1
|
Alasady MJ, Mendillo ML. The heat shock factor code: Specifying a diversity of transcriptional regulatory programs broadly promoting stress resilience. Cell Stress Chaperones 2024; 29:735-749. [PMID: 39454718 PMCID: PMC11570959 DOI: 10.1016/j.cstres.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The heat shock factor (HSF) family of transcription factors drives gene expression programs that maintain cytosolic protein homeostasis (proteostasis) in response to a vast array of physiological and exogenous stressors. The importance of HSF function has been demonstrated in numerous physiological and pathological contexts. Evidence accumulating over the last two decades has revealed that the regulatory programs driven by the HSF family can vary dramatically depending on the context in which it is activated. To broadly maintain proteostasis across these contexts, HSFs must bind and appropriately regulate the correct target genes at the correct time. Here, we discuss "the heat shock factor code"-our current understanding of how human cells use HSF paralog diversification and interplay, local concentration, post-translational modifications, and interactions with other proteins to enable the functional plasticity required for cellular resilience across a multitude of environments.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Luo C, Xu H, Yu Z, Liu D, Zhong D, Zhou S, Zhang B, Zhan J, Sun F. Meiotic chromatin-associated HSF5 is indispensable for pachynema progression and male fertility. Nucleic Acids Res 2024; 52:10255-10275. [PMID: 39162221 PMCID: PMC11417359 DOI: 10.1093/nar/gkae701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Pachynema progression contributes to the completion of prophase I. Nevertheless, the regulation of this significant meiotic process remains poorly understood. In this study, we identified a novel testis-specific protein HSF5, which regulates pachynema progression during male meiosis in a manner dependent on chromatin-binding. Deficiency of HSF5 results in meiotic arrest and male infertility, characterized as unconventional pachynema arrested at the mid-to-late stage, with extensive spermatocyte apoptosis. Our scRNA-seq data confirmed consistent expressional alterations of certain driver genes (Sycp1, Msh4, Meiob, etc.) crucial for pachynema progression in Hsf5-/- individuals. HSF5 was revealed to primarily bind to promoter regions of such key divers by CUT&Tag analysis. Also, our results demonstrated that HSF5 biologically interacted with SMARCA5, SMARCA4 and SMARCE1, and it could function as a transcription factor for pachynema progression during meiosis. Therefore, our study underscores the importance of the chromatin-associated HSF5 for the differentiation of spermatocytes, improving the protein regulatory network of the pachynema progression.
Collapse
Affiliation(s)
- Chunhai Luo
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Haoran Xu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Ziqi Yu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Dalin Liu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Shumin Zhou
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Beibei Zhang
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Junfeng Zhan
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
3
|
Liu M, Wang L, Li Y, Zhi E, Shen G, Jiang X, Li D, Zhao X, Ruan T, Jiang C, Wang X, Zhang X, Zheng Y, Wu B, Ou N, Zhao G, Dai S, Zhou R, Yang L, Yang Y, Liu H, Shen Y. HSF5 Deficiency Causes Male Infertility Involving Spermatogenic Arrest at Meiotic Prophase I in Humans and Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402412. [PMID: 38958533 PMCID: PMC11434121 DOI: 10.1002/advs.202402412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Meiosis is a specialized cell division process that generates gametes for sexual reproduction. However, the factors and underlying mechanisms involving meiotic progression remain largely unknown, especially in humans. Here, it is first showed that HSF5 is associated with human spermatogenesis. Patients with a pathogenic variant of HSF5 are completely infertile. Testicular histologic findings in the patients reveal rare postmeiotic germ cells resulting from meiotic prophase I arrest. Hsf5 knockout (KO) mice confirms that the loss of HSF5 causes defects in meiotic recombination, crossover formation, sex chromosome synapsis, and sex chromosome inactivation (MSCI), which may contribute to spermatocyte arrest at the late pachytene stage. Importantly, spermatogenic arrest can be rescued by compensatory HSF5 adeno-associated virus injection into KO mouse testes. Mechanistically, integrated analysis of RNA sequencing and chromatin immunoprecipitation sequencing data revealed that HSF5 predominantly binds to promoters of key genes involved in crossover formation (e.g., HFM1, MSH5 and MLH3), synapsis (e.g., SYCP1, SYCP2 and SYCE3), recombination (TEX15), and MSCI (MDC1) and further regulates their transcription during meiotic progression. Taken together, the study demonstrates that HSF5 modulates the transcriptome to ensure meiotic progression in humans and mice. These findings will aid in genetic diagnosis of and potential treatments for male infertility.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyInstitute of Reproduction and DevelopmentObstetrics and Gynecology HospitalFudan UniversityShanghai200433China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEDepartment of PediatricsWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Erlei Zhi
- UrologyUrologic Medical CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200000China
| | - Gan Shen
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiaohui Jiang
- Human Sperm BankKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
- NHC Key Laboratory of ChronobiologySichuan UniversityChengdu610041China
| | - Dingming Li
- Human Sperm BankKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xinya Zhao
- West China School of preclinical medicine and forensic medicineSichuan UniversityChengdu610041China
| | - Tiechao Ruan
- Department of PediatricsWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Chuan Jiang
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xiang Wang
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Xueguang Zhang
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEDepartment of PediatricsWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Bangguo Wu
- Shanghai Key Laboratory of Metabolic Remodeling and HealthInstitute of Metabolism and Integrative BiologyInstitute of Reproduction and DevelopmentObstetrics and Gynecology HospitalFudan UniversityShanghai200433China
| | - Ningjing Ou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guicheng Zhao
- Human Sperm BankKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Siyu Dai
- Department of Pediatric Pulmonology and ImmunologyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ruixi Zhou
- West China School of preclinical medicine and forensic medicineSichuan UniversityChengdu610041China
| | - Li Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Yihong Yang
- Reproduction Medical Center of West China Second University HospitalKey Laboratory of ObstetricGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationSichuan UniversityChengdu610041China
| | - Hanmin Liu
- NHC Key Laboratory of ChronobiologySichuan UniversityChengdu610041China
- Department of Pediatric Pulmonology and ImmunologyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ying Shen
- Department of Obstetrics/GynecologyGynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University HospitalSichuan UniversityChengdu610041China
- NHC Key Laboratory of ChronobiologySichuan UniversityChengdu610041China
| |
Collapse
|
4
|
Zhang Y, Yang A, Zhao Z, Chen F, Yan X, Han Y, Wu D, Wu Y. Protein disulfide isomerase is essential for spermatogenesis in mice. JCI Insight 2024; 9:e177743. [PMID: 38912589 PMCID: PMC11383184 DOI: 10.1172/jci.insight.177743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Spermatogenesis requires precise posttranslational control in the endoplasmic reticulum (ER), but the mechanism remains largely unknown. The protein disulfide isomerase (PDI) family is a group of thiol oxidoreductases responsible for catalyzing the disulfide bond formation of nascent proteins. In this study, we generated 14 strains of KO mice lacking the PDI family enzymes and found that only PDI deficiency caused spermatogenesis defects. Both inducible whole-body PDI-KO (UBC-Cre/Pdifl/fl) mice and premeiotic PDI-KO (Stra8-Cre/Pdifl/fl) mice experienced a significant decrease in germ cells, testicular atrophy, oligospermia, and complete male infertility. Stra8-Cre/Pdifl/fl spermatocytes had significantly upregulated ER stress-related proteins (GRP78 and XBP1) and apoptosis-related proteins (Cleaved caspase-3 and BAX), together with cell apoptosis. PDI deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene spermatocytes. Quantitative mass spectrometry indicated that PDI deficiency downregulated vital proteins in spermatogenesis such as HSPA4L, SHCBP1L, and DDX4, consistent with the proteins' physical association with PDI in normal testes tissue. Furthermore, PDI served as a thiol oxidase for disulfide bond formation of SHCBP1L. Thus, PDI plays an essential role in protein quality control for spermatogenesis in mice.
Collapse
Affiliation(s)
- Yaqiong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Aizhen Yang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zhenzhen Zhao
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Fengwu Chen
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaofeng Yan
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Yoshimura S, Shimada R, Kikuchi K, Kawagoe S, Abe H, Iisaka S, Fujimura S, Yasunaga KI, Usuki S, Tani N, Ohba T, Kondoh E, Saio T, Araki K, Ishiguro KI. Atypical heat shock transcription factor HSF5 is critical for male meiotic prophase under non-stress conditions. Nat Commun 2024; 15:3330. [PMID: 38684656 PMCID: PMC11059408 DOI: 10.1038/s41467-024-47601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Meiotic prophase progression is differently regulated in males and females. In males, pachytene transition during meiotic prophase is accompanied by robust alteration in gene expression. However, how gene expression is regulated differently to ensure meiotic prophase completion in males remains elusive. Herein, we identify HSF5 as a male germ cell-specific heat shock transcription factor (HSF) for meiotic prophase progression. Genetic analyzes and single-cell RNA-sequencing demonstrate that HSF5 is essential for progression beyond the pachytene stage under non-stress conditions rather than heat stress. Chromatin binding analysis in vivo and DNA-binding assays in vitro suggest that HSF5 binds to promoters in a subset of genes associated with chromatin organization. HSF5 recognizes a DNA motif different from typical heat shock elements recognized by other canonical HSFs. This study suggests that HSF5 is an atypical HSF that is required for the gene expression program for pachytene transition during meiotic prophase in males.
Collapse
Affiliation(s)
- Saori Yoshimura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Koji Kikuchi
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Soichiro Kawagoe
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Hironori Abe
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Sakie Iisaka
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Takashi Ohba
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Eiji Kondoh
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
6
|
Sadamitsu K, Velilla F, Shinya M, Kashima M, Imai Y, Kawasaki T, Watai K, Hosaka M, Hirata H, Sakai N. Establishment of a zebrafish inbred strain, M-AB, capable of regular breeding and genetic manipulation. Sci Rep 2024; 14:7455. [PMID: 38548817 PMCID: PMC10978973 DOI: 10.1038/s41598-024-57699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
Inbred strains of organisms are genetically highly uniform and thus useful for life science research. We have previously reported the ongoing generation of the zebrafish IM strain from the India (IND) strain through full sib-pair mating for 16 generations. However, the IM fish laid a small number of offspring and had a short lifespan, implying the need for discreet care in breeding. Here, we report the subsequent establishment of IM strain as well as the generation of a new inbred zebrafish strain, Mishima-AB (M-AB). M-AB was derived from the *AB strain by full sib-pair mating for over 20 generations, which fulfills the general criterion for the establishment of an inbred strain. In contrast to the IM case, maintenance of the M-AB strain by sib-pair mating required almost no special handling. Genome sequencing of IM individuals from the 47th generation and M-AB individuals from the 27th generation revealed that SNP-based genomic heterogeneity across whole-genome nucleotides was 0.008% and 0.011%, respectively. These percentages were much lower than those of the parental IND (0.197%) and *AB (0.086%) strains. These results indicate that the genomes of these inbred strains were highly homogenous. We also demonstrated the successful microinjection of antisense morpholinos, CRISPR/Cas9, and foreign genes into M-AB embryos at the 1-cell stage. Overall, we report the establishment of a zebrafish inbred strain, M-AB, which is capable of regular breeding and genetic manipulation. This strain will be useful for the analysis of genetically susceptible phenotypes such as behaviors, microbiome features and drug susceptibility.
Collapse
Affiliation(s)
- Kenichiro Sadamitsu
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Fabien Velilla
- Model Fish Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Minori Shinya
- Department of Biology, Keio University, Yokohama, 223-8521, Japan
| | - Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
- Faculty of Science, Toho University, Funabashi, 274-8510, Japan
| | - Yukiko Imai
- Model Fish Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Toshihiro Kawasaki
- Model Fish Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Kenta Watai
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Miho Hosaka
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Hiromi Hirata
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan.
| | - Noriyoshi Sakai
- Model Fish Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan.
- Department of Genetics, SOKENDAI, Mishima, 411-8540, Japan.
| |
Collapse
|
7
|
Shen Y, Jiang H, Canario AV, Chen T, Liu Y, Yang G, Meng X, Zhao J, Chen X. The fusion gene hsf5-rnf43 in Nile tilapia: A potential regulator in the maintenance of testis function and sexual differentiation. iScience 2023; 26:108284. [PMID: 38026183 PMCID: PMC10679895 DOI: 10.1016/j.isci.2023.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
We identified that the genes heat shock transcription factor 5 (hsf5) and ring finger protein 43 (rnf43) happened fusion in Nile tilapia (Oreochromis niloticus), called hsf5-rnf43, and provided the characteristic and functional analysis of hsf5-rnf43 gene in fish for the first time. Analysis of spatiotemporal expression showed that hsf5-rnf43 was specifically expressed in the testis and located in primary spermatocytes of adult Nile tilapia and gradually increased during testis development from 5 to 180 days after hatching. We also found DNA methylation regulated sex-biased expression of hsf5-rnf43 in the early development of Nile tilapia, and was affected by high temperature during the thermosensitive period of Nile tilapia sex differentiation. Therefore, we first reported that the fusion gene hsf5-rnf43 was sex-biased expressed in the testis regulated by DNA methylation and affected by high temperature, which may be involved in the maintenance of testis function and sex differentiation of Nile tilapia.
Collapse
Affiliation(s)
- Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Adelino V.M. Canario
- CCMAR/CIMAR Centre for Marine Sciences, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yufei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, Henan, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
8
|
Barutc AR, Frit AJ, McCor RP, Nick JA, Asla M. Heat shock factor 5 establishes the male germ-line meiotic sex chromosome inactivation through regulation of Smarca4. Heliyon 2023; 9:e15194. [PMID: 37206036 PMCID: PMC10189179 DOI: 10.1016/j.heliyon.2023.e15194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Meiotic sex chromosome inactivation is an essential event in male germ cell development, which is directed by DNA damage response signaling independent of Xist RNA to silence the transcription activity of the sex chromosomes. However, the specific mechanism of establishment and maintenance of meiotic chromosome silencing is still unclear. Here we identify the HSF5 as a testicular specific protein and the expression of which was at the onset of meiosis pachytene stage to round sperm. When the function of the HSF5 was lost, meiosis sex chromosome remodeling and silencing fail, followed by activation of CHK2 checkpoint leads to germ cell apoptosis. Furthermore, we found that SMARCA4 in the linking the HSF5 to MSCI and uncover additional factors with meiotic sex chromosome remodeling. Together, our results demonstrate a requirement for HSF5 activity in spermatogenesis and suggest a role for the mammalian HSF5-SMARCA4 in programmed meiotic sex chromosome remodeling and silencing events that take place during meiosis.
Collapse
Affiliation(s)
- A Rasim Barutc
- Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, 21551, Saudi Arabia
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andrew J. Frit
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Rachel P. McCor
- Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, 21551, Saudi Arabia
| | - Jeffrey A. Nick
- Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, 21551, Saudi Arabia
| | - Muhammad Asla
- Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, 21551, Saudi Arabia
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
- Corresponding author. Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah, 21551, Saudi Arabia.
| |
Collapse
|
9
|
Key J, Gispert S, Koornneef L, Sleddens-Linkels E, Kohli A, Torres-Odio S, Koepf G, Amr S, Reichlmeir M, Harter PN, West AP, Münch C, Baarends WM, Auburger G. CLPP Depletion Causes Diplotene Arrest; Underlying Testis Mitochondrial Dysfunction Occurs with Accumulation of Perrault Proteins ERAL1, PEO1, and HARS2. Cells 2022; 12:52. [PMID: 36611846 PMCID: PMC9818230 DOI: 10.3390/cells12010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Human Perrault syndrome (PRLTS) is autosomal, recessively inherited, and characterized by ovarian insufficiency with hearing loss. Among the genetic causes are mutations of matrix peptidase CLPP, which trigger additional azoospermia. Here, we analyzed the impact of CLPP deficiency on male mouse meiosis stages. Histology, immunocytology, different OMICS and biochemical approaches, and RT-qPCR were employed in CLPP-null mouse testis. Meiotic chromosome pairing and synapsis proceeded normally. However, the foci number of the crossover marker MLH1 was slightly reduced, and foci persisted in diplotene, most likely due to premature desynapsis, associated with an accumulation of the DNA damage marker γH2AX. No meiotic M-phase cells were detected. Proteome profiles identified strong deficits of proteins involved in male meiotic prophase (HSPA2, SHCBP1L, DMRT7, and HSF5), versus an accumulation of AURKAIP1. Histone H3 cleavage, mtDNA extrusion, and cGAMP increase suggested innate immunity activation. However, the deletion of downstream STING/IFNAR failed to alleviate pathology. As markers of underlying mitochondrial pathology, we observed an accumulation of PRLTS proteins ERAL1, PEO1, and HARS2. We propose that the loss of CLPP leads to the extrusion of mitochondrial nucleotide-binding proteins to cytosol and nucleus, affecting late meiotic prophase progression, and causing cell death prior to M-phase entry. This phenotype is more severe than in mito-mice or mutator-mice.
Collapse
Affiliation(s)
- Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Aneesha Kohli
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Health Science Center, Texas A&M University, Bryan, TX 77807, USA
| | - Gabriele Koepf
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Shady Amr
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Marina Reichlmeir
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Patrick N. Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt am Main, Germany
| | - Andrew Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Health Science Center, Texas A&M University, Bryan, TX 77807, USA
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 35392 Gießen, Germany
| | - Willy M. Baarends
- Department of Developmental Biology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Priyam M, Gupta SK, Sarkar B, Naskar S, Kumar N, Foysal MJ, Sharma TR. Variation in immuno-reproductive milieu of testis in Clarias magur from pre-spawning to spawning phase: An indication towards non-canonical role of immune elements in testes. J Reprod Immunol 2022; 154:103757. [PMID: 36335659 DOI: 10.1016/j.jri.2022.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Immune mechanisms are major players in ensuring the normal functioning of testicular functions. However, apart from their role in active defence against pathogens, prior studies have also suggested a possibility for reproduction-related (non-immune) functions of certain immune elements. This study employs a comparative transcriptomics approach followed by network analysis for tracking the variation in the immuno-reproductive milieu of Clarias magur testis in spawning versus pre-spawning phase. The results show a significant modulation of both reproduction and immune-relevant genes in spawning versus pre-spawning phase. The functional enrichment of the upregulated reproduction-relevant gene network also shows immune-related biological processes which indicates a probability of involvement of these candidates in spermatogenesis-related events for switching from pre-spawning to spawning phase. The upregulated immune network is highly dense with 40 hubs, 10 cluster sub-networks and 142 functionally enriched pathways in comparison to its downregulated counterpart with only 5 hubs, 1 cluster and 1 enriched pathway. These findings indicate that the synchronisation in modulation of both reproductive and immune-related factors is critical for progression of testicular events guiding the switch from pre-spawning to spawning phase. The reproductive phase-dependent variation in plasma sex steroid levels and the selected genes for quantitative PCR also corroborated this hypothesis. The study also serves as a preliminary screening step for probable immune candidates that may be involved in reproductive functions of testis in addition to defence.
Collapse
Affiliation(s)
- Manisha Priyam
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India
| | - Sanjay K Gupta
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India.
| | - Biplab Sarkar
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India
| | - Soumen Naskar
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India
| | - Neeraj Kumar
- ICAR, National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune 413115, India
| | - Md Javed Foysal
- School of Molecular and Life Sciences Curtin University, WA 6845 Australia
| | - T R Sharma
- ICAR, Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand 834010, India
| |
Collapse
|
11
|
Kovács D, Kovács M, Ahmed S, Barna J. Functional diversification of heat shock factors. Biol Futur 2022; 73:427-439. [PMID: 36402935 DOI: 10.1007/s42977-022-00138-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Heat shock transcription factors (HSFs) are widely known as master regulators of the heat shock response. In invertebrates, a single heat shock factor, HSF1, is responsible for the maintenance of protein homeostasis. In vertebrates, seven members of the HSF family have been identified, namely HSF1, HSF2, HSF3, HSF4, HSF5, HSFX, and HSFY, of which HSF1 and HSF2 are clearly associated with heat shock response, while HSF4 is involved in development. Other members of the family have not yet been studied as extensively. Besides their role in cellular proteostasis, HSFs influence a plethora of biological processes such as aging, development, cell proliferation, and cell differentiation, and they are implicated in several pathologies such as neurodegeneration and cancer. This is achieved by regulating the expression of a great variety of genes including chaperones. Here, we review our current knowledge on the function of HSF family members and important aspects that made possible the functional diversification of HSFs.
Collapse
Affiliation(s)
- Dániel Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Márton Kovács
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - Saqib Ahmed
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary
| | - János Barna
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary. .,ELKH-ELTE Genetics Research Group, Pázmány Péter sétány 1/c, Budapest, H-1117, Hungary.
| |
Collapse
|
12
|
Tokunaga Y, Otsuyama KI, Kakuta S, Hayashida N. Heat Shock Transcription Factor 2 Is Significantly Involved in Neurodegenerative Diseases, Inflammatory Bowel Disease, Cancer, Male Infertility, and Fetal Alcohol Spectrum Disorder: The Novel Mechanisms of Several Severe Diseases. Int J Mol Sci 2022; 23:ijms232213763. [PMID: 36430241 PMCID: PMC9691173 DOI: 10.3390/ijms232213763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
HSF (heat shock transcription factor or heat shock factor) was discovered as a transcription factor indispensable for heat shock response. Although four classical HSFs were discovered in mammals and two major HSFs, HSF1 and HSF2, were cloned in the same year of 1991, only HSF1 was intensively studied because HSF1 can give rise to heat shock response through the induction of various HSPs' expression. On the other hand, HSF2 was not well studied for some time, which was probably due to an underestimate of HSF2 itself. Since the beginning of the 21st century, HSF2 research has progressed and many biologically significant functions of HSF2 have been revealed. For example, the roles of HSF2 in nervous system protection, inflammation, maintenance of mitosis and meiosis, and cancer cell survival and death have been gradually unveiled. However, we feel that the fact HSF2 has a relationship with various factors is not yet widely recognized; therefore, the biological significance of HSF2 has been underestimated. We strongly hope to widely communicate the significance of HSF2 to researchers and readers in broad research fields through this review. In addition, we also hope that many readers will have great interest in the molecular mechanism in which HSF2 acts as an active transcription factor and gene bookmarking mechanism of HSF2 during cell cycle progression, as is summarized in this review.
Collapse
Affiliation(s)
- Yasuko Tokunaga
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan
| | - Ken-Ichiro Otsuyama
- Department of Clinical Laboratory Science, Faculty of Health Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Hayashida
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Correspondence: ; Tel.: +81-836-22-2359
| |
Collapse
|
13
|
Ishikawa A, Yamanouchi S, Iwasaki W, Kitano J. Convergent copy number increase of genes associated with freshwater colonization in fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200509. [PMID: 35634928 PMCID: PMC9149799 DOI: 10.1098/rstb.2020.0509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/14/2022] [Indexed: 07/20/2023] Open
Abstract
Copy number variation (CNV) can cause phenotypic changes. However, in contrast to amino acid substitutions and cis-regulatory changes, little is known about the functional categories of genes in which CNV is important for adaptation to novel environments. It is also unclear whether the same genes repeatedly change the copy numbers for adapting to similar environments. Here, we investigate CNV associated with freshwater colonization in fishes, which was observed multiple times across different lineages. Using 48 ray-finned fishes across diverse orders, we identified 23 genes whose copy number increases were associated with freshwater colonization. These genes showed enrichment for peptide receptor activity, hexosyltransferase activity and unsaturated fatty acid metabolism. We further revealed that three of the genes showed copy number increases in freshwater populations compared to marine ancestral populations of the stickleback genus Gasterosteus. These results indicate that copy number increases of genes involved in fatty acid metabolism (FADS2), immune function (PSMB8a) and thyroid hormone metabolism (UGT2) may be important for freshwater colonization at both the inter-order macroevolutionary scale and at the intra-genus microevolutionary scale. Further analysis across diverse taxa will help to understand the role of CNV in the adaptation to novel environments. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shun Yamanouchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
14
|
Wang HQ, Wang T, Gao F, Ren WZ. Application of CRISPR/Cas Technology in Spermatogenesis Research and Male Infertility Treatment. Genes (Basel) 2022; 13:genes13061000. [PMID: 35741761 PMCID: PMC9223233 DOI: 10.3390/genes13061000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
As the basis of animal reproductive activity, normal spermatogenesis directly determines the efficiency of livestock production. An in-depth understanding of spermatogenesis will greatly facilitate animal breeding efforts and male infertility treatment. With the continuous development and application of gene editing technologies, they have become valuable tools to study the mechanism of spermatogenesis. Gene editing technologies have provided us with a better understanding of the functions and potential mechanisms of action of factors that regulate spermatogenesis. This review summarizes the applications of gene editing technologies, especially CRISPR/Cas9, in deepening our understanding of the function of spermatogenesis-related genes and disease treatment. The problems of gene editing technologies in the field of spermatogenesis research are also discussed.
Collapse
|
15
|
Wang C, Chen X, Dai Y, Zhang Y, Sun Y, Cui X. Comparative transcriptome analysis of heat-induced domesticated zebrafish during gonadal differentiation. BMC Genom Data 2022; 23:39. [PMID: 35641933 PMCID: PMC9158171 DOI: 10.1186/s12863-022-01058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The influence of environmental factors, especially temperature, on sex ratio is of great significance to elucidate the mechanism of sex determination. However, the molecular mechanisms by which temperature affects sex determination remains unclear, although a few candidate genes have been found to play a role in the process. In this study, we conducted transcriptome analysis of the effects induced by high temperature on zebrafish during gonad differentiation period. RESULTS Totals of 1171, 1022 and 2921 differentially expressed genes (DEGs) between high temperature and normal temperature were identified at 35, 45 and 60 days post-fertilization (dpf) respectively, revealing that heat shock proteins (HSPs) and DNA methyltransferases (DNMTs) were involved in the heat-exposed sex reversal. The Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway that were enriched in individuals after heat treatment included Fanconi anemia (FA) pathway, cell cycle, oocyte meiosis and homologous recombination. CONCLUSIONS Our study provides the results of comparative transcriptome analyses between high temperature and normal temperature, and reveals that the molecular mechanism of heat-induced masculinization in zebrafish is strongly related to the expression of HSPs and DNMTs and FA pathway during gonad differentiation.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xuhuai Chen
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yu Dai
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yifei Zhang
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yuandong Sun
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xiaojuan Cui
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China. .,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| |
Collapse
|
16
|
Joshi M, Andrabi SW, Singh V, Bansal SK, Makker GC, Mishra G, Gupta G, Rajender S. Coding and regulatory transcriptome comparisons between fertile and infertile spermatozoa identify RNA signatures of male infertility. Andrologia 2022; 54:e14437. [PMID: 35437806 DOI: 10.1111/and.14437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/07/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to identify RNA-based signatures of male infertility by sperm transcriptome analysis. In this study, deep sequencing analyses of coding (mRNA) and regulatory (miRNA) transcriptomes were performed by pooling 15 oligo/oligoasthenozoospermic infertile sperm and 9 normozoospermic fertile sperm samples. Furthermore, interesting candidates were selected for validation by real-time PCR. The comparison of miRNAs between cases and controls identified 94 differentially expressed miRNAs, of which at least 38 have known functions in spermatogenesis. In transcriptome (mRNA) data, a total of 60,505 transcripts were obtained. The comparison of coding RNAs between cases and controls revealed 11,688 differentially expressed genes. miRNA-mRNA paired analysis revealed that 94 differentially expressed miRNAs could potentially target 13,573 genes, of which 6419 transcripts were actually differentially expressed in our data. Out of these, 3303 transcripts showed inverse correlation with their corresponding regulatory miRNAs. Moreover, we found that most of the genes of miRNA-mRNA pairs were involved in male germ cell differentiation, apoptosis, meiosis, spermiogenesis and male infertility. In conclusion, we found that a number of sperm transcripts (miRNAs and mRNAs) have a very high potential of serving as infertility/sperm quality markers.
Collapse
Affiliation(s)
- Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Syed Waseem Andrabi
- Department of Zoology, Lucknow University, Lucknow, India.,Makker Infertility Clinic, Lucknow, India
| | - Vertika Singh
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | | | | | | | - Gopal Gupta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Bloom syndrome helicase contributes to germ line development and longevity in zebrafish. Cell Death Dis 2022; 13:363. [PMID: 35436990 PMCID: PMC9016072 DOI: 10.1038/s41419-022-04815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/08/2022]
Abstract
RecQ helicases—also known as the “guardians of the genome”—play crucial roles in genome integrity maintenance through their involvement in various DNA metabolic pathways. Aside from being conserved from bacteria to vertebrates, their importance is also reflected in the fact that in humans impaired function of multiple RecQ helicase orthologs are known to cause severe sets of problems, including Bloom, Werner, or Rothmund-Thomson syndromes. Our aim was to create and characterize a zebrafish (Danio rerio) disease model for Bloom syndrome, a recessive autosomal disorder. In humans, this syndrome is characterized by short stature, skin rashes, reduced fertility, increased risk of carcinogenesis, and shortened life expectancy brought on by genomic instability. We show that zebrafish blm mutants recapitulate major hallmarks of the human disease, such as shortened lifespan and reduced fertility. Moreover, similarly to other factors involved in DNA repair, some functions of zebrafish Blm bear additional importance in germ line development, and consequently in sex differentiation. Unlike fanc genes and rad51, however, blm appears to affect its function independent of tp53. Therefore, our model will be a valuable tool for further understanding the developmental and molecular attributes of this rare disease, along with providing novel insights into the role of genome maintenance proteins in somatic DNA repair and fertility.
Collapse
|
18
|
Heat Shock Factors in Protein Quality Control and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:181-199. [PMID: 36472823 DOI: 10.1007/978-3-031-12966-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proper regulation of cellular protein quality control is crucial for cellular health. It appears that the protein quality control machinery is subjected to distinct regulation in different cellular contexts such as in somatic cells and in germ cells. Heat shock factors (HSFs) play critical role in the control of quality of cellular proteins through controlling expression of many genes encoding different proteins including those for inducible protein chaperones. Mammalian cells exert distinct mechanism of cellular functions through maintenance of tissue-specific HSFs. Here, we have discussed different HSFs and their functions including those during spermatogenesis. We have also discussed the different heat shock proteins induced by the HSFs and their activities in those contexts. We have also identified several small molecule activators and inhibitors of HSFs from different sources reported so far.
Collapse
|
19
|
Zhao LR, Xiao J, Shang Q, Li T, Liu XS, Guan FL. Application of CD83 and HSF5 to Identify Antemortem and Postmortem Skin Burns. FA YI XUE ZA ZHI 2021; 37:627-631. [PMID: 35187913 DOI: 10.12116/j.issn.1004-5619.2020.400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To explore the forensic application value of cluster of differentiation 83 (CD83) and heat shock transcription factor 5(HSF5) in identifying antemortem and postmortem skin burns. METHODS Through reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR), CD83 and HSF5 mRNA levels in the skin tissues of antemortem and postmortem burned mice and human samples were detected quantitatively. RESULTS Compared with the control group and the postmortem burned group, the mRNA levels of CD83 and HSF5 in antemortem burned mice were higher. The high mRNA expressions of CD83 could be detected 96 h after death, and the mRNA expressions of HSF5 could be observed 72 h after death. Compared with undamaged skin, increased CD83 and HSF5 mRNA levels were detected in 11 out of 15 cases(P<0.05). CONCLUSIONS CD83 and HSF5 can be used in forensic practice as indicators for vital reaction in antemortem burn identification.
Collapse
Affiliation(s)
- Long-Rui Zhao
- School of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jing Xiao
- School of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qing Shang
- School of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Tao Li
- School of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xin-She Liu
- School of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Fang-Lin Guan
- School of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
20
|
Comprehensive Characterization of Multitissue Expression Landscape, Co-Expression Networks and Positive Selection in Pikeperch. Cells 2021; 10:cells10092289. [PMID: 34571938 PMCID: PMC8471114 DOI: 10.3390/cells10092289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022] Open
Abstract
Promising efforts are ongoing to extend genomics resources for pikeperch (Sander lucioperca), a species of high interest for the sustainable European aquaculture sector. Although previous work, including reference genome assembly, transcriptome sequence, and single-nucleotide polymorphism genotyping, added a great wealth of genomic tools, a comprehensive characterization of gene expression across major tissues in pikeperch still remains an unmet research need. Here, we used deep RNA-Sequencing of ten vital tissues collected in eight animals to build a high-confident and annotated trancriptome atlas, to detect the tissue-specificity of gene expression and co-expression network modules, and to investigate genome-wide selective signatures in the Percidae fish family. Pathway enrichment and protein–protein interaction network analyses were performed to characterize the unique biological functions of tissue-specific genes and co-expression modules. We detected strong functional correlations and similarities of tissues with respect to their expression patterns—but also significant differences in the complexity and composition of their transcriptomes. Moreover, functional analyses revealed that tissue-specific genes essentially play key roles in the specific physiological functions of the respective tissues. Identified network modules were also functionally coherent with tissues’ main physiological functions. Although tissue specificity was not associated with positive selection, several genes under selection were found to be involved in hypoxia, immunity, and gene regulation processes, that are crucial for fish adaption and welfare. Overall, these new resources and insights will not only enhance the understanding of mechanisms of organ biology in pikeperch, but also complement the amount of genomic resources for this commercial species.
Collapse
|
21
|
Effect of Post-Hatch Heat-Treatment in Heat-Stressed Transylvanian Naked Neck Chicken. Animals (Basel) 2021; 11:ani11061575. [PMID: 34072238 PMCID: PMC8227715 DOI: 10.3390/ani11061575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Heat stress due to high environmental temperature negatively influences animal productivity. Extensive studies have been carried out to evaluate the mechanisms of heat stress in chickens. It was shown that the expression level of heat-shock factors (HSFs) and heat-shock proteins (HSPs) were affected. Tissue-specific responses to the thermal challenge were also found in the heart, liver and muscle. Our study examined the changes in primary production parameters and four heat-shock factor and two heat-shock protein expression profiles in chicken gonads. In the first experiment, 24 h after hatching, 80 Transylvanian Naked Neck chickens were heat-treated at 38.5 °C ambient temperature with 60% humidity for 12 h. In this experiment, we studied the primary productivity parameters of matured chickens after the performed heat stress. In the second experiment, the heat treatment was the same, and we examined the expression pattern of heat-shock factors and heat-shock proteins in the control and treated gonads. We collected the samples immediately after the heat-treatment in case of half of the treated and control group. We found a significant difference in egg production, and increased expression level of HSP90 and HSF4 in heat-treated female gonads. Abstract Although numerous studies reported the effects of heat stress in chickens, it was not investigated in the Transylvanian Naked Neck breed. In our research, Transylvanian Naked Neck chickens, 24 h after hatching, were heat-treated at 38.5 °C for 12 h. We compared the control and heat-treated adult chickens’ productivity parameters following 12 weeks of heat-stress at 30 °C. We found that the heat-treated layers had significantly higher egg production in heat stress, but in cockerels, the sperm quality did not differ significantly between the two groups. To detect the effect of heat-treatment on a molecular level, the expression of two heat-shock proteins and four heat-shock factors were analysed in the gonads of control and heat-treated chickens. We found that the expression level of HSP90 and HSF4 increased significantly in heat-treated female chicken gonads. Still, in adult females, the expression of HSF2 and HSF3 were substantially lower compared to the control. In adult heat-treated males, the HSP70, HSF1 and HSF3 expression levels showed a significant increase in both gonads compared to the control. We think that the presented significant differences in egg production might be related to the increased expression level of HSP90 and HSF4 in heat-treated female gonads.
Collapse
|
22
|
Syafruddin SE, Ling S, Low TY, Mohtar MA. More Than Meets the Eye: Revisiting the Roles of Heat Shock Factor 4 in Health and Diseases. Biomolecules 2021; 11:523. [PMID: 33807297 PMCID: PMC8066111 DOI: 10.3390/biom11040523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Cells encounter a myriad of endogenous and exogenous stresses that could perturb cellular physiological processes. Therefore, cells are equipped with several adaptive and stress-response machinery to overcome and survive these insults. One such machinery is the heat shock response (HSR) program that is governed by the heat shock factors (HSFs) family in response towards elevated temperature, free radicals, oxidants, and heavy metals. HSF4 is a member of this HSFs family that could exist in two predominant isoforms, either the transcriptional repressor HSFa or transcriptional activator HSF4b. HSF4 is constitutively active due to the lack of oligomerization negative regulator domain. HSF4 has been demonstrated to play roles in several physiological processes and not only limited to regulating the classical heat shock- or stress-responsive transcriptional programs. In this review, we will revisit and delineate the recent updates on HSF4 molecular properties. We also comprehensively discuss the roles of HSF4 in health and diseases, particularly in lens cell development, cataract formation, and cancer pathogenesis. Finally, we will posit the potential direction of HSF4 future research that could enhance our knowledge on HSF4 molecular networks as well as physiological and pathophysiological functions.
Collapse
|
23
|
Dai X, Cheng X, Huang J, Gao Y, Wang D, Feng Z, Zhai G, Lou Q, He J, Wang Z, Yin Z. Rbm46, a novel germ cell-specific factor, modulates meiotic progression and spermatogenesis. Biol Reprod 2021; 104:1139-1153. [PMID: 33524105 DOI: 10.1093/biolre/ioab016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/29/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
It has been suggested that many novel RNA-binding proteins (RBPs) are required for gametogenesis, but the necessity of few of these proteins has been functionally verified. Here, we identified one RBP, Rbm46, and investigated its expression pattern and role in zebrafish reproduction. We found that rbm46 is maternally provided and specifically expressed in the germ cells of gonadal tissues using in situ hybridization, reverse transcription-PCR, and quantitative real-time polymerase chain reaction (qRT-PCR). Two independent rbm46 mutant zebrafish lines were generated via the transcription activator-like effector nuclease technique. Specific disruption of rbm46 resulted in masculinization and infertility in the mutants. Although the spermatogonia appeared grossly normal in the mutants, spermatogenesis was impaired, and meiosis events were not observed. The introduction of a tp53M214K mutation could not rescue the female-to-male sex-reversal phenotype, indicating that rbm46 acts independently of the p53-dependent apoptotic pathway. RNA sequencing and qRT-PCR subsequently indicated that Rbm46 might be involved in the posttranscriptional regulation of functional genes essential for germ cell development, such as nanos3, dazl, and sycp3, during gametogenesis. Together, our results reveal for the first time the crucial role of rbm46 in regulating germ cell development in vivo through promotion of germ cell progression through meiosis prophase I.
Collapse
Affiliation(s)
- Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xinkai Cheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianfei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yanping Gao
- Research Centre for Diagnosis and Prevention of Hereditary Disease, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhi Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiyong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
24
|
Aizemaiti R, Wu Z, Tang J, Yan H, Lv X. Heat shock factor 5 correlated with immune infiltration serves as a prognostic biomarker in lung adenocarcinoma. Int J Med Sci 2021; 18:448-458. [PMID: 33390814 PMCID: PMC7757139 DOI: 10.7150/ijms.51297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the predominant subtype of lung cancer with a relatively poor prognosis. The dramatic improvements of new immunotherapy strategies have shown promising results in lung cancer patients. This study aimed to elucidate the functions of immune-associated genes in LUAD prognosis and pathogenesis by analyzing public databases. We obtained expression profiles of LUAD patients from The Cancer Genome Atlas (TCGA) database and applied the ESTIMATE algorithm to calculate immune scores and stromal scores. A series of microenvironment-related genes with prognostic value was then identified. Of note, heat shock factor 5 (HSF5) was found to be decreased in LUAD patients and positively correlated with overall survival, which was further confirmed in the Gene Expression Omnibus (GEO) database. Moreover, Gene Ontology (GO) analysis based on the correlated genes of HSF5 demonstrated that HSF5 expression was significantly associated with the immune response and inflammatory activities. Based on the Tumor IMmune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA) datasets, HSF5 expression showed strong correlations with various immune cell infiltration and diverse immune marker sets. These findings suggest that HSF5 can be used as a promising biomarker for determining prognosis and immune infiltration in LUAD patients.
Collapse
Affiliation(s)
- Rusidanmu Aizemaiti
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Qingchun Road 79, Hangzhou, China, 310009
| | - Zhigang Wu
- Zhejiang University School of Medicine, Yuhangtang Road 866, Hangzhou, China, 310009
| | - Jie Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Qingchun Road 79, Hangzhou, China, 310009
| | - Haimeng Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University, Qingchun Road 79, Hangzhou, China, 310009
| | - Xiayi Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhejiang University, Qingchun Road 79, Hangzhou, China, 310009
| |
Collapse
|
25
|
Ye M, Chen Y. Zebrafish as an emerging model to study gonad development. Comput Struct Biotechnol J 2020; 18:2373-2380. [PMID: 32994895 PMCID: PMC7498840 DOI: 10.1016/j.csbj.2020.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 01/24/2023] Open
Abstract
The zebrafish (Danio rerio) has emerged as a popular model organism in developmental biology and pharmacogenetics due to its attribute of pathway conservation. Coupled with the availability of robust genetic and transgenic tools, transparent embryos and rapid larval development, studies of zebrafish allow detailed cellular analysis of many dynamic processes. In recent decades, the cellular and molecular mechanisms involved in the process of gonad development have been the subject of intense research using zebrafish models. In this mini-review, we give a brief overview of these studies, and highlight the essential genes involved in sex determination and gonad development in zebrafish.
Collapse
Affiliation(s)
- Mengling Ye
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Hemati A, Modarressi MH, Kolivand S, Azarnia M. Heat shock factor 5 is essential for spermatogenesis in mice: Detected by a new monoclonal antibody. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:293-297. [PMID: 32440314 PMCID: PMC7229516 DOI: 10.22038/ijbms.2019.38615.9155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Here, we examined the function of our produced monoclonal antibody (mAb10C3) to recognize one of the most important members of the HEAT shock factor family, Hsf5, in embryonic development and in spermatogenic cells of adult mouse testis. MATERIALS AND METHODS The targeting effects of mAb10C3 were investigated by immunohistochemistry analysis in the different phases of the embryo and in the adult testis tissue sections. RESULTS The results of immunohistochemistry staining on the mouse embryos by the supernatant of hybridoma clone that produced mAb10C3, in the early and late phases (E7.5 and E14.5) of embryonic development, indicated that mAb10C3 could only detect Hsf5 in E7.5 and it did not have any targeting activity in the late phase of development. Therefore, we showed that the hsf5 gene has expressed in early mouse embryonic development. On the other hand, mAb10C3 could detect Hsf5 in spermatogonia and spermatocytes of adult testis in comparison with a known anti-Hsf5 antibody (ab98939) and an anti-PCNA antibody as a marker of spermatogonia cells. CONCLUSION Taken together, these data indicated that generated anti-testis mAb10C3 was generated against anti-testis proteins, specifically to target Hsf5, and can be useful as a scientific tool to investigate the critical genes in the development and spermatogenesis.
Collapse
Affiliation(s)
- Atefeh Hemati
- Department of Cell and Molecular Biology, School of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Sedighe Kolivand
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Cell and Molecular Biology, School of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
27
|
Baek M, Park T, Heo L, Seok C. Modeling Protein Homo-Oligomer Structures with GalaxyHomomer Web Server. Methods Mol Biol 2020; 2165:127-137. [PMID: 32621222 DOI: 10.1007/978-1-0716-0708-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular processes, such as metabolism, signal transduction, or immunity, often depend on the homo-oligomerization of proteins. Detailed structural knowledge of the homo-oligomer structure is therefore crucial for molecular-level understanding of protein functions and their regulation. In this chapter, we introduce the GalaxyHomomer server, which supports easy-to-use web interfaces for general users. It is freely accessible at http://galaxy.seoklab.org/homomer . GalaxyHomomer carries out template-based modeling, ab initio docking or both depending on the availability of proper oligomer templates. It also incorporates recently developed model refinement methods that can consistently improve model quality by performing symmetric loop modeling and overall structure refinement. Moreover, the server provides additional options that can be chosen by the user depending on the availability of information on the monomer structure, oligomeric state, and locations of unreliable/flexible loops or termini.
Collapse
Affiliation(s)
- Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Lim Heo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Zhang C, MacNeil MD, Kemp RA, Dyck MK, Plastow GS. Putative Loci Causing Early Embryonic Mortality in Duroc Swine. Front Genet 2018; 9:655. [PMID: 30619476 PMCID: PMC6304751 DOI: 10.3389/fgene.2018.00655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Lethal recessive alleles that act prenatally may be detected from the absence of homozygous individuals in a population. However, these alleles may be maintained at relatively low frequencies in populations as heterozygotes. In pigs, they may reduce litter size. This study aimed to detect putative lethal variants in the Duroc breed. Phenotypes for the numbers of piglets born (TNB), born live (BA), alive at 24 h (L24), stillborn (SB), and born as mummified fetuses (MM) were available from 5340 recorded litters which resulted from mating of 192 genotyped boars with sows of unknown genotype (dataset 1). An additional 50 litters were produced from parents that were both genotyped (dataset 2). Imputed genotypes of 650K SNPs for 1359 Duroc boars were used in this study. One significant SNP (Bonferroni corrected P = 5.5E-06) was located on SSC14 with 45.3 homozygous individuals expected but none observed. This SNP was significant for mummified fetuses. One hundred fifty two haplotypes were also found to potentially harbor recessive lethal mutations. Twenty-one haplotypes had a significant harmful effect on at least one trait. Two regions, located on SSC8 (144.9–145.5 Mb) and SSC9 (19–19.4 Mb) had significant effects on fertility traits in both datasets. Additionally, regions on SSC1 (82.0–82.8 Mb), SSC3 (73.3–73.7 and 87.1–87.5 Mb) and SSC12 (35.8–36.2 and 50.0–50.5 Mb) had significant deleterious effects on TNB or BA or L24 in dataset 1. Finally, a region on SSC17 (28.7–29.3 Mb) had significant effects on TNB, BA and L24 in dataset 2. A few candidate genes identified within these regions were described as being involved in spermatogenesis and male fertility (TEX14, SEP4, and HSF5), or displayed recessive lethality (CYP26B1, SCD5, and PCF11) in other species. The putative loci detected in this study provide valuable information to potentially increase Duroc litter size by avoiding carrier-by-carrier matings in breeding programs. Further study of the identified candidate genes responsible for such lethal effects may lead to new insights into functions regulating pig fertility.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michael D MacNeil
- Delta G, Miles City, MT, United States.,Department of Animal, Wildlife and Grassland Sciences, University of the Free State, Bloemfontein, South Africa
| | | | - Michael K Dyck
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Graham S Plastow
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|