1
|
Castle AR, Westaway D. Prion Protein Endoproteolysis: Cleavage Sites, Mechanisms and Connections to Prion Disease. J Neurochem 2025; 169:e16310. [PMID: 39874431 PMCID: PMC11774512 DOI: 10.1111/jnc.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Highly abundant in neurons, the cellular prion protein (PrPC) is an obligatory precursor to the disease-associated misfolded isoform denoted PrPSc that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrPC to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrPC are referred to as α- and β-cleavages, and in this review we outline the sites within PrPC at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology. Although the association of α-cleavage with neuroprotection is well-supported, we identify open questions regarding the importance of β-cleavage in TSEs and suggest experimental approaches that could provide clarification. We also combine findings from in vitro cleavage assays and mass spectrometry-based studies of prion protein fragments in the brain to present an updated view in which α- and β-cleavages may represent two distinct clusters of proteolytic events that occur at multiple neighbouring sites rather than at single positions. Furthermore, we highlight the candidate proteolytic mechanisms best supported by the literature; currently, despite several proteases identified as capable of processing PrPC in vitro, in cell-based models and in some cases, in vivo, none have been shown conclusively to cleave PrPC in the brain. Addressing this knowledge gap will be crucial for developing therapeutic interventions to drive PrPC endoproteolysis in a neuroprotective direction. Finally, we end this review by briefly addressing other cleavage events, specifically ectodomain shedding, γ-cleavage, the generation of atypical pathological fragments in the familial prion disorder Gerstmann-Sträussler-Scheinker syndrome and the possibility of an additional form of endoproteolysis close to the PrPC N-terminus.
Collapse
Affiliation(s)
- Andrew R. Castle
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute of Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - David Westaway
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonCanada
| |
Collapse
|
2
|
Liu Y, Tuttle MD, Kostylev MA, Roseman GP, Zilm KW, Strittmatter SM. Cellular Prion Protein Conformational Shift after Liquid-Liquid Phase Separation Regulated by a Polymeric Antagonist and Mutations. J Am Chem Soc 2024; 146:27903-27914. [PMID: 39326869 PMCID: PMC11469297 DOI: 10.1021/jacs.4c10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrPC) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid-co-maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrPC and amyloid-β oligomers (Aβo). We show that PSCMA can induce reentrant LLPS of PrPC and lower the saturation concentration (Csat) of PrPC by 100-fold. Regardless of the induction method, PrPC molecules subsequently undergo a maturation process to restrict molecular motion in a more solid-like state. The PSCMA-induced LLPS of PrPC stabilizes the intermediate LLPS conformational state detected by NMR, though the final matured β-sheet-rich state of PrPC is indistinguishable between induction conditions. The disease-associated E200 K mutation of PrPC also accelerates maturation. This post-LLPS shift in protein conformation and dynamics is a possible mechanism of LLPS-induced neurodegeneration.
Collapse
Affiliation(s)
- Yangyi Liu
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Marcus D. Tuttle
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Mikhail A. Kostylev
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Graham P. Roseman
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Kurt W. Zilm
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stephen M. Strittmatter
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
3
|
da Silva Correia A, Schmitz M, Fischer A, da Silva Correia S, Simonetti FL, Saher G, Goya‐Maldonado R, Arora AS, Fischer A, Outeiro TF, Zerr I. Cellular prion protein acts as mediator of amyloid beta uptake by caveolin-1 causing cellular dysfunctions in vitro and in vivo. Alzheimers Dement 2024; 20:6776-6792. [PMID: 39212313 PMCID: PMC11485400 DOI: 10.1002/alz.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Cellular prion protein (PrPC) was implicated in amyloid beta (Aβ)-induced toxicity in Alzheimer's disease (AD), but the precise molecular mechanisms involved in this process are unclear. METHODS Double transgenic mice were generated by crossing Prnp knockout (KO) with 5xFAD mice, and light-sheet microscopy was used for whole brain tissue analyses. PrPC-overexpressing cells were developed for in vitro studies, and microscopy was used to assess co-localization of proteins of interest. Surface-plasmon resonance (SPR) was used to investigate protein-binding characteristics. RESULTS In vivo, PrPC levels correlated with reduced lifespan and cognitive and motor function, and its ablation disconnected behavior deficits from Aβ levels. Light-sheet microscopy showed that PrPC influenced Aβ-plaque burden but not the distribution of those plaques. Interestingly, caveolin-1 (Cav-1) KO neurons significantly reduced intracellular Aβ-oligomer (Aβo) uptake when compared to wild-type neurons. DISCUSSION The findings shed new light on the relevance of intracellular Aβo, suggesting that PrPC and Cav-1 modulate intracellular Aβ levels and the Aβ-plaque load. HIGHLIGHTS PrPC expression adversely affects lifespan and behavior in 5xFAD mice. PrPC increases Aβ1-40 and Aβ1-42 levels and Aβ-plaque load in 5xFAD mice. Cav-1 interacts with both PrPC and Aβ peptides. Knocking out Cav-1 leads to a significant reduction in intracellular Aβ levels.
Collapse
Affiliation(s)
- Angela da Silva Correia
- Department of NeurologyUniversity Medical Center and the German Center for Neurodegenerative Diseases (DZNE)Georg‐August UniversityGoettingenGermany
| | - Matthias Schmitz
- Department of NeurologyUniversity Medical Center and the German Center for Neurodegenerative Diseases (DZNE)Georg‐August UniversityGoettingenGermany
| | - Anna‐Lisa Fischer
- Department of NeurologyUniversity Medical Center and the German Center for Neurodegenerative Diseases (DZNE)Georg‐August UniversityGoettingenGermany
| | - Susana da Silva Correia
- Department of NeurologyUniversity Medical Center and the German Center for Neurodegenerative Diseases (DZNE)Georg‐August UniversityGoettingenGermany
| | | | - Gesine Saher
- Department of NeurogeneticsMax Planck Institute for Multidisciplinary SciencesGoettingenGermany
| | - Roberto Goya‐Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP‐Lab)Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMG)GoettingenGermany
| | - Amandeep Singh Arora
- Texas Therapeutics InstituteBrown Foundation Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Andre Fischer
- Department of Psychiatry and PsychotherapyUniversity Medical Center GoettingenGoettingenGermany
- Department for Systems Medicine and Epigenetics in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE) GoettingenGoettingenGermany
| | - Tiago F. Outeiro
- Department of Experimental NeurodegenerationCenter for Nanoscale Microscopy and Molecular Physiology of the BrainCenter for Biostructural Imaging of NeurodegenerationUniversity Medical Center GoettingenGoettingenGermany
- Max Planck Institute for Multidisciplinary SciencesGoettingenGermany
- Translational and Clinical Research InstituteFaculty of Medical SciencesNewcastle UniversityNewcastleUK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)GoettingenGermany
| | - Inga Zerr
- Department of NeurologyUniversity Medical Center and the German Center for Neurodegenerative Diseases (DZNE)Georg‐August UniversityGoettingenGermany
| |
Collapse
|
4
|
Roth JR, Rush T, Thompson SJ, Aldaher AR, Dunn TB, Mesina JS, Cochran JN, Boyle NR, Dean HB, Yang Z, Pathak V, Ruiz P, Wu M, Day JJ, Bostwick JR, Suto MJ, Augelli-Szafran CE, Roberson ED. Development of small-molecule Tau-SH3 interaction inhibitors that prevent amyloid-β toxicity and network hyperexcitability. Neurotherapeutics 2024; 21:e00291. [PMID: 38241154 PMCID: PMC10903085 DOI: 10.1016/j.neurot.2023.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and lacks highly effective treatments. Tau-based therapies hold promise. Tau reduction prevents amyloid-β-induced dysfunction in preclinical models of AD and also prevents amyloid-β-independent dysfunction in diverse disease models, especially those with network hyperexcitability, suggesting that strategies exploiting the mechanisms underlying Tau reduction may extend beyond AD. Tau binds several SH3 domain-containing proteins implicated in AD via its central proline-rich domain. We previously used a peptide inhibitor to demonstrate that blocking Tau interactions with SH3 domain-containing proteins ameliorates amyloid-β-induced dysfunction. Here, we identify a top hit from high-throughput screening for small molecules that inhibit Tau-FynSH3 interactions and describe its optimization with medicinal chemistry. The resulting lead compound is a potent cell-permeable Tau-SH3 interaction inhibitor that binds Tau and prevents amyloid-β-induced dysfunction, including network hyperexcitability. These data support the potential of using small molecule Tau-SH3 interaction inhibitors as a novel therapeutic approach to AD.
Collapse
Affiliation(s)
- Jonathan R Roth
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Travis Rush
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samantha J Thompson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Aldaher
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trae B Dunn
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob S Mesina
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas R Boyle
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hunter B Dean
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhengrong Yang
- Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vibha Pathak
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Pedro Ruiz
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Mousheng Wu
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mark J Suto
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | | | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Gopalakrishna R, Lin CY, Oh A, Le C, Yang S, Hicks A, Kindy MS, Mack WJ, Bhat NR. cAMP-induced decrease in cell-surface laminin receptor and cellular prion protein attenuates amyloid-β uptake and amyloid-β-induced neuronal cell death. FEBS Lett 2022; 596:2914-2927. [PMID: 35971617 PMCID: PMC9712173 DOI: 10.1002/1873-3468.14467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023]
Abstract
Previous studies have shown that amyloid-β oligomers (AβO) bind with high affinity to cellular prion protein (PrPC ). The AβO-PrPC complex binds to cell-surface co-receptors, including the laminin receptor (67LR). Our current studies revealed that in Neuroscreen-1 cells, 67LR is the major co-receptor involved in the cellular uptake of AβO and AβΟ-induced cell death. Both pharmacological (dibutyryl-cAMP, forskolin and rolipram) and physiological (pituitary adenylate cyclase-activating polypeptide) cAMP-elevating agents decreased cell-surface PrPC and 67LR, thereby attenuating the uptake of AβO and the resultant neuronal cell death. These cAMP protective effects are dependent on protein kinase A, but not dependent on the exchange protein directly activated by cAMP. Conceivably, cAMP protects neuronal cells from AβO-induced cytotoxicity by decreasing cell-surface-associated PrPC and 67LR.
Collapse
Affiliation(s)
- Rayudu Gopalakrishna
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: Department of Integrative Anatomical Sciences, 1333 San Pablo Street, Keck School of Medicine, Los Angeles, CA 90089, USA, Phone: 1 + 323-442-1770; Fax: 1 + 323-442-1771:
| | - Charlotte Y. Lin
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Oh
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Calvin Le
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Seolyn Yang
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexandra Hicks
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; James A. Haley VA Medical Center, Tampa, FL 33612, USA
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Narayan R. Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Grimaldi I, Leser FS, Janeiro JM, da Rosa BG, Campanelli AC, Romão L, Lima FRS. The multiple functions of PrP C in physiological, cancer, and neurodegenerative contexts. J Mol Med (Berl) 2022; 100:1405-1425. [PMID: 36056255 DOI: 10.1007/s00109-022-02245-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Cellular prion protein (PrPC) is a highly conserved glycoprotein, present both anchored in the cell membrane and soluble in the extracellular medium. It has a diversity of ligands and is variably expressed in numerous tissues and cell subtypes, most notably in the central nervous system (CNS). Its importance has been brought to light over the years both under physiological conditions, such as embryogenesis and immune system homeostasis, and in pathologies, such as cancer and neurodegenerative diseases. During development, PrPC plays an important role in CNS, participating in axonal growth and guidance and differentiation of glial cells, but also in other organs such as the heart, lung, and digestive system. In diseases, PrPC has been related to several types of tumors, modulating cancer stem cells, enhancing malignant properties, and inducing drug resistance. Also, in non-neoplastic diseases, such as Alzheimer's and Parkinson's diseases, PrPC seems to alter the dynamics of neurotoxic aggregate formation and, consequently, the progression of the disease. In this review, we explore in detail the multiple functions of this protein, which proved to be relevant for understanding the dynamics of organism homeostasis, as well as a promising target in the treatment of both neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bárbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Clara Campanelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luciana Romão
- Cell Morphogenesis Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Spurrier J, Nicholson L, Fang XT, Stoner AJ, Toyonaga T, Holden D, Siegert TR, Laird W, Allnutt MA, Chiasseu M, Brody AH, Takahashi H, Nies SH, Pérez-Cañamás A, Sadasivam P, Lee S, Li S, Zhang L, Huang YH, Carson RE, Cai Z, Strittmatter SM. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q. Sci Transl Med 2022; 14:eabi8593. [PMID: 35648810 PMCID: PMC9554345 DOI: 10.1126/scitranslmed.abi8593] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microglia-mediated synaptic loss contributes to the development of cognitive impairments in Alzheimer's disease (AD). However, the basis for this immune-mediated attack on synapses remains to be elucidated. Treatment with the metabotropic glutamate receptor 5 (mGluR5) silent allosteric modulator (SAM), BMS-984923, prevents β-amyloid oligomer-induced aberrant synaptic signaling while preserving physiological glutamate response. Here, we show that oral BMS-984923 effectively occupies brain mGluR5 sites visualized by [18F]FPEB positron emission tomography (PET) at doses shown to be safe in rodents and nonhuman primates. In aged mouse models of AD (APPswe/PS1ΔE9 overexpressing transgenic and AppNL-G-F/hMapt double knock-in), SAM treatment fully restored synaptic density as measured by [18F]SynVesT-1 PET for SV2A and by histology, and the therapeutic benefit persisted after drug washout. Phospho-TAU accumulation in double knock-in mice was also reduced by SAM treatment. Single-nuclei transcriptomics demonstrated that SAM treatment in both models normalized expression patterns to a far greater extent in neurons than glia. Last, treatment prevented synaptic localization of the complement component C1Q and synaptic engulfment in AD mice. Thus, selective modulation of mGluR5 reversed neuronal gene expression changes to protect synapses from damage by microglial mediators in rodents.
Collapse
Affiliation(s)
- Joshua Spurrier
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - LaShae Nicholson
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaotian T Fang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Austin J Stoner
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - William Laird
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mary Alice Allnutt
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Marius Chiasseu
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - A Harrison Brody
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sarah Helena Nies
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Azucena Pérez-Cañamás
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pragalath Sadasivam
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Supum Lee
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Songye Li
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Le Zhang
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yiyun H Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Nelson AR. Peripheral Pathways to Neurovascular Unit Dysfunction, Cognitive Impairment, and Alzheimer’s Disease. Front Aging Neurosci 2022; 14:858429. [PMID: 35517047 PMCID: PMC9062225 DOI: 10.3389/fnagi.2022.858429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. It was first described more than a century ago, and scientists are acquiring new data and learning novel information about the disease every day. Although there are nuances and details continuously being unraveled, many key players were identified in the early 1900’s by Dr. Oskar Fischer and Dr. Alois Alzheimer, including amyloid-beta (Aβ), tau, vascular abnormalities, gliosis, and a possible role of infections. More recently, there has been growing interest in and appreciation for neurovascular unit dysfunction that occurs early in mild cognitive impairment (MCI) before and independent of Aβ and tau brain accumulation. In the last decade, evidence that Aβ and tau oligomers are antimicrobial peptides generated in response to infection has expanded our knowledge and challenged preconceived notions. The concept that pathogenic germs cause infections generating an innate immune response (e.g., Aβ and tau produced by peripheral organs) that is associated with incident dementia is worthwhile considering in the context of sporadic AD with an unknown root cause. Therefore, the peripheral amyloid hypothesis to cognitive impairment and AD is proposed and remains to be vetted by future research. Meanwhile, humans remain complex variable organisms with individual risk factors that define their immune status, neurovascular function, and neuronal plasticity. In this focused review, the idea that infections and organ dysfunction contribute to Alzheimer’s disease, through the generation of peripheral amyloids and/or neurovascular unit dysfunction will be explored and discussed. Ultimately, many questions remain to be answered and critical areas of future exploration are highlighted.
Collapse
|
10
|
Beauchemin KS, Rees JR, Supattapone S. Alternating anti-prion regimens reduce combination drug resistance but do not further extend survival in scrapie-infected mice. J Gen Virol 2021; 102:001705. [PMID: 34904943 PMCID: PMC8744272 DOI: 10.1099/jgv.0.001705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative diseases in humans and other mammals caused by templated misfolding of the endogenous prion protein (PrP). Although there is currently no vaccine or therapy against prion disease, several classes of small-molecule compounds have been shown to increase disease-free incubation time in prion-infected mice. An apparent obstacle to effective anti-prion therapy is the emergence of drug-resistant strains during static therapy with either single compounds or multi-drug combination regimens. Here, we treated scrapie-infected mice with dynamic regimens that alternate between different classes of anti-prion drugs. The results show that alternating regimens containing various combinations of Anle138b, IND24 and IND116135 reduce the incidence of combination drug resistance, but do not significantly increase long-term disease-free survival compared to monotherapy. Furthermore, the alternating regimens induced regional vacuolation profiles resembling those generated by a single component of the alternating regimen, suggesting the emergence of strain dominance.
Collapse
Affiliation(s)
- Kathryn S. Beauchemin
- Departments of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Judy R. Rees
- Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Surachai Supattapone
- Departments of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA,*Correspondence: Surachai Supattapone,
| |
Collapse
|
11
|
Amin L, Harris DA. Aβ receptors specifically recognize molecular features displayed by fibril ends and neurotoxic oligomers. Nat Commun 2021; 12:3451. [PMID: 34103486 PMCID: PMC8187732 DOI: 10.1038/s41467-021-23507-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Several cell-surface receptors for neurotoxic forms of amyloid-β (Aβ) have been described, but their molecular interactions with Aβ assemblies and their relative contributions to mediating Alzheimer's disease pathology have remained uncertain. Here, we used super-resolution microscopy to directly visualize Aβ-receptor interactions at the nanometer scale. We report that one documented Aβ receptor, PrPC, specifically inhibits the polymerization of Aβ fibrils by binding to the rapidly growing end of each fibril, thereby blocking polarized elongation at that end. PrPC binds neurotoxic oligomers and protofibrils in a similar fashion, suggesting that it may recognize a common, end-specific, structural motif on all of these assemblies. Finally, two other Aβ receptors, FcγRIIb and LilrB2, affect Aβ fibril growth in a manner similar to PrPC. Our results suggest that receptors may trap Aβ oligomers and protofibrils on the neuronal surface by binding to a common molecular determinant on these assemblies, thereby initiating a neurotoxic signal.
Collapse
Affiliation(s)
- Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Iqubal A, Iqubal MK, Fazal SA, Pottoo FH, Haque SE. Nutraceuticals and their Derived Nano-formulations for the Prevention and Treatment of Alzheimer's disease. Curr Mol Pharmacol 2021; 15:23-50. [PMID: 33687906 DOI: 10.2174/1874467214666210309115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is one of the common chronic neurological disorders and associated with cognitive dysfunction, depression and progressive dementia. Presence of β-amyloid or senile plaques, hyper-phosphorylated tau proteins, neurofibrillary tangle, oxidative-nitrative stress, mitochondrial dysfunction, endoplasmic reticulum stress, neuroinflammation and derailed neurotransmitter status are the hallmark of AD. Currently, donepezil, memantine, rivastigmine and galantamine are approved by the FDA for symptomatic management. It is well-known that these approved drugs only exert symptomatic relief and possess poor patient-compliance. Additionally, various published evidence shows the neuroprotective potential of various nutraceuticals via their antioxidant, anti-inflammatory and anti-apoptotic effects in the preclinical and clinical studies. These nutraceuticals possess a significant neuroprotective potential and hence, can be a future pharmacotherapeutic for the management and treatment of AD. However, nutraceutical suffers from certain major limitations such as poor solubility, low bioavailability, low stability, fast hepatic-metabolism and larger particle size. These pharmacokinetic attributes restrict their entry into the brain via the blood-brain barrier. Therefore, to over such issues, various nanoformulation of nutraceuticals was developed, that allows their effective delivery into brain owning to reduced particle size, increased lipophilicity increased bioavailability and avoidance of fast hepatic metabolism. Thus, in this review, we have discussed the etiology of AD, focused on the pharmacotherapeutics of nutraceuticals with preclinical and clinical evidence, discussed pharmaceutical limitation and regulatory aspects of nutraceuticals to ensure safety and efficacy. We further explored the latitude of various nanoformulation of nutraceuticals as a novel approach to overcome the existing pharmaceutical limitation and for effective delivery into the brain.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Syed Abul Fazal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441. Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| |
Collapse
|
13
|
Padilla-Zambrano HS, García-Ballestas E, Quiñones-Ossa GA, Sibaja-Perez AE, Agrawal A, Moscote-Salazar LR, Menéndez-González M. The Prion-like Properties of Amyloid-beta Peptide and Tau: Is there Any Risk of Transmitting Alzheimer's Disease During Neurosurgical Interventions? Curr Alzheimer Res 2021; 17:781-789. [PMID: 33280597 DOI: 10.2174/1567205017666201204164220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Recent studies have recognized similarities between the peptides involved in the neuropathology of Alzheimer's disease and prions. The Tau protein and the Amyloid β peptide represent the theoretical pillars of Alzheimer's disease development. It is probable that there is a shared mechanism for the transmission of these substances and the prion diseases development; this presumption is based on the presentation of several cases of individuals without risk factors who developed dementia decades after a neurosurgical procedure. This article aims to present the role of Aβ and Tau, which underlie the pathophysiologic mechanisms involved in the AD and their similarities with the prion diseases infective mechanisms by means of the presentation of the available evidence at molecular (in-vitro), animal, and human levels that support the controversy on whether these diseases might be transmitted in neurosurgical interventions, which may constitute a wide public health issue.
Collapse
Affiliation(s)
- Huber S Padilla-Zambrano
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Ezequiel García-Ballestas
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | | | - Andrés E Sibaja-Perez
- Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Amit Agrawal
- Department of Neurosurgery, Narayana Medical College, Nellore, Andhra Pradesh, India
| | - Luis R Moscote-Salazar
- Neurosurgeon-Critical Care, Center for Biomedical Research (CIB), Faculty of Medicine, University of Cartagena, Cartagena de Indias, Bolivar, Colombia
| | | |
Collapse
|
14
|
Upīte J, Brüning T, Möhle L, Brackhan M, Bascuñana P, Jansone B, Pahnke J. A New Tool for the Analysis of the Effect of Intracerebrally Injected Anti-Amyloid-β Compounds. J Alzheimers Dis 2021; 84:1677-1690. [PMID: 34719500 PMCID: PMC8764605 DOI: 10.3233/jad-215180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND A wide range of techniques has been developed over the past decades to characterize amyloid-β (Aβ) pathology in mice. Until now, no method has been established to quantify spatial changes in Aβ plaque deposition due to targeted delivery of substances using ALZET® pumps. OBJECTIVE Development of a methodology to quantify the local distribution of Aβ plaques after intracerebral infusion of compounds. METHODS We have developed a toolbox to quantify Aβ plaques in relation to intracerebral injection channels using Zeiss AxioVision® and Microsoft Excel® software. For the proof of concept, intracerebral stereotactic surgery was performed in 50-day-old APP-transgenic mice injected with PBS. At the age of 100 days, brains were collected for immunhistological analysis. RESULTS The toolbox can be used to analyze and evaluate Aβ plaques (number, size, and coverage) in specific brain areas based on their location relative to the point of the injection or the injection channel. The tool provides classification of Aβ plaques in pre-defined distance groups using two different approaches. CONCLUSION This new analytic toolbox facilitates the analysis of long-term continuous intracerebral experimental compound infusions using ALZET® pumps. This method generates reliable data for Aβ deposition characterization in relation to the distribution of experimental compounds.
Collapse
Affiliation(s)
- Jolanta Upīte
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - Thomas Brüning
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - Luisa Möhle
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - Mirjam Brackhan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
| | - Pablo Bascuñana
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - Baiba Jansone
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia
| | - Jens Pahnke
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Reidenbach AG, Mesleh MF, Casalena D, Vallabh SM, Dahlin JL, Leed AJ, Chan AI, Usanov DL, Yehl JB, Lemke CT, Campbell AJ, Shah RN, Shrestha OK, Sacher JR, Rangel VL, Moroco JA, Sathappa M, Nonato MC, Nguyen KT, Wright SK, Liu DR, Wagner FF, Kaushik VK, Auld DS, Schreiber SL, Minikel EV. Multimodal small-molecule screening for human prion protein binders. J Biol Chem 2020; 295:13516-13531. [PMID: 32723867 PMCID: PMC7521658 DOI: 10.1074/jbc.ra120.014905] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no validated small-molecule binders have been discovered to date. We deployed a variety of screening methods in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) NMR spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, but affinity was very weak (Kd > 1 mm), and it could not be advanced further. The exceptionally low hit rate observed here suggests that PrP is a difficult target for small-molecule binders. Whereas orthogonal binder discovery methods could yield high-affinity compounds, non-small-molecule modalities may offer independent paths forward against prion disease.
Collapse
Affiliation(s)
- Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael F Mesleh
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dominick Casalena
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Sonia M Vallabh
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Prion Alliance, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Jayme L Dahlin
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alison J Leed
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alix I Chan
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dmitry L Usanov
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jenna B Yehl
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Christopher T Lemke
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Arthur J Campbell
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rishi N Shah
- Undergraduate Research Opportunities Program (UROP), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Om K Shrestha
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Joshua R Sacher
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Victor L Rangel
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jamie A Moroco
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Murugappan Sathappa
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Maria Cristina Nonato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kong T Nguyen
- Artificial Intelligence Molecular Screen (AIMS) Awards Program, Atomwise, San Francisco, California, USA
| | - S Kirk Wright
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - David R Liu
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Florence F Wagner
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Virendar K Kaushik
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Douglas S Auld
- Facilitated Access to Screening Technologies (FAST) Lab, Novartis Institutes for Biomedical Research (NIBR), Cambridge, Massachusetts, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Eric Vallabh Minikel
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Prion Alliance, Cambridge, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
16
|
Frid K, Binyamin O, Usman A, Gabizon R. Delay of gCJD aggravation in sick TgMHu2ME199K mice by combining NPC transplantation and Nano-PSO administration. Neurobiol Aging 2020; 95:231-239. [PMID: 32861834 DOI: 10.1016/j.neurobiolaging.2020.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/02/2023]
Abstract
gCJD is a fatal late-onset neurodegenerative disease linked to mutations in the PRNP gene. We have previously shown that transplantation of neural precursor cells (NPCs), or administration of a nanoformulation of pomegranate seed oil (Nano-PSO, GranaGard), into newborn asymptomatic TgMHu2ME199K mice modeling for E200K gCJD significantly delayed the advance of clinical disease. In the present study, we tested the individual and combined effects of both treatments in older and sick TgMHu2ME199K mice. We show that while transplantation of NPCs at both initial (140 days) and advance clinical states (230 days) arrested disease progression for about 30 days, after which scores rapidly climbed to those of untreated Tgs, administration of Nano-PSO to transplanted TgMHu2ME199K mice resulted in detention of disease advance for 60-80 days, followed by a slower disease progression thereafter. Pathological examinations demonstrated the combined treatment extended the survival of the transplanted NPCs, and also increased the generation of endogenous stem cells. Our results suggest that administration of Nano-PSO may increase the beneficial effects of NPCs transplantation.
Collapse
Affiliation(s)
- Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Areen Usman
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel.
| |
Collapse
|
17
|
Forest KH, Nichols RA. Assessing Neuroprotective Agents for Aβ-Induced Neurotoxicity. Trends Mol Med 2019; 25:685-695. [DOI: 10.1016/j.molmed.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
|
18
|
Castro MA, Hadziselimovic A, Sanders CR. The vexing complexity of the amyloidogenic pathway. Protein Sci 2019; 28:1177-1193. [PMID: 30897251 PMCID: PMC6566549 DOI: 10.1002/pro.3606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
The role of the amyloidogenic pathway in the etiology of Alzheimer's disease (AD), particularly the common sporadic late onset forms of the disease, is controversial. To some degree, this is a consequence of the failure of drug and therapeutic antibody trials based either on targeting the proteases in this pathway or its amyloid end products. Here, we explore the formidable complexity of the biochemistry and cell biology associated with this pathway. For example, we review evidence that the immediate precursor of amyloid-β, the C99 domain of the amyloid precursor protein (APP), may itself be toxic. We also review important new results that appear to finally establish a direct genetic link between mutations in APP and the sporadic forms of AD. Based on the complexity of amyloidogenesis, it seems possible that a major contributor to the failure of related drug trials is that we have an incomplete understanding of this pathway and how it is linked to Alzheimer's pathogenesis. If so, this highlights a need for further characterization of this pathway, not its abandonment.
Collapse
Affiliation(s)
- Manuel A. Castro
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| | - Arina Hadziselimovic
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| | - Charles R. Sanders
- Departments of Biochemistry and MedicineVanderbilt University School of MedicineNashvilleTennessee 37240
| |
Collapse
|
19
|
Kobrlova T, Korabecny J, Soukup O. Current approaches to enhancing oxime reactivator delivery into the brain. Toxicology 2019; 423:75-83. [PMID: 31112674 DOI: 10.1016/j.tox.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
Abstract
The misuse of organophosphate compounds still represents a current threat worldwide. Treatment of poisoning with organophosphates (OPs) remains unsatisfactorily resolved despite the extensive investment in research in academia. There are no universal, effective and centrally-active acetylcholinesterase (AChE) reactivators to countermeasure OP intoxication. One major obstacle is to overcome the blood-brain barrier (BBB). The central compartment is readily accessible by the OPs which are lipophilic bullets that can easily cross the BBB, whereas first-line therapeutics, namely oxime-based AChE reactivators and atropine, do not cross or do so rather slowly. The limitation of oxime-based AChE reactivators can be ascribed to their chemical nature, bearing a positive charge which is essential either for their AChE affinity or their reactivating potency. The aim of this article is to review the methods for targeting the brain by oxime reactivators that have been developed so far. Approaches using prodrugs, lipophilicity enhancement, or sugar-based oximes have been rather unsuccessful. However, other strategies have been more promising, such as the use of nanoparticles or co-administration of the reactivator with efflux transporter inhibitors. Encouraging results have also been associated with intranasal delivery, but research in this field is still at the beginning. Further research of auspicious approaches is inevitable.
Collapse
Affiliation(s)
- Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
20
|
Prion Protein Antagonists Rescue Alzheimer's Amyloid-β-Related Cognitive Deficits. Trends Mol Med 2019; 25:74-76. [PMID: 30661727 DOI: 10.1016/j.molmed.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/21/2022]
Abstract
Recent studies revealed that cellular prion protein on neurons bind Alzheimer's amyloid-β oligomers, causing neurotoxic effects. A new article in Cell Reports by Gunther and colleagues (Cell Rep. 2019; 26:145-158) shows that an orally administered cellular prion protein antagonist can rescue synaptic and cognitive deficits in Alzheimer's mice overexpressing amyloid-β.
Collapse
|