1
|
Drozd CJ, Quinn CC. UNC-116 and UNC-16 function with the NEKL-3 kinase to promote axon targeting. Development 2023; 150:dev201654. [PMID: 37756604 PMCID: PMC10561693 DOI: 10.1242/dev.201654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
KIF5C is a kinesin-1 heavy chain that has been associated with neurodevelopmental disorders. Although the roles of kinesin-1 in axon transport are well known, little is known about how it regulates axon targeting. We report that UNC-116/KIF5C functions with the NEKL-3/NEK6/7 kinase to promote axon targeting in Caenorhabditis elegans. Loss of UNC-116 causes the axon to overshoot its target and UNC-116 gain-of-function causes premature axon termination. We find that loss of the UNC-16/JIP3 kinesin-1 cargo adaptor disrupts axon termination, but loss of kinesin-1 light chain function does not affect axon termination. Genetic analysis indicates that UNC-16 functions with the NEKL-3 kinase to promote axon termination. Consistent with this observation, imaging experiments indicate that loss of UNC-16 and UNC-116 disrupt localization of NEKL-3 in the axon. Moreover, genetic interactions suggest that NEKL-3 promotes axon termination by functioning with RPM-1, a ubiquitin ligase that regulates microtubule stability in the growth cone. These observations support a model where UNC-116 functions with UNC-16 to promote localization of NEKL-3 in the axon. NEKL-3, in turn, functions with the RPM-1 ubiquitin ligase to promote axon termination.
Collapse
Affiliation(s)
- Cody J. Drozd
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| |
Collapse
|
2
|
Li P, He Y, Yang Q, Guo H, Li N, Zhang D. NEK7 inhibition attenuates Aβ 42-induced cognitive impairment by regulating TLR4/NF-κB and the NLRP3 inflammasome in mice. J Clin Biochem Nutr 2023; 73:145-153. [PMID: 37700846 PMCID: PMC10493210 DOI: 10.3164/jcbn.22-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/02/2023] [Indexed: 09/14/2023] Open
Abstract
NEK7 is a serine/threonine kinase that regulates cell mitosis and the activation of the nucleotide-binding oligomerization domain-like (NOD-like) receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, and is related to neuroinflammation and neuronal damage. The purpose of this study was to explore the role and mechanism of NEK7 in cognitive impairment in Alzheimer's disease (AD). BV2 cells, a microglia cell line, was treated with Aβ42. NEK7 expression was measured with reverse transcription-quantitative polymerase chain reaction and Western blotting. An apoptosis kit was used to determine the apoptotic rate. APPswe/PS1dE9 (APP/PS1) transgenic mice were used as an in vivo AD model. The experimental mice were infected with sh-NEK7 lentivirus to downregulate NEK7. The Morris water maze was conducted to explore the effect of NEK7 downregulation on cognitive ability. The results showed that Aβ42 significantly upregulated NEK7 in BV2 cells. Silencing NEK7 suppressed the decrease in BV2 viability and the increase in inflammation, oxidative stress and apoptosis induced by Aβ42. NEK7 mediated it effects through the TLR4/NF-κB signalling pathway and the NLRP3 inflammasome. Finally, inhibition of NEK7 alleviated the cognitive impairment in APP/PS1 mice. In conclusion, Silencing NEK7 suppresses Aβ42-induced cell apoptosis, inflammation and oxidative stress, and improves cognitive performance in AD mice. NEK7 may be a potential target for AD treatment.
Collapse
Affiliation(s)
- Peng Li
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Yifan He
- Graduate School, Xi’an Medical University, Xi’an, Shaanxi 710021, China
| | - Qian Yang
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Hena Guo
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Nini Li
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, China
| | - Dongdong Zhang
- Department of Neurosurgery, 521 Hospital of NORINCO GROUP, Xi’an, Shaanxi 710065, China
| |
Collapse
|
3
|
Guo W, Wang H, Tharkeshwar AK, Couthouis J, Braems E, Masrori P, Van Schoor E, Fan Y, Ahuja K, Moisse M, Jacquemyn M, da Costa RFM, Gajjar M, Balusu S, Tricot T, Fumagalli L, Hersmus N, Janky R, Impens F, Berghe PV, Ho R, Thal DR, Vandenberghe R, Hegde ML, Chandran S, De Strooper B, Daelemans D, Van Damme P, Van Den Bosch L, Verfaillie C. CRISPR/Cas9 screen in human iPSC-derived cortical neurons identifies NEK6 as a novel disease modifier of C9orf72 poly(PR) toxicity. Alzheimers Dement 2023; 19:1245-1259. [PMID: 35993441 PMCID: PMC9943798 DOI: 10.1002/alz.12760] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are hexanucleotide repeats in chromosome 9 open reading frame 72 (C9orf72). These repeats produce dipeptide repeat proteins with poly(PR) being the most toxic one. METHODS We performed a kinome-wide CRISPR/Cas9 knock-out screen in human induced pluripotent stem cell (iPSC) -derived cortical neurons to identify modifiers of poly(PR) toxicity, and validated the role of candidate modifiers using in vitro, in vivo, and ex-vivo studies. RESULTS Knock-down of NIMA-related kinase 6 (NEK6) prevented neuronal toxicity caused by poly(PR). Knock-down of nek6 also ameliorated the poly(PR)-induced axonopathy in zebrafish and NEK6 was aberrantly expressed in C9orf72 patients. Suppression of NEK6 expression and NEK6 activity inhibition rescued axonal transport defects in cortical neurons from C9orf72 patient iPSCs, at least partially by reversing p53-related DNA damage. DISCUSSION We identified NEK6, which regulates poly(PR)-mediated p53-related DNA damage, as a novel therapeutic target for C9orf72 FTD/ALS.
Collapse
Affiliation(s)
- Wenting Guo
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Haibo Wang
- Division of DNA Repair Research, Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, New York, USA
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Elke Braems
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Pegah Masrori
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Evelien Van Schoor
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Yannan Fan
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
| | - Karan Ahuja
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | | | - Madhavsai Gajjar
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
| | - Sriram Balusu
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Tine Tricot
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Nicole Hersmus
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | | | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Pieter Vanden Berghe
- Translational Research Centre for Gastrointestinal Disorders (TARGID), KU Leuven–University of Leuven, Leuven, Belgium
| | - Ritchie Ho
- Center for Neural Science and Medicine, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven, and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- KU Leuven-Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Muralidhar L. Hegde
- Division of DNA Repair Research, Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, New York, USA
| | - Siddharthan Chandran
- UK-Dementia Research Institute at University College London, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Bart De Strooper
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
- UK-Dementia Research Institute at University College London, London, UK
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, Laboratory of Neurobiology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Leuven, Belgium and Leuven Brain Institute (LBI), Leuven, Belgium
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Devolpment and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Bauer S, Chen CY, Jonson M, Kaczmarczyk L, Magadi SS, Jackson WS. Cerebellar granule neurons induce Cyclin D1 before the onset of motor symptoms in Huntington's disease mice. Acta Neuropathol Commun 2023; 11:17. [PMID: 36670467 PMCID: PMC9854201 DOI: 10.1186/s40478-022-01500-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023] Open
Abstract
Although Huntington's disease (HD) is classically defined by the selective vulnerability of striatal projection neurons, there is increasing evidence that cerebellar degeneration modulates clinical symptoms. However, little is known about cell type-specific responses of cerebellar neurons in HD. To dissect early disease mechanisms in the cerebellum and cerebrum, we analyzed translatomes of neuronal cell types from both regions in a new HD mouse model. For this, HdhQ200 knock-in mice were backcrossed with the calm 129S4 strain, to constrain experimental noise caused by variable hyperactivity of mice in a C57BL/6 background. Behavioral and neuropathological characterization showed that these S4-HdhQ200 mice had very mild behavioral abnormalities starting around 12 months of age that remained mild up to 18 months. By 9 months, we observed abundant Huntingtin-positive neuronal intranuclear inclusions (NIIs) in the striatum and cerebellum. The translatome analysis of GABAergic cells of the cerebrum further confirmed changes typical of HD-induced striatal pathology. Surprisingly, we observed the strongest response with 626 differentially expressed genes in glutamatergic neurons of the cerebellum, a population consisting primarily of granule cells, commonly considered disease resistant. Our findings suggest vesicular fusion and exocytosis, as well as differentiation-related pathways are affected in these neurons. Furthermore, increased expression of cyclin D1 (Ccnd1) in the granular layer and upregulated expression of polycomb group complex protein genes and cell cycle regulators Cbx2, Cbx4 and Cbx8 point to a putative role of aberrant cell cycle regulation in cerebellar granule cells in early disease.
Collapse
Affiliation(s)
- Susanne Bauer
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden
| | - Chwen-Yu Chen
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden
| | - Maria Jonson
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden
| | - Lech Kaczmarczyk
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Srivathsa Subramanya Magadi
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden
| | - Walker S. Jackson
- grid.5640.70000 0001 2162 9922Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Room 463.10.30, Linköping, Sweden ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
5
|
Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci 2022; 16:929469. [PMID: 35833090 PMCID: PMC9272671 DOI: 10.3389/fnins.2022.929469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex represents one of the most recent and astonishing inventions of nature, responsible of a large diversity of functions that range from sensory processing to high-order cognitive abilities, such as logical reasoning or language. Decades of dedicated study have contributed to our current understanding of this structure, both at structural and functional levels. A key feature of the neocortex is its outstanding richness in cell diversity, composed by multiple types of long-range projecting neurons and locally connecting interneurons. In this review, we will describe the great diversity of interneurons that constitute local neocortical circuits and summarize the mechanisms underlying their development and their assembly into functional networks.
Collapse
Affiliation(s)
- Alfredo Llorca
- Visual Neuroscience Laboratory, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburg, United Kingdom
- *Correspondence: Alfredo Llorca
| | - Ruben Deogracias
- Neuronal Circuits Formation and Brain Disorders Laboratory, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
- Ruben Deogracias
| |
Collapse
|
6
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
7
|
Cheng S, Butrus S, Tan L, Xu R, Sagireddy S, Trachtenberg JT, Shekhar K, Zipursky SL. Vision-dependent specification of cell types and function in the developing cortex. Cell 2022; 185:311-327.e24. [PMID: 35063073 PMCID: PMC8813006 DOI: 10.1016/j.cell.2021.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023]
Abstract
The role of postnatal experience in sculpting cortical circuitry, while long appreciated, is poorly understood at the level of cell types. We explore this in the mouse primary visual cortex (V1) using single-nucleus RNA sequencing, visual deprivation, genetics, and functional imaging. We find that vision selectively drives the specification of glutamatergic cell types in upper layers (L) (L2/3/4), while deeper-layer glutamatergic, GABAergic, and non-neuronal cell types are established prior to eye opening. L2/3 cell types form an experience-dependent spatial continuum defined by the graded expression of ∼200 genes, including regulators of cell adhesion and synapse formation. One of these genes, Igsf9b, a vision-dependent gene encoding an inhibitory synaptic cell adhesion molecule, is required for the normal development of binocular responses in L2/3. In summary, vision preferentially regulates the development of upper-layer glutamatergic cell types through the regulation of cell-type-specific gene expression programs.
Collapse
Affiliation(s)
- Sarah Cheng
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Liming Tan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Runzhe Xu
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Srikant Sagireddy
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Mazuir E, Richevaux L, Nassar M, Robil N, de la Grange P, Lubetzki C, Fricker D, Sol-Foulon N. Oligodendrocyte Secreted Factors Shape Hippocampal GABAergic Neuron Transcriptome and Physiology. Cereb Cortex 2021; 31:5024-5041. [PMID: 34023893 DOI: 10.1093/cercor/bhab139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/26/2021] [Accepted: 04/17/2021] [Indexed: 11/14/2022] Open
Abstract
Oligodendrocytes form myelin for central nervous system axons and release factors which signal to neurons during myelination. Here, we ask how oligodendroglial factors influence hippocampal GABAergic neuron physiology. In mixed hippocampal cultures, GABAergic neurons fired action potentials (APs) of short duration and received high frequencies of excitatory synaptic events. In purified neuronal cultures without glial cells, GABAergic neuron excitability increased and the frequency of synaptic events decreased. These effects were largely reversed by adding oligodendrocyte conditioned medium (OCM). We compared the transcriptomic signature with the electrophysiological phenotype of single neurons in these three culture conditions. Genes expressed by single pyramidal or GABAergic neurons largely conformed to expected cell-type specific patterns. Multiple genes of GABAergic neurons were significantly downregulated by the transition from mixed cultures containing glial cells to purified neuronal cultures. Levels of these genes were restored by the addition of OCM to purified cultures. Clustering genes with similar changes in expression between different culture conditions revealed processes affected by oligodendroglial factors. Enriched genes are linked to roles in synapse assembly, AP generation, and transmembrane ion transport, including of zinc. These results provide new insight into the molecular targets by which oligodendrocytes influence neuron excitability and synaptic function.
Collapse
Affiliation(s)
- Elisa Mazuir
- Sorbonne University, Inserm, CNRS, Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | | | - Merie Nassar
- Université de Paris, INCC UMR 8002, CNRS, F-75006 Paris
| | | | | | - Catherine Lubetzki
- Sorbonne University, Inserm, CNRS, Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, F-75013 Paris, France.,Assistance Publique des Hôpitaux de Paris (APHP), Neurology Department, Pitié-Salpêtrière hospital, Paris 75013, France
| | | | - Nathalie Sol-Foulon
- Sorbonne University, Inserm, CNRS, Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| |
Collapse
|
9
|
Sun Z, Gong W, Zhang Y, Jia Z. Physiological and Pathological Roles of Mammalian NEK7. Front Physiol 2020; 11:606996. [PMID: 33364979 PMCID: PMC7750478 DOI: 10.3389/fphys.2020.606996] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
NEK7 is the smallest NIMA-related kinase (NEK) in mammals. The pathological and physiological roles of NEK7 have been widely reported in many studies. To date, the major function of NEK7 has been well documented in mitosis and NLRP3 inflammasome activation, but the detailed mechanisms of its regulation remain unclear. This review summarizes current advances in NEK7 research involving mitotic regulation, NLRP3 inflammasome activation, related diseases and potential inhibitors, which may provide new insights into the understanding and therapy of the diseases associated with NEK7, as well as the subsequent studies in the future.
Collapse
Affiliation(s)
- Zhenzhen Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Li G, Dong Y, Liu D, Zou Z, Hao G, Gao X, Pan P, Liang G. NEK7 Coordinates Rapid Neuroinflammation After Subarachnoid Hemorrhage in Mice. Front Neurol 2020; 11:551. [PMID: 32733353 PMCID: PMC7360676 DOI: 10.3389/fneur.2020.00551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a devastating disease which leads to high morbidity and mortality. Recent studies have indicated that, never in mitosis gene A-related expressed kinase 7 (NEK7), is involved in NLRP3 (NLR family, pyrin domain containing 3) associated inflammation, which may result in subsequent cellular and vascular damage. The aim of this study was to investigate whether NEK7 is involved in the pathophysiology of subarachnoid hemorrhage. Methods: 455 adult male C57B6J mice, weighing 22 to 30 g, were used to investigate the time course of NEK7 expression in the ipsilateral cortex after SAH, and to investigate the intrinsic function and mechanism of NEK7. A vascular puncture model was used to create the mouse SAH model, and intracerebroventricular injection was used to deliver NEK7 recombinant protein, NEK7 small interfering RNA, nigericin, and MCC950. Neurological score, brain water content, Evans blue extravasation, immunofluorescence, and western blot were evaluated for neurological outcome, neuronal apoptosis, blood-brain barrier damage, microglia accumulation, and the mechanism of NEK7 and NLRP3 activation. Results: Our results exhibited that intrinsic NEK7 was elevated after SAH in the cortex of the left/ipsilateral hemisphere and was colocalized with microglia, endothelial cells, neuron, astrocyte, and oligodendrocyte, and highly expressed in microglia and endothelial cells after SAH. NEK7 recombinant protein aggravated neurological deficits, brain edema, neuronal apoptosis, BBB permeability, microglial accumulation, and activated caspase-1 and IL-1β maturation, while NEK7 small interfering RNA injection reversed those effects. Nigericin administration enhanced ASC oligomerization, caspase-1 and IL-1β maturation without increasing the protein level of NLRP3, and ASC oligomerization and caspase-1 IL-1β maturation reduced when combined with NEK7 knockdown or MCC950 delivery. We found the level of NEK7 expression increased after SAH and could activate the downstream NLRP3 pathway to induce caspase-1, IL-1β expression and then increased the BBB opening, microglia accumulation and neuronal apoptosis after SAH. Conclusions: This study demonstrated for the first time that NEK7 mediated the harmful effects of neuronal apoptosis and BBB disruption after SAH, which may potentially be mediated by the NEK7/NLRP3 signal. NEK7 served as a co-component for NLRP3 inflammasome activation after SAH. NEK7 may be a promising target on the management of SAH patients.
Collapse
Affiliation(s)
- Gen Li
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China.,Dalian Medical University, Dalian, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Dongdong Liu
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China.,Dalian Medical University, Dalian, China
| | - Zheng Zou
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Guangzhi Hao
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, China
| |
Collapse
|
11
|
Pan-Vazquez A, Wefelmeyer W, Gonzalez Sabater V, Neves G, Burrone J. Activity-Dependent Plasticity of Axo-axonic Synapses at the Axon Initial Segment. Neuron 2020; 106:265-276.e6. [PMID: 32109363 PMCID: PMC7181187 DOI: 10.1016/j.neuron.2020.01.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 12/06/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
The activity-dependent rules that govern the wiring of GABAergic interneurons are not well understood. Chandelier cells (ChCs) are a type of GABAergic interneuron that control pyramidal cell output through axo-axonic synapses that target the axon initial segment. In vivo imaging of ChCs during development uncovered a narrow window (P12-P18) over which axons arborized and formed connections. We found that increases in the activity of either pyramidal cells or individual ChCs during this temporal window result in a reversible decrease in axo-axonic connections. Voltage imaging of GABAergic transmission at the axon initial segment (AIS) showed that axo-axonic synapses were depolarizing during this period. Identical manipulations of network activity in older mice (P40-P46), when ChC synapses are inhibitory, resulted instead in an increase in axo-axonic synapses. We propose that the direction of ChC synaptic plasticity follows homeostatic rules that depend on the polarity of axo-axonic synapses.
Collapse
Affiliation(s)
- Alejandro Pan-Vazquez
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Winnie Wefelmeyer
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Victoria Gonzalez Sabater
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Guilherme Neves
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
12
|
Chen Y, Meng J, Bi F, Li H, Chang C, Ji C, Liu W. EK7 Regulates NLRP3 Inflammasome Activation and Neuroinflammation Post-traumatic Brain Injury. Front Mol Neurosci 2019; 12:202. [PMID: 31555089 PMCID: PMC6727020 DOI: 10.3389/fnmol.2019.00202] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
As one of the most common causes of mortality and disability, traumatic brain injury (TBI) is a huge psychological and economic burden to patients, families, and societies worldwide. Neuroinflammation reduction may be a favorable option to alleviate secondary brain injuries and ameliorate the outcome of TBI. The nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome, has been shown to be involved in TBI. NIMA-related kinase 7 (NEK7) has been verified as an essential mediator of NLRP3 inflammasome activation that is recruited upstream of the formation of inflammasomes in response to NLRP3 activators. However, the underlying mechanism by which NEK7 operates post-TBI remains undefined. In this study, we performed both in vivo and in vitro experiments. Using an in vivo mouse TBI model, mice were administered an intracerebroventricular injection of NEK7-shRNA virus. For the in vitro analysis, primary cortical neurons with NEK7-shRNA were stimulated with lipopolysaccharide (LPS)/ATP or potassium (K+). We evaluated the effects of NEK7 knock-down on neurological deficits, NLRP3 inflammasomes, caspase-1 activation, and neuronal injury. During the 0–168 h post-TBI period in vivo, NEK7 and NLRP3 inflammasome activation increased in what appeared to be a time-dependent manner. As well as pyroptosis-related markers, caspase-1 activation (p20) and interleukin-1β (IL-1β) activation (p17) were up-regulated. NEK7 down-regulation attenuated neurological deficits, NLRP3 inflammasomes, caspase-1 activation, and neuronal injury. The same phenomena were observed during the in vitro experiments. Furthermore, NEK7 knock-down suppressed NLRP3 inflammasome activation and pyroptosis, which were triggered by K+ efflux, and the LPS + ATP-triggered NEK7–NLRP3 complex was reversed in primary cortical neurons placed in 50 mM K+ medium. Collectively, the data demonstrated that NEK7, as a modulator, regulates NLRP3 inflammasomes and downstream neuroinflammation in response to K+ efflux, through NEK7–NLRP3 assembly, pro-caspase-1 recruitment, caspase-1 activation, and pyroptosis in nerve injuries, post-TBI. NEK7 may be a potential therapeutic target for attenuating neuroinflammation and nerve injury post-TBI.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China.,Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jiao Meng
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China.,Department of Basic Medical Science Research Center, Shaanxi Fourth People's Hospital, Xi'an, China
| | - Fangfang Bi
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China.,Department of Basic Medical Science Research Center, Shaanxi Fourth People's Hospital, Xi'an, China
| | - Hua Li
- Department of Basic Medical Science Research Center, Shaanxi Fourth People's Hospital, Xi'an, China
| | - Cuicui Chang
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Chen Ji
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Wei Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
13
|
Favuzzi E, Deogracias R, Marques-Smith A, Maeso P, Jezequel J, Exposito-Alonso D, Balia M, Kroon T, Hinojosa AJ, F Maraver E, Rico B. Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits. Science 2019; 363:413-417. [PMID: 30679375 DOI: 10.1126/science.aau8977] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
Abstract
How neuronal connections are established and organized into functional networks determines brain function. In the mammalian cerebral cortex, different classes of GABAergic interneurons exhibit specific connectivity patterns that underlie their ability to shape temporal dynamics and information processing. Much progress has been made toward parsing interneuron diversity, yet the molecular mechanisms by which interneuron-specific connectivity motifs emerge remain unclear. In this study, we investigated transcriptional dynamics in different classes of interneurons during the formation of cortical inhibitory circuits in mouse. We found that whether interneurons form synapses on the dendrites, soma, or axon initial segment of pyramidal cells is determined by synaptic molecules that are expressed in a subtype-specific manner. Thus, cell-specific molecular programs that unfold during early postnatal development underlie the connectivity patterns of cortical interneurons.
Collapse
Affiliation(s)
- Emilia Favuzzi
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Rubén Deogracias
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - André Marques-Smith
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Patricia Maeso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Julie Jezequel
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - David Exposito-Alonso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Maddalena Balia
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Tim Kroon
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Antonio J Hinojosa
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Elisa F Maraver
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| |
Collapse
|
14
|
Tripathy SJ, Toker L, Bomkamp C, Mancarci BO, Belmadani M, Pavlidis P. Assessing Transcriptome Quality in Patch-Seq Datasets. Front Mol Neurosci 2018; 11:363. [PMID: 30349457 PMCID: PMC6187980 DOI: 10.3389/fnmol.2018.00363] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Patch-seq, combining patch-clamp electrophysiology with single-cell RNA-sequencing (scRNAseq), enables unprecedented access to a neuron's transcriptomic, electrophysiological, and morphological features. Here, we present a re-analysis of five patch-seq datasets, representing cells from ex vivo mouse brain slices and in vitro human stem-cell derived neurons. Our objective was to develop simple criteria to assess the quality of patch-seq derived single-cell transcriptomes. We evaluated patch-seq transcriptomes for the expression of marker genes of multiple cell types, benchmarking these against analogous profiles from cellular-dissociation based scRNAseq. We found an increased likelihood of off-target cell-type mRNA contamination in patch-seq cells from acute brain slices, likely due to the passage of the patch-pipette through the processes of adjacent cells. We also observed that patch-seq samples varied considerably in the amount of mRNA that could be extracted from each cell, strongly biasing the numbers of detectable genes. We developed a marker gene-based approach for scoring single-cell transcriptome quality post-hoc. Incorporating our quality metrics into downstream analyses improved the correspondence between gene expression and electrophysiological features. Our analysis suggests that technical confounds likely limit the interpretability of patch-seq based single-cell transcriptomes. However, we provide concrete recommendations for quality control steps that can be performed prior to costly RNA-sequencing to optimize the yield of high-quality samples.
Collapse
Affiliation(s)
- Shreejoy J. Tripathy
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Lilah Toker
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Claire Bomkamp
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - B. Ogan Mancarci
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Manuel Belmadani
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|