1
|
Li M, Zhang Q, Wang Y, Xie J, Liang T, Liu Z, Xiang X, Zhou Q, Gong Z. From adhesion to invasion: the multifaceted roles of Mycobacterium tuberculosis lipoproteins. J Drug Target 2025:1-10. [PMID: 39993287 DOI: 10.1080/1061186x.2025.2472208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis, which poses a significant threat to human health. Lipoproteins are predominantly found in the M. tuberculosis cell wall during infection of the invading host. The cell wall interacts closely with the host cell in direct contact. The M. tuberculosis genome encodes at least 99 lipoproteins with diverse functions, including ABC transport, cell wall metabolism, adhesion, cell invasion, and signal transduction, among others. Different lipoproteins play important roles in bacterial survival, infection of host cells, vaccine development, and gene regulation for drug targeting. Although only a subset of these lipoproteins has been functionally investigated, most of them require further study. This review summarises the progress of research related to the synthesis of M. tuberculosis lipoproteins and their involvement in the functions of material transport, immune response, virulence mechanism, vaccine development, signalling, enzyme, and drug regulation.
Collapse
Affiliation(s)
- Min Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiao Zhang
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Yun Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianping Xie
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Tian Liang
- Cultivation Base of Provincial-Ministry Joint State Key Laboratory of Ecological Environment and Biological Resources in Three Gorges Reservoir Area, School of Life Sciences, Institute of Modern Biomedicine, Southwest University, Chongqing, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhen Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Jain M, Vyas R. Unveiling the silent defenders: mycobacterial stress sensors at the forefront to combat tuberculosis. Crit Rev Biotechnol 2025:1-19. [PMID: 39880585 DOI: 10.1080/07388551.2024.2449367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/12/2024] [Accepted: 09/14/2024] [Indexed: 01/31/2025]
Abstract
The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (M.tb) emphasizes the critical requirement for novel potent drugs. The M.tb demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of M.tb that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host. M.tb is an exceptionally triumphant pathogen, primarily due to its adeptness in developing defense mechanisms against stressful situations. The recent advances emphasize the significance of M.tb stress sensors, including chaperones, proteases, transcription factors, riboswitches, inteins, etc., employed in responding to a spectrum of physiological stresses imposed by the host, encompassing surface stress, host immune responses, osmotic stress, oxidative and nitrosative stresses, cell envelope stress, environmental stress, reductive stress, and drug pressure. These sensors act as silent defenders orchestrating adaptive strategies, with limited comprehensive information in current literature, necessitating a focused review. The M.tb strategies utilizing these stress sensors to mitigate the impact of traumatic conditions demand attention to neutralize this pathogen effectively. Moreover, the intricacies of these stress sensors provide potential targets to design an effective TB drug using structure-based drug design against this formidable global health threat.
Collapse
Affiliation(s)
- Manya Jain
- Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India
| | - Rajan Vyas
- Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
3
|
Mejia-Santana A, Collins R, Doud EH, Landeta C. Disulfide bonds are required for cell division, cell envelope biogenesis and antibiotic resistance proteins in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635063. [PMID: 39975046 PMCID: PMC11838256 DOI: 10.1101/2025.01.27.635063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mycobacteria, including Mycobacterium tuberculosis-the etiological agent of tuberculosis-have a unique cell envelope critical for their survival and resistance. The cell envelope's assembly and maintenance influence permeability, making it a key target against multidrug-resistant strains. Disulfide bond (DSB) formation is crucial for the folding of cell envelope proteins. The DSB pathway in mycobacteria includes two enzymes, DsbA and VKOR, required for survival. Using bioinformatics and cysteine profiling proteomics, we identified cell envelope proteins dependent on DSBs. We validated via in vivo alkylation that key proteins like LamA (MmpS3), PstP, LpqW, and EmbB rely on DSBs for stability. Furthermore, chemical inhibition of VKOR results in phenotypes similar to those of Δvkor. Thus, targeting DsbA-VKOR systems could compromise both cell division and mycomembrane integrity. These findings emphasize the potential of DSB inhibition as a novel strategy to combat mycobacterial infections.
Collapse
Affiliation(s)
| | - Rebecca Collins
- Department of Biology. Indiana University. Bloomington, IN. U.S.A
| | - Emma H. Doud
- Biochemistry and Molecular Biology. Indiana University School of Medicine. Indianapolis, IN. U.S.A
- Center for Proteome Analysis; Indiana University School of Medicine. Indianapolis, IN. U.S.A
| | - Cristina Landeta
- Department of Biology. Indiana University. Bloomington, IN. U.S.A
| |
Collapse
|
4
|
Rosas-Cruz M, Madariaga Mazón A, García-Mejía CD, Hernández-Vázquez E, Gómez-Velasco H, Jiménez-Faraco E, Farías-Gaytán RS, Hermoso JA, Martínez-Caballero S. Identification of Potential Inhibitors of Mycobacterium tuberculosis Amidases: An Integrated In Silico and Experimental Study. ACS OMEGA 2024; 9:46461-46471. [PMID: 39583660 PMCID: PMC11579945 DOI: 10.1021/acsomega.4c07964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Virtual screening is a crucial tool in early stage drug discovery for identifying potential hit candidates. Here, we present an integrated approach that combines theoretical and experimental techniques to identify, for the first time, inhibitors of amidases (Ami1-Ami4) from Mycobacterium tuberculosis. Through computational methods, we proposed a set of potential inhibitors, which were subsequently evaluated experimentally using differential scanning fluorimetry. This led to the identification of two promising hits: a carbohydrazide core (hit 1) and a tetrazole core (hit 5). We further developed a small collection of compounds derived from hit 1, which demonstrated improved affinity for Ami1. Additionally, we determined the crystallographic structure of the Ami1-hit 5 complex at a resolution of 1.45 Å, providing molecular-level insights into the interaction of this compound within the catalytic site. The findings of this study contribute to the advancement of drug discovery against tuberculosis and propose new targets for therapeutic development.
Collapse
Affiliation(s)
- Maciel Rosas-Cruz
- Instituto
de Química, Universidad Nacional
Autonóma de México, A. Universidad 3000, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico
| | - Abraham Madariaga Mazón
- Unidad
Mérida del Instituto de Química, Universidad Nacional Autónoma de México, Km. 5.5 Carr. Sierra Papacal-Chuburna
Pto. Sierra Papacal, CP 97302 Yucatán, Mexico
| | - Carlos D. García-Mejía
- Instituto
de Química, Universidad Nacional
Autonóma de México, A. Universidad 3000, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico
| | - Eduardo Hernández-Vázquez
- Instituto
de Química, Universidad Nacional
Autonóma de México, A. Universidad 3000, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico
| | - Homero Gómez-Velasco
- Instituto
de Química, Universidad Nacional
Autonóma de México, A. Universidad 3000, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico
| | - Eva Jiménez-Faraco
- Department
of Crystallography and structural Biology, Instituto de Química-Física
“Blas Cabrera”, Consejo Superior
de Investigaciones Científicas, E-28006 Madrid, Spain
| | - Roberto Sealtiel Farías-Gaytán
- Instituto
de Química, Universidad Nacional
Autonóma de México, A. Universidad 3000, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico
| | - Juan A. Hermoso
- Department
of Crystallography and structural Biology, Instituto de Química-Física
“Blas Cabrera”, Consejo Superior
de Investigaciones Científicas, E-28006 Madrid, Spain
| | - Siseth Martínez-Caballero
- Instituto
de Química, Universidad Nacional
Autonóma de México, A. Universidad 3000, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico
| |
Collapse
|
5
|
Zhao H, Li J, Feng S, Xu L, Yan B, Li C, Li M, Wang Y, Li Y, Liang L, Zhou D, Wan J, Wang W, Tian GB, Gu B, Huang X. High-throughput mutagenesis and screening approach for the identification of drug-resistant mutations in the rifampicin resistance-determining region of mycobacteria. Int J Antimicrob Agents 2024; 63:107158. [PMID: 38537722 DOI: 10.1016/j.ijantimicag.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 03/22/2024] [Indexed: 05/31/2024]
Abstract
Rifampicin is the most powerful first-line antibiotic for tuberculosis, which is caused by Mycobacterium tuberculosis. Although accumulating evidence from sequencing data of clinical M. tuberculosis isolates suggested that mutations in the rifampicin-resistance-determining region (RRDR) are strongly associated with rifampicin resistance, the comprehensive characterisation of RRDR polymorphisms that confer this resistance remains challenging. By incorporating I-SceI sites for I-SceI-based integrant removal and utilizing an L5 swap strategy, we efficiently replaced the integrated plasmid with alternative alleles, making mass allelic exchange feasible in mycobacteria. Using this method to establish a fitness-related gain-of function screen, we generated a mutant library that included all single-amino-acid mutations in the RRDR, and identified the important positions corresponding to some well-known rifampicin-resistance mutations (Q513, D516, S522, H525, R529, S531). We also detected a novel two-point mutation located in the RRDR confers a fitness advantage to M. smegmatis in the presence or absence of rifampicin. Our method provides a comprehensive insight into the growth phenotypes of RRDR mutants and should facilitate the development of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Hui Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Jiachen Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Siyuan Feng
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Lin Xu
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Bin Yan
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou 510080, China
| | - Chengjuan Li
- School of Basic Medical Sciences, Xizang Minzu University, Xianyang, 712082, China
| | - Meisong Li
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yaxuan Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yaxin Li
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Lujie Liang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Dianrong Zhou
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jia Wan
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Wenli Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Guo-Bao Tian
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Program in Pathobiology, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
6
|
Brogan AP, Rudner DZ. Regulation of peptidoglycan hydrolases: localization, abundance, and activity. Curr Opin Microbiol 2023; 72:102279. [PMID: 36812681 PMCID: PMC10031507 DOI: 10.1016/j.mib.2023.102279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023]
Abstract
Most bacteria are surrounded by a cell wall composed of peptidoglycan (PG) that specifies shape and protects the cell from osmotic rupture. Growth, division, and morphogenesis are intimately linked to the synthesis of this exoskeleton but also its hydrolysis. The enzymes that cleave the PG meshwork require careful control to prevent aberrant hydrolysis and loss of envelope integrity. Bacteria employ diverse mechanisms to control the activity, localization, and abundance of these potentially autolytic enzymes. Here, we discuss four examples of how cells integrate these control mechanisms to finely tune cell wall hydrolysis. We highlight recent advances and exciting avenues for future investigation.
Collapse
Affiliation(s)
- Anna P Brogan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Manganelli R, Cioetto-Mazzabò L, Segafreddo G, Boldrin F, Sorze D, Conflitti M, Serafini A, Provvedi R. SigE: A master regulator of Mycobacterium tuberculosis. Front Microbiol 2023; 14:1075143. [PMID: 36960291 PMCID: PMC10027907 DOI: 10.3389/fmicb.2023.1075143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
The Extracellular function (ECF) sigma factor SigE is one of the best characterized out of the 13 sigma factors encoded in the Mycobacterium tuberculosis chromosome. SigE is required for blocking phagosome maturation and full virulence in both mice and guinea pigs. Moreover, it is involved in the response to several environmental stresses as surface stress, oxidative stress, acidic pH, and phosphate starvation. Underscoring its importance in M. tuberculosis physiology, SigE is subjected to a very complex regulatory system: depending on the environmental conditions, its expression is regulated by three different sigma factors (SigA, SigE, and SigH) and a two-component system (MprAB). SigE is also regulated at the post-translational level by an anti-sigma factor (RseA) which is regulated by the intracellular redox potential and by proteolysis following phosphorylation from PknB upon surface stress. The set of genes under its direct control includes other regulators, as SigB, ClgR, and MprAB, and genes involved in surface remodeling and stabilization. Recently SigE has been shown to interact with PhoP to activate a subset of genes in conditions of acidic pH. The complex structure of its regulatory network has been suggested to result in a bistable switch leading to the development of heterogeneous bacterial populations. This hypothesis has been recently reinforced by the finding of its involvement in the development of persister cells able to survive to the killing activity of several drugs.
Collapse
Affiliation(s)
| | | | - Greta Segafreddo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Davide Sorze
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marta Conflitti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Agnese Serafini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
8
|
Samukawa N, Yamaguchi T, Ozeki Y, Matsumoto S, Igarashi M, Kinoshita N, Hatano M, Tokudome K, Matsunaga S, Tomita S. An efficient CRISPR interference-based prediction method for synergistic/additive effects of novel combinations of anti-tuberculosis drugs. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748577 DOI: 10.1099/mic.0.001285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is treated by chemotherapy with multiple anti-TB drugs for a long period, spanning 6 months even in a standard course. In perspective, to prevent the emergence of antimicrobial resistance, novel drugs that act synergistically or additively in combination with major anti-TB drugs and, if possible, shorten the duration of TB therapy are needed. However, their combinatorial effect cannot be predicted until the lead identification phase of the drug development. Clustered regularly interspaced short palindromic repeats interference (CRISPRi) is a powerful genetic tool that enables high-throughput screening of novel drug targets. The development of anti-TB drugs promises to be accelerated by CRISPRi. This study determined whether CRISPRi could be applicable for predictive screening of the combinatorial effect between major anti-TB drugs and an inhibitor of a novel target. In the checkerboard assay, isoniazid killed Mycobacterium smegmatis synergistically or additively in combinations with rifampicin or ethambutol, respectively. The susceptibility to rifampicin and ethambutol was increased by knockdown of inhA, which encodes a target molecule of isoniazid. Additionally, knockdown of rpoB, which encodes a target molecule of rifampicin, increased the susceptibility to isoniazid and ethambutol, which act synergistically with rifampicin in the checkerboard assay. Moreover, CRISPRi could successfully predict the synergistic action of cyclomarin A, a novel TB drug candidate, with isoniazid or rifampicin. These results demonstrate that CRISPRi is a useful tool not only for drug target exploration but also for screening the combinatorial effects of novel combinations of anti-TB drugs. This study provides a rationale for anti-TB drug development using CRISPRi.
Collapse
Affiliation(s)
- Noriaki Samukawa
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takehiro Yamaguchi
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Present address: Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Toyama 1-23-1, Shinjuku-ku, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University Graduate School of Medicine, Niigata, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Masayuki Igarashi
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Naoko Kinoshita
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Masaki Hatano
- Laboratory of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Kentaro Tokudome
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shinji Matsunaga
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
9
|
Bernegger S, Hutterer E, Zarzecka U, Schmidt TP, Huemer M, Widlroither I, Posselt G, Skorko-Glonek J, Wessler S. E-Cadherin Orthologues as Substrates for the Serine Protease High Temperature Requirement A (HtrA). Biomolecules 2022; 12:356. [PMID: 35327548 PMCID: PMC8945801 DOI: 10.3390/biom12030356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Helicobacter pylori (H. pylori) expresses the serine protease and chaperone High temperature requirement A (HtrA) that is involved in periplasmic unfolded protein stress response. Additionally, H. pylori-secreted HtrA directly cleaves the human cell adhesion molecule E-cadherin leading to a local disruption of intercellular adhesions during pathogenesis. HtrA-mediated E-cadherin cleavage has been observed in response to a broad range of pathogens, implying that it is a prevalent mechanism in humans. However, less is known whether E-cadherin orthologues serve as substrates for bacterial HtrA. Here, we compared HtrA-mediated cleavage of human E-cadherin with murine, canine, and simian E-cadherin in vitro and during bacterial infection. We found that HtrA targeted mouse and dog E-cadherin equally well, whereas macaque E-cadherin was less fragmented in vitro. We stably re-expressed orthologous E-cadherin (Cdh1) in a CRISPR/Cas9-mediated cdh1 knockout cell line to investigate E-cadherin shedding upon infection using H. pylori wildtype, an isogenic htrA deletion mutant, or complemented mutants as bacterial paradigms. In Western blot analyses and super-resolution microscopy, we demonstrated that H. pylori efficiently cleaved E-cadherin orthologues in an HtrA-dependent manner. These data extend previous knowledge to HtrA-mediated E-cadherin release in mammals, which may shed new light on bacterial infections in non-human organisms.
Collapse
Affiliation(s)
- Sabine Bernegger
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Evelyn Hutterer
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Urszula Zarzecka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland; (U.Z.); (J.S.-G.)
| | - Thomas P. Schmidt
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Markus Huemer
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Isabella Widlroither
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland; (U.Z.); (J.S.-G.)
| | - Silja Wessler
- Department of Biosciences and Medical Biology, Division of Microbial Infection and Cancer, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria; (S.B.); (E.H.); (T.P.S.); (M.H.); (I.W.); (G.P.)
- Cancer Cluster Salzburg and Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria
| |
Collapse
|
10
|
Song Y, Ke Y, Kang M, Bao R. Function, molecular mechanisms, and therapeutic potential of bacterial HtrA proteins: An evolving view. Comput Struct Biotechnol J 2022; 20:40-49. [PMID: 34976310 PMCID: PMC8671199 DOI: 10.1016/j.csbj.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/05/2023] Open
Abstract
Members of the high temperature requirement A (HtrA) protein family are widely distributed amongst prokaryotic and eukaryotic species. HtrA proteins have ATP-independent dual chaperone-protease activity and mediate protein quality control. Emerging evidence indicates that HtrA family members are vital for establishing infections and bacterial survival under stress conditions. Bacterial HtrA proteins are increasingly thought of as important new targets for antibacterial drug development. Recent literature suggests that HtrA protein AlgW from Pseudomonas aeruginosa has distinct structural, functional, and regulatory characteristics. The novel dual-signal activation mechanism seen in AlgW is required to modulate stress and drug responses in bacteria, prompting us to review our understanding of the many HtrA proteins found in microorganisms. Here, we describe the distribution of HtrA gene orthologues in pathogenic bacteria, discuss their structure–function relationships, outline the molecular mechanisms exhibited by different bacterial HtrA proteins in bacteria under selective pressure, and review the significance of recently developed small molecule inhibitors targeting HtrA in pathogenic bacteria.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yitao Ke
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Corresponding authors.
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- Corresponding authors.
| |
Collapse
|
11
|
Ali MQ, Kohler TP, Schulig L, Burchhardt G, Hammerschmidt S. Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease. Front Cell Infect Microbiol 2021; 11:763152. [PMID: 34790590 PMCID: PMC8592123 DOI: 10.3389/fcimb.2021.763152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. S. pneumoniae expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG. These serine proteases have recently received increasing attention because of their immunogenicity and pivotal role in the interaction with host proteins. This review is summarizing and focusing on the molecular and functional analysis of pneumococcal serine proteases, thereby discussing their contribution to pathogenesis.
Collapse
Affiliation(s)
- Murtadha Q Ali
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Liu P, Hao Z, Liu M, Niu M, Sun P, Yan S, Zhao L, Zhao X. Genetic mutations in adaptive evolution of growth-independent vancomycin-tolerant Staphylococcus aureus. J Antimicrob Chemother 2021; 76:2765-2773. [PMID: 34302174 DOI: 10.1093/jac/dkab260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Antibiotic tolerance allows bacteria to overcome antibiotic treatment transiently and potentially accelerates the emergence of resistance. However, our understanding of antibiotic tolerance at the genetic level during adaptive evolution of Staphylococcus aureus remains incomplete. We sought to identify the mutated genes and verify the role of these genes in the formation of vancomycin tolerance in S. aureus. METHODS Vancomycin-susceptible S. aureus strain Newman was used to induce vancomycin-tolerant isolates in vitro by cyclic exposure under a high concentration of vancomycin (20× MIC). WGS and Sanger sequencing were performed to identify the genetic mutations. The function of mutated genes in vancomycin-tolerant isolates were verified by gene complementation. Other phenotypes of vancomycin-tolerant isolates were also determined, including mutation frequency, autolysis, lysostaphin susceptibility, cell wall thickness and cross-tolerance. RESULTS A series of vancomycin-tolerant S. aureus (VTSA) strains were isolated and 18 mutated genes were identified by WGS. Among these genes, pbp4, htrA, stp1, pth and NWMN_1068 were confirmed to play roles in VTSA formation. Mutation of mutL promoted the emergence of VTSA. All VTSA showed no changes in growth phenotype. Instead, they exhibited reduced autolysis, decreased lysostaphin susceptibility and thickened cell walls. In addition, all VTSA strains were cross-tolerant to antibiotics targeting cell wall synthesis but not to quinolones and lipopeptides. CONCLUSIONS Our results demonstrate that genetic mutations are responsible for emergence of phenotypic tolerance and formation of vancomycin tolerance may lie in cell wall changes in S. aureus.
Collapse
Affiliation(s)
- Pilong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zehua Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Miaomiao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Mingze Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Peng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shunhua Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lixiu Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
13
|
Kieswetter NS, Ozturk M, Jones SS, Senzani S, Chengalroyen MD, Brombacher F, Kana B, Guler R. Deletion of N-acetylmuramyl-L-alanine amidases alters the host immune response to Mycobacterium tuberculosis infection. Virulence 2021; 12:1227-1238. [PMID: 33980132 PMCID: PMC8128173 DOI: 10.1080/21505594.2021.1914448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Peptidoglycan (PG), a heteropolysaccharide component of the mycobacterial cell wall can be shed during tuberculosis infection with immunomodulatory consequences. As such, changes in PG structure are expected to have important implications on disease progression and host responses during infection with Mycobacterium tuberculosis. Mycobacterial amidases have important roles in remodeling of PG during cell division and are implicated in susceptibility to antibiotics. However, their role in modulating host immunity remains unknown. We assessed the bacterial burden and host immune responses to M. tuberculosis mutants defective for either one of two PG N-acetylmuramyl-L-alanine amidases, Ami1 and Ami4, in bone marrow-derived macrophages (BMDM) and C57BL/6 mice. In infected BMDM, the single deletion of both genes resulted in increased proinflammatory cytokine responses. In mice, infection with the Δami1 mutant led to differential induction of pro-inflammatory cytokines and chemokines, decreased cellular recruitment and reduced lung pathology during the acute phase of the infection. While increased proinflammatory cytokines production was observed in BMDM infected with the Δami4 mutant, these effects did not prevail in mice. Infection using the Δami1 and Δami4 Mtb mutants showed that these genes are dispensable for intracellular mycobacterial growth in macrophages and mycobacterial burden in mice. These findings suggest that both Ami1 and Ami4 in M. tuberculosis are not essential for mycobacterial growth within the host. In summary, we show that amidases are important for modulating host immunity during Mtb infection in murine macrophages and mice.
Collapse
Affiliation(s)
- Nathan Scott Kieswetter
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shelby-Sara Jones
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sibusiso Senzani
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - Melissa Dalcina Chengalroyen
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - Frank Brombacher
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Bavesh Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - Reto Guler
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Xu Y, Liu X, Zhao J, Huang H, Wu M, Li X, Li W, Sun X, Sun B. An efficient phthalate ester-degrading Bacillus subtilis: Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116461. [PMID: 33485001 DOI: 10.1016/j.envpol.2021.116461] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Phthalate ester pollution in the environment and food chain is frequently reported. Microbial treatment is a green and efficient method for solving this problem. The isolation and systematic investigation of microorganisms generally recognized as safe (GRAS) will provide useful resources. A GRAS Bacillus subtilis strain, BJQ0005, was isolated from Baijiu fermentation starter and efficiently degraded phthalate esters (PAEs). The half-lives for di-isobutyl phthalate, di-butyl phthalate and di-(2-ethylhexyl) phthalate were 3.93, 4.28, and 25.49 h, respectively, from the initial amount of 10 mg per 10 mL reaction mixture, which are records using wild-type strains. Genome sequencing and metabolic intermediate analysis generated the whole metabolic pathway. Eighteen enzymes from the α/β hydrolase family were expressed. Enzymes GTW28_09400 and GTW28_13725 were capable of single ester bond hydrolysis of PAEs, while GTW28_17760 hydrolyzed di-ester bonds of PAEs. Using molecular docking, a possible mechanism affecting enzymatic ester bond hydrolysis of mono-butyl phthalate was proposed of GTW28_17760. The carboxyl group generated by the first hydrolysis step interacted with histidine in the catalytic active center, which negatively affected enzymatic hydrolysis. Isolation and systematic investigation of the PAE degradation characteristics of B. subtilis will promote the green and safe treatment of PAEs in the environment and food industry.
Collapse
Affiliation(s)
- Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, 100048, China
| | - Xiao Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Jingrong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Huiqin Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Mengqin Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, 100048, China.
| | - Weiwei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaotao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, 100048, China
| |
Collapse
|
15
|
Fishbein SRS, Tomasi FG, Wolf ID, Dulberger CL, Wang A, Keshishian H, Wallace L, Carr SA, Ioerger TR, Rego EH, Rubin EJ. The conserved translation factor LepA is required for optimal synthesis of a porin family in Mycobacterium smegmatis. J Bacteriol 2020; 203:JB.00604-20. [PMID: 33361193 PMCID: PMC8095456 DOI: 10.1128/jb.00604-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
The recalcitrance of mycobacteria to antibiotic therapy is in part due to its ability to build proteins into a multi-layer cell wall. Proper synthesis of both cell wall constituents and associated proteins is crucial to maintaining cell integrity, and intimately tied to antibiotic susceptibility. How mycobacteria properly synthesize the membrane-associated proteome, however, remains poorly understood. Recently, we found that loss of lepA in Mycobacterium smegmatis (Msm) altered tolerance to rifampin, a drug that targets a non-ribosomal cellular process. LepA is a ribosome-associated GTPase found in bacteria, mitochondria, and chloroplasts, yet its physiological contribution to cellular processes is not clear. To uncover the determinants of LepA-mediated drug tolerance, we characterized the whole-cell proteomes and transcriptomes of a lepA deletion mutant relative to strains with lepA We find that LepA is important for the steady-state abundance of a number of membrane-associated proteins, including an outer membrane porin, MspA, which is integral to nutrient uptake and drug susceptibility. Loss of LepA leads to a decreased amount of porin in the membrane which leads to the drug tolerance phenotype of the lepA mutant. In mycobacteria, the translation factor LepA modulates mycobacterial membrane homeostasis, which in turn affects antibiotic tolerance.ImportanceThe mycobacterial cell wall is a promising target for new antibiotics due to the abundance of important membrane-associated proteins. Defining mechanisms of synthesis of the membrane proteome will be critical to uncovering and validating drug targets. We found that LepA, a universally conserved translation factor, controls the synthesis of a number of major membrane proteins in M. smegmatis LepA primarily controls synthesis of the major porin MspA. Loss of LepA results in decreased permeability through the loss of this porin, including permeability to antibiotics like rifampin and vancomycin. In mycobacteria, regulation from the ribosome is critical for the maintenance of membrane homeostasis and, importantly, antibiotic susceptibility.
Collapse
Affiliation(s)
- Skye R S Fishbein
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Francesca G Tomasi
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Charles L Dulberger
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | - Albert Wang
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| | | | - Luke Wallace
- Broad Institute of MIT and Harvard, Cambridge, 02142, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, 02142, United States
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, Texas, 77843, United States
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, 06510, United States
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States
| |
Collapse
|
16
|
Küssau T, Van Wyk N, Johansen MD, Alsarraf HMAB, Neyret A, Hamela C, Sørensen KK, Thygesen MB, Beauvineau C, Kremer L, Blaise M. Functional Characterization of the N-Acetylmuramyl-l-Alanine Amidase, Ami1, from Mycobacterium abscessus. Cells 2020; 9:cells9112410. [PMID: 33158165 PMCID: PMC7694207 DOI: 10.3390/cells9112410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
Peptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells. Numerous autolysins with various substrate specificities participate in PG remodeling. Expression of these enzymes must be tightly regulated, as an excess of hydrolytic activity can be detrimental for the bacteria. In non-tuberculous mycobacteria such as Mycobacterium abscessus, the function of PG-modifying enzymes has been poorly investigated. In this study, we characterized the function of the PG amidase, Ami1 from M. abscessus. An ami1 deletion mutant was generated and the phenotypes of the mutant were evaluated with respect to susceptibility to antibiotics and virulence in human macrophages and zebrafish. The capacity of purified Ami1 to hydrolyze muramyl-dipeptide was demonstrated in vitro. In addition, the screening of a 9200 compounds library led to the selection of three compounds inhibiting Ami1 in vitro. We also report the structural characterization of Ami1 which, combined with in silico docking studies, allows us to propose a mode of action for these inhibitors.
Collapse
Affiliation(s)
- Tanja Küssau
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Niël Van Wyk
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Matt D. Johansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Husam M. A. B. Alsarraf
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Aymeric Neyret
- CEMIPAI CNRS UM UMS3725, CEDEX 5, 34293 Montpellier, France;
| | - Claire Hamela
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Kasper K. Sørensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (K.K.S.); (M.B.T.)
| | - Mikkel B. Thygesen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (K.K.S.); (M.B.T.)
| | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, F-91405 Orsay, France;
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- INSERM, IRIM, 34293 Montpellier, France
- Correspondence: (L.K.); (M.B.); Tel.: +33-(0)-434-359-447 (L.K. & M.B.)
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- Correspondence: (L.K.); (M.B.); Tel.: +33-(0)-434-359-447 (L.K. & M.B.)
| |
Collapse
|
17
|
Bandekar AC, Subedi S, Ioerger TR, Sassetti CM. Cell-Cycle-Associated Expression Patterns Predict Gene Function in Mycobacteria. Curr Biol 2020; 30:3961-3971.e6. [PMID: 32916109 PMCID: PMC7578119 DOI: 10.1016/j.cub.2020.07.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
Abstract
Although the major events in prokaryotic cell cycle progression are likely to be coordinated with transcriptional and metabolic changes, these processes remain poorly characterized. Unlike many rapidly growing bacteria, DNA replication and cell division are temporally resolved in mycobacteria, making these slow-growing organisms a potentially useful system to investigate the prokaryotic cell cycle. To determine whether cell-cycle-dependent gene regulation occurs in mycobacteria, we characterized the temporal changes in the transcriptome of synchronously replicating populations of Mycobacterium tuberculosis (Mtb). By enriching for genes that display a sinusoidal expression pattern, we discover 485 genes that oscillate with a period consistent with the cell cycle. During cytokinesis, the timing of gene induction could be used to predict the timing of gene function, as mRNA abundance was found to correlate with the order in which proteins were recruited to the developing septum. Similarly, the expression pattern of primary metabolic genes could be used to predict the relative importance of these pathways for different cell cycle processes. Pyrimidine synthetic genes peaked during DNA replication, and their depletion caused a filamentation phenotype that phenocopied defects in this process. In contrast, the inosine monophasphate dehydrogenase dedicated to guanosine synthesis, GuaB2, displayed the opposite expression pattern and its depletion perturbed septation. Together, these data imply obligate coordination between primary metabolism and cell division and identify periodically regulated genes that can be related to specific cell biological functions.
Collapse
Affiliation(s)
- Aditya C Bandekar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Sishir Subedi
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Veyron‐Churlet R, Saliou J, Locht C. Protein scaffold involving MSMEG_1285 maintains cell wall organization and mediates penicillin sensitivity in mycobacteria. FEBS J 2020; 287:4415-4426. [DOI: 10.1111/febs.15232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Romain Veyron‐Churlet
- U1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille CNRS Inserm CHU Lille Institut Pasteur de Lille Université de Lille France
| | - Jean‐Michel Saliou
- U1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille CNRS Inserm CHU Lille Institut Pasteur de Lille Université de Lille France
| | - Camille Locht
- U1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille CNRS Inserm CHU Lille Institut Pasteur de Lille Université de Lille France
| |
Collapse
|