K27me3) and euchromatin (H3K36me2, H3K36me3 and H3K9/14ac). ExEpi confirmed their preferred epigenetic interactions, showing co-localization for LEDGF with H3K36me3/me2 and for BRD4 with H3K9/14ac. Moreover addition of JQ1, a known BET-inhibitor, abolished BRD4 interaction with H3K9/14ac with an IC50 of 137 nM, indicating ExEpi could serve as a platform for epigenetic drug discovery. Since ExEpi retains spatial information, the nuclear localization of marks and readers was determined, which is one of the main advantages of ExEpi. The heterochromatin mark, H3K9me3, is located in the nuclear rim whereas LEDGF co-localization with H3K36me3 and BRD4 co-localization with H3K9/14ac occur further inside the nucleus.
Collapse
Affiliation(s)
- Aline Acke
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, Flanders, Belgium
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Flanders, Belgium
| | - Boris Louis
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, Flanders, Belgium.,Division of Chemical Physics and NanoLund, Lund University, Lund, Sweden
| | - Raffaele Vitale
- Dynamics, Nanoscopy and Chemometrics (DYNACHEM) Group, U. Lille, CNRS, LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Cité Scientifique, F-59000Lille, France
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, Flanders, Belgium
| | - Thierry Voet
- Department of Human Genetics, KU Leuven, Leuven, Flanders, Belgium.,LISCO, KU Leuven Institute for Single-Cell Omics, Leuven 3000, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Flanders, Belgium
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Leuven, Flanders, Belgium.,Max Plank Institute for Polymer Research, Ackermannweg 10, Mainz, D-55128, Germany.,LISCO, KU Leuven Institute for Single-Cell Omics, Leuven 3000, Belgium
| |
Collapse
|